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1. INTRODUCTION

In magnetically confined plasmas (MCP), the transport of heat and particles is determined by collisional and
anomalous processes caused by turbulence. A collective effort has been put into modelling the turbulent transport
in plasmas using various drift wave (DW) models. However, it is evident that large-scale phenomena have a
significant impact on overall transport. Heat transport can be mediated by coherent structures such as streamers
and blobs through the formation of avalanche-like events that are intermittent in nature, i.e., localized in time but
of large amplitude. Furthermore, at the same time, there are structures such as zonal flows (ZF) and GAMs that are
non-linearly generated and mitigate turbulent transport by shearing turbulent eddies. A common denominator for
these large-scale structures is the synchronization of smaller scale modes or events to a coherent structure, where
phases align in a localized region of space and time. Interestingly, phase synchronization is prevalent in many
other fields, such as biological clocks, physiological organisms, and chemical reactors. The dynamical evolution of
amplitude and phases have been investigated through simplified equations derived from the Hasegawa - Wakatani
(HW) system, where effects of synchronization are studied. Theoretical studies often deal with the amplitudes
of the fluctuating quantities and assume that the phases are randomly distributed according to the random phase
approximation (RPA) and thus disregard the dynamics of the phases [1,2]. In this approximation, dynamical
amplitudes have a slow variation compared to the rapid change of the phases, which are distributed uniformly
over a 2π interval [3]. There have been a few general approaches to the randomness in turbulence: the RPA,
the diagrammatic method by Wyld and the cumulant expansions, with the aim of systematically characterizing
intermittent behavior. Unless a specific case is studied, the diagrammatic method has a drawback since there is no
consistent small expansion parameter and no normalization procedure available. Moreover, the intuitive picture
of the RPA approach is tempting and is thus widely adopted in turbulence theory. The underlying assumption
of randomness in the RPA for the phases of Fourier modes in nonlinearly interacting waves cannot be justified
since the phases as well as the amplitudes evolve due to non-linear interactions that act on the same time scales
for both. Thus, the phases cannot be randomized faster than the amplitudes, see further discussion in Refs. [4,5].
Understanding the generation of coherent structures and the effects of these structures on transport and turbulence
is therefore of crucial importance. In regard to plasma dynamics, simplified models are of interest, assuming
an expansion of the state in amplitude and phase, i.e., ϕ ∼ ϕ0 exp(iθ), the basic dynamical equations yield one
dynamical equation for the amplitude and one for the phase for each field in the model. In previous papers, models
using the passive advected scalar [6] and the Burgers equation [1] where it was found that under certain conditions,
the RPA assumption can be invalidated using a phase dependent force and the locking of phases may increase
the energy transfer to other modes. The assumption of a fully stochastic phase state of the turbulence is more
relevant for high values of scale separation with the energy spectrum following a k7/2 decay rate. The dynamic
of the three-body interactions between the phases in the non-linear Burgers’ turbulence shows that the phases
lock intermittently. This is due to the k dependence of the coupling strength in the non-linear term which reduces
strongly for high-k range due to the dampening effect of the dissipation which does not allow locking of the phases
of the small scales. For lower scale dependence the asynchronized and synchronized phases differ significantly,



IAEA-CN-123/45

and one could expect the formation of coherent modulations in the latter case. Moreover, the HW have been
studied [7] and the work on the predator-prey model of DW – ZF dynamics, it is observed that synchronization
may be transferred between the two populations [8].

In this work, we investigate the role of phase dynamics for turbulent fluctuations in a set of direct numerical
simulation (DNS) of homogeneous Taylor-Green driven turbulence, simple 2D rotating turbulence flow. The
model is the forced incompressible magnetohydrodynamic (MHD) equations. It should be noted that in the study
of coupled oscillators describing chemical reactors, the Kuramoto model has been established, and it has been
shown that synchronization occurs when a certain threshold is exceeded. In this case the system is strongly forced
to generate a vortex and where the phase locking between close neighbours can be quantified.

2. THE KURAMOTO MODEL AND SYNCHRONIZATION

Random processes and related anomalous diffusion phenomena have been observed in a wide variety of com-
plex systems such as semiconductors, glassy materials, nano-pores, biological cells, and epidemic spreading. The
problem of finding a proper kinetic description for such complex systems is a challenge. The pedagogical appli-
cations of simplified models such as the Kuramoto model [9, 10] of random oscillators are particularly helpful
in understanding dynamics in many-body interacting systems. It has been used previous work as a paradigm to
understand Burgers’ turbulence. In particular we are interested to show the dominant impact of singular events
with high amplitude on the the long term collective behaviour, and to illustrate the limitations of the Gaussian
assumptions in these non-linearly coupled systems. We hope to start a wider discussion on the features that can
be expected in the field of plasma physics. The dynamics of the phases of the oscillators are described by coupled
first order differential equations of the Kuramoto form 1 :

θ̇j(t) = ωj +
K

N

N∑
i=1

sin(θi − θj), (j = 1, ..., N), (1)

where θ(t)j is the phase of the jth oscillator with θ̇j(t) being its time derivative. Here ωj is the natural fre-
quency of the oscillator which is often assumed to be distributed according to a Gaussian distribution f(ω) =
exp(−ω2/2)/

√
2π. K is the strength of the interactions between oscillators ith and jth. Moreover, consider the

sum of complex numbers of the form i.e. the average of the complex phases:

Z =
1

N

N∑
i=1

eiθi . (2)

The amplitude of the complex number Z in (2) increases with how close the phases are to each other. The absolut
value of 2 is then a measure of the synchronicity in the system where the local order parameter is then defined as
λ = |Z|. In order to test the phase coherence hypothesis in a reduced plasma model a test case of using direct
numerical simulations (DNS) of incompressible magnetohydrodynamics (MHD) is used, see Refs [11-12]. The
numerical results are downloadable using Ref. [11] and thus the primary work in the paper is the data analysis of
this numerically generated data set. The basic equations solved

∂u⃗

∂t
+ (u⃗ · ∇)u⃗ = −∇p⃗j × b⃗+ ν∇2u⃗+ F⃗ (3)

∂b

∂t
= ∇× (u⃗× b⃗) + η∇2⃗b (4)

∇ · u⃗ = 0 = ∇ · b⃗ (5)

Here u⃗ is the velocity field in the incompressible Navier-Stokes equation, b is the magnetic field in the induction
equation and p is the pressure and F⃗ is an external forcing taken to that of the Taylor-Green flow defined by:

F⃗ = f0(sin(kfx) cos(kfy) cos(kfx)x̂− cos(kfx) sin(kfy) cos(kfz)ŷ), (6)

where f0 = 0.25 and kf = 2.0. The Prandtl number is proportional to 1 and η = ν = 1.1× 10−4.

3. RESULTS

In this section we compute the local order parameter, defined by λj , for j = 1 it calculates the synchronization
including only the first neighbours and for j = 2 also including the two closest neighbouring modes. There is filter
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applied in a few cases to the signal, such that modes with λ < 0.1 are artificially reduced to zero before taking
the inverse fast Fourier transform back to real space. The simulations are performed with a periodic boundary in
ẑ thus the figures below are one cross section in the x-y plane. Also to simplify only one slice in time is analyzed.
In Fig. (1) and (2) the phase coherence of the absolute value of the magnetic field are shown respectively. The

FIG. 1. B field (original) and B field filtered for λ1 (first neighbors) < 0.1.

FIG. 2. B field (original) and B field filtered for λ2 (second neighbors) < 0.1.

original signal and a filtered version of the signal is shown where the filter articially put all small coherence values
to zero. The phase coherence is plotted in the x-y plane? In Fig. (3) and (4) the phase coherence of the absolute
value of the velocity are shown respectively in the x-y plane.

4. SUMMARY

In this work, we have introduced an analysis of a DNS incompressible MHD simulation where the phase coherence
is investigated. The phase coupling is assumed to follow the well-established Kuramoto paradigm that has been
shown to represent systems displaying self-organisation well. The model is intended to isolate the importance of
the collective phase a-synchronisation/synchronisation states on the time evolution of the velocity and magnetic
fields. Note that the full picture is varied with phase locking and breaking. This has been observed in other non-
linear systems such as in the Burgers turbulence [1] and in the HW model [7]. In both these systems generation of
large scale structures is possible however in many cases this is impeded by phase breaking due to the non-linear
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FIG. 3. U field (original) and U field filtered for λ1 (first neighbors) < 0.1.

FIG. 4. U field (original) and U field filtered for λ2 (second neighbors) < 0.1.
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interaction. It was noted that due to particular form of the systematic dependency of the frequencies to the wave-
numbers through the dispersion relation, this system does not seem to tend toward synchronization. It is possible
that boundary conditions come into play non-trivially stop formation of synchronized large scale structures in
some cases.

The results are shown as discrete time slices in the z-periodic simulation box. We find that phases are organized
in band like structures diagonally across the simulation domain where synchronization extends beyond local areas.
This seems to hold even when the local order parameter is extended beyond the immediate nearest neighbour
interaction indicating that indeed synchronization in this particular forced system is present. This is, moreover,
similar to what was found in the forced Burgers equation where banded synchronized structures could be generated
by forcing the non-linear system.

This is a first attempt to investigate phase locking in 3D MHD turbulence where no unique order parameter is
defined. This opens up synchronization of other system where large scale modes are present.
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