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A B S T R A C T

Following the societal electrification trend, airports face an inevitable transition of increased electric demand,
driven by electric vehicles (EVs) and the potential rise of electric aviation (EA). For aviation, short-haul flights
are first in line for fuel exchange to electrified transportation. This work studies the airport of Visby, Sweden
and the effect on the electrical power system from EA and EV charging. It uses the measured airport load
demand from one year’s operation and simulated EA and EV charging profiles. Solar photovoltaic (PV) and
electrical battery energy storage systems (BESS) are modelled to analyse the potential techno-economical gains.
The BESS charge and discharge control are modelled in four ways, including a novel multi-objective (MO)
dispatch to combine self-consumption (SC) enhancement and peak power shaving. Each model scenario is
compared for peak power shaving ability, SC rate and pay-back-period (PBP). The BESS controls are also
evaluated for annual degradation and associated cost. The results show that the novel MO dispatch performs
well for peak shaving and SC, effectively reducing the BESS’s idle periods. The MO dispatch also results in the
battery controls’ lowest PBP (6.9 years) using the nominal economic parameters. Furthermore, a sensitivity
analysis for the PBP shows that the peak power tariff significantly influences the PBP for BESS investment.
1. Introduction

1.1. Background

In the EU, the total emissions from aviation in 2017 accounted for
3.8% of the total CO2 emissions, with 13.9% of the emissions from
transport, making it the second largest emitter of transport greenhouse
gas (GHG) after road transport [1]. If global aviation were a country,
it would rank among the top ten emitters. Before the Covid pandemic,
the International Civil Aviation Organization forecasted that the emis-
sions could triple by 2045 compared to 2015 [2]. Aviation is vital
for urban development [3], and electric-driven aircraft is a potential
solution measure to reduce aviation-derived emissions. Electric aviation
(EA) would significantly reduce the environmental impact and elimi-
nate CO2 and non-CO2 emissions while reducing noise. With today’s
technology, short-haul flights (less than 1500 km) are best suited for
electrified aircraft with zero in-operation emissions. In 2019, these
fossil-driven short-haul flights accounted for one-third of the passenger
CO2 emissions [4].

∗ Corresponding author at: Department of Energy and resources, RISE Research Institutes of Sweden, Borås, Sweden.
E-mail address: patrik.ollas@ri.se (P. Ollas).

Budd et al. examined how UK airports address the challenge of
reducing the environmental impacts of operations and listed the iden-
tified sustainable practices [5]. The study also highlights the current
demographic differences in implementation pace and stresses the im-
portance of emerging markets following the leading examples. Air-
port authorities and managers are increasingly paying attention to the
sustainability implications of airport design [6].

Airports require vast and flat areas for their operation, with large
open fields along the runway to offer safe take-offs and landings, and
usually with a sound buffer area to reduce noise pollution. The energy
consumption of a larger airport is equivalent to a six-digit population
city with around-the-clock energy demand, putting significant stress
on the electricity grid. A potential grid stress relief is deploying solar
photovoltaic (PV) arrays on open, flat, and—in many cases—shading-
free spaces. Santa et al. analyse which sustainability practices are used
at airports today through a literature review, aiming to propose a
sustainable airport model [7]. Ten indicators were identified, including
vailable online 19 September 2023
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Nomenclature

𝛿𝑠𝑜𝑐 Adjustable term for minimum SOC
𝜅 Conditional term for battery MO operation
C𝑏𝑎𝑡𝑡 Relative battery price ($/kWh)
C𝑏𝑜𝑢𝑔ℎ𝑡 Electricity buy price
C𝑐𝑒𝑟𝑡 Electricity certificate price
C𝑑𝑒𝑔 Monetised battery degradation
C𝑛𝑒𝑡 Net electricity bill
C𝑁𝑆 Nordic electricity hourly spot price
C𝑝𝑒𝑎𝑘 Annual cash savings from peak shaving
C𝑝𝑣 Relative PV price ($/kW)
C𝑠𝑜𝑙𝑑 Electricity selling price
C𝑡𝑎𝑥 Electricity surcharge
C𝑡𝑎𝑥 Electricity tax price
C𝑡 Peak power tariff
C𝑣𝑎𝑟 Variable grid charge
𝐼𝑥0 Initial system investment, 𝑥 PV ∨ battery
𝑖𝑏𝑎𝑡𝑡 Battery current
𝑖𝑐𝑒𝑙𝑙 Battery cell current
𝑛(𝑡) Battery cycle number
𝑝𝑏𝑎𝑡𝑡 Battery power
𝑝𝐸𝐴
𝑐ℎ SOC-dependent charging power
𝑝𝑛𝑒𝑡 Net grid power
𝑝𝑠ℎ Peak shaving power
𝑝𝑚𝑆𝑥 Monthly peak power for S𝑥
𝑝𝑣𝑒𝑥𝑝 PV export (to the grid)
𝑞𝑏𝑎𝑡𝑡 Battery charge level
𝑞𝑙𝑜𝑠𝑠 Battery cycle ageing degradation
𝑠𝑜𝑐𝑠𝑣𝑚𝑖𝑛 Seasonal variation of minimum SOC
𝑢𝑏𝑎𝑡𝑡 Battery voltage
𝑢𝑂𝐶𝑉 Open-Circuit Voltage
Aℎ Battery capacity throughput
ALR Array-to-Load
B Pre-exponential degradation factor
BAU Business As Usual
BESS Battery Energy Storage System
CF𝑎𝑐 EA cabin factor
DoD Depth of discharge
E𝑎 Activation energy
E𝑏𝑎𝑡𝑡 Battery size (energy)
E𝑝𝑣 PV annual energy yield
EA Electric Aviation
EFC Equivalent full cycles
EV Electric Vehicle
m𝑠𝑡𝑟𝑖𝑛𝑔 No. of parallel strings
MILP Mixed Integer Linear Programming
MO Multi-objective
n𝑐𝑒𝑙𝑙 No. of series-connected cells
N𝐸𝐴 EV arrivals before EA departure
N𝑣𝑒ℎ
𝑝𝑎𝑥 Passengers per EV

N𝑎𝑐
𝑠𝑒𝑎𝑡 EA seating capacity

OCV Open-Circuit Voltage
P𝑏𝑎𝑡𝑡 Maximum battery power
P𝑎𝑣𝑔
𝑙𝑜𝑎𝑑 Annual average load demand

P𝑃𝑉 PV array rated power
2

PBP Pay-back-period
PV Solar photovoltaic
PV𝑛 PV array for location 𝑛 ∈ 1:3
Q𝑟𝑎𝑡𝑒𝑑
𝑏𝑎𝑡𝑡 Battery rated capacity

Q𝑐𝑒𝑙𝑙 Cell nominal capacity
R Ohmic Resistance
R𝑔 Gas constant – CHANGE
RBC Relative Battery Capacity
S𝑒 Share of EV in the car fleet
s𝑏𝑎𝑡𝑡 Battery size (kWh)
S𝐵𝐴𝑈 Business As Usual (BAU) scenario
S𝑀𝑂 Multi-objective battery dispatch scenario
S𝑣𝑒ℎ𝑝𝑎𝑥 Share of EA passengers arriving by EV
S𝑃𝑆 Peak shaving scenario (w/o PV)
S𝑝𝑣𝑃𝑆 Peak shaving scenario (w/ PV)
S𝑝𝑣 Reference scenario w/ PV
s𝑝𝑣 PV size (kW)
S𝑟𝑒𝑓 Reference scenario
S𝑇𝑍 Target Zero battery dispatch scenario
SC Self-consumption
SOC (Battery) state-of-charge
SOC𝑙𝑏 SOC lower boundary
SOC𝑚𝑎𝑥 Maximum battery SOC
SOC𝑚𝑖𝑛 Minimum battery SOC
SS Self-sufficiency
T Absolute temperature
TZ Target Zero battery dispatch algorithm
U𝑏𝑎𝑡𝑡
𝑛𝑜𝑚 Battery nominal operating voltage

U𝑐𝑒𝑙𝑙
𝑛𝑜𝑚 Cell nominal operating voltage

U𝑐𝑜𝑛𝑣
𝑛𝑜𝑚 Converter nominal operating voltage

V2G Vehicle to grid

Energy Management, where alternative and renewable energy sources,
such as solar energy, were categorised as one sub-indicator.

1.2. Related works

Schäfer et al. simulate replacing all global flights up to 600 nautical
miles with EA and estimates that this corresponds to an increased
energy demand of 112–344 TWh (0.6–1.7% of 2015 global consump-
tion) [8]. From a study of the O’Hare International airport, a portion
of the flights are replaced by hybrid electric aircraft and the change
in electricity demand was studied [9]. The results conclude that a
substantial increase in the energy demand is needed, requiring airport
grid upgrades.

Kaya et al. assessed the passengers’ airport sustainable design re-
quirements and found that PV installation was their top priority [6].
In an assessment of the PV potential for Chinese civil airports, the
combined PV power capacity of the 239 airports amounted to 2.5 GW/a
with a total generation of 2.65 TWh [10]. The referred study also
quantifies the self-sufficiency (SS) potential of PV and concludes that
for 23 out of 31 provinces, the SS rate is more than 50%. Furthermore,
the study concludes the need for electrical storage to mitigate the intra-
day mismatch between load demand and PV generation. Sukumaran
et al. evaluate the performance of a 12 MW PV installation at the
Cochin International airport in India and conclude that PV deploy-
ment effectively reduces the airport’s economic and environmental
footprint [11]. Baek et al. determine the optimal PV sizes for Incheon
International Airport, South Korea, for a reference load demand and
two load-expansion scenarios: 120 and 140% of the Ref. [12]. The study
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concludes that PV can cover the predicted load expansions. Baxter
et al. examined the effect of the PV installation at Adelaide Airport,
Australia and found tangible gains; 10% year-to-year reduced energy
consumption [13]. The advantages of PV airport deployment are also
highlighted in, e.g., [14,15]. However, the benefits of including PV
depend on the timely correlation with load demand. Including station-
ary battery energy storage system (BESS) could further enhance the
benefits by reducing grid energy demand, electricity cost, and access
to renewable energy.

Micallef et al. [16] reviewed the concept and potential for micro-
grids and acknowledged that the airport’s cross-sector coupling could
benefit from a microgrid implementation. The refereed study also
concludes that airports are the least explored transport-related sector
addressing the microgrid concept and the electrification challenge. The
lack of microgrid studies of airports are also acknowledged in [17,18].
In [17], the effect of vehicle-to-grid (V2G) and EA charging strategies
are studied for an airport micro grid with PV and hydrogen storage.
Xing et al. use a mixed integer linear programming (MILP) optimi-
sation to compare the techno-economic performance of five airport
energy configuration systems, including combinations of PV, BESS and
hydrogen storage [14]. The study excludes EA but concludes cost and
emission savings when implementing PV and storage by reducing elec-
tricity from the grid. Alruwaili et al. use a modified MILP to evaluate
the techno-economic potential of an airport microgrid with PV, BESS
and a backup diesel generator [19]. The MILP minimises operation
costs and enhances the airport’s power resilience. Similar to [14,19],
Zhao et al. use a MILP based on life cycle theory to evaluate an airport’s
techno-economic feasibility and resilience, excluding the electricity
usage at the terminals [20]. Typical for the reviewed studies on airport
micro grid operation is the use of a single-objective storage (BESS and
hydrogen) dispatch to maximise self-consumption (SC) from the PV
generation [14,17]. Trainelli et al. model the optimal airport battery
sizing to support EA charging (single-objective) and acknowledge the
potential of revenue-stacking operation [21]. Examples of operational
shortcomings of BESS single-objective operation are shown practically
in [22] and through simulations in [23]. In both cases, the results high-
light the poorly managed operation when relying solely on PV surplus.
As identified in [24–27], single-objective operation limits the BESS’s
full potential thus leaves out technical and economic possibilities.

This work taps into the research gaps in the literature by addressing:
(i) holistic airport micro grid modelling, including EA, EV, PV and
BESS, (ii) exploring the techno-economic effect of varying BESS op-
erations, and (iii) presenting a novel revenue-stacking multi-objective
(MO) battery dispatch operation. The examined case is a high-latitude
airport with significant energy and power demand increase from EA
and EV charging.

1.3. Aim and contributions from this work

This work addresses the increased demand for electricity at an
airport, driven by the societal electrification trend, particularly in
the transport sector from EA and EV. It fills the current research
gap by examining the role of PV and stationary BESS using differ-
ent dispatch algorithms and quantifies their respective effect from a
techno-economic perspective. A novel revenue-stacking MO battery
dispatch is presented, optimising the BESS operation by combining
self-consumption enhancement and peak power shaving. The economic
evaluation includes the monetised battery degradation, hourly electric-
ity grid trade and peak power tariff. In summary, this work provides
insights into the potential benefits and economic viability of integrating
PV and BESS in a Nordic airport and demonstrates how PV and BESS
can aid increased electrification. The specific contributions provided in
this work are:

• the use of measured airport load demand and realistically mod-
elled EA and EV charging profiles,
3
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• proposed revenue-stacking MO battery dispatch for combined SC
and peak shaving operation,

• quantified techno-economic effects from various BESS operation
objectives, and,

• quantified BESS degradation and associated cost from varying
dispatch operations.

2. Theory

2.1. Battery model

In the simplest of forms, a battery can be represented via the 𝑅𝑖𝑛𝑡
odel with a series-connected ohmic resistance, R, [28] and an open-

ircuit voltage (OCV), 𝑢𝑂𝐶𝑉 (𝑡). The cell’s nominal voltage, 𝑢𝑏𝑎𝑡𝑡(𝑡), can
e approximated as [29]

𝑏𝑎𝑡𝑡(𝑡) = 𝑢𝑂𝐶𝑉 (𝑡) + 𝑖𝑏𝑎𝑡𝑡(𝑡)R (1)

here 𝑖𝑏𝑎𝑡𝑡(𝑡) is the battery current and is defined as negative for
ischarge and positive for charging. The OCV is a function of the
attery’s state-of-charge (SOC) and is characterised through experimen-
al measurements [30]. The SOC defines the instantaneously available
nergy content and is defined as [31]

OC(𝑡) =
𝑞𝑏𝑎𝑡𝑡(𝑡)
Q𝑟𝑎𝑡𝑒𝑑
𝑏𝑎𝑡𝑡

=
∫ 𝑖𝑏𝑎𝑡𝑡(𝑡)𝑑𝑡

Q𝑟𝑎𝑡𝑒𝑑
𝑏𝑎𝑡𝑡

(2)

where 𝑞𝑏𝑎𝑡𝑡(𝑡) and Q𝑟𝑎𝑡𝑒𝑑
𝑏𝑎𝑡𝑡 are the charge level and rated capacity, respec-

tively.
Assuming cell uniformity, the required number of series-connected

battery cells (n𝑐𝑒𝑙𝑙), rounded to the nearest integer, is given as

n𝑐𝑒𝑙𝑙 = ceil
(U𝑐𝑜𝑛𝑣

𝑛𝑜𝑚

U𝑐𝑒𝑙𝑙
𝑛𝑜𝑚

)

(3)

where U𝑐𝑜𝑛𝑣
𝑛𝑜𝑚 and U𝑐𝑒𝑙𝑙

𝑛𝑜𝑚 are the converter’s and battery cell’s nominal op-
erating voltages, respectively. Using (3) and the battery cell’s nominal
capacity, Q𝑐𝑒𝑙𝑙, the required number of parallel strings (m𝑠𝑡𝑟𝑖𝑛𝑔𝑠) for a
given battery size, E𝑏𝑎𝑡𝑡, is given as

𝑠𝑡𝑟𝑖𝑛𝑔𝑠 = ceil
( E𝑏𝑎𝑡𝑡

U𝑏𝑎𝑡𝑡
𝑛𝑜𝑚Q𝑐𝑒𝑙𝑙

)

. (4)

And using (4), the string current, equal to the current through each
series-connected cell, is calculated as

𝑖𝑐𝑒𝑙𝑙(𝑡) =
𝑝𝑏𝑎𝑡𝑡(𝑡)
𝑢𝑏𝑎𝑡𝑡(𝑡)

1
m𝑠𝑡𝑟𝑖𝑛𝑔𝑠

(5)

where 𝑝𝑏𝑎𝑡𝑡(𝑡) and 𝑢𝑏𝑎𝑡𝑡(𝑡) are the battery power and voltage, respec-
ively.

Battery ageing consists of calendar and cycle ageing, where the
ormer depends on time, temperature and SOC, and the latter also on
he battery operation, e.g., the number of equivalent cycles, depth of
ischarge (DoD) and C-rate [32]. Based on the power law equation
ntroduced in [33], the work in [34] developed a cycle degradation
odel for a graphite-LiFePO4 battery cell. This degradation model

onsiders the operating temperature, time, depth of discharge (DoD)
nd discharge rate to calculate the cell’s capacity fade. Derived from
he power law equation, Wang et al. [34] replace the time dependency
or capacity throughput (𝐴ℎ) and define the capacity loss, 𝑞𝑙𝑜𝑠𝑠(𝑡), as

𝑙𝑜𝑠𝑠(𝑡) = B exp
(−E𝑎

R𝑔T

)

𝐴ℎ(𝑡)z (6)

here R𝑔 is the gas constant, 𝑇 is the absolute temperature (in K),
nd z is the power law factor. The pre-exponential factor, B, and
he activation energy, E𝑎, are parameterised from experimental tests
or different C-rates and operating temperatures [34]. The capacity
hroughput (𝐴ℎ) is calculated as

ℎ(𝑡) = 𝑛(𝑡) ⋅ DoD ⋅ Q𝑐𝑒𝑙𝑙 (7)

here 𝑛(𝑡) is the cycle number. The degradation model from (6) and
7) is widely used in the literature, e.g., [35–38].
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Fig. 1. Modelling procedure outline.
2.2. Self-consumption and self-sufficiency

The quantity of self-consumed electricity from PV generation (𝑀(𝑡))
is defined as [39]

𝑀(𝑡) = min
[

𝐿(𝑡); 𝑃 (𝑡) + 𝑆(𝑡)
]

(8)

where 𝐿(𝑡) is the load demand, 𝑃 (𝑡) is the PV generation, and 𝑆(𝑡)
the charge and discharge powers. Here, 𝑆(𝑡) is defined as positive for
discharge and negative for charge. Integrating (8) over time, 𝑇 , for a
system without battery storage gives the share of PV SC as

𝜗𝑆𝐶 =
∫ 𝑇 𝑀(𝑡)𝑑𝑡

∫ 𝑇 𝑃 (𝑡)𝑑𝑡
(9)

where 𝑃 (𝑡) is the total generated PV energy. This definition is true if
there is no interaction between the battery and external grid, that is,
no charging or discharging from/to the grid. If the battery is allowed
to interact with the grid, (9) can be expanded according to [40] as

𝜗𝑆𝐶 =
∫ 𝑇 𝑀(𝑡)𝑑𝑡 − 𝐵(𝑡)𝑑𝑡

∫ 𝑇 𝑃 (𝑡)𝑑𝑡
(10)

where 𝐵(𝑡) denotes the energy from the grid for charging the battery,
the SS is calculated from (9) and (10) by switching from total PV
generation in the denominator to total load demand.

3. Method

3.1. Case study: Visby airport

Located in Gotland (Sweden), the only competing transportation to
mainland Sweden and neighbouring countries is via ferry. In 2019,
before the Covid pandemic, the airport had more than 8000 arriving
passengers. The hourly load demand from 2018 is acquired and denoted
as ’Business As Usual’ (BAU) for this work. A seasonal variation in load
demand and PV output is present from the geographical location of the
airport. As the electricity demand is dominated by (electric) heating,
an apparent seasonal variation in load demand is present. The seasonal
load demand and PV availability have a negative correlation, mean-
ing that PVs ability to aid the increased energy and power demands
varies throughout the year. Furthermore, the seasonal variation in load
demand also present vary peak power demands from the grid.

Fig. 1 outlines the modelling procedure, including the energy infras-
tructure power flows, input data, scenario analysis and result genera-
tion.

3.2. Aircraft charging profiles

A simulation model has been developed to investigate airport power
capacity requirements if battery-driven EA is introduced [41]. Elec-
tric aircraft are expected to have relatively large batteries that are
also likely to be charged within short time intervals at the airports
(turnaround times) to enable sufficient range. Thus, the power ca-
pacity demand may increase at the airports if several aircraft charge
simultaneously. Regarding aircraft technology, the model and its flight
simulations are based on an electric aircraft model, parameterised per
4

certification level CS/FAR-23 (19 seats and maximum take-off weight
of 8618 kg) [42].

A scenario with 16 EA flights per day and direction has been
investigated in this work, capable of transporting 300+ passengers in
each direction using a 19-seat aircraft. In 2019, Visby Airport had
approximately 219,000 arriving passengers and 214,000 departing pas-
sengers [43]; on average, 600 passengers per direction and day. The
suggested EA schedule can thus handle 50% of the average daily
passenger demand.

As the energy density of batteries is much lower than traditional
jet fuel, EA will initially be limited to shorter distances. The EAs are
modelled with 800 kWh available battery storage. Flights are simulated
for six short-haul domestic EA routes to/from Visby Airport (ESSV)
shown in Fig. 2, each within a range of approximately 200 km. These
include Stockholm Bromma Airport (ESSB), Stockholm Skavsta Airport
(ESKN), Norrköping-Kungsängen Airport (ESSP), Linköping/SAAB Air-
port (ESSL), Västervik Airport (ESSW), and Kalmar Airport (ESMQ).
Only the ESSB connection is a commercial route today, meaning that
the rest are new routes that could be served by EA in the future, given
the proximity. A flight schedule for these routes is created by setting a
desired number of flights in different daily periods per route and direc-
tion. For the scenario, the distribution of flights has been designed as
a ’’commuter schedule’’ with primarily morning and afternoon flights.
An optimisation model is then introduced, which generates a schedule
where the entire flight demand is met with the minimum number of
electric aircraft. As shown in Fig. 3, the 32 flights can be covered under
defined periods using four electric aircraft (MF001–MF004). All flights
are depicted as diagonal lines between airports and colour-coded per
aircraft. Every flight is succeeded with a horizontal line representing
turnaround time at the destination airport.

Next, energy consumption is simulated step-by-step, followed by
charging simulations during the turnaround. Finally, the six airports’
resulting power requirements are summed at every time step. Fig. 4
shows the daily load curve from EA charging at Visby Airport. The EA
use independent fast-charging with a SOC dependent power [41,44] as

𝑝𝐸𝐴
𝑐ℎ (SOC) =

⎧

⎪

⎨

⎪

⎩

2 C, if 40% ≥ SOC(t) > 0%
1 C, if 80% ≥ SOC(t) > 40%
0.5 C, otherwise

3.3. Electric vehicle charging profiles

Charging of EVs at the airport parking is simulated based on flight
schedules, assumed parking patterns and other site-specific parameters.
It is assumed that the vehicle arrivals are connected to flight departures.
The number of EVs arriving before each departure, N𝐸𝑉 , is calculated
as

N𝐸𝑉 =
(N𝑎𝑐

𝑠𝑒𝑎𝑡CF𝑎𝑐S𝑣𝑒ℎ𝑝𝑎𝑥

N𝑣𝑒ℎ
𝑝𝑎𝑥

)

S𝑒 (11)

where N𝑎𝑐
𝑠𝑒𝑎𝑡 is the seating capacity of the departing aircraft, CF𝑎𝑐 the

aircraft cabin factor, S𝑣𝑒ℎ𝑝𝑎𝑥 the share of flight passengers arriving by car,
N𝑣𝑒ℎ
𝑝𝑎𝑥 the number of passengers per car (car-sharing), and S𝑒 the share

of electric vehicles in the car fleet. Before each departure, N arrivals
𝐸𝑉
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Fig. 2. Potential short-haul flight connections to/from Visby Airport within a 200 km radius modelled as EA flights.
Fig. 3. Representation of the optimised flight schedule. Aircraft movements between airports are shown as coloured lines. Airport acronyms: Visby (ESSV), Stockholm Bromma
(ESSB), Västervik (ESSW), Linköping/SAAB (ESSL), Stockholm Skavsta (ESKN), Norrköping-Kungsängen (ESSP) and Kalmar (ESMQ).
are sampled from probability density functions for arrival time (in
minutes before the flight departure), parking duration, and battery SOC
at arrival. As seen in Fig. 5(a), the average arrival time is 45 minutes
before flight departure and parking duration is 1–2 days (Fig. 5(b)),
and SOC upon arrival is modelled with a Gaussian distribution around
50%. The flight schedule is defined for a single day, whilst parked
EVs might span several days. Considering that the EV charging sessions
overlap with earlier days is essential. To capture this effect, the model
starts by simulating one set of parking sessions according to the method
described above and stores the maximum number of days that any of
the vehicles stay parked. The flight schedule is then repeated for that
number of days, simulating a new set of EV parking sessions each day
and stacking overlapping sessions. Finally, the EV charging profile for
the last day is stored, as it best represents the aggregated load for
the maximum overlapping sessions. The share of EVs, S𝑒 in (11), is
set to 25%. A power limit per charging outlet is 7.4 kW with a 95%
efficiency. Consequently, charging is modelled with a constant power
of 7.03 kW/EV until fully charged; after that, the EV remains in the
parking space.
5

3.4. Solar photovoltaic design

Airport specifications such as size, location, available space, air
traffic activities and weather conditions can significantly affect the
solar photovoltaic system design. In this case study, three potential
locations were suggested by the airport technical team during a visit
to Visby Airport; see Fig. 6. Possible risks to air traffic and aviation
system by glare [45] or glint from sun reflection, disturbance of radio
communication system and other instruments, and physical obstacles
at the airport were considered during the selection procedure [46].
Location 1 is a ground-mounted array system located reasonably far
from the airport building and communication tower. Location 2 is the
parking space, and PV panels could be installed on the roof. However,
it does not have a roof yet. Also, location 2 is relatively close to the
Airport Traffic Control Tower (ATCT) with a risk of electromagnetic
interference to the communication system [47,48]. These specifications
will be used in further evaluation of potential PV system installations
at the airport. Location 3 is a ground-mounted array system located
south-west of the main airport building.
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Fig. 4. Daily power demand from EA charging at Visby Airport.
Fig. 5. Probability distribution of (a): passenger car arrival time before flight departure and (b): car parking duration.
Table 1
Solar photovoltaic (PV) module specifications.

Specification Value

Panel dimensions [m] 1.046 × 1.559
Panel area [m2] 1.63
Rated power [W] 370

3.4.1. PV system simulation
Typical Meteorological Year (TMY), 10 km Grid, Meteonorm weather

was used in the HelioScope PV simulation software [49] to acquire the
output profiles. The array sizes are determined from the available space
to maximise the annual yield. In locations 1 and 3, the panels have a
fixed tilt angle of 35◦, facing due south (azimuth angle of 180◦) and an
nter-row spacing of 4 metres. In location 2, the solar panels are on the
arking roof with a tilt angle of 5◦. In most cases, the azimuth angles
re based on the parking orientation, which is 156◦. The PV modules
nd array’s technical specifications are shown in Table 1 and Table 2,
espectively, and the simulation results are in Table 3.

.4.2. PV and load demand correlation
From (9), the SC and SS are calculated for the three PV arrays (PV𝑛)

nd aggregated arrays (PVtot). The results are shown in Fig. 7 for four
6

Table 2
Solar array designs and specifications for the modelled locations.

Spatial planning PV1 PV2 PV3

Array area [m2] 12,732 6,968 2,880
Number of modules 2,632 3,168 556
Inter-row spacing [m] 4 – (rooftop) 4
Tilt anglea [◦] 35 5 35
Azimuth angle(s)a [◦] 180 156, 110 and 21b 180

a Tilt and azimuth angles are fixed.
b Tilt angle distribution: 38 kW at 21◦, 164 kW at 110◦ and 970 kW at 156◦.

Table 3
PV array simulation results.

PV1 PV2 PV3

Total array power [kW] 974 1,172 206
Annual yield [MWh] 1,083 1,125 230
Specific yield [kWh/kWp] 1,112 960 1,116
Performance ratio [%] 82.7 85.3 83.0
Shading loss [%] 4.3 0.1 4.0
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Fig. 6. Potential locations for PV system installation at Visby Airport.

load scenarios: ’All loads’ (BAU + EA + EV), BAU, EA, and EV. The
load demand directly consumes all energy from PV3 (Fig. 7(a)) in the
BAU scenario—and consequently also for ’All loads’—meaning that this
array alone is relatively small in comparison to the load demand and
further proven by a SS below 10% in Fig. 7(b). Locations 1 and 2 have
comparable yields (see Table 3), and despite the variation in azimuth
angles, the effect on SC and SS is marginal. For the continuation of
this work, PV generation in location 1 (PV1) is chosen considering
the similar effect on the technical performance as location 2 and the
realisation challenges of location 2 outlined in Section 3.4.

3.5. Target zero battery dispatch

The ‘Target Zero’ (TZ) algorithm for maximising SC is adopted
from [50,51]. The maximum charge and discharge powers, P𝑏𝑎𝑡𝑡, are
constrained by the battery’s power electronic converter. In this work
(for all battery algorithms), P𝑏𝑎𝑡𝑡 is set to 80% (0.8 C) of the energy ca-
pacity. This operation maximises the self-consumed PV and limits grid
energy import, with the battery size and SOC range (SOC𝑚𝑎𝑥–SOC𝑚𝑖𝑛;
90 and 15%, respectively) limiting the storage capacity.

3.6. Peak power shaving battery dispatch

Other studies in the literature on battery peak shaving typically use
a forecast for the net grid interaction, e.g., [52–54]. In the current work,
on the other hand, no forecast is used. Instead, the operation is dictated
via a rule-based control strategy outlined in Fig. A.15 and peak-shaves
to a target value set by the monthly peak power usage. The control
uses the available power cap-defined from the difference between the
instantaneous net demand and target value—to charge from the grid
(𝑝𝑛𝑒𝑡(𝑡)) to ensure sufficient SOC. Compared to the TZ algorithm, the
peak shaving algorithm uses an expanded DoD (85%) by lowering the
minimum SOC limit to 5% (SOC𝑙𝑏). Peak shaving 𝑝𝑠ℎ(𝑡) occurs whenever
the instantaneous net demand exceeds the current monthly target. After
each time step, the target value is compared to the grid import; if
the import exceeds the target, a new target value is set. The power
7

Table 4
Scenario modelling matrix.

S𝐵𝐴𝑈 S𝑟𝑒𝑓 S𝑝𝑣 S𝑇𝑍 S𝑀𝑂 S𝑝𝑣
𝑃𝑆 S𝑃𝑆

Reference load demand ✓ ✓ ✓ ✓ ✓ ✓ ✓

Electric Aviation ✓ ✓ ✓ ✓ ✓ ✓

Electric Vehicle ✓ ✓ ✓ ✓ ✓ ✓

Solar photovoltaic ✓ ✓ ✓ ✓

Battery storage ✓a ✓b ✓c ✓d

a Battery control from [50].
b Battery control: Figs. A.17 and A.18.
c Battery control: Fig. A.15.
d Battery control: Fig. A.16.

tariff is based on monthly performance and reset to zero at the start
of the month. The peak shaving algorithm is modelled with (S𝑝𝑣𝑃𝑆 ) and
without PV generation (S𝑃𝑆 ), and the operation without PV is shown
in Fig. A.16.

3.7. Multi-objective battery dispatch

The proposed MO combines the two objectives from Sections Sec-
tion 3.5 (maximised SC) and 3.6 (peak shaving) in a rule-based opera-
tion. The operation is described in Fig. A.17. The 𝜅 term ensures that:
(i) grid power is not used to charge the battery entirely (C3), and (ii)
grid-charged energy is not used for discharge to cover the load demand
(C4). The MO include a seasonal variation of the minimum SOC level,
𝑠𝑜𝑐𝑠𝑣𝑚𝑖𝑛(𝑡), outlined in Fig. A.18. Here, 𝑠𝑜𝑐𝑠𝑣𝑚𝑖𝑛(𝑡) is constrained by SOC𝑙𝑏
and SOC𝑚𝑎𝑥 from Fig. A.17: SOC𝑙𝑏 ≤ 𝑠𝑜𝑐𝑠𝑣𝑚𝑖𝑛(𝑡) ≤ SOC𝑚𝑎𝑥. Similar with
the peak shaving in Figs. A.15 and A.16, the DoD is defined between
SOC𝑙𝑏 and SOC𝑚𝑎𝑥. The SOC variation in Fig. A.18 is dictated by the PV
export (𝑝𝑣𝑒𝑥𝑝(𝑡)) from the previous 24 h (dt). If PV is exported, 𝑠𝑜𝑐𝑠𝑣𝑚𝑖𝑛(𝑡)
reduces by 𝛿𝑠𝑜𝑐 , and if no export is done, 𝑠𝑜𝑐𝑠𝑣𝑚𝑖𝑛(𝑡) increases by 𝛿𝑠𝑜𝑐 . This
work uses a 𝛿𝑠𝑜𝑐 of 5% if not mentioned otherwise. The minimum SOC
level thus has a clear seasonal variation depending on the preceding
day’s operation and the presence of PV export.

3.8. Airport energy system scenarios

Four main scenarios are modelled and evaluated, with one scenario
divided into four sub-scenarios. The scenarios, S𝑥, are:

• S𝐁𝐀𝐔 – represents today’s situation and uses the measured load
demand from Section 3.1.

• S𝐵𝐴𝑈 with added EA (Section 3.2) and EV (Section 3.3) profiles.
This case quantifies the added grid stress and energy demand
from EA and EV and denotes the reference in the foreseen future
scenario; S𝐫𝐞𝐟 .

• Scenario S𝐩𝐯; added PV generation (see Section 3.4) to the refer-
ence case, S𝑟𝑒𝑓 .

• Added BESS to S𝑟𝑒𝑓 with four types of control algorithms:

– S𝐓𝐙 – S𝑝𝑣 with battery dispatch from Section 3.5.
– S𝐌𝐎 – S𝑝𝑣 with multi-objective (MO) battery dispatch from

Section 3.7.
– S𝐩𝐯𝐏𝐒 – peak shaving algorithm with PV generation; see Sec-

tion 3.6 and Fig. A.15.
– S𝐏𝐒 – peak shaving without PV; see Fig. A.16.

The results from the battery scenarios quantify, on the one hand, the
effect of BESS and, on the other hand, the effect of the chosen battery
dispatch algorithm. Table 4 summarises the scenarios.
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Fig. 7. PV self-consumption (a) and self-sufficiency (b) for the PV arrays and load scenarios.
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Table 5
Technical specifications of the modelled battery pack [57].

Value Comment Value Comment

Q𝑐𝑒𝑙𝑙 12 Ah [57] R 3 mΩ R per 𝑛𝑐𝑒𝑙𝑙 in (1)
U𝑐𝑒𝑙𝑙

𝑛𝑜𝑚 3.2 V [57] n𝑐𝑒𝑙𝑙 250 See (3)
U𝑏𝑎𝑡𝑡

𝑛𝑜𝑚 800 V m𝑠𝑡𝑟𝑖𝑛𝑔𝑠 227 See (4)

3.9. Battery sizing and design

The modelled battery size is derived from the Relative Battery
Capacity (RBC) index and a method applied for residential buildings
in Sweden [55] as a function of PV array nominal power as

RBC =
E𝑏𝑎𝑡𝑡
E𝑃𝑉

(12)

where E𝑏𝑎𝑡𝑡 is the battery’s energy capacity and E𝑃𝑉 the annual PV
yield. In the referred study, the PV array size is modelled as a function
of annual load, defined from a study on high-latitude PV systems [56],
as

ALR =
P𝑃𝑉

P𝑎𝑣𝑔
𝑙𝑜𝑎𝑑

(13)

here P𝑃𝑉 is the PV array peak power (Wp) and P𝑎𝑣𝑔
𝑙𝑜𝑎𝑑 the annual

verage load demand. Using the two load demand scenarios from
ection 3.8, the ALRs in (13) are 1.7 and 3.2, with and without the
A and EV demands, respectively.

As concluded in previous works, e.g., [40,55], the effect of increased
attery size on the SC diminishes at a certain point, resulting in poor
tilisation for larger sizes. Fig. 8 shows SC as a function of battery size
E𝑏𝑎𝑡𝑡) and RBC for scenario S𝑇𝑍 (ALR = 1.7). Marginal improvements
n SC are observed for RBC>2. Thus, to optimise the BESS for SC
nhancements while maintaining good utilisation, an RBC = 2 is used
n (12), resulting in an energy capacity, E𝑏𝑎𝑡𝑡, of 2.2 MWh, and used for
ll scenarios in Table 4.

The nominal battery voltage (U𝑏𝑎𝑡𝑡
𝑛𝑜𝑚) is set to 800 Vdc, and the tech-

ical specification and resulting parameters using (3) and (4) are given
n Table 5. The modelled battery voltage and current characteristic is
alidated in [30].

.10. Economic evaluation

Using the Nordic spot electricity price, C𝑁𝑆 , the hourly price for
ought electricity is, in this work, calculated as

( )
8

𝑏𝑜𝑢𝑔ℎ𝑡(𝑡) = C𝑁𝑆 (𝑡) + C𝑡𝑎𝑥 + C𝑣𝑎𝑟 + C𝑐𝑒𝑟𝑡 + C𝑠𝑢𝑟 (14)
Fig. 8. Self-consumption as a function of battery size (E𝑏𝑎𝑡𝑡) and RBC for scenario S𝑇𝑍
(ALR = 1.7). The vertical line shows the modelled size in this work (2.2 MWh/RBC = 2).

where C𝑣𝑎𝑟 is the variable grid charge, C𝑐𝑒𝑟𝑡 the price of bought elec-
tricity certificates, C𝑠𝑢𝑟 electricity surcharge, all with a VAT of 25%.
The revenue from sold electricity is set equal to the hourly spot price,
C𝑁𝑆 (𝑡), as

C𝑠𝑜𝑙𝑑 (𝑡) = C𝑁𝑆 (𝑡) (15)

here C𝑁𝑆 (𝑡) are retrieved from Nord Pool [58]. Fig. 9 shows the an-
ual hourly variation in bought (C𝑏𝑜𝑢𝑔ℎ𝑡(𝑡)) and sold (C𝑠𝑜𝑙𝑑 (𝑡)) electricity
n 2018 for SE3 in Sweden. The net electricity bill is thus calculated
rom (14) and (15) as

𝑛𝑒𝑡(𝑡) =
𝑇
∑

C𝑏𝑜𝑢𝑔ℎ𝑡(𝑡) −
𝑇
∑

C𝑠𝑜𝑙𝑑 (𝑡) 𝑡 ∈ 𝑇 . (16)

For peak shaving, the cash inflow is defined from the annual savings
elative to a reference case, S𝑟𝑒𝑓 , and calculated as

𝑝𝑒𝑎𝑘 =

[ 𝑀
∑

max(𝑝𝑚𝑆𝑟𝑒𝑓
) −

𝑀
∑

max(𝑝𝑚𝑆𝑥)

]

C𝑡 (17)

𝑚=1 𝑚=1
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Fig. 9. Hourly variation of bought (C𝑏𝑜𝑢𝑔ℎ𝑡) and sold (C𝑠𝑜𝑙𝑑 ) electricity in SE3, Sweden
from 2018.

where max(𝑝𝑚𝑆𝑥) is the monthly peak power imports for month 𝑚 and
cenario S𝑥, and C𝑡 the peak power tariff ($/kW).

The economic payback period (PBP) is defined as the required time
or the initial investment, I0, to break even, giving the annual net cash
low. The PBP is calculated using (16) and (17) as

BP =
I0

∑

C𝑝𝑒𝑎𝑘 + 𝛥C𝑛𝑒𝑡(𝑡)
(18)

here 𝛥C𝑛𝑒𝑡(𝑡) is the difference in annual electricity bill from the
eference case (S𝑟𝑒𝑓 ), with positive values for net annual savings for
ase S𝑥. In this work, the initial investment, I0, is the sum of the PV
rray and battery storage (when relevant), and calculated as
𝑃𝑉
0 = s𝑝𝑣 ⋅ C𝑝𝑣 (19)

𝑏𝑎𝑡𝑡
0 = s𝑏𝑎𝑡𝑡 ⋅ C𝑏𝑎𝑡𝑡 (20)

here s𝑝𝑣 and s𝑏𝑎𝑡𝑡 are the PV and battery sizes, respectively, and C𝑝𝑣
and C𝑏𝑎𝑡𝑡 the relative prices (in $/kW and $/kWh). The nominal PV
and battery prices are set to 0.635 $/W [59] and 223 $/kWh [60],
respectively.

The battery degradation, 𝑞𝑙𝑜𝑠𝑠(𝑡) from (6), impose a cost of usage
calculated from the initial investment, I𝑏𝑎𝑡𝑡0 , as [61,62]

C𝑑𝑒𝑔 = I𝑏𝑎𝑡𝑡0 ∫

𝑇
𝑞𝑙𝑜𝑠𝑠(𝑡)dt 𝑡 ∈ 𝑇 . (21)

This approach is commonly used in the literature, e.g., [63,64], with
a constant C𝑑𝑒𝑔 throughout the BESS life time. Unlike previous works
with embedded battery degradation models, e.g., [65–67], this work
performs a post-process comparison of the battery degradation. Apart
from the DoD, the degradation is not considered for in the BESS
operations.

4. Results

For the scenarios outlined in Section 3.8, the PV SC and peak
power shaving are examined as a consequence of battery control (when
applicable). The financial parameters from Section 3.10 are modelled
with varying battery prices and peak power tariff charges to examine
the investments’ economic feasibility. Furthermore, the effect of battery
control on annual degradation is examined.

Table 6 summarises the studied cases’ power flow analysis results.
The addition of EA and EV (S𝑟𝑒𝑓 ) almost doubles the energy demand (+
89.4%) from today’s situation (S𝐵𝐴𝑈 ) and with an annual peak power
increase of more than 1 MW. Without the addition of PV, the energy
demand increase is directly reflected in the import demand. Adding
PV (S𝑝𝑣) partly covers (17.5%) the increased import but barely affects
9

the peak demand. Scenario S𝑃𝑆 relies solely on battery charging from
Table 6
Result summary of the power flow analyses for the studied cases.

S𝐵𝐴𝑈 S𝑟𝑒𝑓 S𝑝𝑣 S𝑇𝑍 S𝑀𝑂 S𝑝𝑣
𝑃𝑆 S𝑃𝑆

Load demand [MWh/a] 2,629 4,979 4,979 4,979 4,979 4,979 4,979
Energy import [MWh/a] 2,629 4,979 4,108 3,929 4,019 4,107 5,003
Peak import [kW] 749 1,766 1,707 1,707 1,192 1,192 1,233
PV SC [%] – – 80.0 98.3 88.6 80.4 –

Table 7
Annual BESS degradation, monetised degradation cost and equivalent full cycles (EFCs)
for the dispatch algorithms.

𝑞𝑙𝑜𝑠𝑠 [%/a] C𝑑𝑒𝑔 [$/a] EFC [–]

S𝑇𝑍 3.5 17,010 82.2
S𝑀𝑂 3.7 18,078 81.0
S𝑝𝑣
𝑃𝑆 3.6 17,245 74.4

S𝑃𝑆 4.2 20,345 100.4

the grid and thus increases the energy import (+ 0.5%) but shaves the
peak power demand (−533 kW). The inclusion of storage and dispatch
to maximise SC (S𝑇𝑍–S𝑀𝑂) partly cover the increased load demand
(21.5 and 19.4%, respectively). S𝑇𝑍 does little to the peak demand,
while S𝑀𝑂 gives a significant reduction (−574 kW). S𝑝𝑣𝑃𝑆 operation for
sole peak shaving barely affects the SC relative to S𝑝𝑣 but shaves the
peak demand per S𝑀𝑂.

Fig. 10 shows the monthly peak power imports for the scenarios (ex-
cluding S𝐵𝐴𝑈 ). The addition of PV (S𝑝𝑣) shave peaks in April–September
but is merely a consequence of the coincidence of peak demand and PV
generation. The coincidental peak shaving also applies when adding
battery storage operating with an SC objective (S𝑇𝑍 ). For the peak
shaving algorithms (S𝑀𝑂–S𝑃𝑆 ), the operations—first and foremost—
result in significantly lower peaks throughout the year. Relative to S𝑟𝑒𝑓 ,
the annually aggregated monthly peak shaving for S𝑇𝑍–S𝑃𝑆 are 0.50,
.52, 6.20, 6.24, and 6.61 MW/a, respectively.

The proposed MO dispatch performs well compared to S𝑝𝑣𝑃𝑆 and
S𝑃𝑆 except for July and September. The discrepancy in September is
explained in Fig. 11 showing a comparison between S𝑀𝑂 and S𝑝𝑣𝑃𝑆
rom September 22nd. Fig. 11(a) shows the net demand (PV-Load)
nd respective power targets, Fig. 11(b) the charge (positive) and peak
havings (negative), and Fig. 11(c) the battery SOCs. Both manage to
have the initial peak at 10 AM (Fig. 11(a)) and afterwards use the grid
o charge until the minimum SOC level (Fig. 11(c)). At 5 PM, another
eak occurs and is fully shaved by S𝑝𝑣𝑃𝑆 but only partially for S𝑀𝑂
−300 kW), generating a new target value for the latter. The difference
n SOC explains the discrepancy in performance (Fig. 11(c)), where
𝑝𝑣
𝑃𝑆 strives to keep it at maximum (90%) throughout. In contrast, the
easonal variation outlined in Fig. A.18 dictates the minimum level for
𝑀𝑂. As the preceding days have exported PV to the grid, the minimum
OC is low to allow for PV storage. At 6 PM, the grid is again used
o charge the batteries, and the difference in the cap—defined by the
ifference between target and net demand—allows S𝑀𝑂 to charge with

a higher power; see Fig. 11(b).

4.1. Effect of battery dispatch algorithm on battery ageing

Using (6) and (7), the stationary battery degradation from the
annual operation is calculated and shown in Fig. 12. As the degradation
is a function of energy throughput as per (6), the degradation from S𝑇𝑍
is marginal in the period later October to mid-February, as this control
relies on PV surplus for charging. Table 7 show the annual degradation
(𝑞𝑙𝑜𝑠𝑠), monetised degradation cost (C𝑑𝑒𝑔), and the number of equivalent
full cycles (EFCs) for each battery dispatch algorithm. Analysing the
trend between EFCs and degradation demonstrates the effect of DoD
on degradation. Despite having the second most EFCs, S𝑇𝑍 operation

(DoD = 75%) results in the lowest degradation.
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Fig. 10. Monthly peak power imports per scenario S𝑟𝑒𝑓 –S𝐷𝑛.
Fig. 11. Working principle of battery storage for S𝑀𝑂 and S𝑝𝑣
𝑃𝑆 from September 22nd showing: (a) net demand (PV-Load) and respective power targets, (b) battery charge (positive)

and peak shaving (negative), and (c) battery SOCs.
4.2. Economic assessment of PV and battery investment

Using (14)–(20) enables an economic assessment of the feasibility
of PV and battery investments for the assumed billing structure and
10
investment prices in Section 3.10. As aforementioned, the positive cash
flow is calculated relative to S𝑟𝑒𝑓 . Fig. 13 shows the PBP for S𝑝𝑣–
S𝑃𝑆 . For the nominal economic assumptions, the following results are
observed:
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Fig. 12. Annual stationary battery cycle degradation.
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• For all cases, the reduction in energy import is the primary source
of positive cash flow and determined from the hourly electricity
pricing and self-consumed PV energy.

• The scenario without battery storage, S𝑝𝑣, has the lowest PBP of
4.8 years, with 98.2% of the savings from SC.

• For the battery scenarios with PV (S𝑇𝑍–S𝑝𝑣𝑃𝑆 ), the proposed rule-
based multi-objective dispatch (S𝑀𝑂) has the lowest PBP. For
the battery cases, the relative monetary savings share from peak
shaving are 1.7, 17.8, and 19.6%, respectively.

• As S𝑃𝑆 relies on grid charging of the battery, the electricity
bill is higher than for S𝑟𝑒𝑓 (+ 3404 $/a), and with monetary
savings from peak shaving of 28,704 $/a. Considering that the
degradation cost from Table 7 is comparable with the net savings
(25,300 $/a), the investment is questionable from an economic
point-of-view.

A sensitivity analysis of the PBP is made by varying the battery
rice, I𝑏𝑎𝑡𝑡0 ∈ 100–300 $/kWh, and peak tariff, C𝑡 ∈ 4.6–46 $/kW.
ig. 14 shows the PBP for the nominal battery size, the battery price
anges, and peak power tariffs. For S𝑇𝑍 (Fig. 14(a)), the battery price
as a more significant effect on the PBP than the peak power tariff,
een from the steep PBP slope. This relation comes from the fact above
hat most of the positive cash flow (98.3%) comes from reduced energy
mport. As S𝑀𝑂 and S𝑝𝑣𝑃𝑆 (Figs. 14(b) and 14(c), respectively) have

larger relative share of peak shaving monetary savings (17.8 and
9.6%, respectively), these two are more sensitive to the peak power
ariff as seen from the flatter PBP slope. Without PV, the positive cash
low for S𝑃𝑆 relies entirely on the peak power tariff. With the nominal
conomic assumptions, the PBP for S𝑃𝑆 is the highest among the battery
cenarios; see Fig. 13. However, as seen in Fig. 14(d), the PBP is very
ensitive to the peak power tariff. As an example, doubling C𝑡 more
han halves the PBP.

. Discussion

This work focuses on two battery services: increased SC and peak
ower shaving. Market arbitrage and power balancing services are
xamples of other revenue-stacking battery services. Today’s intra-
ay price in the Northern electricity spot market fluctuations incen-
ivises the former. However, as the resilience requirements for airports
re outermost important—and hard to monetise—enabling the battery
or other services that might interfere with its primary purpose is
uestionable for this application.

Another way to increase SC and peak shaving is to adjust the PV
rray tilts and orientations. The PV array design can be adjusted to
nhance the supply and demand correlation if the daily load curves are
nown. This case study has clear power peaks from EA and EV charging
n the morning and afternoon. With east–west orientated arrays, these
11
Fig. 13. Payback period (PBP) using the nominal economic assumptions.

etter match the load demand and possibly exclude the necessity for
attery storage. An example of load-adapted PV design is presented
n [68]. A suggestion for future work is to apply this methodology and
xamine how this affects the need for battery storage.

For the peak shaving scenarios (S𝑝𝑣𝑃𝑆 and S𝑃𝑆 ), the SOC remains high
hroughout the year; 90% for more than 78 and 73% of the year, respec-
ively, and with average SOCs for the respective scenarios at 18.8, 73.2,
7.7, and 87.3%. The effect of operating SOC on battery degradation
as been investigated experimentally in [69], concluding that higher
OC operation deteriorates the battery faster. Furthermore, [70] reports
n the negative correlation of DoD and cycle life. Using the results from
his work and the findings in [69,70] suggest that S𝑝𝑣𝑃𝑆 and S𝑃𝑆 would
enerate even higher relative degradation.

The simulation model is developed using well-established theoret-
cal models and benchmarks, and the present study provides valuable
nsights into PV and BESS in the applied case of an airport micro grid.
owever, future research should address the need for incorporating
ctual data and hardware to validate further and enhance the reliability
nd applicability of the approach.

The proposed MO dispatch should be further explored. One sugges-
ion is altering the 𝛿𝑠𝑜𝑐 (±5% in this work). As seen from the example
n September, the lack of available battery capacity was insufficient
o shave the peak. Allowing a more significant 𝛿𝑠𝑜𝑐 variation could

benefit a greater peak shaving ability. Furthermore, the inclusion of
net demand forecasting should be examined. A rolling target value
striving to maintain a specific target could lead to the creation of a
greater value without the use of a forecast. Given the repetitive—or,
to some extent, pre-known-load demand, a persistent forecast could
be sufficient. Alternatively, a pre-defined target value for each month
could result in better peak shaving by avoiding the lower peaks.
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Fig. 14. PBP for: (a) S𝑇𝑍 , (b) S𝑀𝑂 , (c) S𝑝𝑣
𝑃𝑆 , and (d) S𝑃𝑆 , with varying battery prices (I𝑏𝑎𝑡𝑡0 ) and peak power tariffs (C𝑡).
6. Conclusions

This work includes a holistic analysis of the airport’s energy system
in a scenario with a substantial increase in energy and power demands
from EA and EV. The techno-economic performance examines the roles
of PV and BESS in aiding increased electrification. Furthermore, the
effect of inclusion and varying operational objectives of the BESS is
compared and quantified, including the effect on battery degradation.

Regardless of the assumptions made for EA and EV charging, these
additions substantially increase energy demand and—perhaps more
critically—peak power needs. This work demonstrates and quantifies
these effects for Visby Airport in Sweden and the potential gains from
on-site PV generation and BESS. Specifically, the PV SC and peak power
shaving abilities are examined for the studied scenarios, and each
scenario’s economic feasibility is evaluated.

The results show that substituting the short-haul flights with EA
increases the annual load demand by 89.4% and the annual peak power
demand by 1 MW. With only PV, the grid demand reduces by 871 MWh
through SC (80.0%). The peak reduction, however, is modest and a
consequence of the coincidence of PV output and peak power demand.
Including BESS further reduce the grid demand from increased SC,
up to 18.3 percentage points for S𝑇𝑍 compared to scenario S𝑝𝑣. The
SC depends on the battery control algorithm. For the proposed MO
dispatch, the SC is 88.6%, that is, 9.7 percentage points lower than S𝑇𝑍 .
However, S𝑀𝑂 also includes peak-shaving, and the aggregated annual
month-by-month peak reduction is 6.2 MW. This peak shaving ability is
competitive to sole peak shaving operation (with PV), where scenario
S𝑝𝑣𝑃𝑆 annually reduces the peak by 6.24 MW/a. A scenario with only
battery storage operating for peak shaving shows that the annual peak
reduction is 6.61 MW.
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An economic evaluation of the PBP for the PV and battery invest-
ments demonstrates the sensitivity of battery prices and peak power
tariff charges. For S𝑇𝑍 , relying on the reduced demand of bought
electricity (through SC), the battery price affects the PBP more. While
for the other battery operations, the peak tariff significantly influences
the PBP, especially for S𝑃𝑆 , which solely relies on peak shaving without
PV.

The proposed rule-based multi-objective battery dispatch (S𝑀𝑂)
performs well, considering both SC enhancement and peak shaving.
Relative to S𝑝𝑣, it enhances the SC with 8.6 percentage points and
sufficiently shaves the power peaks. Given the nominal economic as-
sumptions, this operation has the lowest PBP (6.9 years) among the
battery scenarios. The MO operation also reduces the battery’s idle
period, resulting in an annual degradation (3.7%/a) in the same order
of magnitude as the other dispatch algorithms (3.5–4.2%/a).
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Appendix. Battery control flow-charts

See Figs. A.15–A.18.
Fig. A.15. Flow chart of battery charge and discharge control for peak-shaving with PV.
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Fig. A.16. Flow chart of battery charge and discharge control for peak-shaving without PV.
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Fig. A.17. Flow chart of battery charge and discharge control for rule-based multi-objective (MO) dispatch.
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Fig. A.18. Rule-based operation of the minimum state-of-charge variation, 𝑠𝑜𝑐𝑠𝑣𝑚𝑖𝑛(𝑡), used in Fig. A.17.
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