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1 INTRODUCTION 

The aim of this document is to describe the basis for the partial safety factors recommended in IEC 
61400-1 ed. 4. 
 
The scope is to  

• give the basis for selecting materials partial safety factors in ‘recognized design codes’ – 
taking into account inspections (e.g. in relation to fatigue)  

• give the basis for design assisted by testing – determination of characteristic values for 
material parameters and load bearing capacities on the basis of test results  

• give the basis for modifying load partial safety factors if compared to the ‘normal’ situation 
better / additional information (less uncertainty) is available for estimating loads; e.g. 
modification of safety factors depending on specific site conditions. 

 
Section 2 briefly describes the theoretical basis for calibration of partial safety factors using 
reliability based methods. The required reliability level is discussed in section 3. In section 4 three 
basic models for calculating the design value of the load bearing capacity is presented. Next, 
reliability-based calibration of material partial safety factors is described in the following cases: DLC 
1.1 and 6.1 with extreme load; fatigue of welded steel details; DLC 2.1 and 2.2 with extreme load 
and faults; component / consequence class partial safety factor c . Finally, also the load partial safety 

factor in typhoon conditions is considered. Section 5 how the uncertainty level influences the partial 
safety factors. 
 
Finally annexes are presented on Reliability and partial safety factors for tower buckling; Reliability 
of concrete structures for wind turbines; Safety factors for fatigue of welded details in steel structures 
for wind turbines; and an overview of the main changes in material partial factors in the CD IEC 
61400-1: 2014 ed. 4 compared to IEC 61400-1: 2005 ed. 3. 
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2 THEORETICAL BASIS FOR RELIABILITY-BASED CALIBRATION OF 
PARTIAL SAFETY FACTORS 

Calibration of partial safety factors for codes and standards was previously performed by judgment 
based on experience. But during the last 20-30 years reliability-based techniques have been used in 
the process of calibration as a rational tool to account for the uncertainties related to the strengths, 
loads and models, see e.g. Madsen et al. [1]. Examples are building and bridge codes in Europe, 
Canada and USA. Further, reliability analyses have been performed as basis for the partial safety 
factors in the IEC 61400-1 and -3 standards, see Tarp-Johansen et al. [2], [3] and Tarp-Johansen [4]. 
 
In ISO 2394 [5] and the Eurocodes, EN 1990 [6] and Sedlacek et al. [8] the Design Value Format 
method has been used as basis for the assessment of the recommended partial safety factors. In 
section 2.1 this approach is described and for illustration applied for some wind components. In 
section 2.2 a general procedure for calibration of partial safety factors based on the JCSS approach is 
described. 
 
The wind turbine standard IEC 61400-1 [9] contains detailed requirements related to the calculation 
of design loads incl. partial safety factors for loads. However, only general requirements with respect 
to the materials and how to calculate the design load bearing capacities, incl. material partial safety 
factors. In practice the IEC-standard is used together with a ‘recognized’ standard for the materials – 
without consistent requirements to design equations and material partial safety factors. This can 
result in inconsistent reliability levels – which for some components can lead to a too low reliability 
level and for others a too high reliability level.  

2.1 Design value approach in ISO 2394 and EN 1990 
In EN 1990 [6] and ISO 2394 [5] a simplified procedure - ‘Design value approach’ - for calculation 
of partial safety factors is described. The basic principle is that design values dx  are calculated from 
 

   X d tF x         (2.1) 

 
where XF  is the distribution function for the stochastic variable with coefficient of variation V, t  is 

the target reliability level (see section 4),    is the standard Normal distribution function and 

   = 0.7  for a dominating load variable 
   = 0.28  for a non-dominating load variable 
   = -0.8  for a strength variable 

 
The design value format could be used to estimate how much the partial safety factors in the material 
Eurocodes could be changed when applied to wind turbines. As described in Sedlacek et al. [8] and 
EN 1990, annex C [6] it is assumed that the design lifetime for buildings is 50 years and the lifetime 
target reliability index for ultimate limit states is 3.8 corresponding to an annual reliability index 
equal to 4.7. If it is further assumed that material strengths are Lognormal distributed and that failure 
events in different years are statistically independent, see EN 1990 [6] and JCSS [11] then the 
material partial safety factors can be modified by the factor 
 

 
 

, 1990

,

exp 0.8

exp 0.8
t EN

t WT

V

V










      (2.2) 

 
where  
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1990,ENt  lifetime (50 years) target reliability level in the materials Eurocodes used for calibration of 

recommended partial safety factors = 3.8 (corresponding annual reliability index = 4.7 
assuming independence from year to year) 

WTt ,  lifetime (20 years) target reliability level for wind turbines. If e.g. WTt ,  = 2.6 then the 

equivalent annual target reliability index, 1,,WTt  = 3.5. 

 
Table 1. Partial safety factor reduction factor. 
V  0.05 0.10 0.15 0.20 
  for 1,,WTt =3.5 0.95 0.91 0.87 0.83 

  for 1,,WTt =3.3 0.95 0.89 0.85 0.80 

  for 1,,WTt =3.1 0.94 0.88 0.83 0.77 

 
Table 1 shows the reduction factor   for different coefficients of variation and for 1,,WTt  = 3.1, 3.3 

and 3.5. The yield strength of steel and reinforcement strength typically have a coefficient of 
variation V  equal to 0.05 implying a reduction factor equal to 0.94 - 0.95. The coefficient of 
variation for the compressive strength of concrete is typically 0.15 implying a reduction factor equal 
to 0.83 - 0.87. Application of these reduction factors to the recommended partial safety factors in 
Eurocode 3 for steel structures and Eurocode 2 for concrete structures indicates the level of reduction 
that can be accepted in order to secure the level of reliability implicitly assumed in the IEC 61400-1 
standard. It is noted that these reduction factors implicitly accounts for the bias (and hidden safety) in 
the design equations specified in the considered Eurocodes. 
 
Application of the design value format is an approximate technique to estimate partial safety factors. 
A more accurate technique is to use the methods described in the following section.  

2.2 JCSS approach for code calibration 
The general procedure for calibration of partial safety factors described in the following is based on 
the procedure recommended by the Joint Committee on Structural Safety (JCSS), see Faber & 
Sørensen [12]. Code calibration can be performed by judgment, fitting, optimization or a 
combination of these, see e.g. Madsen et al. [1]. Calibration by judgment has been the main method 
until 20-30 years ago. Fitting of partial safety factors in codes is used when a new code format is 
introduced and the parameters in this code are determined e.g. such that the same level of safety is 
obtained as in the old code or calibrated to a target reliability level. In practical code optimization the 
following steps are generally performed: 
 
1. Definition of the scope of the code 
2. Definition of the code objective 
3. Definition of code format 
4. Identification of typical failure modes and of stochastic model 
5. Definition of a measure of closeness 
6. Determination of the optimal partial safety factors for the chosen code format 
7. Verification 
 
Ad 1. The class of structures and the type of relevant failure modes to be considered are defined. 
 
Ad 2. The code objective may be defined using target reliability indices or target probability of 
failures depending on the use and characteristics of the considered class of structure. These can be 
determined by referencing to the reliability indices implicitly or explicitly assumed in existing codes 
or based on other criteria, e.g. based on the LQI (Life Quality Index) concept if life safety is 
important, see JCSS [13]. Recommendations on target reliabilities can also be found in e.g. EN 1990 



 

7 

[6] and ISO 2394 [5]. It is important to note that the target reliabilities are linked closely to the 
stochastic models used for the uncertain variables and the applied limit states. 
 
Ad 3. The code format includes: how many partial safety factors should be used, should load partial 
safety factors be material independent, should material partial safety factors be load type independent 
how to use the partial safety factors in the design equations rules for load combinations. In general 
for practical use the partial safety factors should be as few and general as possible. On the other hand 
a large number of partial safety factors are needed to obtain a consistent reliability level and also to 
obtain economical and safe structures for a wide range of different types of structures. 
 
Ad 4. Within the class of structures considered typical failure modes are identified. Limit state 
equations and design equations are formulated and stochastic models for the parameters in the limit 
state equations are selected. Also the frequency at which each type of safety check is performed is 
determined. The probabilistic model for the basic random variables should be selected very carefully. 
Guidelines for the selection can be found in JCSS Probabilistic Model Code [14]. In general the 
following main recommendations can be made: 

 
Strength or resistance variables are often modeled by Lognormal distributions. This avoids the 
possibility of negative realizations. In some cases it can be relevant also to consider Weibull 
distributions for material properties e.g composite material. This is especially the case if the strength 
is governed by brittleness, size effects and material defects. The coefficient of variation varies with 
the material type considered. Typical values are 5% for strength of steel and reinforcement, 15% for 
the concrete compression strength and (~ 5-20%) for strength of composite materials. The 
characteristic value is generally chosen as the 5% quantile. 

 
Variable loads (wind and wave loads) can be modeled in different ways. The simplest model is to use 
a stochastic variable modeling the largest load within the reference period (often one year). This 
variable is typically modeled by an extreme distribution such as the Gumbel distribution or the 
Weibull distribution. The coefficient of variation is typically in the range 15-30% and the 
characteristic value is chosen as the 98% quantile in the distribution function for the annual 
maximum load. 

 
Permanent loads are typically modeled by a Normal distribution since it can be considered as 
obtained from many different contributions. The coefficient of variation is typically 5-10% and the 
characteristic value is chosen as the 50% quantile. However, for wind turbines often more accurate 
estimates can be made. 

 
Model uncertainties are in many cases modeled by a Lognormal distributions if they are introduced 
as multiplicative stochastic variables and by Normal distributions if they are modeled by additive 
stochastic variables. Typical values for the coefficient of variation for the model uncertainty are 3-
25% but should be chosen very carefully. The characteristic value is generally chosen as the 50% 
quantile. 
 
Ad 5. The partial safety factors  n ,...,, 21γ  representing all load and material safety factors are 
calibrated such that the reliability indices corresponding to L  different representative failure modes 
defined by vectors jp  are as close as possible to a target reliability level represented by a target 

reliability index t  with a given reference time, typically one year. Equivalently a target probability 
of failure could be used. 
 
The optimal partial safety factors are obtained from: 
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  


L

j
tjjwW

1

2)()(  min  γγ
γ

     (2.3) 

 
where Ljwj ,...,2,1,   are weighting factors indicating the relative frequency / importance of  the 

different design situations. Instead of using the reliability indices in (2.3) to measure the deviation 
from the target, for example the corresponding probabilities of failure can be used. Also, a nonlinear 
objective function giving relatively more weight to reliability indices smaller than the target 
compared to those larger than the target can be used. The above formulations can easily be extended 
to include a lower bound on the reliability or probability of failure for each failure mode. 
 
Ad 6. The optimal partial safety factors are obtained by numerical solution of the optimization 
problem in step 5. The reliability index j  for combination j is obtained from a limit state equation 

written as: 
 
  0,, zpx jg       (2.4) 

 
where z  represents the design parameters, e.g. cross-sectional dimensions. 
 
For given partial safety factors γ  the reliability index is obtained as follows. First, the optimal design 
z  is determined using the design equations and relevant design constraints. The design equation is 
written: 
 
  0,, zpx jdG       (2.5) 

 
where dx  are design values obtained from characteristic values of the stochastic variables cx  and the 

partial safety factors γ . 
 

Ad 7. A first guess of the partial safety factors is obtained by solving the optimization problem (2.3). 
Next, the final partial safety factors are determined taking into account current engineering judgment 
and tradition.  
 
In the above procedure partial safety factors for all loads and strengths / resistances are obtained 
simultaneously. For wind turbines the following comments can be made to each of the above steps: 

a) The scope could be design of structural components of wind turbines incl. blades, tower, main 
frame, main shaft and foundation. It is important to define a set of standards / codes to be 
used for calculation of design loads and resistances / load bearing capacities. In some 
standards the models used to calculate the design resistances contain ‘hidden’ safety in the 
parameters / formulas to be used. These hidden safety elements are very important to be 
accounted for in a code calibration.   

b) The target reliability level should be defined considering the design process used for wind 
turbines using wind turbine classes. Based on the information used for assessment of partial 
safety factors in IEC 61400-1, see Tarp-Johansen et al. [2], [3] and Tarp-Johansen [4] and 
observed failure rates, a target annual reliability index t  equal to 3.1 – 3.8 corresponding to 
an annual probability of failure equal to 10-4 – 10-3, see section 4. A higher target reliability 
level could be expected for offshore wind turbines compared to onshore wind turbines due to 
larger consequences of failure, see chapter 4. 

c) The partial safety factors could be common partial safety factors for loads and for the 
materials: 

 One partial safety factor for each strength parameter (e.g. used for concrete structures in 
Eurocodes) 
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 One partial safety factor for the load bearing capacity for a structural component (e.g. 
used for steel structures in Eurocodes) 

 or a combination (e.g. used for geotechnical design in Eurocodes). 
d) Failure modes to be considered are among others: yielding, excessive deformation, collapse, 

local and global buckling (stability) and fatigue. For each of the failure modes a design 
equation has to be formulated according to the model in the standard used (e.g. Eurocode 3 
for design of steel towers). Further, for each failure mode a limit state equation has to be 
formulated corresponding to the design equation, but including stochastic variables for loads, 
resistances and model uncertainties.  

e) Next, stochastic models have to be formulated for the stochastic variables, incl. statistical 
dependencies / correlations.  

f) The objective in (2.3) can be used, maybe supplemented by a lower limit:   min γj . 

g) The optimization problem is solved. A stepwise procedure can be applied where the load 
partial safety factors are chosen (based on a preliminary optimization), and the material 
partial safety factors are calibrated individually for each material (steel, concrete, composites, 
etc.). 

h) The verification and adjustment to experience and practical aspects is very important, and is 
typically done by standardization committees.  

2.3 Reliability-based calibration of partial safety factors 
In section 2.2 a general approach for calibration of partial safety factors is described. However, in 
practice a stepwise, iterative procedure can be used. First, steps 1 - 3 in the JCSS approach are carried 
through and the load partial safety factors are chosen based on experience, practical aspects and 
preliminary reliability evaluations. Next, partial safety factors for resistances and material strengths 
are calibrated individually for each application area. These partial safety factors are calibrated to the 
required reliability level using limit state equations corresponding to the design equations to be used 
in practice and stated in the design standard. Step 7 in the JCSS approach is finally carried through 
for the complete set of partial safety factors. 
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3 REQUIRED RELIABILITY LEVEL 

The probability of failure of a failure mode modeled by a limit state equation  Xg  is  
 

     0XgPPf      (3.1) 

 
where   is the reliability index and    is the standard Normal distribution function. The 
relationship between the reliability index and the probability of failure is shown in the table 3.1. 
 

FP  10-2 10-3 10-4 10-5 10-6 10-7 

  2.3 3.1 3.7 4.3 4.7 5.2 

Table 3.1. Relationship between reliability index,   and probability of failure, FP . 
 
The target reliability level can be given in terms of a maximum annual probability of failures (i.e. 
reference time equal to 1 year) or a maximum lifetime probability of failure (i.e. for wind turbines a 
reference time equal to 20 – 25 years). 
 
For civil and structural engineering standards / codes of practice where failure can imply risk of loss 
of human lives target reliabilities are generally given based on annual probabilities. The optimal 
reliability level can be found by considering representative cost-benefit based optimization problems 
where the life-cycle expected cost of energy is minimized with appropriate constraints related to 
acceptable risks of loss of human lives, e.g. based on LQI (Life Quality Index) principles. 
 
Examples of reliability levels required (implicitly) in some relevant standards / codes (for normal 
consequence / reliability class) are:  
 

• Building codes (in Europe): Eurocode EN1990:2002: 
– The Eurocodes implicitly recommends a target reliability based on lifetime probabilities 

corresponding to a lifetime reliability index equal to 3.8, see e.g. Sedlacek et al.[8] 
where the basis for the material partial safety factors are described (assessed using the 
design value approach, see section 2.1). 

– Extreme load: annual: PF = 10-6 (β = 4.7) or lifetime (50 years): PF = 10-4 (β = 3.8) 
- Assumptions on stochastic models: Strengths: Lognormal; Permanent loads: 

Normal; Variable loads: Gumbel 
– Fatigue: design life (50 years): PF = 0.06 – 10-4 (β = 1.5 - 3.8) depending on possibility 

for inspections and criticality 
 

• Fixed steel offshore structures, see e.g. ISO 19902:2007: 
– manned:        annual PF ~ 3 10-5  or   β = 4.0  
– For structures that are unmanned or evacuated in  
 severe storms and where other consequences of  
 failure are not very significant:       annual PF ~ 5 10-4  or   β = 3.3 

 
 ISO 2394:1998 [5] 

– Extreme load: see table 3.2 
– Fatigue: design life: PF = 10-2 – 10-3 (β = 2.3-3.1) depending on possibility for 

inspections 
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 JCSS recommends reliability requirements based on annual failure probabilities for structural 
systems for ultimate limit states, see Table 3.3. These are based on optimization procedures 
and on the assumption that for almost all engineering facilities the only reasonable 
reconstruction policy is systematic rebuilding or repair. 

 
In table 3.2 and 3.3 target failure probabilities are given for ultimate limit states based on 
recommendations of JCSS (Joint Committee Structural Safety – Probabilistic Model Code) [14] and 
from ISO 2394:1998 [5] with a life-time reference period. The values in [14] are associated with the 
stochastic models recommended in JCSS PMC [14]. The values in ISO 2394:1998 [5] have been 
derived with the assumption of Lognormal or Weibull distributions for resistance, Normal 
distribution for permanent loads and Gumbel extreme value distribution for time-varying loads and 
using the design value method, see section 2. It is important that the same assumptions (or 
assumptions close to them) are used if the values given in table 4 are applied for probabilistic 
calculations. 
 
Table 3.2. Target lifetime reliability index and probability of failure according to ISO 2394 [5]. 

Relative costs of safety 
measures 

Consequences of failure 
Small Minor / Some Moderate Large 

High cost of safety 
measures 

 t = 0,    PF = 0.5  t = 1.5, PF = 710-2  t = 2.3, PF = 10-2  t = 3.1, PF = 10-3 

Moderate cost of safety 
measures 

 t = 1.3, PF = 10-1  t = 2.   PF =    10-2  t = 3.1, PF = 10-3  t = 3.8, PF = 10-4 

Low cost of safety 
measures 

 t = 2.3, PF = 10-2  t = 3.   PF =    10-3  t = 3.8, PF = 10-4  t = 4.3, PF = 10-5 

 
Table 3.3. Target annual reliability index and probability of failure according to JCSS [14]. 

Relative costs of safety 
measures 

Consequences of failure 
Minor / Some Moderate Large 

High cost of safety 
measures 

 t = 3.1, PF =10-3  t =3.3, PF = 510-4 t = 3.7, PF =    10-4 

Moderate cost of safety 
measures 

 t = 3.7, PF =10-4 
 

t =4.2, PF =     10-5  t = 4.4, PF = 510-6 

Low cost of safety 
measures 

t = 4.2, PF =10-5  t =4.4, PF = 510-6  t = 4.7, PF =    10-6 

 
It should be noted that the β-values (and the corresponding failure probabilities) are formal / notional 
numbers, intended primarily as a tool for developing consistent design rules, rather than giving a 
description of the structural failure frequency. E.g. the effect of human errors is not included. 
 
For wind turbines the risk of loss of human lives in case of failure of a structural element is generally 
very small. Further, it can be assumed that wind turbines are systematically reconstructed in case of 
collapse or end of lifetime. In that case also target reliabilities based on annual probabilities should be 
used, see JCSS (2002). The optimal reliability level can be found by considering representative cost-
benefit based optimization problems where the life-cycle expected cost of energy is minimized. 
 
It is assumed that for wind turbines: 

 A systematic reconstruction policy is used (a new wind turbine is erected in case of failure or 
expiry of lifetime). 

 Consequences of a failure are only economic (no fatalities and no pollution). 
 Cost of energy is important which implies that the relative cost of safety measures can be 

considered large (material cost savings are important). 
 Wind turbines are designed to a certain wind turbine class, i.e. not all wind turbines are 

‘designed to the limit’. 
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Based on these considerations the target reliability level corresponding to a minimum annual 
probability of failure is recommended to be  
 

4105 fP        (3.2) 

 
corresponding to an annual reliability index equal to 3.3. This reliability level corresponds to minor / 
moderate consequences of failure and moderate / high cost of safety measure. It is noted that this 
reliability level corresponds to the reliability level for offshore structures that are unmanned or 
evacuated in severe storms and where other consequences of failure are not very significant. 
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4 CALIBRATION OF PARTIAL SAFETY FACTORS 

4.1 Basic models for calculating the design load bearing capacity 

The load bearing capacity, R is assumed to be estimated by the following model: 
 

 aRbR X,         (4.1) 
 
where 
R  the measurable load bearing capacity 
X  vector of random variables (e.g. strength and stiffness parameters). Each of the strength 

parameters is modelled as a LogNormal stochastic variable with coefficient of variation XV  
a  set of deterministic variables, e.g. geometrical parameters 
 R  model for the load bearing capacity / resistance 

  model uncertainty assumed to be modelled as a LogNormal stochastic variable with mean 
value 1 and coefficient of variation V  

b   bias in the resistance model,  R   
 
Equation (4.1) can be used for reliability analysis if the uncertain parameters are modeled by 
stochastic variables. It is noted that model uncertainty / bias / additional safety is taken into account 
though the model uncertainty   and the bias b . Some calculation models for the load bearing 
capacity are conservative in the way that some parameters are chosen on the safe side. It is important 
when deriving the material partial safety factors to account for such additional safety / bias. 
 
For deterministic design three models are considered 

• Model 1: first, partial safety factors accounting for uncertainties of the strength and stiffness 
parameters are used to obtain design values of strength and stiffness parameters and the 
design value of the resistance model is determined. Next, this value is divided by a partial 
safety factor accounting for model uncertainty to obtain the design value of the load bearing 
capacity. 

• Model 2: first, the value of the resistance model is calculated using characteristic values of the 
strength and stiffness parameters. Next, this value is divided by a partial safety factor 
accounting for the total uncertainty of the resistance model (model uncertainty and 
uncertainty of strength and stiffness parameters) to obtain the design value of the load bearing 
capacity. 

• Model 3: the characteristic value of the load bearing capacity is obtained e.g. based on tests 
and this value is divided by a partial safety factor accounting for the uncertainty of the load 
bearing capacity to obtain the design value of the load bearing capacity.  

  
Model 1 where design values are determined for the material strength parameters: 
 






),( dd
d

aXR
R   (4.2) 

where 

da  design value for geometrical data 

dX  design values for strength parameters 
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  partial safety factor related to the model uncertainty for the resistance model including bias 
in resistance model 

 
If more than one strength parameter is used in the resistance model, then design values are applied 
for each strength parameter in (4.2). 
 
The design value of a strength parameter(s) dX  is determined by: 
 

m

k
d

X
X


   (4.3) 

where 
  conversion factor taking into account load duration effects, moisture, temperature, scale 

effects,… 

kX  characteristic value of strength parameter generally defined by the 5% quantile 

m  partial safety factor for strength parameter depending on the coefficient of variation XV  
 
If the resistance model is linear in the strength parameters then ),( ddd aXRR   and dX  for each of the 
strength parameters is obtained using a partial safety factor   mM . 
 
The partial safety factor   depends on the uncertainty of the resistance model, incl. bias: 

b
    (4.4) 

where 

  partial safety factor depending on the model uncertainty with coefficient of variation V  

without taking into account bias in the resistance model. 
 
The design values can generally be obtained by: 
 





















 d

nm

kn
n

m

k

d

a
XX

R

R

,,...,
,

,

1,

,1
1

     (4.5) 

 
where 

im

kiX

,

,


 design value of material parameter iX  with characteristic value kiX ,  

da  design value for geometrical data 

im,   partial safety factor for material parameter iX  

i   conversion factor for material parameter iX , accounting for additional effects, e.g. scale 

effects and time duration effects and, failure type, etc.  

   partial safety factor for load bearing capacity 
 
If the resistance model is linear then the partial safety factors can be applied directly to the strength 
parameters: 
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









 d

nM

kn
n

M

k
d a

XX
RY ,,...,

,

,

1,

,1
1 




      (4.6) 

 
 
where 

imiM ,,          (4.7) 

 
 
Model 2 where a characteristic resistance is obtained using characteristic values of the material 
strength parameters and the design value of the resistance is obtained from: 
 

M

kk
d

aXR
R


 ), (

   (4.8) 

where 

M  partial safety factor related to the total uncertainty of the resistance incl. bias. 
 
The total uncertainty of the resistance depends on the model uncertainty  , the bias of the resistance 
model and the uncertainty related to the strength parameters X  though the resistance function 

),( aXR . The material partial safety factors are correspondingly obtained from 
 

b
R

M

    (4.9) 

where 

R  partial safety factor depending on the resistance uncertainty with coefficient of variation RV  
from the strength parameters though the resistance function ),( aXR  

  partial safety factor depending on the model uncertainty with coefficient of variation V . 

 
Further, in some cases one partial safety factor is used and applied to the characteristic value of load 
bearing capacity,  dknnkk aXXRR ,,..., ,,11  : 

 
 

M

dknnk
d

aXXR
Y


 ,,..., ,,11      (4.10) 

 
Model 3 where a characteristic resistance is estimated based on tests: 
 

M

k
d

R
R


   (4.11) 

where 

kR  characteristic resistance estimated based on tests. kR  is generally defined by the 5% quantile 

M  partial safety factor related to uncertainty of the resistance obtained based on tests, RV . 
 
The material partial safety factors should be calibrated such that failure probabilities for the relevant 
failure modes are close to the target reliability level in (4.2). Where relevant statistical uncertainty 
and uncertainty related to transformation from laboratory to real structure should be included. 
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It is noted that the three models above are used in e.g. the Eurocodes as follows: 
 Eurocode 2 (concrete) uses Model 1 
 Eurocode 3 (steel) uses Model 2 
 Eurocode 7 (foundation) uses all three models 

4.2 DLC 1.1 and 6.1 with extreme load 

This section describes calibration of material partial safety factors for DLC 1.1 and 6.1 with extreme 
loads.  
 
The calibrations are performed assuming that there is  

 no bias (hidden safety) in calculation of load effects 
 no bias (hidden safety) in calculation of load bearing capacities 
 no scale effects, time duration effects,…  

i.e.   = 1 and b  = 1 corresponding to no conservatism (hidden safety) in the models to calculate load 
effects and load bearing capacities. If    ≠ 1 or b  ≠ 1 this is accounted for afterwards. 
 
The following generic limit state equation the extreme load effect in operation (DLC 1.1) or standstill 
(DLC 6.1) is used (without permanent loads) 
 

LXXXXRzg straerodyn exp         (4.12) 

 
where 
z  design parameter, e.g. cross-sectional area 
   model uncertainty load bearing model 
R  uncertainty in dominating strength parameter 
Xdyn  uncertainty related to modeling of the dynamic response, including uncertainty in 

damping ratios and eigenfrequencies 
Xexp  uncertainty related to the modeling of the exposure (site assessment) - such as the 

terrain roughness and the landscape topography 
Xaero uncertainty in assessment of lift and drag coefficients and additionally utilization of 

BEM, dynamic stall models, etc 
Xstr  uncertainty related to the computation of the load-effects given external load 
L uncertainty related to the extreme load-effect due to wind loads 
 
The stochastic model in Table 4.1 is used as ‘representative’, see [16].  
 
Table 4.1: Stochastic models for physical, model and statistical uncertainties.  
Variable Distribution Mean COV Quantile  Comment  
R  Lognormal - RV  5% Strength 

  Lognormal - V  Mean  Model uncertainty 

L – DLC 1.1  Weibull - 0.15 0.98 Annual maximum load effect 
obtained by load extrapolation 

L – DLC 6.1 Gumbel - 0.2 0.98 Annual maximum wind pressure 
– European wind conditions 

Xdyn Lognormal 1.00 0.05 Mean   
Xexp Lognormal 1.00 0.15 Mean  
Xaero Gumbel 1.00 0.10 Mean   
Xstr Lognormal 1.00 0.03 Mean   
 
The corresponding design equation is written: 
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0
 

 kf
R

k L
Rz 


      (4.13) 

 
where 
Rk  characteristic value of load bearing capacity 
Lk  characteristic value of variable load 

M   partial safety factor for load bearing capacity 

f  partial safety factor for load effect = 1.35 

 
It is noted that it is assumed that the characteristic value for the load bearing capacity is determined 
as the 5% quantile of the strength parameter and the mean value of the model uncertainty. It could be 
considered instead to use the 5% quantile of the product R . It is also noted that f  = 1.35 is used 

both for DLC 1.1 and DLC 6.1. 
 
Table 4.2. Partial safety factor for load bearing capacity, R . DLC 1.1 with Weibull distribution 

COV=0.15. Target (annual) reliability index = 3.3. f = 1.35. 

 V =0,00 0,05 0,10 0,15 0,20 

RV =0,05 1.16 1.18 1.24 1.35 1.49 
0,10 1.12 1.14 1.20 1.29 1.43 
0,15 1.11 1.13 1.19 1.28 1.40 
0,20 1.13 1.15 1.20 1.28 1.40 
0,25 1.17 1.18 1.23 1.31 1.42 

 
Table 4.3. Partial safety factor for load bearing capacity, M . DLC 6.1 with Gumbel distribution 

COV=0.20. Target (annual) reliability index = 3.3. f = 1.35. 

 V =0,00 0,05 0,10 0,15 0,20 

RV =0,05 1.14 1.16 1.20 1.28 1.40 
0,10 1.09 1.11 1.15 1.22 1.33 
0,15 1.07 1.08 1.12 1.19 1.29 
0,20 1.06 1.08 1.11 1.18 1.27 
0,25 1.07 1.09 1.12 1.19 1.28 

 
Comments: 

 It is seen that the required partial safety factor decreases for increasing coefficient of variation 
(COV) for the resistance. The reason is that the characteristic value (5% quantiles) for R 
decreases more for increasing COV than the resulting design value of the load bearing 
capacity (obtained by the reliability analyses) decreases. The same effect is seen when the 
coefficient of variation for the load-effect is increased.  

 The partial safety factors in Table 4.2 are conservative compared to Table 4.3. 
 
The calibrated partial safety factors in Table 4.2 is as an example used to obtain partial safety factors 
for some structural materials and for illustration choices of b  are made: 
 

 Structural steel component with yielding failure criteria:  
o RV =0.05, V =0.05, b =1.1 (ductile failure with extra load bearing capacity), R 1.18 

  
Resulting partial safety factor M = 1.18 / 1.1 = 1.06 ~ 1.1 
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 Structural steel component with buckling failure criteria:  
o RV =0.05, V =0.13, b = 1 / 0,85 (approx average bias in buckling model in EC 2, see 

annex B in ‘Example of stochastic modeling ….), R 1.28  

Resulting partial safety factor M  = 1.28 * 0.85 = 1.09 ~ 1.1 

 Structural concrete component with failure criteria dominated by concrete compression 
strength:  

o RV =0.10, V =0.05, b =1.0, R 1.14   

In Eurocode 2 for concrete it is taken into account that test specimens are not taken 
from the structure and therefore a conversion factor 1.15 is introduced (see Sedlacek et 
al. [8]) implying M  = 1.14 * 1.15 ~ 1.3 

 Structural concrete component with failure criteria dominated by reinforcement strength:  
o RV =0.05, V =0.05, b =1.0, R 1.18   

Resulting partial safety factor M  = 1.18 ~ 1.2 
 
If a load partial safety factor equal to 1.35 is used, then partial safety factors were calibrated in 
section 4.2 such that the reliability level becomes equal to the target reliability level t

FP  specified by 

(3.2). Based on the calibrated partial safety factors in table 4.2 the partial safety factors m  and M  in 

Table 4.4 and   in Table 4.5 are derived such that approximately the same resulting partial safety 

factors are obtained as using Table 4.2 for given combinations of XV  /  RV  and V . It is seen that m  

and R  both are equal to one for all coefficients of variations. Reasons for that are that part of safety 
is provided though use of the 5% quantile as characteristic value and that the reliability level is 
relatively low (compared to the reliability level required for e.g. buildings). 
 
Table 4.4. m , M  - partial safety factor for strength parameter or resistance.  

Coefficient of variation for strength 
parameter in model 1, XV  or resistance 
in model 2 and 3, RV  

5 % 10 % 15 % 20 % 25 % 

m  in model 1 or M  in model 2 and 3 1.0 1.0 1.0 1.0 1.0 

 
Table 4.5.   - partial safety factor for model uncertainty. 

Coefficient of variation for model 
uncertainty for resistance model in 
model 1, V  

0 % 5 % 10 % 15 % 20 % 

  1.15 1.20 1.25 1.35 1.45
 
It is noted that the partial safety factors in Tables 4.4 and 4.5 are calibrated without taking into 
account the bias b  and with the characteristic value for the model uncertainty equal to 1.  
 
Alternatively the values in Table 4.4a and 4.5a can be used, but the small variations for m  and M  

are considered inconvenient. 
 
Table 4.4a. m , M  - partial safety factor for strength parameter or resistance.  

Coefficient of variation for strength 
parameter in model 1, XV  or resistance 
in model 2 and 3, RV  

5 % 10 % 15 % 20 % 25 % 

m  in model 1 or R  in model 2 and 3 1.05 1.025 1.0 1.025 1.05 
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Table 4.5a.   - partial safety factor for model uncertainty. 

Coefficient of variation for model 
uncertainty for resistance model in 
model 1, V  

0 % 5 % 10 % 15 % 20 % 

  1.1 1.15 1.2 1.3 1.4
 
The same examples as above are considered but now using the partial safety factors in table 4.4 and 
4.5: 
 

 Structural steel component with yielding failure criteria:  
o RV =0.05, V =0.05, b =1.1 (ductile failure with extra load bearing capacity), R 1.20 

  
Resulting partial safety factor M = 1.20 / 1.1 ~ 1.1 
 

 Structural steel component with buckling failure criteria:  
o RV =0.05, V =0.13, b = 1 / 0,85 (approx average bias in buckling model in EC 2, see 

annex B in ‘Example of stochastic modeling ….), R 1.31  

Resulting partial safety factor M  = 1.31 * 0.85 ~ 1.1 
 

 Structural concrete component with failure criteria dominated by concrete compression 
strength:  

o RV =0.10, V =0.05, b =1.0, R 1.20   

In Eurocode 2 for concrete it is taken into account that test specimens are not taken 
from the structure and therefore a conversion factor 1.15 is introduced (see Sedlacek et 
al. [8]) implying M  = 1.20 * 1.15 ~ 1.4 

 
 Structural concrete component with failure criteria dominated by reinforcement strength:  

o RV =0.05, V =0.05, b =1.0, R 1.20   

Resulting partial safety factor M  = 1.2 

4.3 Fatigue of welded details in steel structures 

This section considers calibration of partial safety factors for welded details in steel structures. The 
details are described in Annex C. 
 
Basically a linear SN-curves is considered with the SN relation written 
 

  mKN         (4.14) 
 
where N  is the number of stress cycles to failure with constant stress ranges  . K  and m  are 
dependent on the fatigue critical detail. Appendix C describes the model for a bi-linear SN-curve.  
 
The fatigue strength F  is defined as the value of S  for 610 2 DN . 
 
If one fatigue critical detail is considered then the annual probability of failure is obtained from: 
 

 tPPP tF year in  failure FatigueFATCOL,     (4.15) 
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where  tP year in  failure Fatigue  is the probability of failure in year t and FATCOLP  is the probability 

of collapse of the structure given fatigue failure - modelling the importance of the detail / 
consequence of failure. 
 
The probability of failure in year t given survival up to year t is estimated by 
 

      0)(/0)1(0)(FATCOL,  tgPtgPtgPPP tF    (4.16) 

 
where the limit state equation is based on SN-curves, Miner’s rule for linear accumulation of fatigue 
damage and by introducing stochastic variables accounting for uncertainties in fatigue loading and 
strength, see Annex C. The stochastic model shown in Table 4.6 is considered as representative for a 
fatigue sensitive welded steel detail where the fatigue strength is represented by a bi-linear SN-curve. 
It is assumed that the design lifetime is LT  = 25 year. 
 
Table 4.6. Stochastic model. 
Variable Distribution Expected 

value 
Standard deviation / 
Coefficient Of 
variation 

Comment  

  N 1 COV  = 0.30 Model uncertainty 
Miner’s rule 

WindX  LN 1 WindCOV   Model uncertainty wind 
load 

SCFX  LN 1 SCFCOV   Model uncertainty stress 
concentration factor 

1m  D 3  Slope SN curve 

1log K  N determined 
from D  

1log K  = 0.2 Parameter SN curve 

2m  D 5  Slope SN curve 

2log K  N determined 
from D  

2log K  = 0.2 Parameter SN curve 

F  D 71 MPa  Fatigue strength 

1log K  and 2log K  are fully correlated 
 
For deterministic design partial safety factors are introduced: 

• f : a fatigue load partial safety factor multiplied to the fatigue stress ranges obtained by e.g. 

Rainflow counting. 
• m  : a fatigue strength partial safety factor. The design value of the fatigue strength is 

obtained by dividing the characteristic fatigue strength by m .  

 
The characteristic fatigue strength can be defined in various ways, namely based on 

• the mean minus two standard deviations of Klog . 
• the 5% quantile of Klog , i.e. the mean minus 1.65 times the standard deviation of Klog . 
• the mean of Klog . 

 
If the SN-curves are obtained by a limited number of tests then statistical uncertainty has to be 
accounted for. This can also be done in various ways, namely based on 
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• Bayesian statistics, see e.g. ISO 2394 [5] and EN 1990, annex D [6]. See also the informative 
annex K in IEC 61400-1 ed 4 ‘Calibration of structural material safety factors and structural 
design assisted by testing’, Table K.4 (for characteristic values defined by 5% quantiles).  

• Classical statistics. The characteristic SN-curve can be obtained using a 75% confidence level 
of 95% probability of survival for log N (as recommended in e.g. EN 1993-1-9 [7]). Note that 
a 75% confidence level using classical statistics results in approximately the same 
characteristic SN-curves as by application of Bayesian statistics. 

 
The required product of the partial safety factors mf   is obtained using the stochastic model in Table 

4.6, the limit state equation in Annex C, the characteristic SN-curve defined as the mean minus two 
standard deviations of Klog .  
 
Table 4.7 shows the required mf   for max,FP  = 5 10-4 (normal/high consequence of failure) and for 

the characteristic fatigue strength defined as the mean minus two standard deviations of Klog . The 
corresponding reliability indices are 3.3 and 2.6. The results are shown as function of the total 

coefficient of variation of the fatigue load: 22
SCFWindload COVCOVCOV  . 

 
Table 4.7. Required partial safety factors mf   given FATmin,  as function of COV for fatigue load. 

FATmin,  \ loadCOV  0,00 0,05 0,10 0,15 0,20 0,25 0,30
3,3 (5 10-4) 1.04 1.06 1.12 1.21 1.32 1.43 1.56
 
Assuming that a coefficient of variation for the fatigue load ranges is typically within the interval 15-
20% the partial safety factor f  in table 4.8 and   

 

m  = 1.25 

 
are recommended.  
 
Table 4.8. Recommended partial safety factor for fatigue stress ranges, f .  

Coefficient of variation, loadCOV  0-5 % 5-10 % 10-15 % 15-20 % 20-25 % 25-30 %

f  0.85 0.90 0.95 1.00 1.10 1.20 
 
Typically the coefficient of variation, loadCOV  will be at least equal to 15%. 

 
If the characteristic fatigue strength is based on the 5% quantile of Klog , or the mean of Klog  then 

the partial safety factor m  has to be increased with the factors: 

 
• 5% quantile of Klog :  factor 1.04 
• mean of Klog :  factor 1.23 

 
Next, the consequence of failure can be included by the concepts ‘damage tolerant’ and ‘safe life’ 
reliability assessment methods based on the following descriptions (from EN 1993-1-9:2005 [7]). 
 
a) damage tolerant method 

 selecting details, materials and stress levels so that in the event of the formation of cracks a 
low rate of crack propagation and a long critical crack length would result, 

 provision of multiple load path 
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 provision of crack-arresting details, 
 provision of readily inspectable details during regular inspections. 

 
b) safe-life method 

 selecting details and stress levels resulting in a fatigue life sufficient to achieve the target β – 
value at the end of the design service life. No inspections are required. 

 
Generally, for the ‘Damage tolerant’ approach either the structure is redundant or inspections are 
performed (or a combination of these). 
 
The fatigue strength partial safety factor is then generalised according to Table 4.8. The partial safety 
factors are assumed to correspond to normal consequences of failure, i.e. component class 2 in IEC 
61400-1. 
 
Table 4.8. Recommended values for partial safety factor for fatigue strength, m .  

Assessment method m  

Damage tolerant 1.10 
Safe life 1.25 

4.4 Design Load Cases with faults 

In Design Load Case 2 a wide range of load cases related to faults are considered. These DLCs are 
very dependent on assumed type and frequency of faults and the consequences of the faults. Further, 
they depend on the site and wind turbine type considered. In this section a special, generic case 
related to DLC 2.1 and 2.2 is considered.  
 
The annual failure rate is assumed to be estimated from 
 

  EXgPEEF 0,         (4.17) 

 
where 

E  annual rate of faults 

  EXgP 0  probability of failure given fault 

 
For DLC 2 the acceptable annual failure rate is assumed to correspond to the acceptable annual 
failure probability for DLC 1 and 6, i.e. 
 

max
,  EF        (4.18) 

 
where 
 max  maximum acceptable annual failure rate = 4105   per year 
 
Table 4.9. Stochastic models for physical, model and statistical uncertainties.  
Variable Distribution Mean COV Quantile  Comment  
R  Lognormal - RV  5% Strength 

  Lognormal - V  Mean  Model uncertainty 

Q – DLC 2.x  Weibull - QV  Mean of upper half of 
density function ≈ 
77% quantile  

Load effect given faults, 
see IEC 61400-1, section 
7.6.2 
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Xdyn Lognormal 1.00 0.05 Mean   
Xexp Lognormal 1.00 0.15 Mean  
Xaero Gumbel 1.00 0.10 Mean   
Xstr Lognormal 1.00 0.03 Mean   
 

  EXgP 0  is estimated using the following representative limit state equation, which is basically 

the same as the limit state equations considered for DLC 1 and 6: 
 
  QXXXXRzXg straerodyn exp         (4.19) 

 
where 
z  design parameter, e.g. cross-sectional area 
   model uncertainty for resistance model 
R  uncertainty in dominating strength parameter in resistance model 
Xdyn  uncertainty related to modeling of the dynamic response, including uncertainty in 

damping ratios and eigenfrequencies 
Xexp  uncertainty related to the modeling of the exposure (site assessment) - such as the 

terrain roughness and the landscape topography 
Xaero uncertainty in assessment of lift and drag coefficients and additionally utilization of 

BEM, dynamic stall models, etc. 
Xstr  uncertainty related to the computation of the load-effects given external load 
Q uncertainty related to the load-effect given faults 
 
The stochastic model in Table 4.9 is used as ‘representative’ uncertainties.  
 
The corresponding design equation is written: 
 

0
 

 kF
R

k Q
Rz 


      (4.20) 

 
where 
Rk  characteristic value of load bearing capacity 
Qk  characteristic value of variable load 

R   partial safety factor for load bearing capacity 

F  partial safety factor for load effect 
 
It is noted that it is assumed that the characteristic value for the load bearing capacity is determined 
as the 5% quantile of the strength parameter and the mean value of the model uncertainty. The partial 
safety factor R  is obtained from Table 4.5. 
 

F  is determined as a function of E  such that (4.18) is fulfilled. 
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Figure 4.1. F  as function of  1/ E  [year] for QV  = 0.05, 0.10 and 0.15 and ( RV , V ) = (0.05,  0.10). 

 

 
Figure 4.2. F  as function of  1/ E  [year] for QV  = 0.05, 0.10 and 0.15 and ( RV , V ) = (0.15,  0.15). 

 
Figures 4.1 and 4.2 show the results for QV  = 0.05, 0.10 and 0.15 for the cases 

1. RV = 0.05 and V = 0.10 

2. RV = 0.15 and V = 0.15 

 
It is seen that a load partial safety factor equal to 1.35 for 1/ E  < 10 year, equal to 1.10 for 1/ E  > 50 
year and linear interpolation in between (in logarithmic scale) results in a satisfactory reliability level 
for 1/ E  > 3 year and for the coefficient of variation (COV) for the load effect given a fault between 
5% and 15%. The example in Figure 4.3 shows that typically the COV for the load effect in case of a 
control system fault is in that range. This example is based on the consequence of a control system 
failure, see Hammerum [15]. Emergency stops have been simulated, which traditionally results in 
high tower loads. 120 simulations were made for each wind 2 m/s bin in the range 4-24 m/s, see 
Figure 4.3.  
 
It is noted that if the load effect is assumed to be Normal or LogNormal distributed then only very 
small changes in the load partial safety factor is needed. 



 

25 

 

 
Figure 4.3. Example of simulation results for maximum tower bottom bending moments in case of 
control system failure from Hammerum [15]. The upper part shows the mean wind speed plotted 
against the maximum tower bottom bending moments. The lower plot shows the empiric exceedance 
function for the maximum tower bending moment, weighted with the Weibull distribution of the 
wind speed shown in the upper plot.  

4.5 Reliability analysis of influence of component class partial safety factor c  

This section describes reliability based investigations related to the consequence of failure factor c 

which is introduced to distinguish between: 
 

 Component class 1: used for "fail-safe" structural components whose failure does not result in 
the failure of a major part of a wind turbine, for example replaceable bearings with 
monitoring. Component class 1 is considered to correspond to low consequence of failure. 

 Component class 2: used for "non fail-safe" structural components whose failures may lead to 
the failure of a major part of a wind turbine. Component class 2 is considered to correspond to 
middle consequence of failure. 

 Component class 3: used for “non fail-safe” mechanical components that link actuators and 
brakes to main structural components for the purpose of implementing non-redundant wind 
turbine protection functions. Component class 3 is considered to correspond to high 
consequence of failure. 
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The generic limit state equation (4.12) for DLC 1.1 and DLC 6.1 is used. The consequence of failure 
factor c is introduced in the corresponding design equation: 

 

0
 

 kfC
M

k L
Rz 


      (4.21) 

 
where 
Rk  characteristic value of load bearing capacity 
Lk  characteristic value of variable load 

M   partial safety factor for load bearing capacity 

f  partial safety factor for load effect = 1.35 

 
Table 4.10 shows the influence of c on the reliability index   and annual probability of failure fP  

for DLC 1.1 for the coefficient of variation for strength parameter RV =0.05 and the coefficient of 

variation for model uncertainty for resistance model V =0.15. Also shown is the ratio between the 

failure probability for a given c and for c =1.0. 

 

Table 4.10. Reliability index, annual probability of failure and  0.1cf

f

P
P

  as function of c for 

DLC 1.1. 

c    fP  )0.1cf

f

P
P



0.9 2.82 2.4 10-3 0.3
1.0 3.22 6.5 10-4 1.0
1.1 3.58 1.8 10-4 3.7
1.2 3.90 4.7 10-5 13.7
1.3 4.21 1.3 10-5 50.0
 
Table 4.11 shows the influence of c on reliability index   and annual probability of failure fP  for 

DLC 6.1 for RV =0.05 and V =0.15. Also shown is the ratio between the failure probability for a 

given c and for c =1.0. 

 

Table 4.11. Reliability index, annual probability of failure and  0.1cf

f

P
P

  as function of c for 

DLC 6.1. 

c    fP  )0.1cf

f

P
P



0.9 3.04 1.2 10-3 0.4
1.0 3.34 4.2 10-4 1.0
1.1 3.61 1.6 10-4 2.7
1.2 3.85 6.010-5 7.0
1.3 4.07 2.4 10-5 17.9
 
Table 4.12 shows the influence of c on the reliability index   and the annual probability of failure 

fP  for fatigue using the stochastic model in section 4.3. c is multiplied to the partial safety factor for 
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fatigue load, f . Also shown is the ratio between the failure probability for a given c and for 

c =1.0. 

 

Table 4.12. Reliability index, annual probability of failure and  )0.1cf

f

P
P

  as function of c for 

fatigue. 

c    fP  )0.1cf

f

P
P



0.9 2.95 1.6 10-3 0,3
1.0 3.29 4.9 10-4 1.0
1.1 3.64 1.4 10-4 3.6
1.2 3.98 3.4 10-5 14.4
1.3 4.32 7.9 10-6 62.6
 
The results in tables 4.10-4.12 indicates that a consequence of failure factor c multiplied to the load 

partial safety factor can be used with the following values for different consequence / component 
classes: 
 

Component class 1 - low consequence:  c =0.9 

Component class 2 - middle consequence:  c =1.0 

Component class 3 - high consequence:  c =1.2 

 
corresponding to a difference in probability of failure equal to a factor 10 between ‘low’ and ‘middle’ 
and between ‘middle’ and ‘high’. 

4.6 Load partial safety factor calibration for typhoon conditions 

For reliability analysis of wind turbine components, typically a COV of 20 % for extreme wind 
induced pressures is used. While this value is accepted as representative for a majority of sites, 
certain locations are characterized by much higher uncertainty levels, such as those exposed to 
tropical cyclones and hurricanes. In this section load partial safety factors are calibrated for wind 
pressures with higher uncertainties such that the minimum acceptable reliability level is achieved. 
 
The limit state equation used for the analysis is shown in expression 
 
  QXXXXRzXg straerodyn exp         (4.22) 

 
where 
z  design parameter, e.g. cross-sectional area 
   model uncertainty for resistance model 
R  uncertainty in dominating strength parameter in resistance model 
Xdyn  uncertainty related to modeling of the dynamic response, including uncertainty in 

damping ratios and eigenfrequencies 
Xexp  uncertainty related to the modeling of the exposure (site assessment) - such as the 

terrain roughness and the landscape topography 
Xaero uncertainty in assessment of lift and drag coefficients and additionally utilization of 

BEM, dynamic stall models, etc. 
Xstr  uncertainty related to the computation of the load-effects given external load 
Q uncertainty related to the load-effect given faults 
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The resistance model includes both model and inherent physical uncertainties related to the strength 
parameter, while the load model contains the wind pressure, together with a set of general 
uncertainties. The properties of the X variables are shown in Table 4.13. 
 
Table 4.13. Stochastic model for model uncertainties. 
Variable Distribution Mean COV Quantile  
Xdyn Lognormal 1.00 0.05 Mean  
Xexp Lognormal 1.00 0.15 Mean 
Xaero Gumbel 1.00 0.10 Mean  
Xstr Lognormal 1.00 0.03 Mean  
 
The cross section parameter z is determined by using the general design equation as shown in the 
following expression, 
 

0
 

 kf
M

k Q
Rz 


      (4.23) 

 
where 
z  design parameter 
Rk  characteristic value of load bearing capacity taken as the 5% quantile 
Qk  characteristic value of variable load taken as the 98% quantile in the distribution 

function for the annual maximum load 

M   partial safety factor for load bearing capacity 

f  partial safety factor for load effect 

 
Using a coefficient of variation for the annual maximum wind pressure, QV  equal to 0.20 together 

with the material partial safety factors in section 4.2 the reliability levels in Table 4.14 are obtained. 
The applied safety factors are shown in Table 4.15. 
 
Table 4.14. Annual reliability indices with QV  = 0.20. 

 RV =0.05 RV =0.10

V =0.0 3.33 3.46

V =0.05 3.41 3.55

V =0.10 3.41 3.54

 
Table 4.15. Partial safety factors for QV =20%. 

 RV =0.05 RV =0.10

V =0.0 1.15 1.35

V =0.05 1.20 1.35

V =0.10 1.25 1.35

 
At typhoon prone areas QV is larger than 20% and can be up to 60%. Table 4.16-4.23 shows load 

partial safety factors, f  calibrated to give the same reliability level as obtained for the using QV  = 

20%. 
 
Table 4.16. Partial safety factor f  for QV =25%. 
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 M =0.05 M =0.10

V =0.0 1.39 1.40

V =0.05 1.39 1.40

V =0.10 1.38 1.39

Table 4.17. Partial safety factor f  for QV =30%. 

 RV =0.05 RV =0.10

V =0.0 1.42 1.43

V =0.05 1.42 1.43

V =0.10 1.41 1.42

 
Table 4.18. Partial safety factor f  for QV =35%. 

 M =0.05 M =0.10

V =0.0 1.45 1.46

V =0.05 1.45 1.46

V =0.10 1.44 1.45

 
Table 4.19. Partial safety factor f  for QV =40%. 

 RV =0.05 RV =0.10

V =0.0 1.47 1.49

V =0.05 1.48 1.49

V =0.10 1.47 1.48

 
Table 4.20. Partial safety factor f  for QV =45%. 

 M =0.05 M =0.10

V =0.0 1.50 1.51

V =0.05 1.51 1.52

V =0.10 1.49 1.51

 
Table 4.21. Partial safety factor f  for QV =50%. 

 RV =0.05 RV =0.10

V =0.0 1.52 1.53

V =0.05 1.53 1.54

V =0.10 1.51 1.53

 
Table 4.22. Partial safety factor f  for QV =55%. 

 M =0.05 M =0.10

V =0.0 1.54 1.55

V =0.05 1.55 1.56

V =0.10 1.53 1.55

 
Table 4.23. Partial safety factor f  for QV =60%. 
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 RV =0.05 RV =0.10

V =0.0 1.56 1.57

V =0.05 1.57 1.58

V =0.10 1.55 1.57

 
The increase of the load partial safety factor f  as function of QV  is shown in Figure 4.4. 

 

 
Figure 4.4. Load partial safety factor f  as function of QV  for V =0.05 and RV =0.05. 

 
The load partial safety factors for DLC 6.1 and DLC 6.2 are derived by assuming that the coefficient 
of variation of the annual maximum wind speed, COV, is 15-20%. The above calculations are 
performed for COV of the annual maximum wind speed in the interval from 10% to 30% 
(corresponding to COV for the annual maximum wind pressure from 20% to 60%). If COV of the 
annual maximum wind pressure is larger than 15%, the above results indicate to increase the load 
partial safety factor at least by a factor varying linearly from 1.0 at COV of the annual maximum 
wind speed ≤ 15% to 1.15 at COV = 30% (or equivalently from 1.0 at COV of the annual maximum 
wind pressure ≤ 30% to 1.15 at COV = 60%).  
 
It is noted that the COV of the annual maximum wind speed can approximately be obtained assuming 
a Gumbel distribution and assuming that e.g. 50 and 100 year return values of the wind speed, U50 
and U100 are available. The parameters α and β in the Gumbel distribution are obtained from: 
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


  5050  pU       (4.24) 
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COV for the annual maximum wind speed is then determined from: 
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5 MODIFICATION OF PARTIAL SAFETY FACTORS WHEN ‘BETTER’ 
MODELS/INFORMATION ARE AVAILABLE  

Table 5.1-5.6 give some general examples of sources of uncertainties concerning loads, which are 
dependent on the “quality” of the models or information available. The “quality” of the 
model/information would affect the definition of the stochastic variables (mainly the COV) and, 
hence, the safety factor can be re-calibrated based on it as described in some cases in section 4. 
 
For uncertainty modelling of wind, as an example, two additional columns are included, showing a 
Worst case and a Best case scenario. The worst scenario implies larger uncertainties, so the 
corresponding stochastic variables would have a larger COV, leading to larger safety factors. The 
best scenario implies less uncertainties, so the corresponding stochastic variables would have a 
smaller COV (assuming same distribution), leading to smaller safety factors. Of course, in practice, 
there could be intermediate scenarios.  
 
Table 5.1 Uncertainty related to modelling of wind. 

Uncertainty sources Worst scenario Best scenario 
Intra-annual variations (seasonal 
variations) and inter-annual 
variations, directional variations 

Data not covering all 
seasons and directions 

Data from all seasons and 
directions and along several 
years 

Quality of anemometers  
Non Calibrated, standard 
cup anemometer 

Calibrated 1st class or sonic 
anemometers 

Quality of met mast mounting  
Anemos at mid height, with 
bad mounting 

Anemos at the top, with good 
mounting 

Number of measurements at met 
mast  

Less than 1 year  Several years 

MCP  
No MCP applied MCP with more than 30 years 

at reference mast 

Horizontal extrapolation 

Curves lines more than 
20m. 
Unkown Roughness 
Complex terrain 

Curves lines less than 10m. 
Low Roughness 
Flat terrain 

Vertical extrapolation 
Simple exponential model. 
Measurements below hub 
height. 

Measurements at several 
heights within rotor size 

Wind field and turbulence model 
Use a basic standard wind 
model (Kaimal, Mann) 

Detailed characterization of 
spectra and coherence, based 
on measurements 

Wake models Effective turbulence model DWM or CFD analysis 

Determination of  Long-term 
wind speeds 

EWS2 method (Vref=5·Vave) Extrapolation based on 
several years of 
measurements 

 
Table 5.2 Uncertainty related to modelling of aerodynamics. 

Uncertainty sources Worst scenario Best scenario 
Blade geometric properties 
(roughness, airfoil shape) 

Poor manufacturing quality 
control  

Very good manufacturing 
quality control 

Aerodynamic coefficients Based on simple fluid 
dynamics formulation 

Based on measurements at 
different Re and several aoa. 

Rotor aerodynamic models  Simple BEM model Complete CFD 
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Table 5.3 Uncertainty related to modelling of structural dynamics. 

Uncertainty sources Worst scenario Best scenario 
Structural properties (masses, 
stiffness’s, frequencies…) 

Data estimated from design. 
Poor manufacturing quality 
control 

Real data measured. 
Very good manufacturing 
quality control 

Structural models (degrees of 
freedom, coupling of modes…) 

Modal synthesis with simple 
beam models, few dof 

Complete 3D FEM 

 
Table 5.4 Uncertainty related to modelling of wind turbine actuation systems. 

Uncertainty sources Worst scenario Best scenario 
Control parameters Predefined parameters, from 

simulation environment 
Parameters as in field 

Control algorithms Simplified algorithms, 
similar to PLC (but not the 
same) 

Algorithms exactly as in field 

Actuation systems models 1st order system Complete validated system 
model 

Actuation systems properties Estimated from design Measured on real equipment 
 
Table 5.5 Uncertainty related to modelling of fatigue. 

Uncertainty sources Worst scenario Best scenario 
Number and chronology of 
events (Cycle history) 

Consider estimated number 
of events and chronology 

Consider actual number of 
events and chronology  

Simplified equivalent damage 
loads (e.g.- Miner’s rule) 

Consider only Damage 
Equivalent Load, using 
Miner’s Rule 

Consider full time series for 
damage evaluation 

 
Table 5.6 Uncertainty related to modelling of extreme load response.  

Uncertainty sources Worst scenario Best scenario 
Probability of load cases Probability of wind, turbine 

response (e.g.- alignment, 
azimuth) and eventual 
failures 

Use actual data about 
recurrence of events 

Load response distribution 
 

Load response estimated 
from characteristic load and 
some assumptions 
(extrapolation model) 

Actual distribution obtained 
from complete 50 year 
simulation 

 
In section 4.3 and Annex C calibration of partial safety factors for fatigue is described. The fatigue 
load partial safety factor is dependent on the uncertainty of the fatigue stresses which is assumed to 
have two contributions: 

 Uncertainty related to estimation of the fatigue stress given the fatigue load – modelled by a 
stochastic variable windX  with coefficient of variation WindCOV  

 Uncertainty related to the fatigue load – modelled by a stochastic variable SCFX  with 
coefficient of variation SCFCOV  

 

The total coefficient of variation of the fatigue load becomes 22
SCFWindload COVCOVCOV  . 
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Table 5.7. Examples of WindCOV . 

WindCOV  Uncertainty is assessment of fatigue wind load 
0.10-0.15 Site assessment: 

 More than 2 years of climatic data, corrected with MCP techniques. 
 Wind measurements above and below wind turbine hub height. 
 Flat terrain with low roughness 

Dynamic response: 
 Structural dynamic effects through modal analysis, with at least 4 modes 

considered for blade and tower. 
 Mass and stiffness properties defined with FEM and validated with real 

scale specimens. 
 Eigenvalues and damping validated with real scale tests. 

Aerodynamic coefficients: 
 Airfoil data experimentally validated in wind tunnel at different Re 

numbers 
 Airfoil data including 3D effects   
 Attached flow in all operating regimes 
 BEM, including Dynamic stall and Tip and hub loss included 
 Dynamic wake inflow model 
 Quality control of shape of manufactured blades 

0.15-0.20 Site assessment: 
 Minimum 1 year of climatic data.  
 Wind measurements at hub height and below.  
 Non-complex site with medium roughness. 

Dynamic response: 
 Structural dynamic effects through modal analysis, with 2 modes 

considered for blade and tower. 
 Mass and stiffness properties defined with FEM but not validated with real 

scale specimens. 
 Eigenvalues and damping not validated with real scale tests. 

Aerodynamic coefficients: 
 Airfoil data based on CFD, but not measured in wind tunnel. 
 3D effects not included in airfoil data 
 Attached flow in all operating regimes 
 BEM, but not including dynamic stall effects nor tip and hub losses 
 Static wake inflow model 

0.20-0.25 Site assessment: 
 Less than 1 year of data, not corrected with MCP techniques Wind 

measurements below hub height.  
 Complex terrain. 

Dynamic response: 
 Structural dynamic effects not considered 

Aerodynamic coefficients: 
 Airfoil data based on similar airfoils or for a single Re number. 
 3D effects not included in airfoil data 
 Stall flow in relevant operating regimes 
 BEM, but not including dynamic stall effects nor tip and hub losses 
 No model for  wake effects 
 Dirt and erosion on blades 
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The uncertainties related to wind load assessment, windX   in relation to fatigue can be divided in: 

 modeling of the exposure (site assessment) – incl. assessment of terrain roughness, landscape 
topography, annual mean wind speed, turbulence intensity, density, shear and veer 

 modeling of the dynamic response, including uncertainty in damping ratios and 
eigenfrequencies 

 assessment of lift and drag coefficients and additionally utilization of BEM, dynamic stall 
models, etc. 

 
Table 5.7 shows examples of how to model the uncertainty related to windX . The contribution of the 

different sources of uncertainties to the total windX  could be evaluated with sensitivity analysis. windX  

could then be defined as a response surface dependent on several stochastic variables, each of them 
accounting for a specific effect described in Table 5.7. 
 
Table 5.8 shows examples of how to model the uncertainty related to SCFX  (partly based on Sørensen 
[16]). Five values of SCFCOV  are used to model different levels of analysis and complexity. 
 
Table 5.8. Examples of SCFCOV . 

SCFCOV  Fatigue critical detail 
0.00 Statically determinate systems with simple fatigue critical details (e.g. 

girth welds) where FEM analyses are performed 
0.05 Statically determinate systems with complex fatigue critical details (e.g. 

multi-planar joints) where FEM analyses are performed 
0.10 Statically in-determinate systems with complex fatigue critical details 

(e.g. doubler plates) where FEM analyses are performed 
0.15 2 dimensional tubular joints using SCF parametric equations  
0.20 Tubular joints in structures where tubular stiffness is modeled by Local 

Joint Flexibility (LJF) models and SCF parametric equations are used 
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ANNEX A. RELIABILITY AND PARTIAL SAFETY FACTORS - TOWER 
BUCKLING 
This section describes a detailed reliability assessment for the wind turbine tower related to the 
buckling failure mode. In the wind turbine standard IEC 61400-1 [1] detailed requirements related to 
the loading conditions are described. However, only general requirements with respect to the 
materials and design are given for which reason the IEC-standard often is used together with a 
‘recognized’ standard for the materials. For the case considered in this section it is assumed that the 
wind turbine tower is design according to Eurocode 3: Design of Steel Structures, Part 1-6: Strength 
and Stability of Shell Structures [2]. 
 
A1 Wind Turbine Tower 
The wind turbine considered as a representative example in the present section is the NREL 5MW 
reference wind turbine which is pitch controlled [3]. The tubular steel tower has a height of 87.6m 
which in the present study is assumed divided into three sections each having a length on 29.2m. 
 
The tower diameter is according to NREL 6.00m at the tower bottom and 3.87m at the tower top. 
Similarly, the tower thickness is 27mm at the bottom and 19mm at the top. In the present annex a 
section of the tower is considered that has a constant diameter on 6.00m and the thickness is adjusted 
in order that the design meets the requirements in Eurocode 3. 
 
It is assumed that no stiffeners are inserted in the tower. The boundary conditions for both ends of a 
tower section are assumed to be BC2f ‘pinned’ (radially restrained, meridionally free, rotation free). 
The boundary conditions are shown on figure A1. 
 

 
Figure A1: Boundary conditions for wind turbine tower section. 
 
A2 Load Modelling 
The loads correspond to normal operation of the wind turbine (DLC 1.1 in IEC 61400-1) and contain 
the following two loads: 

 Gravity loading:   Estimated from weight of wind turbine above mudline. 
 Wind loading:  Estimated from mudline bending moment (fore-after) 

 
The torsional moment and side-to-side moment in the tower and the pressure on the tower from wind 
loading is therefore not taken into account in the reliability assessment. However, these three load-
effects will in general be small. 
 
The uncertainty related to load-effects on wind turbine components has been considered in [4] where 
the physical, model and statistical uncertainties are split into their respective components. It is 
assumed that the load-effect on a cross-section in the wind turbine tower can be modelled by: 
 
  

expdyn aero strF X X X X L G   (A1) 
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where Xdyn is the uncertainty related to modelling of the dynamic response for the wind turbine, 
including uncertainty in damping ratios and eigenfrequencies. Xexp is the uncertainty related to the 
modelling of the exposure (site assessment) - such as the terrain roughness and the landscape 
topography. Xaero is related to the uncertainty in assessment of lift and drag coefficients. Xstr accounts 
for the uncertainty related to the computation of the load-effect. The physical uncertainty of the 
extreme load-effect due to wind loads is modelled by the stochastic variable L. The stochastic 
variable G models the uncertainty related to load-effects from gravity loading (weight of wind 
turbine components). The uncertainties will in general be dependent on the considered load case. 
 
Stochastic variables for the uncertainties are adopted from [4] and shown in table A1. 
 
Table A1. Stochastic models for physical, model and statistical uncertainty on load-effects. 

Variable Distribution Mean COV 
Xdyn Lognormal 1.00 0.05 
Xexp Lognormal 1.00 0.15 
Xaero Gumbel 1.00 0.10 
Xstr Lognormal 1.00 0.03 
L Weibull - 0.15 
G Normal - 0.05 

 
The gravity loading is assumed Normal distributed with a coefficient of variation on 5% based on 
engineering judgment and recommendations in JCSS [7]. A stochastic model for the physical 
uncertainty on the extreme load-effect L during normal operation is estimated by statistical 
extrapolation for the tower mudline bending moment. The distribution function for the annual 
maximum load-effect is shown in figure A2 together with a Weibull distribution with a coefficient of 
variation on 15%. A reasonable agreement between the two distributions is observed in the tail 
region. 
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Figure A2: Extrapolated mudline bending moment and Weibull distribution (distribution function for 
annual maximum). 
 
Table A2. Characteristic values for gravity and wind loading. 
Load Load case Characteristic 

load 
Gravity Axial force Fx,k 6849 kN 
Wind Mudline bending moment Mx,k 112091 kNm 
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The characteristic value for the load-effect due to gravity loading is assumed to be the mean value. 
The characteristic value for the load-effect due to wind loading is estimated as the 98% quantile in 
the distribution function for the annual maximum loading corresponding to a return period of 50 
years. The characteristic loads are shown in table A2. 
 
The partial safety factors for loading are for DLC 1.1 in IEC 61400-1, [1]: 

, 1.10f Gravity   (A2) 

, 1.25f Wind   (A3) 
The stresses in the tower shell are calculated according to membrane theory based on unstiffened 
cylindrical shells with a constant wall-thickness and shell-radius. The design values of the axial 
stresses in the tower are calculated from the design axial force, Fx,d and design bending moment, Mx,d 
according to: 
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where r is the radius of the tower and t is the thickness of the tower. The design value of the axial 
stress is then obtained by: 

, , ,x Ed x Nd x Md     (A6) 
 
A3 Deterministic Design Procedure according to Eurocode 3 part 1-6 
The design procedure based on membrane theory for buckling of shell structures in Eurocode 3 is in 
the following briefly outlined. 
 
The dimensionless length parameter  is given by: 

l

rt
   (A7) 

The elastic critical buckling stress x,Rcr is calculated from: 

, 0.605x Rcr x

t
EC

r
   (A8) 

where the factor Cx is determined from table A3. 
 
Table A3. Factor Cx dependent on dimensional length parameter . 
Cylinder 
length 

Interval for  Factor Cx 

Short 1.7   
2

1.83 2.07
1.36xC

 
    

Medium 
1.7 0.5

r

t
   

1.0xC   

Long 
0.5

r

t
   0.2

max 0.60; 1 1 2x
xb

t
C

C r


        
 

 
Table A4. Parameter Cxb dependent on boundary conditions. 
Case Cylinder 

end 
Boundary 
Condition 

Cxb 

1 end 1 BC 1 6 
end 2 BC 1 

2 end 1 BC 1 3 
end 2 BC 2 
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3 end 1 BC 2 1 
end 2 BC 2 

 
The parameter Cxb is dependent on the boundary conditions as shown in table A4. The boundary 
conditions used in the present study corresponds to case 3 in the table. 
 
The relative slenderness for normal stresses x is given by: 

,

yk
x

x Rcr

f



  (A9) 

The elastic imperfection factor x is given by: 

1.44

0.62

1
1 1.91

x

r
Q t

 
 

  
 

 
(A10) 

The parameter Q is dependent on the fabrication tolerances as specified in table A5. 
 
Table A5. Parameter Q dependent on fabrication tolerances / quality class. 
Fabrication tolerance quality class Description Q 
Class A Excellent 40 
Class B High 25 
Class C Normal 16 
 
The squash limit slenderness for normal stress x0, the plastic range factor x and the interaction 
exponent x are given by: 

0 0.20x   (A11) 

0.60x   (A12) 

1.00x   (A13) 

The plastic limit relative slenderness xp is given by: 

1
x

xp
x







 (A14) 

The buckling reduction factor for normal stress x is given by: 

01 whenx x x     (A15) 

0
0

0

1 when
x

x x
x x x x xp

xp x


     
 

 
      

 (A16) 

2
whenx

x x p x
x

  


   (A17) 

The design value for the buckling resistance for normal stress x,Rd is obtained from: 

,
1

1 x yk
x Rd

n M

f


 
  (A18) 

which should be larger or equal to the stresses determined for the design load: 

, ,x Ed x Rd   (A19) 

The partial safety factor M1 should according to Eurocode 3 part 1-6 not be smaller than: 

1 1.1M   (A20) 
However, in IEC 61400-1 a minimum partial safety factor for failure due to buckling is specified: 

1 1.2M   (A21) 
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which also corresponds to the partial safety factor specified in the Danish National Annex to 
Eurocode 3 part 1-6. In the following the partial safety factor M1=1.20 is used as reference. 
 
The partial safety factor n (consequences of failure) is according to IEC 61400-1 for ‘non-fail safe’ 
components equal to: 

1.0n   (A22) 
 
A4 Uncertainty Buckling Strength 
The buckling strength of shells has been studied in several test programs where cylindrical shells are 
loaded in axial compression. In [5] test results from the literature are compared to the buckling curves 
used in Eurocode 3 as shown in figure A3. From the figure it is seen that the buckling reduction 
factor x contains a significant uncertainty dependent on the relative slenderness x. It is also seen 
from figure A3 that the buckling curves used in Eurocode 3 are not specified as mean curves and the 
bias introduced by using these buckling curves should therefore be taken into account in the 
reliability assessment. 
 

 
Figure A3: Axial compression cylinder tests compared to the Eurocode 3 buckling curves. [5] 
 
In order to estimate the uncertainty and bias related to the buckling reduction factor x the test results 
in figure A3 have been digitalized. The digitalized test data are shown in figure A4 along with the 
mean buckling curve estimated using the Maximum-Likelihood method. The parameters in the mean 
buckling curve are shown in equation (A23) to (A25). For x = 0.51 many tests results from the same 
test series (publication) with low buckling strengths are observed, see figure A3. These test results 
fall significantly below the other test results for which reason they are not taken into account as 
shown in figure A4.  
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Figure A4: Digitalized axial compression cylinder tests with mean buckling curve (blue). 
   

1 when 0.36x x    (A23) 
1.23

0.36
1 0.72 when 0.36 1.23

1.23 0.36
x

x x

       
 (A24) 

2

0.43
when 1.23x x

x

 


   (A25) 

 
The design of wind turbine towers normally corresponds to a relative slenderness in the range x = 
0.35 to 0.70. The uncertainty related to the buckling reduction factor is estimated using the method 
described in Eurocode 0 annex D [6]. In this approach the buckling reduction factor is assumed to 
follow a Lognormal distribution with mean value equal to the mean buckling curve. The coefficient 
of variation for the buckling reduction factor is estimated to 13% in the considered interval. In the 
present annex it assumed that the coefficient of variation is constant and independent of the 
slenderness. This is a reasonable approximation for the considered interval. However for larger 
slenderness it seems that the standard deviation is independent of the slenderness rather than the 
coefficient of variation, see figure A4. 
 
In a reliability assessment also material uncertainty related to the yield stress fy and modulus of 
elasticity E has to be taken into account. For the geometry, the uncertainty related to the shell radius r 
and shell thickness t is considered. However, the shell length l is modelled as a deterministic 
parameter. The stochastic models used for the materials and geometry are given in table A6 and in 
general based on recommendations from Joint Committee on Structural Safety [7]. 
 
Table A6. Stochastic models for material properties and geometry. 
Variable Distribution Mean COV 
fy Lognormal 264 MPa 0.07 
E Lognormal 210000 MPa 0.03 
R Normal 3000 mm 0.01 
T Normal - 0.01 
x Lognormal - 0.13 
 
A5 Reliability assessment 
The reliability of the wind turbine tower with respect to buckling is in the following estimated using 
the First Order Reliability Method (FORM). The wind turbine tower is assumed designed according 
to Eurocode 3 and IEC 61400-1 as described in the previous sections. It is assumed that the 
fabrication tolerances / quality class corresponds to high (class B in table A5). The limit state 
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equation is formulated based on the stochastic models in table A1 and A6 along with the mean 
buckling curve. 
 
Table A7. Reliability for buckling of wind turbine tower. 
Case Partial Safety 

Factors 
Annual Reliability Index 
 

Annual Probability of Failure 
PF 

1 M1=1.20; 
f,Wind=1.25 

3.39 3.4810-4 

2 M1=1.10; 
f,Wind=1.25 

3.08 1.0410-3 

3 M1=1.20; 
f,Wind=1.35 

3.65 1.3310-4 

4 M1=1.10; 
f,Wind=1.35 

3.34 4.2510-4 

 
It is assumed that the wind turbine tower is designed to the limit with respect to the failure mode 
buckling. Wind turbines are normally not designed to a specific site but for predefined wind turbine 
classes. This implies that only a limited number of wind turbines are exploited to the limit given that 
the wind conditions at the specific site are determined properly. Due to the division into wind turbine 
classes the reliability estimated in the following should be regarded as a minimum reliability level 
rather than an average reliability level. 
 
The estimated reliability is shown in table A7 for different values of the partial safety factors. For 
case 1 the partial safety factors corresponds to the minimum values specified in IEC 61400-1. For 
case 2 are the material partial safety factor reduced to M1=1.1 corresponding to the minimum value 
specified in Eurocode 3 part 1-6. In case 3 is the partial safety factor for the wind loading increased 
to f,Wind=1.35. This corresponds to the partial safety factor used in several design load cases in IEC 
61400-1. However, in the present section design load case 1.1 is used as reference.  
 
The target annual reliability index on  = 3.3 corresponding to an annual probability of failure equal 
to PF = 510-4 is corresponding approximately to case 1 and 4 in table A7. The partial safety factor 
M1=1.1 in Eurocode can therefore be used in IEC 61400-1 together with a load partial safety factor 
on f,Wind=1.35. The reduced partial safety factor is accepted for design according to Eurocode 3 part 
1-6 since this this standard contains hidden safety / bias in the buckling curves. Other standards do 
not necessary have this hidden safety / bias for which reason the lower partly safety factor cannot be 
generally adopted. It is also noted that the M1=1.2 specified in IEC 61400-1 is used for other 
components and materials than considered in this annex. 
 
In the present example only one failure mode is considered and no system effects are taken into 
account – but this corresponds to the basic approach in structural codes based on checking single 
failure modes one at the time. 
 
The sensitivities with respect to the different stochastic variables are assessed from the 2-vector 
determined by FORM, see table A8. The most important stochastic variable is the model uncertainty 
on exposure Xexp followed by the uncertainty related to the buckling reduction factor x. 
 
Table A8. Sensitivities for the stochastic variables (2-vector) for case 1. 
Variable 2-vector Variable 2-vector 
fy 0.05 Xdyn 0.03 
E 0.00 Xexp 0.28 
R 0.00 Xaero 0.25 
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T 0.00 Xstr 0.01 
x 0.24 L 0.12 
  G 0.00 
 
A6 Further Investigations of the reliability level for buckling 
In the present section the reliability is estimated for DLC 6.1 in IEC 61400-1: Parked wind turbine 
and extreme mean wind speed. The deterministic and stochastic model for the load bearing capacity 
of the cylinder with respect to buckling is the same as used above. 
 
The design load–effect on the wind turbine is given by: 
   

 , ,1 2d f Wind c p c f Gravity cF P k I G     (A26) 

 
where f,Wind = 1.35 and f,Gravity = 1.1 according to IEC 61400-1. The characteristic wind pressure Pc 
corresponds to a return period on 50years. The characteristic turbulence intensity Ic corresponds to 
the mean value according to the extreme wind model in IEC 61400-1. The characteristic gravity load 
Gc corresponds also to the mean value. The peak-factor kp is assumed to 3.5. 
 
The stochastic model for the load-effect is defined as: 

  

  exp1 2 p dyn aero strF P k I X X X X G    (A27) 

 
where the stochastic models for X and G are defined in table A1. The wind pressure P is assumed 
Gumbel distributed with a COV on 0.20. The turbulence intensity is assumed LogNormal distributed 
with a mean value on 0.11 and a COV on 0.05. 
 
The estimated reliability level is given in table A9. From the table it is seen that the reliability level 
for this load case is slightly higher than the reliability levels estimated for DLC 1.1. 
 
Table A.9. Reliability for buckling of wind turbine tower and DLC 6.1 in IEC 61400-1. 
Case Partial Safety 

Factors 
Annual Reliability Index 
 

Annual Probability of Failure 
PF 

1 M1=1.10; 
f,Wind=1.35 

3.47 2.6010-4 

2 M1=1.20; 
f,Wind=1.35 

3.71 1.0410-4 

 
A7 Variation of tower geometry 
In order to investigate the partial safety factor for different geometries of the wind turbine tower six 
different combinations of radius and thickness have been investigated. The tower is in the following 
only assumed to be loaded by a bending moment from the wind and the gravity loading is neglected. 
In table A10 are the results shown. 
 
Table A.10. Reliability for buckling of wind turbine tower for different geometries. DLC 1.1 in IEC 
61400-1. f,Wind = 1.35 and n = 1.00. 
Case 1 2 3 4 5 6 
Length l [m] 30 30 30 30 30 30 
Radius r [m] 3 3 2 2 1 1 
Thickness t [mm] 30 20 30 20 20 10 
Test: xk 0.481 0.564 0.453 0.555 0.393 0.555 
Test: xk 0.935 0.878 0.952 0.884 0.986 0.884 
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Test: fx,Rk [MPa] 219.76 206.41 223.80 207.83 231.67 207.83 
EN 1993: xk 0.481 0.564 0.453 0.555 0.393 0.555 
EN 1993: xk 0.793 0.713 0.823 0.738 0.870 0.738 
EN 1993: x,Rk [MPa] 186.29 167.50 193.43 173.39 204.41 173.39 
EN 1993: EN1990,char=x,Rk/fx,Rk 0.847 0.812 0.864 0.834 0.883 0.834 
M1 (COVXR=0.13) Full Prob. 1.10 1.05 1.11 1.08 1.13 1.08 
M1 (COVXR=0.13) Simpel table 1.08 1.03 1.10 1.06 1.12 1.06 
 
Table A10 shows that the bias in the buckling curves in Eurocode on average is 0.85. The partial 
safety factors is on average estimated to M1 = 1.09. The simple methods where the partial safety 
factor is estimated from the COV on XR and R estimates the partial safety factor appropriately when 
the bias is taken into account. 
 
 
 
 
A8 Reliability for yielding of steel 
The reliability is in the following estimated for yielding of steel in wind turbine towers. The design 
resistance for the structure is given by: 
   

1 yc
d

n m

f
R z

 
  (A28) 

 
where n = 1.00 and m = 1.10 are defined according to IEC 61400-1. The characteristic yield strength 
fyc is defined as a 5% quantile. The design parameter z is scaled in order to obtain a structure which is 
designed to the limit. 
 
The stochastic model for the resistance is defined as: 
   

R yR z X f  (A29) 
 
where the stochastic model for the model uncertainty XR is assumed Lognormal distributed with a 
COV on 0.05 and a characteristic value equal to unity. The yield strength is also assumed Lognormal 
distributed but with a COV on 0.07 according to JCCS. In the following are the reliability estimated 
for different load cases and values of the partial safety factor m. 
 
Table A.11. Reliability for yielding of wind turbine tower dependent on the amount of gravity 
loading. DLC 1.1 in IEC 61400-1. f,Wind = 1.35, f,Gravity = 1.1 and n = 1.00. 

 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
m =1.0 2.12 2.66 2.97 3.04 3.00 2.94 2.89 2.84 2.79 2.75 2.72 
m =1.1 3.09 3.63 3.83 3.76 3.62 3.49 3.38 3.29 3.22 3.15 3.10 
m =1.2 3.98 4.51 4.59 4.37 4.15 3.96 3.81 3.69 3.60 3.51 3.45 

 
Table A.12. Reliability for yielding of wind turbine tower dependent on the amount of gravity 
loading. DLC 6.1 in IEC 61400-1. f,Wind = 1.35, f,Gravity = 1.1 and n = 1.00. 

 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
m =1.0 2.12 2.97 3.29 3.25 3.17 3.11 3.06 3.02 2.98 2.95 2.93 
m =1.1 3.09 3.92 3.96 3.76 3.61 3.50 3.41 3.35 3.29 3.25 3.21 
m =1.2 3.98 4.76 4.51 4.20 3.99 3.84 3.73 3.64 3.57 3.51 3.47 
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A9 Summary 
This annex describes the design rules in Eurocode 3 part 1-6 for design for buckling of wind turbine 
towers. The design rules in the Eurocode are based on a large number of tests. A statistical analysis 
of the tests relevant for design of wind turbine towers shows that the coefficient of variation is 13% 
for the model uncertainty of the load bearing capacity. This large model uncertainty is ‘taken care of’ 
in EN 1991-1-6 by a partial safety factor on the load bearing capacity and by specifying a design 
equation which results in a characteristic load bearing capacity significantly lower than the mean load 
bearing capacity obtained from the tests. Using a stochastic model for the loads relevant for wind 
turbines a reliability analysis shows that using a material safety factor equal to 1.1 results in a 
reliability level consistent with the basic reliability requirements in IEC 61400-1 [1]. 
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ANNEX B. RELIABILITY OF CONCRETE STRUCTURES FOR WIND 
TURBINES 

B1 Introduction 
In the present annex the reliability of a reinforced concrete beam and a short concrete column 
(without stability failure mode) is estimated using material partial safety factors from EN 1992 [1] 
and load partial safety factors from IEC 61400-1. The considered concrete elements are assumed 
representative for failure modes where the reinforcement strength and the concrete compression 
strength are dominating the uncertainty related to the load bearing capacity, respectively. Thus, 
failure modes for e.g. high-strength and pre-stressed concrete are not considered. 
 
The reinforced concrete structures are shown on figure B1. The reinforcement in the concrete beam 
consists of 4x25mm bars placed 40mm from the bottom of the beam and for the column 4x16mm 
bars are used. Only the bending moment capacity of the beam and the compression strength for the 
column is studied in the present annex for which reason failures due to e.g. shear forces are not 
considered. 

 
Figure B1. Left: Concrete beam. Right: Concrete Column. 

 
The characteristic concrete and reinforcement strengths are specified as 5% quantiles according to 
EN 1992. The design values of the concrete strength fcd and the reinforcement strength fyd are given 
by: 

ck
cd

C

f
f


   (B1) 

yk
yd

S

f
f


   (B2) 

where fck and fyk are the characteristic value for the concrete and reinforcement strength, respectively. 
The partial safety factor for the concrete strength is according to EN 1992 equal to C=1.50. The 
partial safety factor for the reinforcement strength is according to EN 1992 equal to S=1.15. 
 
In the present annex the characteristic concrete strength is assumed equal to fck=25MPa and the 
characteristic reinforcement strength is assumed equal to fyk=550MPa. The modulus of elasticity for 
the reinforcement is assumed to be Es=200GPa. 
 
B2 Concrete Beam 
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The concrete beam is designed according to EN 1992 by first estimating the ratio of reinforcement : 
s yd

cd

A f

b d f
    (B3) 

where the area of the reinforcement is As=1963mm2 and b is the width of the beam, see figure B1. 
The length d is defined as the distance from the reinforcement to the top of the beam (d=610mm). 
 
The design bending moment capacity MRd of the beam is then given by: 
 

21
1

2Rd cdM bd f    
 

  (B4) 

 
The design bending moment in the beam is in design load case 1.1 calculated by: 
 

   2
, ,

1
1

8Ed f Gravity c f Wind cM z G Q L        (B5) 

 
where L is the beam length, Gc is the characteristic gravity load and Qc is the characteristic wind load. 
The partial safety factor for gravity loading is f,Gravity=1.1 and the partial safety factor for wind 
loading is f,Wind=1.25/1.35 according to IEC 61400-1:2005. The factor  determines the ratio of 
gravity forces and the factor z is a design parameter calibrated in order to scale the load until failure, 
defined by the design equation. 
 
The design bending moment on the beam is in design load case 6.1 calculated by: 
 

     2
, ,

1
1 1 2

8Ed f Gravity c f Wind c p cM z G P k I L        (B6) 

 
where the partial safety factor for wind loading is f,Wind=1.35 according to IEC 61400-1. Pc is the 
characteristic wind load, kp=3.5 is the peak factor and Ic is the characteristic turbulence intensity.  
 
The design equation for the beam is then given by: 
 

0Rd EdG M M     (B7) 

 
The limit state equation for the concrete beam is formulated based on the ratio of reinforcement: 
 

s y

c

A f

bd f
    (B8) 

 
where fc and fy are realizations of then concrete and reinforcement strength, respectively. The bending 
moment capacity of the beam is then given by: 
 

21
1

2R cM bd f    
 

  (B9) 

 
The stochastic bending moment in the beam in design load case 1.1 is given by: 
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   2
exp

1
1

8E dyn aero strM z G X X X X Q L      (B10) 

 
where Xdyn is the uncertainty related to modelling of the dynamic response for the wind turbine, 
including uncertainty in damping ratios and eigenfrequencies. Xexp is the uncertainty related to the 
modelling of the exposure (site assessment) - such as the terrain roughness and the landscape 
topography. Xaero is related to the uncertainty in assessment of lift and drag coefficients. Xstr accounts 
for the uncertainty related to the computation of the load-effect. The physical uncertainty of the 
extreme load-effect due to wind loads is modelled by the stochastic variable Q. 
 
The stochastic bending moment in the beam in design load case 6.1 is given by: 
 

     2
exp

1
1 1 2

8E p dyn aero strM z G P k I X X X X L      (B11) 

where P and I are the stochastic wind load and turbulence intensity, respectively. The limit state 
function is then defined by: 
 

R R Eg X M M    (B12) 

where XR is the model uncertainty related the bending moment resistance. The individual stochastic 
variables are given in table B.1 and in table B.2 and B.3 the estimated reliabilities are shown for 
design load cases 1.1 and 6.1, respectively. 
 

Table B.1. Stochastic variables for concrete beam and column. 
Variable Distribution Mean COV Char. 
fc Lognormal 29.5MPa 0.10 5% 
fy Lognormal 597.1MPa 0.05 5% 
H Normal 650mm 0.02 - 
XR Lognormal 1.00 0.05 - 
Xdyn Lognormal 1.00 0.05 - 
Xexp Lognormal 1.00 0.15 - 
Xaero Gumbel 1.00 0.10 - 
Xstr Lognormal 1.00 0.03 - 
Q Weibull 1.00 0.15 98% 
P Gumbel 1.00 0.20 98% 
I Lognormal 0.11 0.05 - 
G Normal 1.00 0.05 - 

 
Table B.2. Annual reliability index for concrete beam in DLC 1.1 in IEC 61400-1. 

 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
f =1.25 
S =1.10 

3.85 4.32 4.27 3.97 3.71 3.51 3.35 3.22 3.11 3.03 2.96 

f =1.35 
S =1.10 

3.85 4.45 4.46 4.19 3.95 3.77 3.62 3.51 3.41 3.33 3.27 

f =1.25 
S =1.15 

4.28 4.74 4.60 4.23 3.94 3.71 3.53 3.39 3.28 3.18 3.10 

f =1.35 
S =1.15 

4.28 4.87 4.79 4.45 4.17 3.96 3.80 3.67 3.57 3.48 3.41 

f =1.25 
S =1.20 

4.69 5.14 4.91 4.48 4.15 3.90 3.71 3.56 3.43 3.33 3.25 

f =1.35 4.69 5.27 5.09 4.69 4.38 4.15 3.97 3.84 3.72 3.63 3.55 
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S =1.20 
 
 

Table B.3. Annual reliability index for concrete beam in DLC 6.1 in IEC 61400-1. 
 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
f =1.35 
S =1.10 

3.85 4.49 4.02 3.78 3.64 3.55 3.49 3.44 3.40 3.37 3.35 

f =1.35 
S =1.15 

4.28 4.74 4.20 3.94 3.78 3.68 3.61 3.56 3.52 3.48 3.46 

f =1.35 
S =1.20 

4.69 4.97 4.37 4.08 3.91 3.80 3.73 3.69 3.62 3.59 3.56 

 
If it is assumed that typical -values are in the range from 0.1 to 0.7 then it is seen from Table B.2 
and B.3 that a partial safety factor S =1.1-1.2 is appropriate to satisfy a reliability requirement 
corresponding to an annual reliability index equal to 3.3. 
  
B3 Concrete Column 
The design load bearing capacity of the short concrete column (assuming that stability failure is not 
important) is given by: 
 

crd c cd s ydN A f A f    (B13) 

 
where As and Ac are the area of reinforcement and concrete, respectively. The design force applied to 
the column in design load case 1.1 and design load case 6.1 is given by equation (B14) and (B15), 
respectively: 
 

  , ,1Ed f Gravity c f Wind cN z G Q        (B14) 

    , ,1 1 2Ed f Gravity c f Wind c p cN z G P k I         (B15) 

 
In limit state equation the load bearing capacity is estimated from: 
 

cr c c s yN A f A f    (B16) 

 
The stochastic force applied to the column in design load case 1.1 and design load case 6.1 is given 
by: 
 

  exp1E dyn aero strN z G X X X X Q         (B17) 

    exp1 1 2E p dyn aero strN z G P k I X X X X       (B18) 

 
The limit state function is then defined by: 
 

R cr Eg X N N    (B19) 

 
The stochastic models given in table B.1 are also used for the concrete column. The estimated 
reliabilities are shown in table B.4 and B.5 for design load cases 1.1 and 6.1, respectively. 
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Table B.4. Annual reliability index for concrete column in DLC 1.1 in IEC 61400-1. 
 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
f =1.25 
C =1.30 

4.53 4.93 4.89 4.58 4.30 4.07 3.89 3.74 3.62 3.51 3.43 

f =1.35 
C =1.30 

4.53 5.03 5.06 4.78 4.52 4.31 4.14 4.01 3.90 3.80 3.72 

f =1.25 
C =1.40 

5.08 5.47 5.34 4.94 4.61 4.36 4.15 3.99 3.85 3.74 3.64 

f =1.35 
C =1.40 

5.08 5.58 5.50 5.13 4.82 4.59 4.40 4.25 4.13 4.02 3.94 

f =1.25 
C =1.50 

5.58 5.97 5.73 5.26 4.89 4.61 4.39 4.21 4.06 3.94 3.84 

f =1.35 
C =1.50 

5.58 6.07 5.88 5.44 5.10 4.83 4.63 4.47 4.33 4.22 4.13 

 
Table B.5. Annual reliability index for concrete column in DLC 6.1 in IEC 61400-1. 

 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
f =1.35 
C =1.30 

4.53 5.06 4.52 4.24 4.07 3.96 3.88 3.82 3.77 3.74 3.70 

f =1.35 
C =1.40 

5.08 5.40 4.77 4.46 4.27 4.15 4.06 3.99 3.94 3.90 3.87 

f =1.35 
C =1.50 

5.58 5.69 4.99 4.65 4.45 4.32 4.22 4.15 4.09 4.05 4.01 

 
It is seen from Table B.4 and B.5 that a partial safety factor C =1.3 is appropriate to satisfy a 
reliability requirement corresponding to an annual reliability index equal to 3.3. 
 
 
B5 References 
 
[1] Eurocode 2: Design of concrete structures: Part 1.1: General rules and rules for buildings, 2005. 
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ANNEX C. FATIGUE RELIABILITY AND SAFETY FACTORS FOR WELDED 
DETAILS 

C1 Introduction 
For wind turbine steel substructures fatigue can be a critical failure mode for welded details, 
especially if joints with high stress concentrations are used. This annex describes reliability-based 
investigations on the required safety factors to be used for design for fatigue.  
 
Design equations to be used for deterministic, code-based design and corresponding limit state 
equations to be used for reliability assessment are formulated. In the limit state equations uncertain 
parameters are modelled as stochastic variables. In the design equations partial safety factors for 
fatigue strength and load or equivalently Fatigue Design Factors (FDF) are used to secure the 
required reliability level.  
 
Since design and limit state equations are closely related a detailed model of the fatigue damage is 
generally not needed for reliability-based assessment of fatigue safety factors. It is ‘only’ important 
to model the dependency on the uncertain parameters and the uncertain parameters themselves 
carefully. In this annex is considered the case with wind load dominating and no wake effects taken 
into account. In the UpWind report [1] and Sørensen [2] more detailed models and results are shown 
for the cases: 1) wave load dominating; 2) wind load dominating for a single wind turbine; 3) wind 
load dominating for a wind turbine in a wind farm. SN-curves and Miner’s rule with linear damage 
accumulation are used as recommended in most relevant standards, e.g. IEC 61400-1 [3], ISO 19902 
[4] and Eurocodes [5]. 
 
C2 Stochastic modelling  
In this section probabilistic models are described for reliability assessment of wind turbines where 
wind load is dominating (over wave loads). The models are mainly based on Sørensen et al. [6]. 
 
If a linear SN-curves is considered the SN relation is written 
 

  mKN      (C1) 
 
where N  is the number of stress cycles to failure with constant stress ranges  . K  and m  are 
dependent on the fatigue critical detail. 
 
For a wind turbine in free wind flow the design equation in deterministic design is written 
 

       0/ˆ;
 

1)( 


  dUUfzUUmD
K

TFDF
zG UuL

U

U C

L
out

in


    (C2) 

 
where  
z   is a design parameter (e.g. proportional to cross sectional area) 
 

   dsUsfsmD m
L )(;

0
  



     (C3) 

 
 is the expected value of m  given standard deviation    and mean wind speed U  

   is the total number of fatigue load cycles per year (determined by e.g. rainflow counting) 

LT   is the design life time 
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FDF  is the Fatigue Design Factor (equal to m
mf )(   where f  and m  are partial safety factors for 

fatigue load and fatigue strength) 

CK   is the characteristic value of K  (here assumed to be obtained from CKlog  as mean of Klog  
minus two standard deviations) 

inU   is the cut-in wind speed (typically 5 m/s) 

outU   is the cut-out wind speed (typically 25 m/s) 

 )(Usf    is the density function for stress ranges given standard deviation of )(U  at mean 

wind speed U . This distribution function can be obtained by e.g. rainflow counting of 
response, and can generally be assumed to be Weibull distributed, see below.  

 
It is assumed that the standard deviation of the stress ranges, )(U  can be written: 
 

   
z

U
UU u   )(    (C4) 

 
where  

)(U  is the influence coefficient for stress ranges given mean wind speed U  
)(Uu    is the standard deviation of turbulence given mean wind speed U . 

 
)(Uu  is modelled as LogNormal distributed with characteristic value )(ˆ Uu  defined as the 90% 

quantile and standard deviation equal to 4.1refI  [m/s]. The characteristic value of the standard 

deviation of turbulence, )(ˆ Uu  given average wind speed U  is modelled by, see IEC 61400-1 [3]: 
 

 bUIU refu  75.0)(̂   ; b = 5.6 m/s   (C5) 

 
where refI  is the reference turbulence intensity (equal to 0.14 for medium turbulence characteristics) 

and u̂  is denoted the ambient turbulence. 

 
The corresponding limit state equation is written 
 

           dUdUfUfzUUmDXX
K

 t
tg uUuuL

U

U

m
SCFWind u

out

in


 /;)(

0




 


    (C6) 

 
where  
  is a stochastic variable modelling the model uncertainty related to the Miner rule for linear 

damage accumulation 
t   is time in years 

WindX  is the model uncertainty related to assessment of the fatigue wind load effects and is due to 
uncertainties related to site assessment, assessment of lift and drag coefficients, dynamic 
response calculations, 

SCFX  is the model uncertainty related to local stress analysis given global fatigue load effects 
)(Uu standard deviation of turbulence given average wind speed U .  

 
The model uncertainties WindX  and SCFX  are discussed in more details in e.g. Tarp-Johansen et al. [7].  
 
The design parameter z  is determined from the design equation (C2) and next used in the limit state 
equation (C6) to estimate the reliability index or probability of failure with the reference time interval 

];0[ t . 
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Next, it is assumed that the SN-curve is bilinear (thickness effect not included) with slope change at  

610 5 DN : 
 

D
m

D
m

SSKN

SSKN











for

for
2

1

2

1    (C7) 

 
where 11,mK  material parameters for DS   and 22,mK  material parameters for DS  . In this 

section the quantile defining the characteristic values for 1K  and 2K  is chosen to 2.3%. 
 

1

1

6
1

105

m

D

K









    (C8) 

 
The fatigue strength F  is defined as the value of S  for 610 2 DN . 
 
In case the SN-curve is bilinear  ;mDL  in design equations and limit state equations is exchanged 
with  
 

     dsUsfsdsUsfsmmD
D

D
mm

DBL )()(;,, 12

0
21 






  








    (C9) 

 
(C9) can easily be modified to include a lower threshold th . Further, the SN-curves can also be 
extended with a modification factor taking into account thickness effects. 
 
 
C3 Reliability analysis and calibration of partial safety factors 
If one fatigue critical detail is considered then the annual probability of failure is obtained from: 
 

 tPPP tF year in  failure FatigueFATCOL,     (C10) 

 
where  tP year in  failure Fatigue  is the probability of failure in year t and FATCOLP  is the probability of 

collapse of the structure given fatigue failure - modelling the importance of the detail. 
 
The probability of failure in year t given survival up to year t is estimated by 
 

      0)(/0)1(0)(FATCOL,  tgPtgPtgPPP tF    (C11) 

 
where the limit state equation is given in (C6). 
 
Given a maximum acceptable probability of failure (collapse), max,FP the maximum acceptable 

annual probability of fatigue failure (with one year reference time) and corresponding minimum 
reliability index become: 
 

FATCOLmax,max,, / PPP FFATF     (C12) 

 FATFFAT P max,,
1

min,      (C13) 

 
where   1  is the inverse standard Normal distribution function. 
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Figure C1. Number of load cycles in a 10 minutes period for mudline bending moment. Mean wind 
speed equal to 14 m/s. 
 
Figure C1 shows a typical distribution of stress ranges for a pitch controlled wind turbine for tower 
bending moments, see Sørensen et al. [6]. The stress ranges can generally be modelled by a Weibull 
distribution. The Weibull shape coefficient k is typically in the range 0.8 – 1.0. These results are for 
cases where the response is dominated by the “background” turbulence in the wind load. For the 
results shown below it is assumed that the stress ranges are Weibull distributed with shape coefficient 
k = 0.8. The number of load cycles per year is   = 710 . 
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Figure C2.  UU u  /)(  for mudline bending moment – pitch controlled wind turbine. 
 
In figure C2 is shown a typical example for a pitch controlled wind turbine of zU /)(  =  

 UU u  /)( , see (C4). The ratio is seen to be non-linear due to the effect of the control system. 
 
Table C1. Stochastic model. 
Variable Distribution Expected 

value 
Standard deviation / 
Coefficient Of 
variation 

Comment  

  N 1 COV  = 0.30 Model uncertainty 
Miner’s rule 

WindX  LN 1 WindCOV   Model uncertainty wind 
load 

SCFX  LN 1 SCFCOV   Model uncertainty stress 
concentration factor 

1m  D 3  Slope SN curve 

1log K  N determined 
from D  

1log K  = 0.2 Parameter SN curve 

2m  D 5  Slope SN curve 

2log K  N determined 
from D  

2log K  = 0.2 Parameter SN curve 

F  D 71 MPa  Fatigue strength 

1log K  and 2log K  are fully correlated 
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The stochastic model shown in table C1 is considered as representative for a fatigue sensitive detail, 
see Sørensen [2]. It is assumed that the design lifetime is LT  = 25 year. 
 

max,FP  = 5 10-4 (normal/high consequence of failure) and 5 10-3 (low consequence of failure) are 

used as annual maximum probabilities of failure. The corresponding annual reliability indices are 3.3 
and 2.6. 
 
The mean wind speed is assumed to be Weibull distributed: 
 

  

















k

U A

u
uF exp1    (C14) 

 
with A = 9.0 m/s and k = 2.3. It is assumed that the reference turbulence intensity is refI =0.14. 

 
Table C2 shows the required product of the partial safety factors mf   as function of the total 

coefficient of variation of the fatigue load: 22
SCFWindload COVCOVCOV  . 

 
Table C2. Required partial safety factors mf   given FATmin,  as function of COV for fatigue load. 

FATmin,  \ loadCOV  0,00 0,05 0,10 0,15 0,20 0,25 0,30
2,6 (5 10-3) 0,91 0,92 0,94 0,98 1,01 1,04 1,06
3,3 (5 10-4) 1,04 1,06 1,12 1,21 1,32 1,43 1,56
 
Assuming that a coefficient of variation for the fatigue load ranges is typically within the interval 15-
20% the partial safety factor f  in table C3 and   

 

m  = 1.25 

 
are recommended. It is noted that this partial safety factor corresponds to a fatigue design factor 
(FDF) equal to 3 if Wöhler exponent m = 5.  
 
Table C3. Recommended partial safety factor for fatigue stress ranges, f .  

Coefficient of variation, loadCOV  0-5 % 5-10 % 10-15 % 15-20 % 20-25 % 25-30 %

f  0,85 0,90 0,95 1,00 1,10 1,20 
 
Next, damage tolerant and safe life reliability assessment methods are introduced based on the 
following descriptions (from EN 1993-1-9:2005 [5]). 
 
a) damage tolerant method 

 selecting details, materials and stress levels so that in the event of the formation of cracks a 
low rate of crack propagation and a long critical crack length would result, 

 provision of multiple load path 
 provision of crack-arresting details, 
 provision of readily inspectable details during regular inspections. 

 
b) safe-life method 



 

57 

 selecting details and stress levels resulting in a fatigue life sufficient to achieve the target β – 
value at the end of the design service life. No inspections are required. 

 
Generally, for the ‘Damage tolerant’ approach either the structure is redundant or inspections are 
performed (or a combination of these). 
 
The fatigue strength partial safety factor is then generalised according to table C4. The partial safety 
factors are assumed to correspond to normal consequences of failure, i.e. component class 2 in IEC 
61400-1. 
 
Table C4. Recommended values for partial safety factor for fatigue strength, m .  

Assessment method m  

Damage tolerant 1,10 
Safe life 1,25 
 
 
C4 Calibration of partial safety factors in case of inspections 
 
In this section is investigated how much the partial safety factor for fatigue can be reduced if 
inspections are performed during the lifetime of a wind turbine. In order to model the influence of 
inspections a Fracture Mechanics model (FM) is needed for estimating the crack growth. The fracture 
mechanics model is calibrated to give the same reliability as function of time as obtained by the SN-
approach.  
 
The Fracture Mechanical (FM) modeling of the crack growth is applied assuming that the crack can 
be modeled by a 2-dimensional semi-elliptical crack, or simplified models where the ratio between 
crack width and depth is either a constant or the crack width is a given function of the crack depth. It 
is assumed that the fatigue life may be represented by a fatigue initiation life and a fatigue 
propagation life: 
 

PI NNN     (C15) 

where  
N  number of stress cycles to failure 

IN  number of stress cycles to crack propagation 

PN  number of stress cycles from initiation to crack through.  
 
The number of stress cycles from initiation to crack through is determined on the basis of a two-
dimensional crack growth model. The crack is assumed to be semi-elliptical with length c2  and 
depth a , see Figure C3. 
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Figure C3. Semi-elliptical surface crack in a plate under tension or bending fatigue loads. 
 
The crack growth can be described by the following two coupled differential equations. 

   

    00

00

cNcKC
dN

dc

aNaKC
dN

da

m
CC

m
AA




   (C16) 

where AC , CC  and m  are material parameters, 0a  and 0c  describe the crack depth a and crack length 
c, respectively, after IN  cycles and where the stress intensity ranges are   AK  and   CK .  
 
The stress range   is obtained from 

e
SCFWind YXX      (C17) 

where  

SCFWave XX ,  model uncertainties, see section C3 
Y  model uncertainty related to geometry function 

e  equivalent stress range: 
m

n
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m
ii

e n
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

 




    (C18) 

The total number of stress ranges per year, n  is 




n

i
inn

1
   (C19) 

The crack initiation time IN  is modeled as Weibull distributed with expected value 0  and 
coefficient of variation equal to 0.35, see e.g. Lassen [8].  
 
Variable Dist. Expected value Standard deviation 

IN  W 
0  (reliability based fit to SN approach) 0.35 0  

0a  D 0.1 mm (high material control) / 0.5 mm 
(low material control) 

 

ln CC  N 
ln CC  (reliability based fit to SN approach) 0.77 

m  D m -value (reliability based fit to SN 
approach) 

 

SCFZ  LN 1 0.05 

WaveX  LN 1 0.20 

n  D Total number of stress ranges per year  
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ca  D T (thickness)  

Y  LN 1 0.1 
T  D Thickness   

LT  D 25 years  

FT  D Fatigue life  

ln CC  and IN  are correlated with correlation coefficient 
IC NC ),ln( = -0.5 

Table C5. Uncertainty modelling used in the fracture mechanical reliability analysis. D: 
Deterministic, N: Normal, LN: LogNormal, W: Weibull. 
 
The limit state function is written 

 

  tnNg  X    (C20) 

where t  is time in the interval from 0 to the service life LT . 
 
To model the effect of different weld qualities, different values of the crack depth at initiation 0a  can 
be used. The corresponding assumed length is 5 times the crack depth. The critical crack depth ca  is 
taken as the thickness of the tubular member.  
 
The parameters Cln  and 0  are now fitted such that difference between the probability distribution 
functions for the fatigue live determined using the SN-approach and the fracture mechanical 
approach is minimized as illustrated in the example below. 
 
Alternatively, or in addition to the above modeling the initial crack length can be modeled as a 
stochastic variable, for example by an exponential distribution function, and the crack initiation time 

IN  can be neglected. 
 
The reliability of inspections can be modeled in many different ways. Often POD (Probability Of 
Detection) curves are used to model the reliability of the inspections, e.g. an exponential model:  
  










x

xPOD exp1)(       (C21) 

 
where   is the expected value of the smallest detectable crack size.  
 
The crack width c2  is obtained from the following model for ca 2/  as a function of the relative 
crack depth Ba / , where B  is the thickness: 
 









B

a

c

a
ln03.006.0

2
                      (C22) 

 
If an inspection has been performed at time IT  and no cracks are detected then the probability of 
failure can be updated by 

      00 at timedetection -no  II
U
F ThtgPTtP     , ITt        (C23) 
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where  th  is a limit state modeling the crack detection. If the inspection technique is related to the 

crack length then  th  is written: 

   tccth d           (C24) 

where  tc  is the crack length at time t  and dc  is smallest detectable crack length. dc  is modelled by 

a stochastic variable with distribution function equal to the POD-curve: 

 xPODxF
dc )(          (C25) 

Similarly if the inspection technique is related to the crack depth then  th  is written: 

   taath d           (C26) 

where  ta  is the crack length at time t  and da  is smallest detectable crack length. da  is modelled by 

a stochastic variable with distribution function equal to the POD-curve: 

 xPODxF
da )(          (C27) 

If two independent inspections are performed at time IT  and no cracks are detected then the 
probability of failure can be updated by 

        000 at timedetection -no 21  III
U
F ThThtgPTtP     , ITt        (C28) 

 where    Id Taath 
11  and    Id Taath 

22  are the limit states modeling the inspections. 

 
The inspection planning is based on the requirement that the annual probability of failure in all years 
has to satisfy the reliability constraint  

MAXFF PP ,     , ITt        (C29) 

where MAXFP ,  is the maximum acceptable annual probability of failure. 

 
Further, the planning is often made with the assumption that no cracks are found at the inspections. If 
a crack is found, then a new inspection plan has to be made based on the observation.  
 
It is emphasized that the inspection planning is based on the no-find assumption. This way of 
inspection planning is the one which if most often used. Often this approach results in increasing time 
intervals between inspections. 
 
Figure   to C4 to C19 shows results for both accumulated and annual reliability indices for the 
following cases: 
1. Inspection with time intervals 2, 3, 4, 5 and 10 years,  =10 mm, partial safety factor m  = 1.00 

2. Inspection with time intervals 2, 3, 4, 5 and 10 years,  =10 mm, partial safety factor m  = 1.05 
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3. Inspection with time intervals 2, 3, 4, 5 and 10 years,  =10 mm, partial safety factor m  = 1.10 

4. Inspection with time intervals 2, 3, 4, 5 and 10 years,  =10 mm, partial safety factor m  = 1.15 

5. Inspection with time intervals 2, 3, 4, 5 and 10 years,  =10 mm, partial safety factor m  = 1.20 

6. Inspection with time intervals 2, 3, 4, 5 and 10 years,  =10 mm, partial safety factor m  = 1.25 

7. Inspection at year 13 and  =2, 5 and 10 mm, partial safety factor m  = 1.00 

8. Inspection with time intervals 2, 3, 4, 5 and 10 years,  =5 mm, partial safety factor m  = 1.10 

9. Inspection with time intervals 2, 3, 4, 5 and 10 years,  =5 mm, partial safety factor m  = 1.10 

 
The aspect ratio is 0.2 for all cases except case 9 where equation (C22) is applied. 
 
The results show among others that 

 if the fatigue partial safety factor is chosen to 1.0 then one inspection is needed at year 13 
with at least a reliability which corresponds to an expected value of the smallest detectable 
crack equal to 2 mm  

 if the fatigue partial safety factor is chosen to 1.0 then inspection intervals of maximum 5 
years should be performed with at least a reliability which corresponds to an expected value 
of the smallest detectable crack equal to 10 mm 

 if the fatigue partial safety factor is chosen to 1.1 then inspection intervals of maximum 10 
years should be performed with at least a reliability which corresponds to an expected value 
of the smallest detectable crack equal to 10 mm 

 if the aspect ratio given by (C22) is used then slightly larger inspection intervals can be used 
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Figure C4. Annual reliability index without and with inspections. Inspection time intervals 2, 3, 4, 5 
and 10 years and  =10 mm, partial safety factor m  = 1.00 and aspect ratio = 0.2.  

 

 
Figure C5. Accumulated reliability index without and with inspections. Inspection time intervals 2, 3, 
4, 5 and 10 years and  =10 mm, partial safety factor m  = 1.00 and aspect ratio = 0.2.  
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Figure C6. Annual reliability index without and with inspections. Inspection time intervals 2, 3, 4, 5 
and 10 years and  =10 mm, partial safety factor m  = 1.05 and aspect ratio = 0.2.  

 

 
Figure C7. Accumulated reliability index without and with inspections. Inspection time intervals 2, 3, 
4, 5 and 10 years and  =10 mm, partial safety factor m  = 1.05 and aspect ratio = 0.2.  
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Figure C8. Annual reliability index without and with inspections. Inspection time intervals 2, 3, 4, 5 
and 10 years and  =10 mm, partial safety factor m  = 1.10 and aspect ratio = 0.2.  

 

 
Figure C9. Accumulated reliability index without and with inspections. Inspection time intervals 2, 3, 
4, 5 and 10 years and  =10 mm, partial safety factor m  = 1.10 and aspect ratio = 0.2.  
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Figure C10. Annual reliability index without and with inspections. Inspection time intervals 2, 3, 4, 5 
and 10 years and  =10 mm, partial safety factor m  = 1.15 and aspect ratio = 0.2.  

 

 
Figure C11. Accumulated reliability index without and with inspections. Inspection time intervals 2, 
3, 4, 5 and 10 years and  =10 mm, partial safety factor m  = 1.15 and aspect ratio = 0.2.  
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Figure C12. Annual reliability index without and with inspections. Inspection time intervals 2, 3, 4, 5 
and 10 years and  =10 mm, partial safety factor m  = 1.20 and aspect ratio = 0.2.  

 

 
Figure C13. Accumulated reliability index without and with inspections. Inspection time intervals 2, 
3, 4, 5 and 10 years and  =10 mm, partial safety factor m  = 1.20 and aspect ratio = 0.2.  
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Figure C14. Annual reliability index without and with inspections. Inspection time intervals 2, 3, 4, 5 
and 10 years and  =10 mm, partial safety factor m  = 1.25 and aspect ratio = 0.2.  

 

 
Figure C15. Accumulated reliability index without and with inspections. Inspection time intervals 2, 
3, 4, 5 and 10 years and  =10 mm, partial safety factor m  = 1.25 and aspect ratio = 0.2.  
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Figure C16. Annual reliability index without and with inspections. Inspection at year 13 with  =2, 5 
and 10 mm, partial safety factor m  = 1.00 and aspect ratio = 0.2.  

 

 
Figure C17. Accumulated reliability index without and with inspections. Inspection at year 13 with 
 =2, 5 and 10 mm, partial safety factor m  = 1.00 and aspect ratio = 0.2.  
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Figure C18. Annual reliability index without and with inspections. Inspection time intervals 2, 3, 4, 5 
and 10 years and  =5 mm, partial safety factor m  = 1.10 and aspect ratio = 0.2.  

 

 
Figure C19. Annual reliability index without and with inspections. Inspection time intervals 2, 3, 4, 5 
and 10 years and  =5 mm, partial safety factor m  = 1.10 and aspect ratio defined by eq. (C22).  
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ANNEX D. CHANGES IN MATERIAL PARTIAL SAFETY FACTORS IN CD 
IEC 61400-1 ED. 4: 2014. 

This annex gives an overview of the main changes in material partial factors in the CD IEC 61400-
1:2014 ed. 4 compared to IEC 61400-1:2005 ed. 3. 
 
Clause IEC 61400-1:2005 ed. 3 CD IEC 61400-1 ed. 4 
7.6.1.2 c = 0,9 / 1,0 / 1,3 c = 0,9 / 1,0 / 1,1 

7.6.2.2 
Ultimate strength 
analysis 

  

 m ≥1,1 M  ≥ 1,2 
 
Comment: Annex K is added with additional 
information on material partial safety factors. 
 
Comment: generally the material partial safety 
factor has at least to be equal to 1,2. But the 
value can be reduced due to additional safety in 
the failure mode considered. This is e.g. the 
case for yielding failure of steel (ductile failure 
with extra load bearing capacity), see below 
and buckling failure assessed by the parametric 
formulas in Eurocode 3 part 6 (conservative 
design equation), see below. 

 m   = 1,2 for global buckling 

… 
M =1,2 for global buckling of curved shells 

such as tubular towers and blades 
 
Footnote 20 added: 
The parametric formulas based on membrane 
theory in Eurocode 3 part 6 (EN 1993-1-6) for 
shell buckling applicable to tubular steel towers 
with D/t < 300 includes a bias that may be 
accounted for by reducing the M for buckling 
to 1,1. 

 m  = 1,3 for rupture from 

exceeding tensile or 
compression strength. 

M =1,3 when materials with no distinct elastic 
limit (yield strength is more than 90% of the 
tensile or compression strength) are used 

  Added: 

M =1,1 when materials with a distinct elastic 
limit (yield strength is less than 90% of the 
tensile or compression strength) are used. 

7.6.3.2 
Fatigue  

c = 1,0 / 1,15 / 1,3 c = 0,9 / 1,0 / 1,1 

 
Comment: the value for component class 2 is 
reduced from 1.15 to 1.0 implying that most 
fatigue material partial factors are increased 
with a factor 1.15. 

 The partial safety factor for Footnote 21 added: 
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loads, f  shall be 1,0 It is assumed that the coefficient of variation of 
the fatigue load stress ranges is less than 20 %. 
 
Comment: this implies that the fatigue load 
partial safety factor becomes dependent on the 
uncertainty related to the assessment of the 
fatigue load ranges. For the normal case the 
fatigue load partial safety factor is 1.0. more 
information can be found in Annex K. 

 m    shall be at least 1,5 … M  shall be at least 1,7 … 
 
Comment: this is a consequence of changing c 

from 1,15 to 1,0 for consequence class 2. 
 m    must be increased 

accordingly and at least to 1,7. 
M   must be increased accordingly and at least 

to 2,0. 
 
Comment: this is a consequence of changing c 

from 1,15 to 1,0 for consequence class 2. 
 For welded and structural steel, 

traditionally the 97,7 % 
survival probability is used as 
basis for 
the SN curves. In this case m    

may be taken as 1,1. 
 
In all cases, m  shall be larger 

than 0,9. 

For welded and structural steel, traditionally 
the 97,7 % survival probability is used as basis 
for the SN curves. In this case γM may be 
taken as 1,25, corresponding to a safe-life 
assessment approach, see Annex K. In cases, 
where it is possible to detect critical crack 
development through introduction of a periodic 
inspection programme, a lower value of γM 
may be used, corresponding to a damage 
tolerant assessment approach, see Annex K. In 
all cases, γM shall be larger than 1,0. 
 
Comment: this is partly a consequence of 
changing c from 1,15 to 1,0 for consequence 

class 2. 
 For fibre composites, … In that 

case m  may be taken as 1,2. 
For fibre composites, the strength distribution 
shall be established from test data for the actual 
material. The 95 % survival probability with a 
confidence level of 95 % shall be used as a 
basis for the SN-curve. In that case M  may be 
taken as 1,35. The same approach may be used 
for other materials. 
 
Comment: this is partly a consequence of 
changing c from 1,15 to 1,0 for consequence 

class 2. 
   
7.6.5 
Critical deflection 
analysis 

c = 1,0 / 1,0 / 1,3 The partial safety factor for consequences of 
failure c shall be 1,0 for normal (N) load 

cases. In order to ensure a sufficient safety 
margin of the tower clearance, and since 
sufficient tower clearance is regarded as a 
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major criterion for the structural integrity of the 
entire wind turbine, the partial safety factor for 
consequences of failure c shall be 1,1 for 

abnormal (A) load cases. 
 The value of m  shall be 1,1 

except when the elastic 
properties have been 
determined by full-scale testing 
in which case it may be reduced 
to 1,0. 

The value of M  shall be 1,1 except when the 
elastic properties of the component in question 
have been determined by testing and 
monitoring in which case it may be reduced to 
1,05. 

7.6.5  Moreover for load case 1.1 a statistical analysis 
of maximum tip deflection or minimum tower 
clearance is mandatory according to clause 
7.4.1.  
… 
… the ratio of the combined partial factors for 
loads, materials and consequences of failure 
minus one to the combined partial factor (i.e.  

MCf

MCf


 1
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