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Abstract 

In electrified railways, low-frequency oscillations 

(LFO) are commonly observed as a result of the 

widespread implementation of electric trains 

incorporating power electronic converters. While 

the impedance method has been employed in 

current stability studies for train-network 

systems, there is a requirement to extend stability 

modeling and analysis studies for the train-

network system considering multiple trains 

having different control strategies. Hence, this 

paper establishes a unified impedance model in 

the dq-frame for the aforementioned system. 

Subsequently, an improved stability criterion, 

namly the dominant eigenvalue frequency 

response criterion (DEFRC), is proposed to assess 

system stability and unveil the mechanism of 

LFO. Furthermore, the interaction between 

different trains is clarified by analysis and case 

studies. Finally, the theoretical analysis is verified 

for accuracy based on time domain simulations. 

Introduction 

In recent years, due to the rapid development of 

electrified railways, the extensive utilization of 

single-phase power electronic converters has 

become prevalent in electric trains. The 

interaction between the train converters and the 

traction network may give rise to LFO [1], which 

can lead to severe accidents, such as traction 

blockades [2]. 

In accordance with the frequency-domain 

impedance modeling method [3], the train-

network system is constructed by incorporating 

the input impedance of the trains and the output 

impedance of the traction network, thereby 

enabling the calculation of the impedance ratio 

for stability analysis [4]. The utilization of Park 

transform and small-signal linearization in the dq 

impedance modeling method has found extensive 

application in establishing the linear time-

invariant (LTI) model for single-phase converters 

employing dq decoupling control (DQDC) [5], 

[6]. However, the transient direct current control 

(TDCC) of train converters is typically executed 

in single phase, with the corresponding linear 

time-invariant (LTI) impedance model 

commonly derived in the single-phase stationary 

frame [7], [8]. An impedance model is put 

forward for TDCC train converters in the dq 

frame [9], thereby achieving a unified approach 

with the existing impedance model of DQDC 

converters. To this end, the system stability with 

different trains was assessed by the generalized 

Nyquist criterion (GNC). Nevertheless, the GNC 

lacks of a well-defined indicator for the system 

stability margin and the ability to explain the 

mechanism driving LFO. Additionally, it cannot 

encompass the frequency response characteristics 

of the eigenvalues, which affects the intuitive 

identification of the oscillation frequency.  

Furthermore, when considering mixed conditions 

that involve trains with two different control 

strategies, the factors affecting the system 

stability differ from those observed when solely 

focusing on one control strategy, owing to the 

interaction among multiple trains, which remains 

unclear. 

To fill this gap, this paper builds a unified 

impedance model of the train-network system 



incorporating DQDC trains and TDCC trains.  

Then, the dominant eigenvalue frequency 

response criterion is proposed, capable of directly 

identifying the oscillation frequency and deeply 

analyzing the mechanism of LFO. On this basis, 

the interaction factors between different trains are 

revealed and the impact of the number and control 

parameters of trains on the global system stability 

are summarized by case studies and simulation 

verifications.    

Unified impedance modeling  

The structure of train-network system based on 

the combination of DQDC and TDCC topologies 

is shown in Fig. 1. The train's traction drive unit 

comprises of an on-board transformer, grid-side 

rectifier, traction inverter, and traction motor. 

Generally, the occurrence of LFOs is observed 

when multiple trains are energized in a rail depot, 

with only the auxiliary load in operation [1]. 

Hence, the DC-side of the traction drive unit can 

be equivalenced to a constant-value large 

resistance [3], whereas the impedance modeling 

of the train depends on the grid-side converter. 

The system parameters are shown in Table Ⅰ. 

  

Fig. 1: Structure of train network system and train 

traction drive unit. 

Fig. 2 and Fig. 3 illustrate the different control 

strategies, DQDC and TDCC, employed by the 

grid-side converter. Both strategies feature the key 

components such as the phase-locked loop (PLL),  

band-pass filter (BPF), second-order generalized 

integrator (SOGI), voltage controller (VC), and 

current controller (CC).  

 

Fig.  2: Diagram of dq decoupling control 

(DQDC) 

(VC : voltage controller, CC : current controller, 

PLL : phase-locked loop, SOGI : second-order 

generalized integrator). 

 
Fig. 3: Diagram  of transient direct current control 

(TDCC) (BPF : band-pass filter). 

Table I: Parameters of grid-side rectifier  

Parameters 
Variables 

/Unit 

TDCC 
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DQDC 

Train 

Amplitude of 

AC voltage 0 / VU  2192 2503 

DC link 

voltage 
/ VdcU  3000 3600 

Equivalent 

resistance on 

the AC side 

/nR Ω  0.15 0.165 

Equivalent 

inductance 

on the AC 

side 

/ mHnL  4 6 

DC link load 

resistance 
/dR Ω  1000 1000 

DC link 

support 

capacitance 

/ mFdC  9 9 

Time delay 

of PWM 
/dT ms  0.15 0.15 

Switching 

Frequency 
/swf Hz  350 250 
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gain of PLL 
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Integral gain  

of PLL iPLLK  25 25 
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Proportional 

gain of VC pVCK  0.28 0.5 

Integral gain 

 of VC iVCK  20 0.8 

Proportional 

gain of CC pCCK  0.2 0.9 

Integral gain  

of CC iCCK  None 0.6 

The modeling process of the second-order 

impedance model of the DQDC converter in the 

dq frame, DQDC

CZ , has been elaborated in [6]. As for 

the TDCC converter, to achieve the unification of 

frames, the modeling method in [9] can be used to 

realize impedance modeling in the dq frame. 

Therefore, DQDC

CZ and TDCC

CZ can finally be 

expressed as: 

                 

DQDC DQDC

dd dqDQDC

C DQDC DQDC

qd qq

z z

z z

 
=  
 

Z                  (1) 

                

TDCC TDCC

dd dqTDCC

C TDCC TDCC

qd qq

z z

z z

 
=  
  

Z                  (2) 

Considering the transformation ratio of the train’s 

on-board transformer as k, and the number of grid-

side converters in a train is p, where the subscripts 

“1” and “2” correspond to DQDC and TDCC train, 

the train impedance model converted to the 

primary side of the on-board transformer can be 

expressed as: 

2

1
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[( ) ]
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     (3) 

When different types of trains are connected at the 

point of common coupling (PCC), the impedance 

of all trains can be connected in parallel 

equivalently like in [10] to form a unified train 

impedance model
MTZ as: 

1 1 1

1 2( ( ) ( ) )DQDC TDCC

MT T Tm m− − −= +Z Z Z
   (4) 

where, 
1m  and 

2m are the numbers of DQDC and 

TDCC trains.  

Stability analysis criterion  

Based on the impedance method, the train- 

network system in Fig. 1 can be regarded as a 

cascaded system as shown in Fig. 4. The 

equivalent impedance of the traction network can 

be expressed in the dq frame as [1]: 

s s s

S

s s s

R sL L

L R sL

ω

ω

+ − 
=  + 

Z                   (5) 

The open-loop impedance ratio matrix 
KL  of the 

cascaded system shown in Fig. 4 is: 

1( )K S MT

−=L Z Z                   (6) 

Both the traction network and train are stable 

respectively with reasonable parameter settings, 

meaning that the number of poles of 
KL in the 

right half complex plane is zero [2]. According to 

the generalized Nyquist criterion (GNC), if the 

Nyquist curves corresponding to the two 

eigenvalues of 
KL , i.e., 

1kλ and
2kλ , do not 

enclose the (-1, j0) point, the system is stable, 

otherwise, the system is unstable. 

 

Fig. 4: Equivalent cascaded model of train-

network system. 

Proposed new stability criterion 

A novel improved stability criterion can be 

proposed based on GNC. By adding the 

impedance ratio matrix 
KL  and the identity 

matrix I , the matrix 
RL  can be obtained as : 

R K= +L I L                       (7) 

According to the eigenvalue formula of the 

second-order matrix, the two eigenvalues 
1rλ  and 

2rλ  of  
RL  are obtained as : 

1, 2 1, 21r r k kλ λ= +                   (8) 

From (8), it can be seen that the real parts of 
1rλ  

and 
2rλ  are one larger than that of 

1kλ and 
2kλ , 

while their imaginary parts are the same. 

Therefore, by considering the Nyquist curves 

based on 
1, 2r rλ , the assessment of the system 

stability can be performed by observing whether 
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the Nyquist curves surround the (0, j0) point, as 

shown in Fig. 5. 

Actually, the system stability is determined by 

one of the eigenvalues, called the dominant 

eigenvalue 
mλ , and the dominant eigenvalue 

mλ  in Fig. 5 is 
1rλ . Moreover, the Nyquist 

curves of 
mλ  are the trajectory of the real and 

imaginary parts varying with frequency, which 

can be disassembled as 
1Re[ ] ( )m F fλ = and 

2Im[ ] ( )m F fλ = , as shown in Fig. 6 across the 

vital low-frequency range of 0~10 Hz.  

  

Fig. 5: Nyquist curves after transformation of 

impedance ratio matrix – Determine whether the 

Nyquist curves surround (0, j0) point. 

 

Fig. 6: Frequency response curves for the real and 

imaginary parts of the dominant eigenvalue –

Definition of stability margin indicator Re[ ]m IZPλ  

(IZP : imaginary-part zero-crossing point, NRA : 

negative real-part area). 

As shown in Fig. 5, Im[ ]mλ  is zero at the 

leftmost intersection of the Nyquist curve of 
mλ

with the real axis, which corresponds to the 

imaginary-part zero-crossing point (IZP) in Fig. 

6. The frequency at IZP is denoted as
IZPf , and the 

real-part value of 
mλ  at 

IZPf is Re[ ]m IZPλ . In 

addition, there is a negative real-part area (NRA). 

Therefore, the proposed dominant eigenvalue 

frequency response criterion (DEFRC) can be 

expressed as if IZP is not included in the range of 

NRA, i.e., Re[ ] 0m IZPλ > , which corresponds to 

the Nyquist curve of 
mλ without enclosing (0, j0) 

point, so the system is stable. On the contrary, if 

IZP is included in the range of NRA, i.e., 

Re[ ] 0m IZPλ < , the system is unstable.  

It can be revealed by DEFRC that the oscillation 

frequency is the frequency corresponding to the 

intersection of Re[ ]mλ and Im[ ]mλ . The 

relevant proving process will be given below. The 

stability of the system depends on the closed-loop 

poles, which are also the zeros of the determinant 

of 
RL . When the system is in a critically stable or 

unstable state, det[ ]RL  has a pair of conjugate 

zeros with very small negative or even positive 

real parts, which are called dominant zeros. 

Although 
1 2det[ ]R r rL λ λ= ⋅ , the dominant zeros 

are provided by
mλ . Therefore, it is assumed that

mλ has a pair of conjugate zeros in the low-

frequency range:
1,2 LFO LFOjε σ ω= ± , and  

LFO LFOσ ω [10]. When jω  is located in the 

tiny neighborhood of 
1,2ε , 

mλ can be expressed 

as: 

1 2( ) ( )( ) ( )m j j j A jλ ω ω ε ω ε ω= − −          (9) 

where, ( )A j a jbω = + , and a & b are constants. 

Moreover, the real and imaginary parts of 

( )m jλ ω  can be obtained as: 

2 2 2

2 2 2

Re[ ( )] 2 ( )

Im[ ( )] 2 ( )

m LFO LFO LFO
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j a b a

j b a b

λ ω ω σ ω σ ω

λ ω ω σ ω σ ω
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

= − − + +
 

                                    (10) 

When Re[ ( )] Im[ ( )]m mj jλ ω λ ω= , the frequency 

cω  at the intersection point of Re[ ]mλ  and 

Im[ ]mλ is: 

2 2 2 2 2
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Due to LFO LFOσ ω , it can be obtained that 

c LFOω ω≈ , meaning the frequency corresponding 

to the intersection point of Re[ ]mλ and Im[ ]mλ is 

approximately the oscillation frequency. 

Mechanism analysis of system stability 

According to DEFRC, the value of Re[ ]m IZPλ  

serves as an indicator for the system stability 

margin, with its determination relying on the 

combined factors of Re[ ]mλ  and 
IZPω . Therefore, 

the effect of parameters on system stability can be 

dissected into their respective impacts on Re[ ]mλ  

and 
IZPω ( 2IZP IZPfω π= ). This decomposition 

facilitates a thorough analysis of the underlying 

mechanism concerning parameter influence. 

To be specific, if only TDCC trains are considered, 

there is 2

TDCC

MT T m=Z Z . The second-order 

impedance model of the TDCC converter in (2) 

can be simplified by the method proposed in [11]. 

After that, the approximate eigenvalues of 
RL can 

be obtained as: 

2 2
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                       (12) 

In (12), s

ppZ ,  s

nnZ and c

ppZ , 
c

nnZ  are the elements 

on the diagonal after 
SZ  and TDCC

CZ are 

transformed to the modified sequence domain 

[12], which can be expressed as: 

s
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     (14) 

where, tdcc

ddR  and tdcc

qdR  are the negative resistance 

in the d-d and q-d components of the simplified 

impedance matrix of the TDCC converter, and 

they can be expressed as: 

2
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   (15) 

The combination of the simplified model with the 

proposed DEFRC enables the determination of 

the frequency value at which the imaginary part 

of the dominant eigenvalue becomes zero, 

denoted by 
IZPω . Then 

IZPω  is inserted into the 

real part of the dominant eigenvalue, such that the 

calculation of the system stability margin 

indicator Re[ ]tdcc

m IZPλ  can be expressed as : 

2 2

2

2
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( )

( )
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2
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o IZP s
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ω ω

ω ω
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−
+

+
− + +

 (16) 

Within the low-frequency range, 0o IZPω ω− >  

holds, and if the consideration for negative 

resistance tdcc

qdR  is omitted, the stability margin 

indicator Re[ ]tdcc

m IZPλ  will invariably remain 

above zero. Therefore, negative resistance makes 

the indicator of stability margin possibly negative. 

If some parameters are adjusted which amplifies 

the effect of negative resistance such that the 

stability margin indicator becomes negative, the 

LFO arises. 

Table II: Impact of train numbers and control 

parameters on the system stability 

Parameters Sign 
TDCC 

Train 

DQDC 

Train 

Number of 

trains 
m  ↓ ↓ 

Proportional 

gain of PLL 
pPLLK  - - 

Integral gain  

of PLL iPLLK  - - 

Proportional 

gain of VC pVCK  ↑ ↓ 

Integral gain 

 of VC iVCK  ↓ ↓ 

Proportional 

gain of CC pCCK  ↑ ↑ 

Integral gain  

of CC iCCK  × ↓ 

 

When it comes to the impact of parameters, it can 

be found from (16) that the number of TDCC 



trains 
2m  does not affect the value of 

IZPω , but 

the increase in
2m can amplify the impact of the 

negative resistance, which will ultimately make 

Re[ ]tdcc

m IZPλ  negative and lead to the instability of 

the system.  In addition, the inclusion of control 

parameters pVCK  within tdcc

qdR  permits a similar 

assessment of its impact on system stability. For 

the sake of brevity, the results are presented 

herein without an elaborate analysis, showcasing 

that the increase in pVCK  leads to a reduction in

IZPω , but eventually results in an increase in 

Re[ ]tdcc

m IZPλ , enhancing the system stability.  

In the case of solely considering DQDC trains, 

analogous derivation and analysis can be 

executed, which are not given in detail due to 

limited space. The impacts of the train number 

and control parameters on the system stability in 

non-mixed conditions are summarized in Table Ⅱ, 

where ‘↑’ and ‘↓’ indicate that the system stability 

is improved or reduced with the increase of the 

corresponding parameter, ‘-’ means no change in 

stability, and ‘×’ means there is no such parameter. 

In the consideration of mixed conditions 

involving trains with different controls, the 

derivation of further analytical expressions for the 

eigenvalues of 
RL  becomes arduous due to their 

excessive complexity, but some fundamental 

analysis can still be undertaken. Utilizing the 

matrix inversion formula, the determinant of  1

MT

−
Z  

can be obtained as: 

2 2

1 2 1 2
T E

DQDC TDCC TDCC DQDC

m m m m
D D

D D D D
= + +      (17) 

where, DQDCD and TDCCD are the determinants of  

DQDC

TZ and TDCC

TZ  respectively, and 
ED  is : 

TDCC DQDC DQDC TDCC

E dd qq dd qq

TDCC DQDC DQDC TDCC

dq qd dq qd

D z z z z

z z z z

= +

− −
            (18) 

By combining (4) with (17), it can be obtained as: 

1 2

( ) ( )
TDCC DQDC

T T
MT

DFT TFDm E m E
= +

+ +

Z Z
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where,
DFTE  and 

DFTE  are defined as the 

interaction factors between different trains, which 

can be expressed as: 

2 2

1

1 1
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m m
E D D
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      (20) 

It can be seen from (19) that, under mixed 

conditions, the number and parameters of trains of 

a certain kind not only affect their own impedance 

but also the impedance of other trains through the 

interaction factor. As a result, the impact of the 

number and parameters on the system stability 

becomes multifaceted, which will be 

demonstrated by case studies in the next section. 

Case studies and validation 

As shown in Fig. 7, when TDCC trains are solely 

considered, as the number of trains 
2m  increases 

from 4 to 8, the IZP
ω  remains unchanged at 4.25 

Hz, while Re[ ]tdcc

m IZPλ  gradually decreases. When 

2m  increases to 8, NRA appears in the low-

frequency range and Re[ ]tdcc

m IZPλ  decreases to       

-0.063, which means that the system becomes 

unstable. At this point, the predicted oscillation 

frequency is about 4.22 Hz. 

 

Fig. 7: Stability analyses with the DEFRC – 

System stability decreases when the number of 

TDCC trains increases. 

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

f/Hz

-0.2

0

0.2

0.4

0.6

V
a
lu

e
 o

f 
R

e
a
l 
o
r
 Im

a
g

 A
xi

s

0 1 2 3 4 5 6 7 8 9 10

f/Hz

-0.5

0

0.5

1

1.5

V
a
lu

e
 o

f 
R

e
a
l 

o
r
 Im

a
g

 A
xi

s

1

0.5

0

-0.5
0

f/Hz
2 3 6 8 10

0.4

0

-0.2

4

f/Hz

4.1 4.3 4.6 4.7 4.8

1 4 975

4.4

0.2

1.5

4.2 4.5

0.468

0.202

-0.063

0.6

4.9 5

Re[ ]mλ Im[ ]mλ
2 4m =

2 6m =

2 8m =

4.22 4.25

IZP

NRA



 

Fig. 8: Waveforms showing destabilization when 

the number of TDCC trains increases from 4 to 8. 

Fig. 8 presents the simulation waveform, 

encompassing the voltage and current of the 

traction network, along with the DC side voltage 

of the converter. When 
2m  attains 8, LFO occurs 

at a frequency of 4.3 Hz. The results obtained 

from the case study and simulation demonstrate a 

strong consistency with the theoretical analysis, 

presenting only a slight error in the oscillation 

frequency due to the approximation in (9). 

In Fig. 9, the values of Re[ ]m IZPλ  are presented 

for various combinations of train numbers in 

mixed conditions. The numbers of TDCC and 

DQDC trains vary from 1 to 8, respectively. It 

remains valid in mixed conditions, that the 

decrease in the system stability as the number of 

trains increases. Moreover, when the number of 

trains reaches 8 in non-mixed conditions, the 

system is unstable. However, in mixed 

conditions, even in some cases with a total of 8, 

9, or 10 trains, the system remains stable. This 

improvement in the critically stable number of 

trains in mixed conditions highlights the 

advantage of avoiding excessive single type trains 

energized in the same depot, and enhancing the 

system stability. 

 

Fig. 9: Indicator of stability margin under various 

train numbers. – The critically stable number of 

trains is improved when considering different 

trains. 

As for the influence of control parameters, as 

shown in Fig. 10, when 
1 6m = and 

2 5m = , as 

the VC proportional gain of the DQDC train 
dqdc

pVC
K  

increases from 0.5 to 2.2, the range of NRA is 

greatly reduced, while IZP changes in a smaller 

range without regularity, and Re[ ]m IZPλ  increases 

from -0.041 to 0.132, indicating the system 

stability is improved. However, Fig. 11 shows 

when 
1 7m = and 

2 1m = , as
dqdc

pVC
K  increases from 

0.5 to 0.9, the range of NRA decreases slightly, 

while IZP moves greatly closer to the NRA, 

resulting in a decrease of Re[ ]m IZPλ  from 0.204 to 

-0.103, which means a decrease in system 

stability. 

The results presented above reveal that when 

considering different combinations of train 

numbers, the variation of Re[ ]m IZPλ  differs as

dqdc

pVC
K  increases, leading to either a positive or 

negative impact on the system stability, which is 

an uncertainty. This conclusion applies to other 

parameters as well. Therefore, under mixed 

conditions, a detailed analysis must be conducted 

based on the varying combinations of train 

numbers to obtain the influence rules of the 

parameters, allowing for informed adjustments to 

improve the system stability. 

 

Fig. 10: System stability enhances as dqdc

pVC
K

increases, when 
1 6m = and 

2 5m = . 

 

Fig. 11: System stability weakens as dqdc

pVC
K

increases, when 
1 7m = and 

2 1m = . 
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Fig. 12: Simulation waveforms stabilize as dqdc

pVC
K  

increases, when 
1 6m = and 

2 5m = . 

 

Fig. 13: Simulation waveforms destabilize as 
dqdc

pVC
K  increases, when 

1 7m = and 
2 1m = . 

 

The simulation results as shown in Fig. 12 and 

Fig. 13 verify that the impact of 
dqdc

pVC
K  on the 

system stability exhibits an opposite trend in two 

situations. Additionally, it is observed that under 

the condition of 
1 7m =  and

2 1m = with initial 

parameters, despite a total of 8 trains, the system 

remains stable. Hence, the simulation results are 

in agreement with the findings of the case 

analysis. 

Conclusion 

This paper establishes a unified impedance model 

of the train-network system incorporating 

different control strategies in the dq frame. Then, 

the dominant eigenvalue frequency response-

based criterion is proposed, facilitating the 

prediction of oscillation frequency and the 

provision of a stability margin indicator, which 

elucidates that the negative resistance is the root 

cause of instability. Furthermore, the interaction 

between different trains in mixed conditions 

highlights the complex characteristics of 

parameter impact on the system stability. Case 

studies illustrate that under mixed conditions, the 

critically stable number of trains is improved and 

the impact of control parameters on system 

stability varies depending on the specific 

combination of train numbers. 
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