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Abstract 
Stability and reliability are vital performance 
metrics for microgrid systems, while their 
interdependency on each other has not been well 
addressed. This paper thereby explains the 
relationships between them from a conditional 
perspective using the Bayesian inference, where 
the observed stability performance influences the 
evaluation of system reliability. A DC-AC 
converter system considering the degradation of 
filter capacitors is exemplified to illustrate the 
reliability under stability conditions, with 
simulation and experimental results provided in 
order to demonstrate the basic idea. 

I. Introduction 
Power electronics is the key to power conversion 
in microgrids, enabling the utilization of 
renewable energy sources (RES) [1]. However, in 
such systems, various controllers are leading to 
heterogeneous dynamics, and mission profiles are 
bringing about more complexity in the system and 
stressing the components. Stability and reliability 
are thereby studied to reduce the abnormalities 
and/or failures in microgrids. 

Stability anticipates the ability of a system to 
achieve an equilibrium point after being subjected 
to disturbances, and the dynamic stability is 
related to the controllers and the system 
configurations [2], [3]. Microgrid stability is 
usually modeled by deterministic state-space- or 
impedance-based approaches [4], [5]. Yet in 
practice, system uncertainties like the parameter 
variations or load fluctuations may also lead to an 
improper design of controllers and system 
instability [6]. Thus, probabilistic stability is 
introduced to alternatively describe microgrid 
performances considering the uncertainties. 

Reliability is another index for microgrid 
performance with a longer timescale. The 
reliability of power electronics components is 
related to their degradation, and the mission 
profiles are playing a critical role in terms of the 
failure mechanisms [7]. In microgrids, the 
system-level reliability is characterized based on 
the functional relationships of the components [8], 
and the lifetime can be prolonged by, e.g., 
reliability-oriented control [9], which contributes 
much to lower the operational cost. 

However, the stability and reliability can be 
closely coupled with each other. For example, 
component parameters like capacitances may 
decrease over time [10], and the degradation will 
affect system stability if the controllers are not 
updated timely. Under this scenario, conditional 
probability should be more accurate given a 
certain system state observability, which is not 
well addressed in previous literature. Therefore, 
this paper is aimed at filling this fundamental gap 
and forming an understanding of the conditional 
performance by analyzing the impact of 
component degradation on system stability and 
reliability. 
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In this paper, a mathematical formulation using 
conditional explanation of stability and reliability 
is provided, and their probabilistic relationships 
are interpreted based on Bayesian inference. Case 
studies have been conducted with simulation and 
experimental results demonstrating the essence of 
the proposed framework. 

II. Probabilistic Stability and 
Reliability Evaluation in 
Microgrids 

A grid-forming converter system is exemplified 
in Fig. 1 to illustrate the idea of this paper, which 
is typical in AC microgrids. It consists of an LC 
filter, a resistive load and a double-loop 
proportional-integral (PI) voltage controller. Key 
parameters of this system are listed in Table I. 

DC-AC Converter
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RloadLf,  Cf

LC Filter

PI PI
vo* dq/abc

vo, io

θvo io

PWM

PWM
io*

Modulation

Kpv, Kiv Kpc, Kic

VDC

AC Bus

 
Fig. 1: An exemplary grid-forming converter system 
with a resistive load. A double-loop voltage controller 
is employed. 

Table I: Key Parameters of the Study Case 

Parameters Values 
DC-link voltage VDC 400 V 

Rated AC phase voltage Vn 110 V rms 
Rated AC frequency fn 50 Hz 
Switching frequency fsw 10 kHz 

Resistive load power Pload 5 kW 
Inductance of the LC filter Lf 2.0 mH 

Capacitance of the LC filter Cf 15 μF 
Parameters of voltage controller Kpv = 0.04 

Kiv = 78 
Parameters of current controller Kpi = 10.5 

Kic = 16000 
 

A. Probabilistic Stability Evaluation 
Stability in microgrids can be basically classified 
into dynamic stability, transient stability and 
steady-state stability [2]. In this paper, the small-
signal dynamic stability is the major focus, which 
is commonly seen in microgrids. It is normally 
related to system configurations and controllers, 
and it can be characterized by state-space- or 

impedance-based approaches in the frequency 
domain. 

In this case, the system can be modeled into a 
closed-loop transfer function as: 

 ( ) ( )
( )*

o
sys

o

V s
G s

V s
=  (1) 

where, Vo*(s) and Vo(s) are the Laplacian forms 
of vo* and vo in the frequency domain, 
respectively. With this, the stability of the system 
can be determined by plotting the root loci of Gsys 
and identify the right-half-plane (RHP) poles 
(especially the critical modes). For more general 
cases with multiple converters, the stability can 
be characterized by plotting the eigenvalue loci of 
the state matrix as well. 

In microgrids, the stability may also vary 
unexpectedly due to uncertainties. Typical 
uncertainties include internal configuration 
uncertainties (like the errors of parameters) and 
external mission profiles / disturbance events 
(like ambient temperature, wind speed or solar 
irradiance) [6]. Among these uncertainties, the 
parameter uncertainties of components are 
studied in this paper, which can normally be 
described by a Gaussian distribution with the 
Probability Density Function (PDF) as: 

 ( )
21 1exp

22π
Xf X µ
σσ

 − = ⋅ − ⋅  
   

 (2) 

where, X is a certain parameter of a component 
like the inductances, capacitances or parasitic 
resistances, and μ and σ are its mean value and 
standard deviation, respectively. 

By identifying the distribution of the poles 
(imaginary part) of Gsys specified in (1), the 
stability of the system will be a probabilistic event, 
namely the probabilistic distribution of stability. 

B. Probabilistic Reliability Evaluation 
The reliability, on the other hand, is a longer-term 
performance index for microgrids, which is 
normally related to the degradation of 
components. As power semiconductors and 
capacitors are among the most fragile 
components in power electronics, their lifetime 
models are introduced below. 



One of the commonly used models for power 
semiconductors is the cycle-based lifetime model 
[11]. The lifetime is measured by a number of 
power cycles Nf, which is formulated as: 

 1expf j on
jm

N A T t
T

α γβ 
= ⋅∆ ⋅ ⋅  

 
 (3) 

where, the average junction temperature Tjm and 
the junction temperature swing ΔTj are the major 
factors, while A, α, β1 and γ are the coefficients fit 
from power-cycling tests. 

The lifetime of capacitors can be calculated based 
on the hot-spot temperature and voltage of 
operation [12], given as: 
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where, L0 is the rated lifetime when operating at 
the nominal voltage V0 and temperature T0. Here, 
n1 and n2 are also constant coefficients. 

With this, the accumulated damage D can be 
calculated according to the Miner's rule [12]: 
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The accumulated damage in (5) is a normalized 
value, which is, by the end-of-life (EOL) of a 
component, its damage D should be accumulated 
to 1. It should be noticed that the lifetime derived 
from (3)-(5) is statistically the B10 lifetime, i.e., 
when 10% of the device population will 
statistically fail. 

The time-to-failure data of the components follow 
the Weibull distribution. Accordingly, the 
probabilistic reliability can be fitted as: 

 ( ) exp tR t
β

η

  
= −  

   
 (6) 

where, β is the shaping factor, and η is the 
characteristic lifetime. The B10 lifetime can be 
applied here with R equal to 90%. 

Moreover, if all components are supposed to be 
functioning and no redundancy is considered, the 
reliability of the system is the multiplication of 

the reliability of the components, which is then 
the system-level reliability. 

III. Bayesian Mapping of 
Probabilistic Stability and 
Reliability in Microgrids 

A. The Bayes' Theorem 
The Bayes' theorem is a basis in probability 
theory, which describes the probability of an 
event with the prior knowledge under a certain 
condition. It is mathematically expressed as: 

 ( ) ( ) ( )
( )

|
|

P B A P A
P A B

P B
=  (7) 

where, A and B are two probabilistic events, and 
P(A|B) is the conditional probability of the event 
that A occurs given that B is true. The above 
equation is basically derived from the calculation 
of conditional probability, namely: 

 ( ) ( ) ( ) ( ) ( )| |P A B P B P B A P A P A B= =   (8) 

where, P(A∩B) is the probability that both two 
events A and B occur simultaneously. If A and B 
are probabilistically independent events, the 
following equations consequently hold: 
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One of the most important applications of the 
Bayes' theorem is the Bayesian inference, which 
is often applied in data science and information 
technology, as shown in (10): 

 ( ) ( ) ( )
( )

|
|

P E H P H
P H E

P E
=  (10) 

where, the posterior probability P(H|E) of a 
hypothesis H given the obtained data E can be 
calculated out of the prior probability P(H) of the 
hypothesis and the likelihood P(E|H) of the data 
under the hypothesis. 

B. A Bayesian Mapping of the Conditional 
Probability of Stability and Reliability 

For microgrids, stability and reliability are 
performance indices seen from different 



perspectives and in different timescales, and their 
joint probabilities can be summarized as Table II. 
A microgrid can be reliable when instability 
occurs due to parameter mismatch, while it can 
also be operating stably when one or more 
components or converters become worn out and 
are disconnected from the system. Generally, P(S) 
and P(R) in Table II can be calculated based on 
the modeling approaches mentioned in Section II, 
where stability and reliability are considered 
separately. However, microgrids are supposed to 
operate both stably and reliably, or in other words, 
the probability P(S∩R) should be sufficiently 
high. 

Table II: Joint Probabilities of Stability and 
Reliability in Microgrids 

 Stable Unstable Sum 

Reliable 

Stable 
and 

Reliable 
P(S∩R) 

Reliable 
but 

Unstable 
P(¬S∩R) 

P(R) 

Unreliable 
Stable 

but 
Unreliable 
P(S∩¬R) 

Unreliable 
and 

Unstable 
P(¬S∩¬R) 

1–P(R) 

Sum P(S) 1–P(S) 1 
*Note: S and R are used for denoting the events 
stability and reliability, respectively. 

As reliability is a performance index in a longer 
timescale than stability, their joint probability 
basically reflects the system states in shorter time 
frames decomposed from the entire timespan 
under study. Considering the Bayesian inference 
(10), P(S|R) can thereby be mapped as the 
likelihood of stability if all components are within 
their lifetime, and the conditional probability 
P(R|S) is the posterior probability of reliability.  

Accordingly, the reliability under stability 
conditions can be concluded as: 

 ( ) ( ) ( )
( )

|
|

P S R P R
P R S

P S
=  (11) 

where, P(R|S) can be interpreted as an estimation 
of future reliability given that the system is stable 
for the time being. This index is more practical, 
reflecting the long-term performances based on 
the observed short-term system states. 

Specifically, if the stability and reliability are 

mathematically independent events, then the 
conditional probability will be given as: 
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which just corresponds to an individual analysis 
on the stability or reliability of the microgrid. 

IV. Case Study 
The microgrid shown in Fig. 1 is selected as the 
study case, where the impact of filter capacitor 
degradation on system stability and reliability is 
studied. The reliability under stability conditions 
is derived based on the Bayesian inference to 
illustrate the aforementioned mapping 
relationship. 

In this case, to simplify the analysis, it is assumed 
that the filter capacitance Cf is the only variable 
considered in the stability and reliability analysis, 
and the three phases are always balanced with the 
same filter capacitance Cf. Under this scenario, 
the probabilities of stability and reliability in a 
three-phase system will be equal to those of a 
single capacitor. 

A. Stability Analysis 
Now that the closed-loop transfer function can be 
constructed as (1), the root loci with respect to the 
variation of Cf can be plotted as shown in Fig. 2, 
where only the poles most closed to the imaginary 
axis (critical modes) are considered. The decrease 
of the capacitance Cf is equivalent to an increase 
in the voltage PI gains KPv and Kiv, which leads to 
an instability in the system. 
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Fig. 2: Root loci of the converter system when the filter 
capacitance Cf decreases. Only the critical modes are 
considered in this figure. 



The stability performance can also be illustrated 
by Fig. 3. The filter capacitance is decreased from 
15 μF to 10 μF, and in Fig. 3(b), the waveforms 
showing serious distortions with harmonics 
indicate that the decrease of capacitance will 
cause instability. As the capacitance varies due to 
degradation (which will be elaborated in the next 
section), the probability of system stability will 
thereby be influenced. 
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Fig. 3: Load voltage waveforms: (a) Cf = 15 μF, and (b) 
Cf = 10 μF. The system becomes unstable when the 
capacitance Cf decreases. 

B. Reliability Analysis 
For reliability analysis, the AC filter capacitors Cf 
are selected as Metallized Polypropylene Film 
Capacitors (MPPF-Caps), of which the constant 
n2 in (4) is around 7~10 [12] and selected to be 7 
in this study. The type of the capacitors is selected 
to be the R75H series of KEMET, of which the 
key parameters are listed in Table III. 

Table III: Rated Parameters of the Capacitors 

Parameters Values 
Rated lifetime1 of the capacitor 1000 h 

Rated AC voltage of the capacitor 160 V 
Uncertainty of the capacitance2 ±10% 

*Note 1: The rated lifetime in the datasheet is regarded 
as B20 lifetime according to [8], which can be 
converted to B10 lifetime like Fig. 4. 
*Note 2: The uncertainty is empirically assumed to be 
the 3σ region in statistics as [14]. 

According to [10], the capacitance of capacitors 
will decrease over usage time due to degradation,  
 
 

which can be expressed as: 

 ( )0 1 , 0tC C tα α= ⋅ − ⋅ >  (13) 

where, Ct denotes the capacitance at usage time t. 

Similar to [8], the capacitors are also assumed to 
be worn out when there is a capacitance drop as 
much as 20% of the initial value, namely Ct < 
80%C0. If the capacitance follows the Gaussian 
distribution specified in (2), the reliability should 
be evaluated by calculating the value of the 
Cumulative Density Function (CDF) as time goes 
on, namely F (0.8C0) with the mean value Ct. 
Thus, the reliability curve can be plotted, as 
shown in Fig. 4, with the B10 lifetime acquired as 
9178 h given 110-V AC voltage. 
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Fig. 4: System unreliability influenced by capacitor 
degradation. The rated AC voltage of the selected 
capacitor is 160 V, while the case is studied under 110-
V AC voltage according to Table I. 

C. Reliability under Stability Conditions 
Based on the Bayesian Inference 

Considering both aspects, the stable and reliable 
region of the system with respect to the filter 
capacitance can be illustrated in Fig. 5. The 
degradation of the capacitors corresponds to the 
decrease of the mean value of the probability 
density curve. Considering the unstable and 
unreliable regions as modeled in the previous 
section, the probabilities of stability and 
reliability satisfy: 
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where, CS and CR are the minimum allowed 
capacitance that can ensure the system stability 
and reliability, respectively. 
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Fig. 5: Illustration on the stable and reliable region in 
terms of the probabilistic distribution of filter 
capacitance. 

As specified previously, the reliability boundary 
CR is 80%C0, or 12 μF, while the stability 
boundary is selected as 11.5 μF in order to reserve 
some stability margin compared to the borderline 
in Fig. 2. With this, the probability of stability, 
given that the system is reliable, should be: 

 ( ) ( )
( )

| 1S

R t

P C C
P S R

P C C
≥

= =
≥

 (15) 

The degradation of the filter capacitance over 
time is accordingly presented in Fig. 6, 
considering the region where the system operates 
stably. The probability density curve moves 
leftwards from the initial capacitance, and both 
P(S) and P(R) decrease over time. The B10 
lifetime is reached when the cumulated 
probability F (0.8C0) equals 10%, and the mean 
capacitance is denoted as C1 in Fig. 6. 
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Fig. 6: Degradation of filter capacitance over time. 

If the system stability is already observed, then 
the posterior reliability can be analyzed using the 
Bayesian inference. The results of unconditional 
and conditional reliability analysis are compared 
in Fig. 7. In this case, if the system is stable, then 
the posterior unreliability should be lower than 
that without state observation, indicating that the 
lifetime expectation can actually be longer. The 
Bayesian framework can thereby be instructive 
for a better scheduling of maintenance in practice. 
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Fig. 7: Comparison of unconditional and conditional 
reliability analysis on the study case. 

Besides, the difference between unconditional 
and conditional reliability analysis will be more 
significant when the capacitors are approaching 
their EOL. The capacitance drops as time goes on, 
and the probability of stability consequently 
decreases, which, according to (11), leads to the 
deviation of P(R|S) from P(R). Cases are similar 
when, e.g., the parameters have large uncertainty, 
or the system is designed to operate closer to its 
stability boundary. This could also reflect the 
probabilistic interactions between system-level 
stability and reliability. 

V. Experimental Results 
The experimental platform is shown in Fig. 8, 
consisting of DC-AC converter racks, a power 
amplifier as a voltage source, filters and load 
resistors. Two three-phase Silicon-Carbide (SiC) 
converters are installed inside each rack with the 
rated power being 10 kW. To demonstrate the 
study case, the platform is configured in similar 
structure as shown in Fig. 1, utilizing a second 
DC-AC converter to establish the DC-link. In 
experimental tests, the load resistor is downscaled 
to 80 Ω (0.5 kW) due to available hardware 
components. The control parameters are also 
appropriately adjusted based on Table I to 
account for the disparities in parasitic parameters 
between simulations and experimental tests. 

Power Amplifier 
(Grid Simulator)

Converter as 
Rectifier

Converter(s)
Load

(Resistors)

DC-Link (VDC)

LC Filter

 
Fig. 8: Hardware platform to facilitate the 
experimental tests, which is configured based on the 
exemplary system in Fig. 1. 



The results obtained on this platform are 
presented in Fig. 9, demonstrating the influence 
of filter capacitance variations. By comparing the 
subfigures (a) and (b), it is revealed that the 
decrease in Cf from 15 μF to 10 μF can result in 
impaired system stability, which can be a system-
level side-effect of capacitor degradation. Thus, it 
is of great significance to incorporate stability 
considerations when evaluating system reliability 
in similar scenarios. 

CH1: VPCC [100 V/div] CH2: ia / CH3: ib / CH4: ic [2 A/div]  

 
Kpv = 0.04, Kiv = 97, Kpc = 10.5, Kic = 16×103 Time [20 ms/div] 
Fig. 9: Experimental results when the filter capacitance 
Cf varies, (a) Cf = 15 μF, (b) Cf = 10 μF, and (c) Cf = 
20 μF. 

Besides, when the filter capacitance is increased 
to 20 μF in Fig. 9 (c), the system approaches 
instability as well. This stems from the deviation 
of experimental and simulation configurations, 
where other approximated factors like the control 
delays may also influence the root loci of the 
system. Nevertheless, it is also indicating the 
impact of more general uncertainties on system 
performances, which agrees with the stability 
concerns highlighted in [14]. This concern can be 
further inspected by data-based methodologies in 
order to achieve more genuine evaluation of 
system performances, e.g., condition monitoring 
for calibrating system states, or artificial-
intelligence (AI) based modeling which can better 
accord with the observed system behaviors.  

VI. Conclusion 
In this paper, a Bayesian interpretation of the 
relationships between stability and reliability in 
microgrids is proposed. The significance of 
conditional reliability is demonstrated through a 
case study where the degradation of capacitors 
affects both stability and reliability. The coupling 
of stability and reliability is revealed, and this 
approach can be more practical given that the 
system performance is observed. The case study 
has also been illustrated by experimental results 
when the filter capacitor varies. 

In the future, the scope of this paper can be further 
extended to data-based methodologies for 
system-level risk evaluation and state prediction, 
like condition monitoring or AI-based tools using 
the Bayesian inference, so as to achieve more 
genuine performance evaluation with the help of 
system observations. 
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