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Introduction 
This technical report describes the evaluation process of various machine learning algorithms' 

performance used for supervised binary classification for occupant detection, using a dataset from a 

residential building in the North of Denmark. It supports the publication of Development and 

Application of an XGBoost-Based Occupant Detection Model for Residential Buildings Using 

Supervised Learning (sent to review in Building & Environment September 2023) [1]. 

 

The dataset used to test the algorithms' 
The dataset used in this study is Dataset 1 from the following repository [2], and is further described 

in the open-access technical report: [3] 

The parameters used for the occupant detection models are indoor CO2 concentration, indoor air 

temperature, indoor relative humidity, room type, and hour and day of the week. The models are 

further described in the sections below. 

 

Code for running the various algorithms 
 

For the full code and documentation for both modeling approaches, see the following GitHub 

repository [2]. 

 

 

  

https://aaudk-my.sharepoint.com/personal/lx02gi_civil_aau_dk/Documents/Dokumenter/PhD%20work/Publications/Occupant%20detection%20paper/technical%20report%20-%20algorithm%20test/technical_report_VBN_algorithm_test.docx#_Toc146823699
https://aaudk-my.sharepoint.com/personal/lx02gi_civil_aau_dk/Documents/Dokumenter/PhD%20work/Publications/Occupant%20detection%20paper/technical%20report%20-%20algorithm%20test/technical_report_VBN_algorithm_test.docx#_Toc146823712
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Selection of algorithms for binary classification 
Machine learning can be explored by several approaches depending on the type of problem to be 

solved, see Figure 1. This specific problem is delimited to a room-based occupant presence or absence 

(interpreted as 0 or 1 with interpreted ground truth) binary supervised classification. 

 

Figure 1: General overview of supervised- and unsupervised learning based on [4] [5]. 

Many unsupervised and supervised learning models have widely studied occupant detection problems 

in both residential- and non-residential buildings  [6-10], [11, 12],  [13]. The algorithms selected for 

this analysis were chosen based on 1) is tailored for supervised binary classification tasks, 2) what 

has existing literature explored earlier, 3) offer a diverse range of adjustable parameters and 

hyperparameters compatible with our dataset and 4) backed by comprehensive documentation and 

proven validation. Furthermore, it was important to consider the unique attributes of the dataset, the 

computational constraints, and the balance between model explainability and efficacy.  

 

The choice of modeling approach often depends on the input data type (smart meter data, indoor 

environmental sensors, motion sensors, or others) and access to ground truth data. Supervised 

learning approaches use known inputs and output data. Here, classification or regression models are 

typically used. Existing algorithms in the literature are support vector machine (SVM), Naïve Bayes 
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(NB), Decision Trees (DTs), and Nearest Neighbour (NN). For supervised learning, labeled data 

(output) is necessary for testing the performance of the models. Traditional unsupervised learning 

approaches aim to find patterns, correlations, or structures in the input data. Hidden Markov Models, 

K-Means, and Hierarchical or physic-based algorithms are also used for occupant detection modeling. 

However, ground truth is always used to validate the developed method for this problem. [5] [14]. 

 

In the existing peer-reviewed (Scopus-indexed) literature with a focus on algorithms used for 

occupant detection in residential buildings, the following key algorithms were found (See Appendix) 

out of 19 articles:  

• Support Vector variations or combinations were found in 9 articles 

• Random Forest variations or combinations were found in 7 articles 

• Variations of Neural Networks were used 6 times  

• Gradient Boosting variations were used 5 times 

• k-Nearest Neighbour was used 5 times  

• Decision Tree variations were used 4 times  

• Logistic Regression was used 2 times  

• Naïve Bayes was used 2 times  

• Other variations of algorithms found were Principal Component Analysis, expert systems 

(thresholds), and other unsupervised algorithms (Hidden Markov Models). 

Supervised learning is predominantly used, as it was found in 12 out of 19 articles. 

 

Therefore, the following algorithms were selected to be further tested with the selected dataset: 

• Support Vector Machine 

• Logistic Regression 

• Random Forest 

• k-Nearest Neighbor 

• Naive Bayes  

• XGBoost 

The Decision Tree algorithm and Neural Network are neglected as it does not meet the criteria above. 
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A short outline of each algorithm is presented below [15, 16]. 

• Logistic Regression (LR): It models the relationship between the input features and the 

probability of the target class using a logistic function. 

• Support Vector Machine (SVM): It finds an optimal hyperplane that separates the two 

classes by maximizing the margin between them. 

• Random Forest (RF): Random Forest is an ensemble learning method that combines 

multiple decision trees. Each tree is trained on a random subset of features, and the final 

prediction is based on the majority vote of the trees. 

• k-Nearest Neighbor (kNN): kNN is a type of instance-based learning method. The algorithm 

operates on the premise that similar instances will likely have similar outcomes. It finds the 

'k' most similar instances in the training set for a given input and predicts based on their 

outcomes.  

• Naive Bayes (NB): Naive Bayes is a probabilistic classifier based on Bayes' theorem. It 

assumes independence between features, given the class label. 

• Gradient Boosting Models (GBM): Gradient boosting models, such as XGBoost, are 

powerful ensemble methods that combine multiple weak learners (decision trees) to make 

accurate predictions.  

Table 1 describes a general overview of the selected algorithms for binary classification categorized 

by pros and cons  [17, 18]. 

Table 1: General overview of the selected algorithms for binary classification categorized by pros and cons. 

Algorithm Pros Cons References 

Logistic 

Regression 

(LR) 

• Interpretable results 

(f.ex. odd ratios) 

• In general, fast 

training and 

prediction 

• Typically works well 

with small to medium-

sized datasets 

• Less prone to 

overfitting with 

regularization with 

smaller number of 

features 

• It may not capture complex 

relationships in the data 

• Can be sensitive to 

irrelevant or highly 

correlated features 

• Assumes a linear 

relationship between 

features and the target, 

which may not always be 

true 

• May underperform with 

non-linear data 

 [19, 20] [5] 

Support 

Vector 

Machine 

(SVM) 

• Effective in high-

dimensional spaces 

• Works well with a 

clear margin of 

separation 

• Computational complexity 

scales with the number of 

samples 

• Requires appropriate kernel 

selection 

 [17, 19, 20] 
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• Can be robust to 

overfitting with 

regularization 

• Effective with small 

to medium-sized 

datasets  

• Can handle non-linear 

relationships with 

kernel tricks 

• Training and tuning time can 

be high for large datasets 

• Generally memory-intensive 

for large datasets 

• It can be difficult to interpret 

the resulting models (non-

linear kernels) 

• Can be sensitive to noise 

Random 

Forest 

(RF) 

• Can handle high-

dimensional data 

• Can capture complex 

feature interactions 

• Robust to outliers 

(due to averaging 

mechanism)  

• Can handle 

imbalanced datasets 

(f.ex. bootstrapping) 

• It might not require 

extensive feature 

engineering 

• May overfit with noisy data 

• Longer training time 

compared to some 

algorithms (due to the 

necessity to train multiple 

trees) 

• Can lack interpretability 

compared to linear models 

due to the ensemble method 

of trees 

• It may require tuning for 

optimal performance  

 [21, 22] 

k-Nearest 

Neighbor 

(kNN) 

• Simple and easy to 

understand 

• There are no 

assumptions about the 

data distribution, 

making it useful for 

non-linear data 

• Can perform well with 

a sufficient number of 

data points 

• Model training is 

generally faster as it 

simply stores 

instances of the 

training data 

• It can be computationally 

expensive and slow during 

the prediction phase, 

especially with large 

datasets 

• Sensitive to the scale of the 

data and irrelevant features 

• It needs appropriate choice 

of 'k' and the distance metric 

• Performance can degrade 

with high-dimension data 

(curse of dimensionality) 

• There is no model 

interpretability, as there is 

no explicit learning phase 

 [23] 

Naïve 

Bayes 

(NB) 

• Can have a fast 

training and 

prediction phase 

• Can perform well with 

high-dimensional data  

• Handles irrelevant 

features well (due to 

the probabilistic 

nature) 

• Can work well with 

small to medium-

sized datasets 

• Low memory 

footprint 

• Assumes independence 

between features  

• It may not capture complex 

relationships (due to the 

naïve assumption) 

• It relies on the strong 

independence assumption 

• May underperform when 

independence assumption is 

violated 

 [24] 
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Gradient 

Boosting 

Models 

(GBM) 

• Known for high 

performance and 

accuracy (if applied 

correctly) 

• Can handle 

imbalanced datasets 

(functions and 

hyperparameters) 

• It has a built-in feature 

importance analysis 

• Has parallel 

processing for 

scalability 

• It has a wide range of 

hyperparameters for 

the customization of 

model 

• It can require more 

hyperparameter tuning 

compared to some other 

models 

• It can be computationally 

expensive with large 

datasets 

• Can require more data for 

training compared to 

simpler models 

• Less interpretable compared 

to simpler models (due to 

the ensemble and layers of 

decision trees) 

 [21, 25, 26] 
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Chosen performance metrics 
The nine selected performance metrics are outlined below. An outline of the reasoning for these 

performance metrics can be seen in the [1]. 

 

1. Accuracy [%] 

Calculated as the count of correct predictions over total number of predictions [27], see Error! 

Reference source not found.: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝟏

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔
∑ 𝟏(�̂�𝒊 =  𝒚𝒊

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔−𝟏

𝒊=𝟎

) 

y = Ground truth occupancy 
ŷ = Predicted occupancy label 

 

2. Confusion matrix 

The confusion matrix function evaluates classification accuracy by computing the confusion matrix 

with each row corresponding to the true class [28]. Figure 2 shows the confusion matrix and the 

classification of the predicted and actual classes. 

 
Figure 2: Confusion matrix example. 

TP = The number of cases correctly predicted as positive 

TN = The number of cases correctly predicted as negative 

FP = The number of negative cases incorrectly predicted as positive 

FN = The number of positive cases incorrectly predicted as negative 
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3. Balanced accuracy [%] 

Calculated as the arithmetic mean of sensitivity (true positive rate) and specificity (true negative rate)  

[29, 30], see Error! Reference source not found.:  

𝑩𝒂𝒍𝒂𝒏𝒄𝒆𝒅 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝟏

𝟐
∗ (

𝑻𝑷

𝑻𝑷 + 𝑭𝑵
+  

𝑻𝑵

𝑻𝑵 + 𝑭𝑷
) 

 

4. Precision [%] 

Calculated as the true positives divided by the true positives and the false positives [31], see Error! 

Reference source not found.: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

 

5. Recall [%] 

Calculated as the true positives divided by the true positives and the false negatives [32], see Error! 

Reference source not found.: 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

 

6. F1-score [0-1] 

The F1 score can be interpreted as a harmonic mean of the precision and recall [33], see Error! 

Reference source not found.: 

𝑭𝟏 = 𝟐 ∗  
(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍)

(𝑷𝒆𝒓𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍)
 

 

7. Matthew’s correlation coefficient (MCC) [(-1) – (+1)] 

The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 

represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction [34, 35], 

see Error! Reference source not found.: 

𝑴𝑪𝑪 =  
(𝑻𝑷 ∗ 𝑻𝑵) − (𝑭𝑷 ∗ 𝑭𝑵)

√(𝑻𝑷 + 𝑭𝑷)(𝑻𝑷 + 𝑭𝑵)(𝑻𝑵 + 𝑭𝑷)(𝑻𝑵 + 𝑭𝑵)
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8. Area Under the Receiver Operating Characteristic Curve (AUROC) [0-1] 

A receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot that illustrates 

the performance of a binary classifier system as its discrimination threshold is varied. The ROC curve 

is plotted with the True Positive Rate (TPR), or Sensitivity, against the False Positive Rate (FPR) or 

1 minus the Specificity, where TPR is on the y-axis and FPR is on the x-axis. AUC, or Area Under 

the Curve, is the area under the ROC curve. It represents the degree or measure of separability, 

indicating how well the model can distinguish between classes. [36, 37]. 

 

9. Briar-score loss [0-1] 

The Brier score measures the mean squared difference between the predicted probability and the 

actual outcome [38], see Equation 8:  

𝑩𝒓𝒊𝒆𝒓 − 𝒔𝒄𝒐𝒓𝒆 𝒍𝒐𝒔𝒔 =  
𝟏

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔
∗ ∑ ∗  (𝒚𝒊 − 𝒑𝒊)𝟐

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔−𝟏

𝒊=𝟎

 

 

𝑦𝑖 =  actual outcome 

𝑝𝑖 =  predicted probability estimate 
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Modeling framework 
This modeling framework consists of a basic application of each algorithm in Python 3.11 on 

SPYDER 5 without any parameter or hyperparameter optimization. The Scikit-learn library was used 

for these model implementations [39]. The computer specifications for running the models were the 

following: Intel Core i7-10510U CPU and 16GB of RAM. 

Two different modeling approaches are applied. One generalized model consisting of the following 

12 parameters: 

1. CO2 concentration [ppm] 

2. Indoor air temperature [°C] 

3. Relative humidity [%] 

4. Room type, one-hot-encoded (5 rooms) 

5. Day of the week (cycled encoded) (two encodings) 

6. Hour of the day (cycled encoded) (two encodings) 

 

Each room-based model consists of the following 7 parameters: 

1. CO2 concentration [ppm] 

2. Indoor air temperature [°C] 

3. Relative humidity [%] 

4. Day of the week (cycled encoded) (two encodings) 

5. Hour of the day (cycled encoded) (two encodings) 

 

For the generalized model, a 10-fold grouped shuffle split cross-validation [40] was conducted for all 

models, grouping days consistently within different folds across all models. Whereas for each room-

based model, a 5-fold stratified grouped shuffle split cross-validation [41] was conducted with the 

aim to have balanced folds across the splits and also due to the smaller amount of data points and 

variations of data characteristics of the room types.  

 

The split of the model selection and model evaluation is 80 % and 20 %, respectively. This cross-

validation type was performed as the aim is to perform hyperparameter optimization after the 
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evaluation of the algorithms. The reproducibility seed for all models is denoted as random_state = 

42.  

 

Figure 3 shows the overview of the cross-validation procedure.  

 

Figure 3: Cross-validation procedure for the modeling. 
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Generalized model performance 
 

The generalized model's algorithm modeling results can be found in Table 2 to Table 4, where 

algorithms are arranged from left to right based on their performance. Due to the imbalance of the 

majority/minority class of the dataset, particular emphasis was placed on balanced accuracy, MCC, 

precision, recall, and the F1-score to ensure a more robust evaluation of model performance. The 

second line under each result is the standard deviation of the 10-fold. 

1. CO2 concentration, air temperature, and relative humidity 

Table 2: Results of the occupant detection modeling performance metrics for the generalized model using 

CO2 concentration, air temperature, and relative humidity (average performance of 10-fold grouped 

shuffle split). The standard deviation is placed below the performance metric. 

Model / 

perform. 

And 

evaluat. 

metric 

Support 

Vector 

Machine 

k-Nearest 

Neighbor 

Naïve 

Bayes 

Logistic 

Regression 
XGBoost 

Random 

Forest 

Accuracy 
75 % 

2.7 % 

78 % 

0.020 

80 % 

2.1 % 

81 % 

2.1 % 

88 % 

0.9 % 

90 % 

0.9 % 

Balanced 

accuracy 

54 % 

2.2 % 

69 % 

0.031 

70 % 

3.8 % 

68 % 

6.9 % 

81 % 

2.5 % 

83 % 

2.8 % 

Confusion 

matrix 

[1593 27] 

[533   59] 

[1440 179] 

299 293] 

[1475 145] 

[306 286] 

[1534 86] 

[341 250] 

[1535 84] 

[191 401] 

[1562 57] 

[174 417] 

Precision 
75 % 

18 % 

62 % 

4.9 % 

67 % 

6.8 % 

76 % 

6.8 % 

82 % 

2.7 % 

88 % 

2.2 % 

Recall 
10 % 

5 % 

49 % 

8.5 % 

47 % 

10 % 

41 % 

10 % 

67 % 

6.2 % 

69 % 

6.3 % 

F1-score 
0.16 

0.077 

0.54 

0.058 

0.55 

0.066 

0.52 

0.066 

0.74 

0.036 

0.77 

0.039 

MCC 
0.19 

0.070 

0.41 

0.051 

0.44 

0.051 

0.45 

0.051 

0.66 

0.032 

0.72 

0.035 

AUC-ROC 
0.72 

0.050 

0.76 

0.022 

0.77 

0.033 

0.78 

0.033 

0.92 

0.016 

0.93 

0.017 

Brier score 

loss 

0.17 

0.012 

0.16 

0.012 

0.17 

0.015 

0.15 

0.015 

0.09 

0.007 

0.08 

0.005 

Comp. 

time 

249 

seconds 

1.5  

seconds 

0.6  

seconds 

1.6  

seconds 

5.7  

seconds 

6.9  

seconds 
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2. CO2 concentration and air temperature 

 
Table 3: Results of the occupant detection modeling performance metrics for the generalized model using 

CO2 concentration and air temperature (average performance of 10-fold grouped shuffle split). The 

standard deviation is placed below the performance metric. 

Model / 

perform. 

and 

evaluat. 

metric 

Support 

Vector 

Machine 

k-Nearest 

Neighbor 

Naïve 

Bayes 

Logistic 

Regression 
XGBoost 

Random 

Forest 

Accuracy 
75 % 

2.6 % 

82 % 

0.016 

80 %  

1.9 % 

81 % 

2.3 % 

88 % 

1.2 % 

89 % 

0.8 % 

Balanced 

accuracy 

54 % 

2.1 % 

73 % 

0.035 

70 % 

3.9 % 

70 % 

3.5 % 

83 % 

3 % 

83 % 

2.2 % 

Confusion 

matrix 

[1594   26] 

[534   58] 

[1485   

134] 

[267   325] 

[1478   

142] 

[309   283] 

[1543   77] 

[333   259] 

[1526   94] 

[169   423] 

[1554   66] 

[174   418] 

Precision 
0.75 

0.184 

0.70 

0.043 

0.68 

0.072 

0.77 

0.086 

0.81 

0.040 

0.86 

0.022 

Recall 
0.09 

0.049 

0.54 

0.086 

0.47 

0.112 

0.43 

0.075 

0.70 

0.065 

0.70 

0.05 

F1-score 
0.16 

0.075 

0.61 

0.062 

0.54 

0.068 

0.55 

0.073 

0.76 

0.046 

0.77 

0.030 

MCC 
0.19 

0.069 

0.50 

0.056 

0.44 

0.050 

0.47 

0.072 

0.68 

0.048 

0.71 

0.026 

AUC-ROC 
0.72 

0.056 

0.81 

0.025 

0.77 

0.034 

0.78 

0.042 

0.93 

0.013 

0.93 

0.019 

Brier score 

loss 

0.17 

0.012 

0.14 

0.011 

0.17 

0.015 

0.14 

0.011 

0.088 

0.007 

0.08 

0.006 

Comp. 

time 

181.45 

seconds 

1.42 

seconds 

0.47 

seconds 

1.60 

seconds 

7.43 

seconds 

6.48 

seconds 
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3. CO2 concentration and relative humidity 

 
Table 4: Results of the occupant detection modeling performance metrics for the generalized model using 

CO2 concentration and relative humidity (average performance of 10-fold grouped shuffle split). The 

standard deviation is placed below the performance metric. 

Model / 

perform. 

and 

evaluat. 

metric 

Support 

Vector 

Machine 

k-Nearest 

Neighbor 

Naïve 

Bayes 

Logistic 

Regression 
XGBoost 

Random 

Forest 

Accuracy 
75 % 

2.6 % 

78 % 

0.019 

80 % 

2.1 % 

80 % 

1.7 % 

88 % 

1.4 % 

89 % 

1.1 % 

Balanced 

accuracy 

54 % 

2.2 % 

68 % 

2.6 % 

70 % 

4 % 

68 % 

4.6 % 

81 % 

2.6 % 

82 % 

2.5 % 

Confusion 

matrix 

[1593   27] 

[533   60] 

[1434   

182] 

[306   285] 

[1478   

142] 

[298   294] 

[1521   

100] 

[334   258] 

[1542   78] 

[192   400] 

[1554   66] 

[184   408] 

Precision 
0.74 

0.183 

0.61 

0.050 

0.68 

0.069 

0.73 

0.074 

0.83 

0.023 

0.85 

0.020 

Recall 
0.09 

0.050 

0.47 

0.075 

0.48 

0.110 

0.42 

0.118 

0.67 

0.058 

0.68 

0.053 

F1-score 
0.17 

0.077 

0.53 

0.051 

0.56 

0.070 

0.53 

0.091 

0.74 

0.035 

0.76 

0.036 

MCC 
0.19 

0.070 

0.39 

0.044 

0.45 

0.054 

0.44 

0.066 

0.67 

0.034 

0.70 

0.035 

AUC-ROC 
0.72 

0.056 

0.76 

0.021 

0.77 

0.033 

0.80 

0.033 

0.93 

0.011 

0.92 

0.019 

Brier score 

loss 

0.17 

0.012 

0.16 

0.011 

0.17 

0.017 

0.14 

0.010 

0.093 

0.009 

0.090 

0.006 

Comp. 

time 

227.84 

seconds 

1.48 

seconds 

0.44 

seconds 

1.11 

seconds 

5.49 

seconds 

11.20 

seconds 
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Room-based model performance 
The results from the algorithm modeling for the room-based models can be found in Table 5 to Table 

9, where algorithms are arranged from left to right based on their performance. Due to the imbalance 

of the majority/minority class of the dataset, particular emphasis was placed on balanced accuracy, 

MCC, precision, recall, and the F1-score to ensure a more robust evaluation of model performance.  

The second line under each result is the standard deviation of the 10-fold. 

1. Bedroom model performance 

 
Table 5: Results of the occupant detection modeling for the bedroom model performance metrics (average 

performance of 10-fold grouped shuffle split). The standard deviation is placed below the performance 

metric. 

Model / 

perform. 

and 

evaluat. 

metric 

Support 

Vector 

Machine 

k-Nearest 

Neighbor 

Naïve 

Bayes 

Logistic 

Regression 
XGBoost 

Random 

Forest 

Accuracy 
78 % 

3.5 % 

78 % 

3.8 % 

89 % 

3.3 % 

92 % 

1 % 

93 % 

1.5 % 

94 % 

1.5 % 

Balanced 

accuracy 

70 % 

5.3 % 

74 % 

5.2 % 

86 % 

4.5 % 

91 % 

1.6 % 

92 % 

1.8 % 

92 % 

2 % 

Confusion 

matrix 

[428   12] 

[130   103] 

[383   57] 

[91   142] 

[427   13] 

[58   176] 

[415   25] 

[28   206] 

[420   14] 

[31   203] 

[427   14] 

[29   204] 

Precision 
0.89 

0.052 

0.71 

0.059 

0.93 

0.025 

0.89 

0.035 

0.93 

0.029 

0.93 

0.029 

Recall 
0.43 

0.111 

0.60 

0.101 

0.75 

0.097 

0.88 

0.046 

0.87 

0.040 

0.87 

0.047 

F1-score 
0.58 

0.109 

0.65 

0.080 

0.83 

0.065 

0.88 

0.013 

0.90 

0.018 

0.90 

0.030 

MCC 
0.52 

0.091 

0.49 

0.096 

0.77 

0.067 

0.83 

0.020 

0.85 

0.029 

0.86 

0.031 

AUC-ROC 
0.79 

0.064 

0.80 

0.058 

0.97 

0.006 

0.97 

0.004 

0.98 

0.006 

0.98 

0.006 

Brier score 

loss 

0.156 

0.026 

0.17 

0.033 

0.075 

0.017 

0.056 

0.008 

0.054 

0.012 

0.051 

0.009 

Comp. 

time 

16.74 

seconds 

0.74 

seconds 

1.43 

seconds 

1.34 

seconds 

4.81 

seconds 

3.47 

seconds 
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2. Kitchen / Living room model performance 

Table 6: Results of the occupant detection modeling for the kitchen / living room performance metrics 

(average performance of 10-fold grouped shuffle split). The standard deviation is placed below the 

performance metric. 

Model / 

perform. 

and 

evaluat. 

metric 

Support 

Vector 

Machine 

k-Nearest 

Neighbor 

Naïve 

Bayes 

Logistic 

Regression 
XGBoost 

Random 

Forest 

Accuracy 
67 % 

7.3 % 

62 % 

4.7 % 

78 % 

3 % 

76 % 

4.4 % 

84 % 

2.4 % 

85 % 

3 % 

Balanced 

accuracy 

65 % 

6 % 

60 % 

3.7 % 

78 % 

3.3 % 

76 % 

4.6 % 

84 % 

1.9 % 

85 % 

2.5 % 

Confusion 

matrix 

[63   58] 

[36   131] 

[64   57] 

[53   114] 

[94   28] 

[34   133] 

[88   33] 

[34   133] 

[110   21] 

[24   143] 

[110   21] 

[21   146] 

Precision 
0.70 

0.079 

0.66 

0.054 

0.83 

0.055 

0.80 

0.068 

0.87 

0.045 

0.87 

0.043 

Recall 
0.78 

0.156 

0.68 

0.127 

0.79 

0.083 

0.79 

0.055 

0.86 

0.066 

0.87 

0.077 

F1-score 
0.72 

0.093 

0.66 

0.081 

0.81 

0.032 

0.79 

0.051 

0.86 

0.027 

0.87 

0.036 

MCC 
0.33 

0.135 

0.21 

0.075 

0.56 

0.069 

0.52 

0.090 

0.70 

0.045 

0.71 

0.055 

AUC-ROC 
0.71 

0.061 

0.66 

0.040 

0.87 

0.040 

0.86 

0.040 

0.92 

0.025 

0.93 

0.022 

Brier score 

loss 

0.21 

0.022 

0.24 

0.032 

0.15 

0.019 

0.15 

0.020 

0.12 

0.025 

0.10 

0.014 

Comp. 

time 

6  

seconds 

0.97 

seconds 

0.35 

seconds 

1.68 

seconds 

2.17 

seconds 

2.96 

seconds 
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3. Living room model performance 

 
Table 7: Results of the occupant detection modeling for the living room performance metrics (average 

performance of 10-fold grouped shuffle split). The standard deviation is placed below the performance 

metric. 

Model / 

perform. 

and 

evaluat. 

metric 

Support 

Vector 

Machine 

k-Nearest 

Neighbor 

Naïve 

Bayes 

Logistic 

Regression 

Random 

Forest 
XGBoost 

Accuracy 
79 % 

3.9 % 

78 % 

2.9 % 

83 % 

2.9 % 

83 % 

2.9 % 

86 % 

3.8 % 

86 %  

3.2 % 

Balanced 

accuracy 

50 % 

0.3 % 

61 % 

2.9 % 

66 % 

7.5 % 

67 % 

6.2 % 

73 % 

5.1 % 

77 % 

5.1 % 

Confusion 

matrix 

[381   0] 

[99   0] 

[345   36] 

[67   33] 

[359   22] 

[58   41] 

[354   27] 

[55   44] 

[361   20] 

[48   51] 

[352   29] 

[37   63] 

Precision 
0.2 

0.400 

0.47 

0.103 

0.69 

0.122 

0.64 

0.096 

0.72 

0.088 

0.69 

0.071 

Recall 0 
0.32 

0.075 

0.38 

0.183 

0.42 

0.159 

0.51 

0.104 

0.62 

0.117 

F1-score 0 
0.37 

0.074 

0.45 

0.174 

0.48 

0.120 

0.60 

0.088 

0.64 

0.071 

MCC 0 
0.26 

0.066 

0.40 

0.122 

0.41 

0.082 

0.52 

0.094 

0.57 

0.070 

AUC-ROC 
0.57 

0.079 

0.70 

0.052 

0.85 

0.050 

0.85 

0.038 

0.87 

0.035 

0.88 

0.034 

Brier score 

loss 

0.15 

0.001 

0.16 

0.016 

0.11 

0.018 

0.11 

0.015 

0.10 

0.021 

0.11 

0.028 

Comp. time 
7.09 

seconds 

0.99 

seconds 

0.74 

seconds 
1.13 seconds 

3.66 

seconds 

2.37 

seconds 
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4. Kitchen model performance 

 
Table 8: Results of the occupant detection modeling of the kitchen performance metrics (average 

performance of 10-fold grouped shuffle split). The standard deviation is placed below the performance 

metric. 

Model / 

perform. 

and 

evaluat. 

metric 

Support 

Vector 

Machine 

k-Nearest 

Neighbor 

Naïve 

Bayes 

Logistic 

Regression 

Random 

Forest 
XGBoost 

Accuracy 
81 % 

4.6 % 

77 % 

4.9 % 

78 % 

4.1 % 

80 % 

4.4 % 

79 % 

4 % 
78 % 

3.5 % 

Balanced 

accuracy 

50 % 

0 

51 % 

2.5 % 

53 % 

5 % 

52 % 

5.3 % 

52 % 

1.9 % 
54 % 

2.4 % 

Confusion 

matrix 

[391   0] 

[90   0] 

[366   25] 

[82   8] 

[365   27] 

[78   12] 

[380   11] 

[86   1] 

[376   16] 

[83   7] 
[365   26] 

[77   13] 

Precision 0 
0.23 

0.085 

0.28 

0.220 

0.14 

0.222 

0.30 

0.142 
0.33 

0.147 

Recall 0 
0.09 

0.052 

0.13 

0.097 

0.06 

0.122 

0.07 

0.048 
0.14 

0.062 

F1-score 0 
0.13 

0.058 

0.17 

0.127 

0.07 

0.147 

0.10 

0.064 
0.20 

0.072 

MCC 0 
0.03 

0.071 

0.09 

0.138 

0.05 

0.128 

0.06 

0.065 
0.11 

0.070 

AUC-ROC 
0.57 

0 

0.57 

0.040 

0.74 

0.062 

0.71 

0.067 

0.71 

0.050 
0.68 

0.042 

Brier score 

loss 

0.16 

0.031 

0.17 

0.034 

0.14 

0.023 

0.14 

0.022 

0.14 

0.019 
0.17 

0.027 

Comp. time 
4.56 

seconds 

1.08 

seconds 

0.33 

seconds 
1.23 seconds 

3.78 

seconds 
2.39 

seconds 
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5. Office model performance 

 
Table 9: Results of the occupant detection modeling of the office performance metrics (average 

performance of 10-fold grouped shuffle split). The standard deviation is placed below the performance 

metric. 

Model / 

perform. 

and 

evaluat. 

metric 

Support 

Vector 

Machine 

k-Nearest 

Neighbor 

Naïve 

Bayes 

Logistic 

Regression 
XGBoost 

Random 

Forest 

Accuracy 
96 % 

2.2 % 

95 % 

2.7 % 

95 % 

3.4 % 

96 % 

2.3 % 

94 % 

2.8 % 

96 % 

2.3 % 

Balanced 

accuracy 

50 % 

0 % 

50 % 

1 % 

56 % 

8.3 % 

50 % 

0.1 % 

49 % 

1.8 % 

53 % 

4.3 % 

Confusion 

matrix 

[464   0] 

[2   0] 

[456   0] 

[2   0] 

[455   2] 

[2   1] 

[464   0] 

[2   0] 

[462   0] 

[2   0] 

[460   1] 

[2   1] 

Precision 0 
0.11 

0.190 

0.16 

0.175 
0 

0.01 

0.046 
0 

Recall 0 
0.013 

0.020 

0.15 

0.182 
0 

0.01 

0.035 
0 

F1-score 0 
0.022 

0.034 

0.15 

0.170 
0 

0.01 

0.039 
0 

MCC 0 
0.012 

0.059 

0.13 

0.160 
0 0 

0.15 

0.17 

AUC-ROC 
0.45 

0.206 

0.58 

0.078 

0.84 

0.095 

0.83 

0.105 

0.53 

0.202 

0.82 

0.112 

Brier score 

loss 

0.040 

0.020 

0.047 

0.022 

0.040 

0.024 

0.038 

0.021 

0.051 

0.026 

0.040 

0.022 

Comp. 

time 

2.22 

seconds 

0.71 

seconds 

0.37 

seconds 

0.67 

seconds 

1.07 

seconds 
2 seconds 
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Reflections 
This technical report describes the evaluation of various algorithms' performance used for supervised 

binary classification for occupant detection using a dataset from a residential building in the North of 

Denmark. The following models were tested: Logistic Regression, Support Vector Machine, Random 

Forest, k-Nearest Neighbor, Naive Bayes, and XGBoost. Some reflections from the results of this 

technical report are presented below. 

 

1. Algorithm performance and characteristics: 

All models have varying performance, indicating that some algorithms do not have suitable 

characteristics or parameters for the chosen dataset. Furthermore, since there is no hyperparameter 

optimization, it makes the algorithm comparison less optimal but provides an indication of 

performance. However, some algorithms, such as Random Forest, are not directly sensitive to 

hyperparameters. Conversely, Support Vector Machine is very sensitive to hyperparameters, which 

can be reflected in the longer computational time (optimization of the kernel might be necessary). 

 

2. Generalized model performance:  

o Three input variations were performed (solely CO2 concentration, CO2 concentration 

and relative humidity, and CO2 concentration and air temperature). All three models 

have similar performance in all the various algorithms, varying from 54 % to 82 % 

balanced accuracy and from 0.19 to 0.72 MCC score.  

o The XGBoost and Random Forest models have the highest performance based on the 

performance metrics for all variations, and it is assumed that both algorithms are 

suitable for further modeling and exploration.  

 

3. Room-based model performance:  

o There is a considerable variation in performance across the various algorithms. 

Generally, the models perform around 50 % to 93 % balanced accuracy and from 0 to 

0.86 MCC score.  

o The bedroom room type-based model has the highest performance, while the office 

room type-based model has the poorest performance. Proper tuning might be required 

in some room-based models due to the data characteristics (imbalance ratio and 

internal correlations). 

o XGBoost and Random Forest have the highest performance based on the performance 

metrics, and it is assumed that both algorithms are suitable for further application. 

However, XGBoost has a more extensive library for hyperparameter tuning than some 
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of the other models and thus could be a suitable algorithm due to the varying room-

based model performance.  
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Appendix: Literature review 
 

Table 10: Found literature (Scopus-indexed) on occupant detection in residential buildings. 

Reference Published Sensor(s) 
Scope / 

application 

Learning 

approach 

Type of 

ground 

truth data 

Length of 

dataset 

Data 

resolution 
Model(s) 

Dataset 

open 

access 

Building level 

Citations 

per 

August 

2023 

[42] 2022 

CO2 

concentration, 

air temperature 

and relative 

humidity 

Develop a 

model 
Supervised 

Occupant 

survey 
Two weeks 5 min. 

CNN-

XGBoost, 

CNN, 

XGBoost, 

Logistic 

Regression, 

Decision Tree, 

K-Nearest 

Neighbor, 

Random 

Forest, SV 

regression, K-

means 

clustering, 

Gradient 

boosting  

No Room-based 2 

[43] 2022 

Air temperature, 

light, relative 

humidity, audio 

and images 

Develop a 

model 
Supervised 

Uses dataset 

from [44],  

[45] and  

[46] 

Uses dataset 

from [44],  

[45] and  

[46] 

10 seconds 

to 8 kHz for 

audio 

Occ.STPN, 

Random 

Forest, Few-

shot model 

[44] 

yes 
Room-based 9 

[47] 2017 
Time User 

Survey data 

Develop a 

model for 

occupancy 

forecast 

Supervised 
Motion 

sensor (PIR) 

From 1 to 

four months 
5 min. 

Markov 

Model, 

Artificial 

Neural 

Network 

(ANN) and 

Support Vector 

Regression 

(SVR) 

No Room-based 73 

[48] 2015 

Power use of 

appliances and 

human-

activated 

switching 
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model 

Unsupervised 

but tested 

supervised 

algorithms 

Google+ 

GPS module 
Two months 10 seconds 

Load curve 

data and 

readily-

available 

appliance 

knowledge 

No Apartment-based 15 
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Decision tree, 

SVM, KNN, 

Bayes 

[45] 2014 Power use 

Development 

of a framework 

for non-

intrusive 

monitoring 

Semi-, 

unsupervised 

and supervised 

Uses 

simulated, 

real and lab 

data (three 

diff. 

datasets) for 

the 

algorithms 

 

ECO: Tablet 

+ PIR 

- 

 

 

ECO: 8 

months, 6 

households 

All datasets: 

1 second 

Parson, 

Baranski, 

Weiss and 

Kolter (HMM 

and clustering) 

No 

 

ECO: 

Yes 

Apartment-based 178 

[49] 2017 Power use 
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model 
Unsupervised 

Uses dataset 

from [45] 
Uses dataset 

from [45] 
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Base Learning 

(BL), 

Non-intrusive 

Learning (NL), 

and Transfer 

Learning 

(TL) 

 

SVM-PCA, 

Random Forest 

- Apartment-based 64 

[50] 2013 Electricity use 

Development 

of a NIOM 

framework 

Unsupervised 

Occupant 

actions and 

GPS (30 

seconds 

ground truth) 

Two 

household 

 

Not reported 

length? 

Not 

reported? 

Night as 

baseload, 

statistics 

- Apartment-based 88 

 [51] 2019 Electricity use 

Test models 

with ECO, 

DRED and 

Smart* 

datasets 

Supervised See datasets 

18 months 

500 

households 

 

Customer 

Behaviour 

Trials (CBT) 

in Ireland 

30 minutes 

Random 

Forests, 

Gradient 

Boosting, 

ANN, SVM, 

KNN 

- Apartment-based 91 

 [52] 2019 

Thermostat data 

from Eco Bee 

(Donate you 

Data) 

 

Motion sensor 

(PIR) 

Compare 

different 

algorithms 

Semi- and 

supervised 

Assumed GT 

with the 

thermostat 

data from 

Eco Bee 

(Donate you 

Data) 

- 30. min 

Logistic 

Regression, 

Random 

Forest,  

Markov model 

(MM), the 

hidden Markov 

No House-based 94 
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Motion 

sensor (PIR) 

model 

(HMM), and 

the recurrent 

neural network 

(RNN) 

[53] 2021 

Indoor 

environment 

data: CO2, air 

temperature, 

illuminance, 

relative 

humidity and 

noise 

Information of 

occupant 

presence could 

be extracted 

from indoor 

environment 

data by 

appropriate 

data mining 

approach 

Supervised 
GPS, app on 

phone 

Approx. 1 

month 
5. minutes 

Decision tree 

and curve 

description 

No Three bedrooms 3 

 [54] 2013 Electricity use 
Develop a 

model 

Unsupervised 

and supervised 

PIR and 

Android 

application 

installed on 

phone 

8. months 1 second 

SVM, KNN, 

HMM, prior 

knowledge and 

threshold 

No House-based 282 

 [55] 2017 

Air temperature, 

humidity, 

humidity ratio, 

CO2 and light 

time series data 

Average 

occupancy 

schedules 

Unsupervised Not relevant 
Uses dataset 

from [46] 

Uses dataset 

from [46] 
 

Varies the 

resolution of 

5 min, 10 

min, 20 and 

30. min 

 

Hidden 

Markov 

Models 

Yes Room-based 107 

 [56] 2021 

Temperature 

and motion + 

human-

activities: door 

handle touch, 

water usage, 

and motion near 

the door area 

Develop a two-

layer model 
Supervised 

Switches 

that people 

have to 

activate 

54 days in a 

living lab 

Around 

seconds, 

cannot 

properly 

find 

Random 

Forest, 

Decision Tree, 

K-Nearest 

Neighbor, and 

Support Vector 

Machine 

No Living lab 29 

 [57] 2015 

CO2 

concentration, 

fan power, room 

temperature, 

window 

opening 

Develop a 

model 
Unsupervised 

Not 

applicable 
Up to 6 days 1. minute Mass balance No 

a kitchen and a 

big 

sleeping/living 

room of a 

residential 

building without 

mechanical 

ventilation 

174 
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 [58] 2021 
CO2 and air 

temperature 

Develop a 

model for real-

time 

occupancy 

Supervised 
Occupants' 

logs 
7 days 5. seconds 

physics-

informed 

pattern-

recognition 

machine (PI-

PRM) 

No 
Experimental 

setup (bedroom) 
17 

 [59] 2018 
Particulate 

matter + IE data 

Develop a 

model 
Unsupervised 

Not 

applicable 
4 months 1. minute 

Point 

extraction 

algorithm is 

proposed to 

construct 

triangular 

shapes 

No 
Three studio 

type houses 
64 

 [60] 2022 

Occupant 

behavior 

(indoor handle 

temp., outdoor 

temp. handle) 

Develop a 

model 

Supervised/ 

unsupervised 
PIR sensor 40 days 

Not 

applicable, 

event-based 

Trustworthy 

sequence 

matching 

module 

No 

Living lab: 

living room, a 

kitchen, a 

bedroom, a 

bathroom and a 

mechanical room 

4 

 [61] 2019 

CO2, air 

temperature, 

relative 

humidity, 

humidity ratio,  

Toolkit 

Domain-

adaptive and 

supervised 

Uses five 

datasets to 

develop the 

toolkit, see 

paper. Uses 

mainly 

camera and 

app with 

GPS 

From 7 days 

to 1 year 

From 10 

seconds to 

15 minutes 

HMM, Particle 

Filtering (PF), 

SVM, Random 

Forest, Sparse 

Non-negative 

Matrix 

Factorization 

(SNMF), ANN 

and 

RNN/LSTM 

Yes 
35 various 

rooms 
7 

 [62] 2018 

Aggregated and 

appliance-

specific power 

use data 

Develop a 

model 
Supervised 

Uses the 

ECO data 

and e 

Clarkson 

smart 

housing 

dataset 

Clarkson 

dataset: 12 

days, GPS 

signal for 

GT 

Clarkson 

dataset: 5 

minutes, for 

el-use: 

unsure 

Own app, 

prior-

knowledge, 

SVM versions 

(PCA and 

SFS) 

Yes Apartment-based 11 
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