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Abstract: Both agricultural output and environmental pollution in China show certain character-
istics of spatiotemporal variation due to the evolution and inter-provincial disparities of resource
endowment, economic development level, and production mode. This paper considered the green
water consumption, carbon emissions in agricultural production, and the persistent role of fixed asset
investment, constructed an undesired dynamic SBM-DEA model, and evaluated the agricultural
eco-efficiency (AEE) of 31 provinces in China from 2007 to 2018, analyzing the spatiotemporal differ-
entiation. The results show that, during 2007–2018, the following can be concluded: (1) The AEE of
31 provinces in China showed the characteristics of an overall stable rise from 0.64 to 0.70 but uneven
development among regions from 2007 to 2018. (2) The averages of either the agricultural resource
consumption efficiency index or pollution emission efficiency index in 31 provinces slightly increased
over time, while the average value of the agricultural fixed asset investment efficiency index showed
a decline in volatility. The spatial discrepancy of any index mainly stems from the index disparity
between groups with a high AEE and groups with a low one, with contribution rates of more than
85%. (3) It is recommended to emphasize strengthening communication and cooperation between
provinces with high and low AEE and implement distinct regional strategies to improve AEE.

Keywords: agricultural eco-efficiency; spatiotemporal differentiation; factor efficiency index; undesired
dynamic SBM-DEA

1. Introduction

Agriculture affects the securities of food, resource, and ecology of a country. As a
largely agricultural country, China feeds more than 20% of the world’s population with 9%
of the world’s arable land. Until 2022, China’s total grain output remained above 650 million
tons for eight consecutive years. However, the issues of environmental pollution and
resource consumption have become increasingly prominent with the rapid development
of agriculture. The utilization rate of chemical fertilizers and pesticides is less than 1/3,
the recovery rate of agricultural film is lower than 2/3, the effective treatment rate of
livestock and poultry manure is lower than 1/2, and the disposal of rural sewage and
garbage is seriously insufficient in China [1]. Meanwhile, during the process of agricultural
production, the use of chemical fertilizers and pesticides, and the input of agricultural
machinery, straw-burning, and other activities generate a large number of greenhouse
gases. According to statistics, China’s total agricultural carbon emissions account for 20%
of the country’s total national carbon emissions, and this proportion is much higher than
the international average [2]. Therefore, improvements in agricultural production efficiency
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in the dual dimensions of economy and ecology are preconditions to ensuring long-term
security regarding food, resources, and ecology in China. It is also the only way to realize
green production and reach the goal of carbon peaking and neutrality in agriculture.

In 1990, Schalteggers and Sturm proposed the concept of eco-efficiency, which is the
coordinated relationship between the input and output of resources and the environment.
This indicates the degree of balance and unity regarding economic and environmental
benefits [3]. In 1998, the Organization for Economic Cooperation and Development defined
eco-efficiency as efficiency in the use of ecological resources to meet human needs [4].
Agricultural eco-efficiency (AEE) is the extension of eco-efficiency in the field of agriculture.
Lin et al. believe this efficiency is a decision-making factor when evaluating ecological
risks and depends not only on improvements in agricultural productivity but also on the
rational allocation and optimization of natural resources [5]. Compared with traditional
agricultural production efficiency, AEE takes ecological factors into account. When ana-
lyzing the relationship between the economic benefits of agricultural production and the
input of these factors, it emphasizes the restrictive role of resources and the environment.
Therefore, the essence of AEE is a comprehensive evaluation of ecology and the economy
in agricultural activities, with an emphasis on reasonably regulating the various forms of
input in agricultural production, minimizing resource consumption and the pollutants in
the production, and maximizing the satisfaction of human needs [6].

Improving AEE is an inevitable requirement for sustainable agricultural development
in China. Meanwhile, due to the continuous development and certain inter-regional differ-
ences regarding resource endowment, economic level, planting structure, and production
technology, the regional AEE in China has evolved over time and formed certain spatial
disparities. Measuring AEE and analyzing its spatiotemporal differentiation can provide a
basis for understanding the insufficient and unbalanced agricultural development in China
and provide localized suggestions to various regions according to AEE status and causes,
boosting the green transformation of production and lifestyle, realizing high-quality agri-
cultural development and modernization, promoting carbon peaking and carbon neutrality,
ensuring food security, and accelerating coordinated development among regions.

2. Literature Review

The main methods used to evaluate AEE in existing studies include ratio measurement,
sustainable value analysis, life cycle assessment (LCA), stochastic frontier analysis (SFA),
data envelopment analysis (DEA), etc. Polcyn used the ratio of economic to environmental
measures to assess the AEE of small- and medium-sized family farms in selected European
countries [7]. Moretti et al. combined the index scores of farms with farm assets, land, and
labor and brought them into the sustainable value assessment model to comprehensively
evaluate the agricultural ecosystem of Italian national parks [8]. Maia et al., Forleo et al.,
and Lwin et al. implemented LCA to evaluate the eco-efficiency of an irrigation perimeter
in Portugal, rapeseed cultivation in Italy, and sunflower planting in Japan [9–11]. Song and
Chen considered water footprint of the input factors of agricultural production and used the
SFA to measure China’s AEE [12]. Compared with other methods, DEA is a nonparametric
statistical estimation method that can be used to measure the relative efficiency of several
units with the same type of input and output. Furthermore, it has an absolute advantage in
dealing with multiple inputs, especially multi-output problems, which cannot be achieved
by the other methods mentioned above. This is the most commonly used method when
evaluating resource utilization efficiency. Urdiales et al. chose DEA to evaluate the AEE
of 50 dairy farms in the Spanish region of Asturias [13]. Heidenreich et al. assessed the
eco-efficiency of smallholder perennial cash crop production in Ghana and Kenya using
DEA [14]. Grassauer et al. measured the eco-efficiency of 44 dairy farms by integrating
LCA and DEA [15]. Richterová et al. evaluated the AEE in V4 regions through DEA-
Malmquist analysis [16]. Moutinho et al. adopted the DEA and generalized maximum
entropy approach to estimate the AEE in Europe [17]. Silva et al. combined the DEA
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methodology with double bootstrap and truncated regression (DEA-BTR) to estimate the
AEE in the municipalities of the Amazon biome [18].

The traditional radial DEA model, which measures the level of inefficiency, only uses
the equal-proportion reduction (increase) in all inputs (outputs) without considering the
slack improvement. The Slacks-Based Measure (SBM) model, to a certain extent, solves
the problem of slack variables in the traditional radial DEA model and is widely used
in AEE evaluations. For example, in the SBM-DEA model, Wang et al. measured the
spatiotemporal evolution of AEE in China [19], Hou et al. estimated the average AEE in
the eastern, central, western, and northeastern regions of China [20], and Chaloob et al.
and Zekri et al. calculated the economic and environmental efficiency of farmland in
agricultural areas in Iraq and grain-producing areas in Tunisia, respectively [21,22].

Research on the AEE using the DEA method always takes labor, land, irrigation water,
agricultural machinery, and other factors closely related to agricultural production as input
factors [23]. Some research also used natural factors, e.g., temperature and precipitation,
as the input. Liu et al. used precipitation, agricultural sowing area, agricultural effective
irrigation area, and other factors as input variables to analyze the characteristics of the
spatiotemporal differentiation of AEE in China in the last 40 years [24]. During the selection
of output indicators for AEE measurement, scholars adopted the total agricultural output
value or total grain output as the desirable output [25,26]. However, in the process of
agricultural production, there are also undesirable outputs that disfavor the environment,
such as wastewater, waste gas, dust, and other pollutants, which damage the agricultural
eco-environment and the human body. Some of the existing AEE studies took agricultural
carbon emissions, agricultural non-point source pollution, and other indicators into account.
For instance, in the calculation of regional AEE, Yang et al. considered agricultural carbon
emissions [27]. Afzalinejad et al. took the GHG emission into account in their assessment
of AEE in 62 countries [28]. Pishgar-Komleh et al. and Vlontzos et al. treated GHG
emissions as an undesirable output in their investigation of AEE in European Union
countries [29,30]. In addition to GHG emissions, Gołaś et al. considered surplus nitrogen
and phosphorus when estimating the eco-efficiency of Polish commercial farms [31]. Wu
et al. used agricultural non-point source pollution as the undesired output in the DEA
model to measure regional AEE [32]. Coluccia et al. considered the grey water footprint
and wastewater generated by agricultural ecosystems as undesirable outputs and also
considered the loss of water resources during production in their AEE analysis [33]. Rosano-
Peña embraced the forest areas and natural forests preserved in the desired product and
saw areas of degraded land as the undesirable outcome [34].

Based on the existing research, the contribution of this paper mainly focuses on the
indicator and model. Most of the previous research only used official statistics of blue water
consumption, i.e., agricultural irrigation water, in the quantification of agricultural water
input and ignored the carbon emissions generated during agricultural production. Few
studies considered the green water consumption in crop production, i.e., the total amount
of atmospheric water, precipitation, soil water, and other water absorbed by crops during
the growth period [11], or carbon emissions [27]. As far as we know, there has been no study
considering both to date. Precipitation is an important eco-resource, supporting rain-fed
agriculture, which occupies about 83% of the global cultivated area [35]. Agricultural carbon
emissions are significant components of carbon emissions [36]. By incorporating green
water consumption and carbon emissions in agricultural production into the evaluation
indices of AEE, this paper tries to improve the accuracy of AEE estimation and enhance
the practical value of the results. The SBM-DEA model used in the existing research on
AEE can only conduct a static efficiency analysis, ignoring the long-term effect of specific
variables on AEE. As fixed asset investment can be reused in agricultural production,
play a continuous role, and be conducive to the cultivation of the technology and talents
necessary for long-term agriculture, this paper takes agricultural fixed asset investment as
a carry-over variable to construct the dynamic SBM-DEA model of AEE evaluation. This
study tries to offer a reasonable model of AEE evaluation, and find some reliable basis for
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improvements in AEE, coordinated development among regions, and the enhancement
of food security in China. The aims include: (1) to establish a novel undesired dynamic
SBM-DEA model to evaluate the AEE, taking green water consumption, carbon emissions,
and the persistent role of fixed asset investment into consideration; (2) to evaluate the AEE
in China and reveal the production efficiency, incorporating both resource consumption
and environmental impact; and (3) to unearth the spatiotemporal differentiation of both
the AEE and its factor efficiency index, to recognize the provinces that urgently need to
improve the AEE as well as the targeted approach.

The rest of this paper is structured as follows: Section 3 establishes the methods and
data source; Section 4 shows the evaluation results and the spatiotemporal variation in both
the AEE and its factor efficiency indices; Section 5 discusses the results and their policy
implications; and, finally, conclusions are proposed in Section 6.

3. Methods and Data Sources
3.1. Undesirable Dynamic SBM-DEA Model

As mentioned above, the inputs of blue water, green water, labor, land, etc., and
the desirable and undesirable outputs are considered in the AEE evaluation in this study.
This requires a multi-input and multi-output model. Due to the DEA’s unique ability to
solve this kind of problem, we chose it as our method of evaluation. Traditional DEA
models usually assume that the role of input and output variables is limited to the current
period without considering the intertemporal role of carry-over variables. It can only
obtain the efficiency value of the decision-making unit within a certain year. Although
the efficiency of the decision-making unit in different years can be calculated separately,
the efficiency values are not comparable between years. Therefore, Fare and Grosskopf
proposed the dynamic DEA model, introduced the concept of “period”, considered the
possible intertemporal effect of variables, and used carry-over variables to connect the
current period’s input and output to the next period [37]. However, the model assumed
that the input and output factors changed in the same proportion and could only provide a
radial efficiency. Tone and Tsutsui combined the dynamic DEA with the non-radial SBM
model and expanded it into a dynamic SBM model that does not require input and output
elements to change on the same scale [38]. Considering the advantages of combining the
dynamic DEA with the non-radial SBM model mentioned above, we propose the undesired
dynamic SBM-DEA model of AEE evaluation. The framework is shown in Figure 1.
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Figure 1. Undesired dynamic SBM-DEA model framework.

Suppose there are n DMU (j = 1, · · · , n) and T time periods (t = 1, · · · , T). In each
period, each DMU has m inputs, s outputs, and one carry-over z. xijt refers to input i in
time period t for DEAj, ykjt is the output k in time period t for DEAj, and zjt represents the
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carry-over of t period to t + 1 period from DEAj. Wt indicates the weight of period t, and
the relative efficiency solution model of DEAo is as follows:

ρ0∗ = 1Tt = 1TWt1-1m + nbadi = 1mwi-sit-xiot + i
= 1nbadsitbadziotbad1Tt = 1TWt1 + 1s + ngoodi = 1swi + sit + yiot + i

= 1ngoodsitgoodziotgood
(1)

n

∑
j=1

zα
jtλ

t
j =

n

∑
j=1

zα
jtλ

t+1
j (∀i; t = 1, · · · , T − 1) (2)

xiot =
m

∑
i=1

xijtλ
t
i + s−it (i = 1, · · · , m; t = 1, · · · , T) (3)

ykot =
s1

∑
k=1

y+g
kjt λt

j − s+g
kt (k = 1, · · · , s; t = 1, · · · , T) (4)

ykot =
s2

∑
k=1

y−b
kjt λt

j + s−b
kt (k = 1, · · · , s; t = 1, · · · , T) (5)

zinput
rot =

n

∑
r=1

zinput
rjt λt

rj + sinput
rt (r = 1, · · · , ninput; t = 1, · · · , T) (6)

n

∑
j=1

λt
j = 1 (t = 1, · · · , T) (7)

T

∑
t=1

Wt = T,
T

∑
t=1

W−i = m,
s

∑
l=1

W−k = s (8)

λt
j ≥ 0, s−it ≥ 0, s+g

kt ≥ 0, s−b
kt ≥ 0 sinput

rt ≥ 0 (9)

θ∗o is the relative efficiency of DEAo, s−it , s+g
kt , s−b

kt , sinput
rt represent slack variables,

indicating input redundancy, insufficient output, and insufficient intertemporal activities,
respectively. λ is the weight vector, λt ∈ R (t = 1, · · · , T).

Based on the analysis results of the undesired dynamic SBM-DEA model, the factor
efficiency index in the calculation of AEE in China can be constructed as follows [39]:

Factor efficiency index =

(
projection value

actual value
− 1

)
× 100% (10)

This index can be used to measure the percentage of input and output indicators
or carry-over variables that need to be increased or decreased in production activities to
enhance efficiency, i.e., the distance between their actual value and the projected one. It can
provide a reference when improving production efficiency and avoiding factor redundancy.
A positive factor efficiency index means that input and output indicators, or carry-over
variables, need to be added to increase the AEE; a negative one indicates they should be
reduced; if the index is 0, they have reached the projection value. In this study, the factor
efficiency index includes the agricultural resource consumption efficiency index, pollution
emission efficiency index, and fixed asset investment efficiency index.

3.2. Model Variable Selection and Data Source

Based on the undesired dynamic SBM-DEA model, the selected input and output
indicators and data sources for the calculation of AEE in China are shown in Table 1. Due to
the availability of data, the research area in this study does not include Hong Kong, Macao,
and Taiwan.
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Table 1. Input and output indicators and data sources of agricultural eco-efficiency evaluation in
31 provinces of China.

Indicator Type Indicator Name Unit Data Sources

Input

Labor force input One thousand people China Rural Statistical Yearbook

Land input Hectares China Rural Statistical Yearbook

Blue water input One billion cubic meters

Regional Statistical Yearbook in
China; China Rural Statistical

Yearbook; and Irrigation
Experiment Station of Ministry of

Water Resources of China

Green water input One billion cubic meters

China Meteorological Data
Network; China Rural Statistical

Yearbook; and Irrigation
Experiment Station of Ministry of

Water Resources of China

Agricultural machinery input Ten thousand kilowatts China Rural Statistical Yearbook

Chemical fertilizer input Ten thousand tons China Rural Statistical Yearbook

Desirable output Total agricultural output value CNY 100 million China Rural Statistical Yearbook

Undesirable output

Agricultural carbon emissions Ten thousand tons

China Rural Statistical Yearbook;
College of Agronomy and

Biotechnology, China Agricultural
University; and Oak Ridge

National Laboratory

Agricultural nitrogen and
phosphorus loss Ton

Manual on Fertilizer Loss
Coefficient of Agricultural
Pollution Sources in China;

Resources and Environment
Science and Data Center of

Chinese Academy of Sciences;
and Technical Regulations for

General Survey of Agricultural
Sources in China

Carry-over variable Agricultural fixed asset
investment CNY 100 million China Rural Statistical Yearbook

3.2.1. Input Indicators

As an important factor leading agricultural activities in the production process, agri-
cultural labor force input was represented by multiplying the ratio of the total agricultural
output value to the total output value of the primary industry by the employees of the
primary industry [40] due to the lack of specific statistical data. The total sowing area of
crops was selected to indicate the land input in agriculture. The total power of agricultural
machinery was chosen to reflect the use of agricultural machinery input. The amount
of chemical fertilizer input in agricultural production was denoted by the net amount of
agricultural chemical fertilizer application.

To reflect the actual water consumption of agricultural production, the water input in
this study comprised not only blue water consumption of irrigation water but also green
water consumption of farmland, absorbing effective precipitation. Based on the calculation
methods of regional green and blue water demand obtained from Cao et al. [41], Shu
et al. [42], and Ding et al. [43], this study selected 17 crops, including wheat, sugarcane,
rice, beans, peanuts, corn, potato, canola, other oils, other grains, jute, tea, sugar beet, flax,
cotton, tobacco leaves, and fruits, and estimated the green and blue water requirements
at each station with the CROPWAT software [44]. The evapotranspiration, the effective
precipitation, and irrigation water during the production of any kind of crop at all stations
in a region were averaged by the number of stations to obtain the amount of evapotran-
spiration (ETC), water from effective precipitation (ETgreen), and irrigation water (ETblue)
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in this crop. Then, the water demand per ton was obtained for each crop in this region
according to Formulas (11)–(15).

CWR =
10ETC

ya
(11)

CWRg =
10ETgreen

ya
(12)

CWRb =
10ETblue

ya
(13)

Qgw =
n

∑
i=1

yi × CWRg,i(i = 1, 2, 3, · · · 17) (14)

Qbw =
n

∑
i=1

yi × CWRb,i(i = 1, 2, 3, · · · 17) (15)

CWR, CWRg, CWRb, ya in the formula refer to the water demand per ton of crops
(m3/t), green water demand per ton (m3/t), blue water demand per ton (m3/t), and yield
per unit area (t/hm2), respectively. yi is the annual yield of crops in region i, and CWRg,i

and CWRb,i indicate the green and blue water demand per ton of crops in region i (m3/t),
respectively. Qgw and Qbw represent the green and blue water input in crop production in
the research area (m3).

3.2.2. Output Indicators

The total agricultural output value was converted into a comparable price in 2000
according to its reduction index. The carbon emission in this study was calculated using
the carbon emission model and coefficient studied by Li, Oak Ridge National Laboratory,
etc. [45–47]. The carbon emission coefficients of various carbon sources were 0.90 for
chemical fertilizer (kg CE/kg), 4.93 for pesticide (kg CE/kg), 5.18 for agricultural film
(kg CE/kg), 0.60 for diesel (kg CE/kg), 3.10 for rice sowing (kg CE/hm2), 139.58 for
soybean sowing (kg CE/hm2), 458.98 for corn sowing (kg CE/hm2), 20.48 for irrigation
power consumption (kg CE/hm2), and 312.60 for tillage loss (kg CE/km2).

The estimation steps in agricultural nitrogen and phosphorus loss are as follows.
Firstly, according to the regional division recorded in the “First National Survey of Pollu-
tion Sources: handbook of fertilizer loss coefficient of agricultural pollution sources”, by
the Office of the Leading Group for the First National Survey of Pollution Sources of the
State Council of China, combined with the statistics of farmland zoning by the “Resource
and Environmental Science Data Center of Chinese Academy of Science” and “Technical
Provisions for the Second National Census of Agricultural Pollution Sources” by the Chi-
nese government, the cultivated land of 31 provinces in China is classified by “Monitoring
type -zoning-terrain-terrace/non terrace-planting direction-land use mode-planting mode”.
Then, taking the ratio of various types of cultivated land area to total agricultural cultivated
land area in the province as the weight, the weighted average of the various nitrogen and
phosphorus loss coefficients in the “handbook of fertilizer loss coefficient of agricultural
pollution sources” from the Office of the Leading Group for the First National Survey of
Pollution Sources of the State Council is calculated as the provincial average nitrogen and
phosphorus loss coefficients. Finally, the total agricultural nitrogen and phosphorus loss is
estimated according to the product of the average nitrogen and phosphorus loss coefficients
and the net amount of local chemical fertilizer application.

3.2.3. Carry-Over Variable

Agricultural fixed asset investment can play a continuous role in agricultural produc-
tion and is conducive to generating the technologies and talents required for follow-up
development. It has a long-term effect on the transformation and upgrading of agriculture.
Since China has not yet published statistical data for agricultural fixed asset investment and



Sustainability 2023, 15, 3361 8 of 26

because some rural fixed assets, such as houses, railways, roads, and water conservancy
projects, are often used in primary industry at the same time, it is difficult to distinguish the
specific assets that are used in agriculture. Therefore, the agricultural fixed asset investment
index data in this paper are substituted with the fixed asset investments of the primary
industry at the constant price in 2000.

4. Result Analysis

According to the undesired dynamic SBM-DEA model and data availability, this study
used the Max DEA-solver software to calculate the AEE of 31 provinces in China from
2007 to 2018, as well as their agricultural resource-saving potential, agricultural pollution
reduction space, and the accumulation effect of carry-over variables, as determined by
each slack variable. It also analyzed the spatiotemporal discrepancy of both AEE and the
efficiency indices of resource consumption, pollution emission, and fixed asset investment.
The study period does not include the years after 2019, mainly to exclude the impact of the
COVID-19 epidemic on the labor force, land, machinery, chemical fertilizer, and fixed asset
investment in terms of agricultural production. The lack of yield data for other grains and
flax in each province in 2019 would not only impact the estimation accuracy for green and
blue water input but also affect the consistency of the statistical caliber in the evaluation
model. Therefore, 2018 was the end of this study period.

4.1. Spatiotemporal Differentiation Pattern of Agricultural Eco-Efficiency

According to the estimation results of the model, the average overall AEE value
in 31 provinces of China from 2007 to 2018 was 0.66, and the national average value
fluctuated from 0.64 in 2007 to 0.70 in 2018, with an average annual increase of 1%. In the
transformation of China’s agricultural green production, the utilization level of agricultural
production factors continues to elevate. The AEE in Shanxi, Shandong, Heilongjiang,
and Tianjin showed a continuous upward trend over 12 years, and the corresponding
growth rate in Shanxi was the largest, followed by that in Shandong. This was attributed to
agricultural production structure adjustments and improvements in agricultural production
technology in these areas. The efficiency in Jilin, Xinjiang, Gansu, and Ningxia fluctuated
with a short-term decline but an overall increase. AEE in Jiangsu, Liaoning, Guizhou, and
Hunan showed a downward trend. The AEE of Jiangsu violently altered, fluctuating to
some degree in 2010, 2011, 2013, 2014, and 2018, and remaining at 1 in every other year,
with the AEE in 2018 measured as 0.60, the lowest of the 12 years. The efficiency in Hunan
continued to decrease, from 0.65 in 2007 to 0.53 in 2018, with an annual decline of 1.77%.
The efficiency in Guizhou rose to 1 in 2008 and fell in the following years, while that in
Yunnan, Sichuan, Hebei, Henan, and Inner Mongolia first declined and then rose after 2015.
Jiangxi, Chongqing, and Anhui showed slightly fluctuating efficiencies, which remained
stable overall. All the AEE values in other provinces remained at 1.

The calculation results for the average AEE in 31 provinces in China from 2007 to
2018 are shown in Figure 2, with the value at four time points being presented in Figure 3.
Ranking AEE from high to low, all the provinces can be divided into four groups. Group
1 includes Beijing, Shanghai, Hainan, Qinghai, Shaanxi, Guangdong, Fujian, Tibet, and
Zhejiang, whose AEE remained at 1. Jiangsu, Jilin, Heilongjiang, and Gansu form group
2, where the efficiency ranged between 0.72 and 0.87. Group 3 refers to Shanxi, Liaoning,
Tianjin, and Xinjiang, with an efficiency between 0.58 and 0.68. Group 4 includes the
remaining 14 provinces, whose average annual AEE ranged from 0.33 to 0.49. Therefore,
provinces with a high AEE were found to be concentrated in the eastern coastal areas,
Jilin and Heilongjiang in the central areas, and several western provinces such as Qinghai,
Shaanxi, Tibet, and Gansu. Beijing, Fujian, some other eastern coastal provinces, as well
as Qinghai, Shaanxi, and Tibet in the west, presented continuously high levels of AEE
during 2007–2018. The provinces with a low AEE were located in central and western
China (according to the regional division by the National Bureau of Statistics of China,
eastern China consists of Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang,
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Fujian, Shandong, Guangdong, and Hainan; the central region includes Shanxi, Jilin,
Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan; and the western region comprises
Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu,
Qinghai, Ningxia, and Xinjiang).
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According to the division of the 4 groups of provinces shown above, the Dagum–Gini
coefficient decomposition of AEE from 2007 to 2018 was carried out (Figure 4). The overall
spatial difference regarding AEE increased from 2007 to 2015. In 2016, it sharply dropped
below the level of 2007 and then fluctuated at this level. The overall spatial discrepancy
was mainly derived from inter-group variations, with an annual average contribution rate
of 91.10%. The gap between groups 1 and 4 remained large during 2007–2018, and the Gini
coefficient between them was always higher than that between any other two groups. The
inter-group gap was mainly noted between groups 1 and 3 before 2012, and after 2013,
the difference between groups 2 and 4 became one of the main contributing factors to
the overall spatial difference. Therefore, when promoting AEE and its overall synergy in
China, it is necessary to strengthen the exchanges and cooperation between regions with
high and low efficiency, especially collaborations between the groups with the lowest and
highest AEE.
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Figure 4. Dagum–Gini coefficient decomposition of AEE from 2007 to 2018. The meaning of abbrevia-
tions in the figure is listed as follows. G_T—the total Gini coefficient; G_W—the contribution of intra
group difference; G_sub(1), G_sub(2), G_sub(3), and G_sub(4)—the Gini coefficient within groups
1, 2, 3, and 4, respectively; G_nb—the contribution of inter group difference; G_jh_1_2, G_jh_1_3,
G_jh_1_4, G_jh_2_3, G_jh_2_4, and G_jh_3_4—the Gini coefficient between groups 1 and 2, groups 1
and 3, groups 1 and 4, groups 2 and 3, groups 2 and 4, and groups 3 and 4, respectively; and G_t—the
contribution of supervariable density.

4.2. Temporal Evolution of Factor Efficiency Index

The factor efficiency indices were calculated in this study; then the causes and space
for improvements in AEE were analyzed. According to the estimation results, the efficiency
indices of agricultural resource consumption, pollution emission, and fixed asset investment
in China are shown in Figure 5.

From 2007 to 2018, the three-factor efficiency indices in 31 provinces were mostly
negative, and some were 0, indicating that there was a certain degree of redundancy in the
input and output elements as well as in the carry-over variables. The average value of the
agricultural resource consumption efficiency index was −0.33, in which the mean efficiency
indices of land and blue water input were lower than those of other factors. The average
agricultural pollution emission efficiency index was −0.25, where the average efficiency
index of agricultural carbon emissions was lower than that for agricultural nitrogen and
phosphorus loss. The mean value of the agricultural fixed asset investment efficiency index
was −0.36. Therefore, in the three factor efficiency indices, the actual value of agricultural
pollution emissions in China was closest to the projection value, and agricultural fixed
asset investment showed the most room for improvement.
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The temporal trends in the factor efficiency indices in China are shown in Figure 6.
The annual average efficiency indices of agricultural resource consumption and pollution
emission in 31 provinces rose, whereas the instability of the agricultural fixed asset invest-
ment efficiency index was more obvious, showing an overall downward trend. The average
annual value of the agricultural resource consumption efficiency index in 31 provinces in
2018 was −0.30, increasing by 1% from 2007. The average emission reduction space of
31 provinces showed a slow downward trend from 2007 to 2018, which reflected the good
results achieved regarding reductions in China’s agricultural production emissions. All the
factor efficiency indices of agricultural carbon emissions and chemical fertilizer nitrogen
and phosphorus loss decreased. The annual mean value of the agricultural fixed asset
investment efficiency index in 31 provinces fluctuated, ranging from −0.45 to −0.33 in the
last 12 years.

The trend of the agricultural resource consumption efficiency index in half of the
31 provinces from 2007 to 2018 was relatively stable. Provinces with a wavy increase in this
index included Shanxi, Inner Mongolia, Shandong, Gansu, Heilongjiang, Xinjiang, and Jilin.
In Shanxi, Gansu, and Heilongjiang, this index rapidly increased, reaching −0.69, −0.57,
and −0.51, respectively, in 2007. Tianjin’s agricultural resource consumption efficiency
index rose steadily in the past 12 years, from−0.47 in 2007 to−0.20 in 2018, with an average
annual increase of 6.8%. This index declined in Jiangsu, Guizhou, Liaoning, Hunan, Hubei,
Sichuan, Guangxi, Yunnan, Chongqing, Hebei, Henan, and Anhui. The fluctuations seen in
Jiangsu were the most obvious, with the index plunging in 2011, 2014, and 2018, reaching a
minimum of −0.40 in 2018, which is consistent with the severe fluctuations of AEE. The
agricultural resource consumption efficiency index in Hunan and Hubei showed a steady
decline, with the former showing a more stable decline, from −0.48 in 2007 to −0.59 in
2018, with an annual average decline of 1.9%.
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Figure 6. Trends in China’s efficiency index of agricultural resource consumption, pollution emissions,
and fixed asset investment from 2007 to 2018.

The agricultural pollution emission efficiency index in Shanxi, Tianjin, Heilongjiang,
Shandong, Jilin, Gansu, and Xinjiang surged, with fluctuations from 2007 to 2018. The index
in Tianjin showed the largest growth; it was lower than −0.40 in 2007 and, after two short
declines, achieved a maximum of 0 in 2018. In Jiangsu, Guizhou, Hunan, Liaoning, Yunnan,
Guangxi, Henan, Chongqing, Ningxia, Hubei, and Sichuan, the agricultural pollution
emission efficiency index showed a wavelike decrease. In other provinces, this index was
stable, with no obvious change.

In most provinces, the agricultural fixed asset investment efficiency index showed a
fluctuating downward trend and finally stabilized in the range from −0.92 to −0.77. In
Liaoning, Xinjiang, Heilongjiang, Shanxi, Jilin, and Shandong, this efficiency index declined
to a certain extent in the early stage and finally showed an increasing trend. In Xinjiang,
Heilongjiang, Shanxi, and Jilin, the index eventually increased to the maximum value of
0; in Liaoning, the index increased from −0.55 in 2007 to −0.23 in 2018, and in Shandong,
it rose from −0.36 in 2007 to −0.1 in 2018, with an annual average increase of 0.46% and
0.52%, respectively.

4.3. Spatial Differentiation of Agricultural Resource Consumption Efficiency Index

The standard deviation of the agricultural resource consumption efficiency index of
31 provinces in China showed an increasing annual trend, from 0.29 in 2007 to 0.31 in
2018, indicating an expanding spatial difference (Table 2). According to the division of
the four groups of provinces by the AEE value shown above, the Dagum–Gini coefficient
decomposition of the agricultural resource consumption efficiency index from 2007 to 2018
was created. The results show that the spatial difference in the agricultural resource con-
sumption efficiency index mostly stems from the inter-group disparity, with a contribution
rate of up to 93.86%. The Gini coefficient between group 1, with an AEE of 1, and other
groups is far higher than that of any other two groups. Therefore, an effective way to
reduce the degree of spatial non-equilibrium in the utilization of agricultural resources
would be to strengthen the sharing of agricultural technology and management between
provinces in group 1 and others.
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Table 2. Average agricultural resource consumption efficiency index from 2007 to 2018 in China.

Rank Provinces

Agricultural
Resource

Consumption
Efficiency

Index

Labor
Input

Efficiency
Index

Land Input
Efficiency

Index

Blue Water
Input

Efficiency
Index

Green Water
Input

Efficiency
Index

Fertilizer
Input

Efficiency
Index

Agricultural
Machinery

Input
Efficiency

Index

1 Beijing 0 0 0 0 0 0 0

2 Fujian 0 0 0 0 0 0 0

3 Guangdong 0 0 0 0 0 0 0

4 Hainan 0 0 0 0 0 0 0

5 Qinghai 0 0 0 0 0 0 0

6 Shaanxi 0 0 0 0 0 0 0

7 Shanghai 0 0 0 0 0 0 0

8 Tibet 0 0 0 0 0 0 0

9 Zhejiang 0 0 0 0 0 0 0

10 Xinjiang −0.03 0 0 0 0 0 −0.18

11 Jiangsu −0.13 −0.01 −0.15 −0.28 −0.07 −0.10 −0.17

12 Jilin −0.21 −0.12 −0.33 −0.13 −0.24 −0.24 −0.18

13 Heilongjiang −0.25 −0.19 −0.40 −0.26 −0.23 −0.25 −0.18

14 Gansu −0.28 −0.39 −0.38 −0.44 −0.13 −0.13 −0.23

15 Shanxi −0.32 −0.40 −0.39 −0.18 −0.27 −0.33 −0.37

16 Liaoning −0.39 −0.11 −0.48 −0.72 −0.41 −0.14 −0.48

17 Tianjin −0.40 −0.17 −0.36 −0.77 −0.18 −0.31 −0.62

18 Guizhou −0.51 −0.73 −0.71 −0.35 −0.40 −0.26 −0.59

19 Jiangxi −0.52 −0.53 −0.71 −0.48 −0.42 −0.33 −0.66

20 Chongqing −0.53 −0.66 −0.68 −0.59 −0.46 −0.32 −0.46

21 Hunan −0.54 −0.66 −0.68 −0.48 −0.39 −0.35 −0.70

22 Shandong −0.54 −0.40 −0.49 −0.78 −0.53 −0.37 −0.65

23 Sichuan −0.58 −0.68 −0.70 −0.73 −0.52 −0.31 −0.54

24 Yunnan −0.58 −0.72 −0.70 −0.62 −0.44 −0.41 −0.57

25 Hebei −0.59 −0.49 −0.56 −0.88 −0.52 −0.32 −0.77

26 Guangxi −0.60 −0.70 −0.66 −0.44 −0.68 −0.51 −0.62

27 Henan −0.60 −0.58 −0.6 −0.77 −0.47 −0.50 −0.68

28 Inner
Mongolia −0.61 −0.48 −0.81 −0.69 −0.42 −0.64 −0.64

29 Hubei −0.61 −0.58 −0.69 −0.7 −0.60 −0.57 −0.53

30 Anhui −0.67 −0.62 −0.71 −0.77 −0.60 −0.54 −0.75

31 Ningxia −0.67 −0.57 −0.78 −0.90 −0.39 −0.59 −0.78

Average −0.33 −0.32 −0.39 −0.39 −0.27 −0.24 −0.37

The annual average value of the provincial agricultural resource consumption effi-
ciency index in Beijing, Fujian, Guangdong, Hainan, Qinghai, Shaanxi, Shanghai, Tibet,
and Zhejiang was 0, which was consistent with their high AEE. Provinces with a low
agricultural resource consumption efficiency index were Ningxia, Anhui, Inner Mongolia,
Hubei, Henan, and Guangxi, with a value lower than −0.60. Ningxia had the largest room
for improvement in the efficiency of irrigation blue water input, where the blue water
input efficiency index was −0.90, while the efficiency indices of land and machinery input
were both −0.78. Anhui’s agricultural resources that must urgently be saved are similar
to those in Ningxia. The efficiency indices of land, blue water, and machinery input in
Anhui were lower than −0.7. Meanwhile, the blue water input in Hebei and Henan was
also far higher than the target amount, with low utilization efficiency in farmland irrigation.
The land input efficiency index in Inner Mongolia was −0.81, the lowest of all the kinds
of agricultural resource consumption efficiency indices. The labor input efficiency index
in Guangxi was lower than −0.70, which was the main contributor to its low agricultural
resource consumption efficiency index.
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4.4. Spatial Differentiation of Agricultural Pollution Emission Efficiency Index

The standard deviation of the agricultural pollution emission efficiency index of
31 provinces in China during 2007–2018 was relatively stable, fluctuating slightly at 0.25
with a steady spatial difference (Table 3). When groups were divided according to the AEE
value given above, the Dagum–Gini coefficient decomposition of the agricultural pollution
emission efficiency index was also calculated. A total of 87.40% of the spatial difference
in this index was derived from inter-group disparity, especially the variation between the
group with an AEE of 1 and other groups. This is similar to the results for the composition
of spatial imbalances in the agricultural resource consumption efficiency index.

Table 3. Average agricultural pollution emission efficiency index in China from 2007 to 2018.

Rank Provinces

Agricultural
Pollution
Emission
Efficiency

Index

Carbon
Emission
Efficiency

Index

Nitrogen
and Phos-
phorous

Loss
Efficiency

Index

Rank Provinces

Agricultural
Pollution
Emission
Efficiency

Index

Carbon
Emission
Efficiency

Index

Nitrogen
and Phos-
phorous

Loss
Efficiency

Index

1 Beijing 0 0 0 17 Tianjin −0.29 −0.35 −0.23

2 Fujian 0 0 0 18 Hebei −0.30 −0.47 −0.12

3 Guangdong 0 0 0 19 Liaoning −0.37 −0.42 −0.31

4 Hainan 0 0 0 20 Henan −0.37 −0.44 −0.29

5 Qinghai 0 0 0 21 Guizhou −0.38 −0.47 −0.28

6 Shaanxi 0 0 0 22 Inner
Mongolia −0.38 −0.72 −0.03

7 Shanghai 0 0 0 23 Hunan −0.41 −0.42 −0.39

8 Xizang 0 0 0 24 Chongqing −0.47 −0.42 −0.51

9 Zhejiang 0 0 0 25 Guangxi −0.47 −0.47 −0.47

10 Xinjiang 0 0 0 26 Sichuan −0.48 −0.44 −0.52

11 Jiangsu −0.10 −0.05 −0.14 27 Yunnan −0.48 −0.52 −0.44

12 Jilin −0.15 −0.30 0 28 Jiangxi −0.52 −0.46 −0.57

13 Gansu −0.16 −0.30 −0.01 29 Ningxia −0.53 −0.65 −0.40

14 Heilongjiang −0.18 −0.35 0 30 Anhui −0.59 −0.55 −0.62

15 Shanxi −0.19 −0.34 −0.03 31 Hubei −0.62 −0.54 −0.69

16 Shandong −0.24 −0.42 −0.06 Average −0.25 −0.29 −0.20

The annual average value of the agricultural pollution emission efficiency index in
Xinjiang, Beijing, Fujian, Guangdong, Hainan, Qinghai, Shaanxi, Shanghai, Tibet, and
Zhejiang was 0, coinciding with their high AEE. The reduction space for agricultural
pollution emissions in Jiangsu, Jilin, Gansu, and Heilongjiang was between 10% and 20%.
The nitrogen and phosphorous loss efficiency index in Jilin and Heilongjiang was 0, and
that in Gansu was also close to 0, but the carbon emission reduction space of the 3 provinces
was as high as 30% or more. The lowest agricultural pollution emission efficiency index
was seen in Hubei, Anhui, Ningxia, and Jiangxi, at below −0.50. The reduction space
for nitrogen and phosphorus loss in these four provinces was about twice as much as the
national level. The reduction potential for carbon emissions in Ningxia was also twice as
high as the national average, and that space in Hubei was 3.45 times the national level.

4.5. Spatial Differentiation of Agricultural Fixed Asset Investment Efficiency Index

The standard deviation of the agricultural fixed asset investment efficiency index of
31 provinces in China increased from 0.22 in 2007 to 0.42 in 2018, and the dispersion of
the data increased each year, showing an obvious expansion trend of spatial divergence.
Consistent with the analysis of spatial differentiation in the other two efficiency indices, the
Dagum–Gini coefficient decomposition of the agricultural fixed asset investment efficiency
index from 2007 to 2018 shows that inter-group differences are the most important source
of the overall spatial non-equilibrium in the agricultural resource consumption efficiency
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index, with a contribution rate of 87.21%. The Gini coefficient between the high-AEE group
and other groups is the highest between any two groups.

Comparing the annual average value of the agricultural fixed asset investment ef-
ficiency index in each province in Table 4, provinces with an index value of 0 included
Beijing, Fujian, Guangdong, Hainan, Qinghai, Shaanxi, Shanghai, Tibet, Zhejiang, and
Xinjiang, which was consistent with their high AEE. In Jiangsu, Gansu, Heilongjiang, Jilin,
Shaanxi, and Shandong, the room for improvement was within 25%, demonstrating that
the fixed assets were well utilized there. In contrast, the agricultural fixed assets invest-
ment efficiency index in 10 provinces, such as Ningxia, Chongqing, Hebei, Jiangxi, Tianjin,
Sichuan, Yunnan, Guangxi, Hubei, and Henan, was the lowest, and their corresponding
redundancy exceeded 70%; the redundancy in Ningxia and Chongqing was more than 80%.
This redundant index indicated that the matching degree between fixed asset investment
and other agricultural production factors could be improved.

Table 4. Average of China’s agricultural fixed assets investment efficiency index from 2007 to 2018.

Rank Provinces

Agricultural
Fixed Asset
Investment

Efficiency Index

Rank Provinces

Agricultural
Fixed Asset
Investment

Efficiency Index

1 Beijing 0 17 Guizhou −0.42

2 Fujian 0 18 Inner Mongolia −0.56

3 Guangdong 0 19 Liaoning −0.67

4 Hainan 0 20 Hunan −0.67

5 Qinghai 0 21 Anhui −0.68

6 Shanxi 0 22 Henan −0.71

7 Shanghai 0 23 Hubei −0.71

8 Tibet 0 24 Sichuan −0.73

9 Zhejiang 0 25 Yunnan −0.73

10 Xinjiang 0 26 Guangxi −0.73

11 Jiangsu −0.02 27 Tianjin −0.74

12 Gansu −0.06 28 Jiangxi −0.74

13 Heilongjiang −0.13 29 Hebei −0.77

14 Jilin −0.16 30 Chongqing −0.81

15 Shanxi −0.17 31 Ningxia −0.82

16 Shandong −0.24 Average −0.36

A cluster analysis of the annual average factor efficiency indices by provinces was
undertaken, the Euclidean distance was calculated, and classification was carried out
according to the average distance. The results are shown in Table 5. Provinces such as
Beijing, Fujian, and Guangdong in cluster 1 had high results for each index, while each
index in Jilin, Heilongjiang, Gansu, and Shanxi in cluster 2 was moderately high. The
efficiency indices of agricultural resource consumption and pollution emission in Liaoning
and Tianjin in cluster 3, and the efficiency indices for agricultural pollution emission and
fixed asset investment in Guizhou and Shandong in cluster 4 were moderately low, and all
the other indices in the 2 clusters were low. All 3 indices in provinces in cluster 5 were low,
consistent with the results of the spatial differentiation analysis shown above.
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Table 5. Cluster analysis of the annual average factor efficiency indices by province in China from
2007 to 2018.

Cluster Province
Agricultural Resource

Consumption Efficiency
Index

Agricultural Pollution
Emission Efficiency Index

Agricultural Fixed Asset
Investment Efficiency Index

1
Beijing, Fujian, Guangdong, Hainan,
Qinghai, Shaanxi, Shanghai, Tibet,

Zhejiang, Jiangsu, and Xinjiang
High High High

2 Jilin, Heilongjiang, Gansu,
and Shanxi Moderately high Moderately high Moderately high

3 Liaoning and Tianjin Moderately low Moderately low Low

4 Guizhou and Shandong Low Moderately low Moderately low

5

Jiangxi, Chongqing, Hunan, Sichuan,
Yunnan, Hebei, Guangxi, Henan,
Inner Mongolia, Hubei, Anhui,

and Ningxia

Low Low Low

5. Discussion
5.1. Discussion of the Correlation between Input and Output Indicators

The trends in the annual average AEE input and output indicators in China are
depicted in Figure 7.
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Figure 7. Trends in the annual average input and output indicators of the agricultural eco-efficiency
in China from 2007 to 2018. The left ordinate axis in the figure represents the data on the total
agricultural output value, total carbon emissions, and agricultural fixed asset investment.

Over 12 years, the agricultural fixed asset investment and the total agricultural output
value showed an obvious upward trend, and carbon emissions remained stable. However,
the loss of nitrogen and phosphorus due to the application of fertilizers declined. A series
of agricultural non-point source pollution-control actions achieved some good effects, such
as “the activity of China’s agricultural non-point source pollution prevention and control”,
“National Agricultural Sustainable Development Plan (2015–2030)”, and the “Zero Growth
Programme of Action for Fertilizer Use by 2020”.

Table 6 shows the correlation coefficient between input and output indicators in the
AEE evaluation in China.
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Table 6. Correlation coefficient table of input and output indices in the AEE evaluation in China
from 2007 to 2018. In the table, the two numbers in the brackets are the correlation coefficients
between the agricultural fixed asset investment and the output indicators with a lag of one year and
two years, respectively.

Labor Force
Input Land Input Blue Water

Input
Green Water

Input

Agricultural
Machinery

Input

Chemical
Fertilizer Input

Agricultural
Fixed Asset
Investment

Total agricultural
output value 0.43 0.82 0.50 0.92 0.86 0.92 0.77

(0.81, 0.79)

Agricultural
carbon emissions 0.44 0.96 0.56 0.92 0.91 0.93 0.87

(0.91, 0.91)

Agricultural
nitrogen and

phosphorus loss
0.39 0.72 0.25 0.76 0.66 0.83 0.54

(0.52, 0.51)

The green water input is closely correlated with either the total agricultural output
value or the agricultural carbon emissions, with the two correlation coefficients reaching as
high as 0.92. It is also highly and positively correlated with losses in agricultural nitrogen
and phosphorus, where the correlation coefficient was 0.76. All these correlation coefficients
are much higher than the ones between blue water input and these three output indicators.
This is consistent with the dependence of crop growth on green water and verifies that the
use of green water cannot be ignored in the calculation of AEE. The correlation coefficients
between chemical fertilizer input and these three output indicators were all above 0.8.
The correlation coefficient between chemical fertilizer input and either total agricultural
output value or carbon emissions was almost 0.92, respectively. These reflect not only the
effect of fertilizer input on improvements in agricultural output value in China but also
the important role of fertilizer application in agricultural carbon emissions. Among all the
input indicators, the agricultural labor force input showed the weakest correlation with the
three output indicators, with correlation coefficients below 0.5. It can be inferred that, with
the continuous rise in labor costs, the degree of mechanization of agricultural production
in China accelerated and the relationship between labor force input and agricultural output
gradually declined. Finally, the correlation coefficients between the agricultural fixed asset
investment and the three output indicators are relatively high. There is still a certain
correlation between the agricultural fixed asset investment in the current year and the
output indicators in the subsequent years. This also proves the opinion of this study:
agricultural fixed asset investment has a continuous effect on agriculture production, and
it is rational to set this as a carryover variable.

5.2. Discussion of the Agricultural Eco-Efficiency

As the calculation results show, the annual average value of AEE in China increased
from 2007 to 2018. This is consistent with the results of Yang et al. [27], Wu et al. [48], and
Cheng et al. [49]. It can be proved that national strategies such as new rural construction,
rural revitalization, ecological civilization construction, and green development in China
have made certain progress toward promoting the sustainable development of the agri-
cultural economy. Continuing and strengthening this trend would be significant for food
security in China, which faces the challenges of a large population, increased demand, and
tight constraints on resources and the environment. It is also consistent with the point that
national policy incentives have become indicators of the Chinese AEE’s evolution [50].

Moreover, the AEE value in this study is smaller than the results of Yang et al. [27],
Wu et al. [48], and Cheng et al. [49]. The average AEE of China in 2018 was 0.78 in the work
of Yang et al. [27] and higher than 0.9 in the work of Wu et al. [48], while it was 0.7 in this
study. This is primarily because this study additionally considers both the green water
input and agricultural nitrogen and phosphorus loss, and the increase in both input and
undesirable output directly diminished the level of AEE. Meanwhile, the persistent role of
fixed asset investment in agriculture production was integrated into the AEE evaluation
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method in this study, whereas it was not in the previous research. The results of this
study show that the value of the agricultural fixed asset investment efficiency index is
smaller than that of either the resource consumption efficiency index or pollution emission
efficiency index. This low fixed asset investment efficiency index also makes the AEE lower
than the AEE obtained without considering this index.

Yang et al. concluded that the growth rate of AEE in major grain-producing areas
is lower than that in other regions of China, which coincides with the results of this
study [27]. This is closely relevant to the decrease in the agricultural resource consumption
efficiency index in Jiangsu, Guizhou, Liaoning, Hebei, Hunan, and Hubei; the decline
that occurs with fluctuations in the agricultural pollution emission efficiency index in
Yunnan, Guizhou, and Jiangsu; and the decreasing volatility of the agricultural fixed asset
investment efficiency index in the major grain-producing areas except for Heilongjiang,
Jilin, Liaoning, and Shandong. This shows the urgency of further improving resource
utilization efficiency and controlling non-point source pollution and carbon emissions in
major grain-producing areas.

In the analysis of spatial differences, we found that the inter-provincial gap in AEE
gradually widened from 2007 to 2015 and decreased after 2016. These results are consistent
with those of Cheng et al. [49], demonstrating the remarkable achievement of ecological
civilization construction in China.

This study shows that the AEE of some provinces in central and western China, which
remained low throughout the declining trend in the study period, is also consistent with
the results of Cheng et al. [49]. The studies of Wu et al. [48], Cheng et al. [49], and Chen
et al. [51] showed that, in the eastern, central, and western regions of China, the eastern
region showed the highest AEE and the central region showed the lowest, consistent with
the results of this study. Beijing, Shanghai, Hainan, and some other provinces presented a
higher AEE related to the more widespread utilization of agricultural fixed asset invest-
ments and lower agricultural pollution emissions. This coincides with their high priority
for the protection of the agricultural ecological environment. Provinces such as Zhejiang
and Jiangsu have actively developed modern and intensive ecological agriculture and
accumulated certain technology and experience regarding reductions in agricultural carbon
emissions and nonpoint source pollution treatment. Accordingly, their AEE level was at
the forefront of the country. Guangdong, Fujian, and Tianjin are pioneering areas of social
and economic development in China. They have a good foundation of capital and technol-
ogy in the development of eco-agriculture and have scale advantages in the agricultural
labor force, machinery investment, and chemical fertilizer applications. Liaoning, one of
the major grain-producing areas in China, has excellent agricultural conditions, such as
land and climate. These can vigorously reform agricultural science and technology and
have advantages regarding human reserves and mechanical transformation. Accordingly,
the level of agricultural output was high, leading to a high AEE value. Tibet, Qinghai,
Shaanxi, Gansu, Xinjiang, and other northwest provinces maintained a high AEE mainly
due to their relatively higher utilization efficiency of land, water, and other resources and
lower agricultural pollution emissions. Among the 31 provinces, the efficiency indices of
agricultural resource consumption, pollution emissions, and fixed asset investment in some
provinces of the central region, such as Inner Mongolia, Hubei, Anhui, and Ningxia, were
in the backward position, resulting in their having a low AEE.

The analysis of spatial difference patterns in AEE can directly show the efficiency
level of each province and help distinguish the urgency of efficiency improvements in
different regions. However, a spatial variation analysis only shows the results of regional
comparisons, which need to be combined with the in-depth development conditions, the
current situation, and the characteristics of the region to help find the reasons for this high or
low regional efficiency and provide a practical basis for the targeted suggestions. Therefore,
on the basis of the inter-provincial comparison of AEE, the specific efficiency index level
of the input and output indicators, and the actual development, the implementation of
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national policies and the local policy orientation, the reasons for the AEE level of each
province can be determined, and local countermeasures are put forward to improve this.

5.3. Discussion of the Factor Efficiency Index

From the temporal evolution of the AEE factor efficiency index, China made some
achievements in agricultural resource conservation and emission reduction, especially
regarding the control of chemical fertilizer input. The chemical fertilizer input efficiency
index increased greatly, significantly contributing to the increase in agricultural resource
consumption efficiency. In recent years, the government has issued a number of binding
regulations for agricultural pollutant emissions. Although negative, the agricultural pollu-
tion emission efficiency index was still slowly rising, showing some progress in agricultural
pollution control.

This study holds that the relationship between agricultural fixed asset investment
and AEE is not a simple linear relationship and is affected by the cooperation of other
factors during the process of agricultural production. This paper argues that the redun-
dancy of agricultural fixed asset investment calculated by the model is not the absolute
redundancy of the investment scale. The matching degree between agricultural fixed asset
investment and other input factors in production also results in the low utilization efficiency
of agricultural fixed asset investment.

The efficiency indices of blue water, land, and machinery input were low in Ningxia.
Problems such as the fragmentation of water resources management, mismatches between
agricultural water price, water scarcity, and ecological environment costs lead to the low
utilization efficiency of local irrigation water. The lower agricultural land input efficiency
index in Ningxia was related to the unsmooth circulation of local agricultural land and
the extensive land use and utilization behavior in some areas. Finally, while Ningxia
was rapidly improving the level of agricultural machinery and equipment, the utilization
efficiency of the machinery resources was still relatively insufficient. The agricultural water
consumption in either Anhui, Hubei, or Henan, the 3 major grain-production provinces,
exceeded 15 billion cubic meters in 2019. Combined with the low blue water input efficiency
index in these three provinces, raising the utilization efficiency of irrigation water is an
important way to improve their AEE. Inner Mongolia has a vast territory, and its per-
capita arable land area ranks first in the country. However, the basic conditions of its
land resources are poor. In addition, the local land productivity is relatively low and
unstable, and the proportion of high-yield fields is small. Therefore, the low land input
factor efficiency index is an important contributor to its low AEE. As a region with relatively
lagging economic development, Guangxi has a serious problem with aging agricultural
employees. The redundancy of labor input is relatively prominent, leading to its relatively
low AEE.

The local agricultural output was relatively large in Hubei and Anhui, but the efficiency
index of either nitrogen and phosphorus loss or carbon emissions was low. The reduction
space of agricultural carbon emissions in Ningxia was large, and the factor efficiency index
showed that actual agricultural carbon emissions in the region exceeded 65% of the optimal
target value. Located northwest inland, Ningxia is an important animal husbandry and
planting base in China. However, high carbon emission intensity poses a threat to the local
ecological balance. Reducing agricultural greenhouse gas emissions has become the focus
of green agricultural development in Ningxia. According to the results of the nitrogen and
phosphorus loss efficiency index, the actual nitrogen and phosphorus loss exceeded 57% of
the optimal target value in Jiangxi, a traditional agricultural province in China. In the last
10 years, the average amount of cultivated land in Jiangxi was 45.84 kg/hm2, which was
higher than the national average. The application of chemical fertilizers can temporarily
supplement soil minerals and increase farmland yields. However, the excess chemical
fertilizers that are not absorbed by crops can cause pollution and become an unfavorable
factor restricting agricultural development.
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The redundancy of agricultural fixed asset investment in 10 provinces, such as Ningxia,
Chongqing, and Hebei, was more than 70%, indicating that the promotion effect of the local
fixed asset investment on AEE was not fully utilized. In recent years, China’s agricultural
production technology and infrastructure were continuously enhanced, and the total invest-
ment in agricultural fixed assets and the number of projects showed a rapid upward trend.
However, the economic benefits of agricultural fixed assets investment gradually dimin-
ished. This may be due to the following two aspects. First, there are spatial differences at
the level of either agricultural economic development or agricultural fixed asset investment,
and the investment scale is also uneven among provinces. The extensive management of
agricultural fixed asset investment in most regions is not conducive to improving invest-
ment utilization efficiency. Therefore, each province should adjust the investment structure
of fixed assets according to their local agricultural production. Guangxi, Yunnan, and other
regions with a larger population but less arable land, extensive land management, and a
seriously aging labor force require the urgent application of agricultural machinery and
equipment. Sichuan, Jiangxi, and other provinces with fragile agricultural foundations have
higher requirements for agricultural water conservancy infrastructure. Second, the low
level of technological transformation investment in agricultural investment is particularly
prominent in China. Some outstanding technological transformation projects face difficul-
ties in obtaining timely funding and cannot be transformed into real productivity, which is
not conducive to the improvements in independent agricultural innovation and restricts
the multiplier and leverage effect of investment on driving agricultural development.

5.4. Policy Implications

To boost ecological agriculture and the green economy and advance coordinated and
sustainable development, either between the agricultural economy and the environment
or amongst regions, the following suggestions are put forward based on the calculation
results for AEE in China and the pattern of spatiotemporal differentiation:

(1) Interregional cooperation should be augmented to enhance the overall AEE and
facilitate interregional coordination in China. In the results, the gap between provinces
with a high AEE and those with a low AEE is the main contributor to the overall spatial
imbalance in either the AEE or factor efficiency indices in China, with a contribution
rate of above 85%. Moreover, the spatial difference between the agricultural resource
consumption efficiency index and that of the agricultural fixed asset investment efficiency
index expanded during 2007–2018. Thus, the AEE in provinces has certain solidification
characteristics, and the provincial disparity of both the agricultural resource utility level
and the fixed asset use efficiency increased. To improve AEE and mitigate the spatial non-
equilibrium, we should focus on strengthening the exchanges and associations between
high-AEE provinces such as Beijing, Shanghai, and Hainan and low-AEE provinces such
as Guizhou, Jiangxi, and Chongqing, especially regarding resource utilization and fixed
asset use;

(2) A differentiated strategy should be implemented to raise regional AEE. Due to
the divergence between agricultural production status and economic development level
among regions, there are certain differences in the level of AEE and factor efficiency
indices in various regions. Therefore, it is necessary to look for shortcomings in regional
agricultural development and formulate personalized development strategies to promote
AEE. According to the AEE measurement results and factor efficiency indices shown above,
the key provinces that need to increase their AEE are listed in Table 7.
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Table 7. The key provinces recommended to improve AEE. In the table, “�” means the leftmost
province of the line where it is located doesn’t conform to the situation described at the top of its
column; “

√
” means the leftmost province of the line where it is located fits the situation described at

the top of its column.

Low AEE
AEE in

Declining
Trend

Low
Agricultural

Resource
Consumption

Efficiency
Index

Low
Agricultural

Pollution
Emission
Efficiency

Index

Low
Agricultural
Fixed Asset
Investment
Efficiency

Index

Agricultural
Resource

Consumption
Efficiency
Index in

Declining
Trend

Agricultural
Pollution
Emission
Efficiency
Index in

Declining
Trend

Agricultural
Fixed Asset
Investment
Efficiency
Index in

Declining
Trend

Jiangsu �
√

� � �
√ √

�

Liaoning �
√

� � �
√ √

�

Tianjin � � � �
√

� �
√

Guizhou
√

�
√

� �
√ √ √

Jiangxi
√ √ √ √ √

� � �

Chongqing
√ √ √ √ √ √ √ √

Shandong
√

�
√

� � � � �

Hunan
√ √ √

� �
√ √ √

Yunnan
√ √ √ √ √ √ √ √

Sichuan
√ √ √ √ √ √ √ √

Hebei
√ √ √

�
√ √

�
√

Henan
√ √ √

�
√ √ √ √

Guangxi
√ √ √ √ √ √ √ √

Inner
Mongolia

√
�

√
� � � � �

Hubei
√ √ √ √ √ √ √ √

Anhui
√

�
√ √

�
√

�
√

Ningxia
√

�
√ √ √

�
√ √

For the key provinces that need to accelerate AEE, the critical points to be improved
are listed in Table 8, in line with the efficiency index. Suppose a factor efficiency index in
a province ranks 25th or lower among the 31 provinces. In that case, the utilization level
of this factor or the level of undesirable output emissions is considered to be significantly
lower than that of other provinces, and it is strongly necessary for the province to improve
the utilization efficiency or control the undesirable output. Suppose the provincial ranking
of the efficiency index is lower than its AEE ranking in 31 provinces and the gap is greater
than or equal to 5 places. In that case, it is believed that the utilization of this factor greatly
affects the AEE level of the province, and it is moderately necessary for the province to
improve the use efficiency of this factor or control the intensity of undesirable outputs.
Suppose the ranking of a factor efficiency index in a province is lower than its AEE ranking
and the gap is within 5 places. In that case, it is suggested that the province further
improves the utilization efficiency of the factor or the intensity of the undesired output to
improve the AEE.

For Beijing, Shanghai, Hainan, and other provinces with a high AEE, it is necessary to
further develop modern ecological agriculture under relatively perfect agricultural infras-
tructure and development conditions, make full use of modern scientific and technological
achievements and modern management, learn from effective traditional agriculture, and
improve the economic, ecological, and social benefits of agriculture. Henan, Inner Mongo-
lia, Hubei, Anhui, Ningxia, and other provinces with relatively low AEE all show a great
need to improve the utilization efficiency of chemical fertilizer. They should strengthen the
policies and technical guidance for fertilizer application based on the actual local planting
structure and conditions and integrate a technological model of fertilizer reduction and
efficiency increases. New products, such as high-efficiency and slow-release fertilizers and
biofertilizers, should be developed; advanced and applicable fertilization machinery should
be promoted; and socialized service organizations should be cultivated to provide unified
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distribution and control services. Anhui shows a strong need to improve the utilization
efficiency of labor, land, blue water, green water, machinery, etc., as well as to reduce the
intensity of nitrogen and phosphorus losses. It is necessary for this province to strengthen
the concept of green development, accelerate the development of intensive ecological
agriculture, and pay attention to cultivated land and three-dimensional cultivation. To
improve its AEE, Anhui also should improve the quality of workers and introduce technical
assistance, strengthen facility agriculture and standardized management, and reinforce the
agricultural infrastructure and ecological environment construction;

Table 8. The critical items in agriculture for AEE improvements in the key provinces. In the table,
“�” denotes the leftmost province of the line where it is located is not necessary to improve the items
listed at the top of its column in order to enhance the AEE; “

√
” denotes the leftmost province of

the line where it is located is mildly necessary to improve the items listed at the top of its column
in order to enhance the AEE; “

√√
” denotes the leftmost province of the line where it is located is

moderately necessary to improve the items listed at the top of its column in order to enhance the
AEE; and “

√√√
” denotes the leftmost province of the line where it is located is strongly necessary

to improve the items listed at the top of its column in order to enhance the AEE.

Labor Force
Use

Efficiency

Land Use
Efficiency

Blue Water
Use

Efficiency

Green Water
Use

Efficiency

Chemical
fertilizer

Use
efficiency

Machinery
Use

Efficiency

Intensity of
Carbon

Emissions

Intensity of
Nitrogen

and
Phosphorus

Loss

Fixed Asset
Investment

Use
Efficiency

Jiangsu � �
√

� � � �
√√

�

Liaoning �
√ √√ √√

�
√ √ √√ √

Tianjin � �
√√√

� �
√√

�
√ √√√

Guizhou
√√√ √√√

�
√

�
√ √√ √

�

Jiangxi
√ √√√

�
√ √ √√√ √ √√√ √√√

Chongqing
√√√ √

�
√√

� � �
√√√ √√√

Shandong � �
√√√ √√√ √ √√√

� � �

Hunan
√√√

� � �
√ √√√

�
√

�

Yunnan
√√√ √√√

� �
√√√

�
√ √√√ √

Sichuan
√√√ √√√ √√√ √√√

� � �
√√√

�

Hebei � �
√√√ √√√

�
√√

� �
√√√

Henan � �
√√√ √√√ √√√ √√√

� � �

Guangxi
√√√

� �
√√√ √√√

� �
√√√

�

Inner
Mongolia �

√√√
� �

√√√
�

√√√
� �

Hubei � � �
√√√ √√√

�
√√ √√√

�

Anhui
√√√ √√√ √√√ √√√ √√√ √√√ √√ √√√

�

Ningxia �
√√√ √√√

�
√√√ √√√ √√

�
√√√

(3) The redundancy of agricultural production inputs should be reduced. In Ningxia,
Anhui, Inner Mongolia, Hubei, Guangxi, Henan, and other provinces with a low agri-
cultural resource consumption efficiency index, improvements in resource allocation and
a reasonable standard system of the agricultural ecological environment should be for-
mulated according to the current local situation of agricultural production and natural
conditions, such as water-source reserves and soil fertility, to improve the utilization effi-
ciency of agricultural land and water resources, especially irrigation blue water, and avoid
large redundancies of input factors. Balancing the distribution of resources across the coun-
try and strengthening the supervision and management of these resources would improve
the efficient utilization of these resources in China. Water-saving irrigation, fallow rotation,
the integration of planting and raising, and other modern agricultural development models
can also be facilitated to develop resource-intensive agriculture;

(4) Agricultural science and technology should be strengthened to reduce agricultural
pollution emissions. For regions in which the agricultural pollution emission efficiency
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index is below −0.50, such as Hubei, Anhui, Ningxia, and Jiangxi, the agricultural science
and technology should be improved. The government and other relevant organizations
should actively strive to introduce new agricultural machinery and key energy-saving and
environmentally friendly technologies to minimize pollution. The previous business model
of pursuing economic output should shift to ecological agriculture development using
information technology and big data management, which will raise the AEE;

(5) The utilization of agricultural fixed asset investments should be improved. The
results show that the current agricultural fixed asset investment faces input redundancy
and low comprehensive utilization efficiency. Therefore, in provinces such as Ningxia,
Chongqing, and Hebei, where the redundancy of agricultural fixed asset investment exceeds
70%, government agencies need to further furnish investment mechanisms to support
agriculture and reduce the redundancy of agricultural fixed asset investments by optimizing
the investment structure and strengthening related management. These provinces should
improve the management of fixed assets investment so that planning, design, construction,
and other departments can work collaboratively and efficiently and prioritize farmland
water conservation and the agricultural service system.

6. Conclusions

This study considers both green water consumption and carbon emissions in agri-
cultural production, together with the persistent role of fixed asset investment. It uses
the undesired dynamic SBM-DEA method to measure the AEE of China and analyzes the
spatiotemporal differentiation in efficiency to provide a basis for promoting the coordinated
development of agricultural production, resources, and the environment in China. The
research conclusions are as follows:

(1) The measurement results of the undesired dynamic SBM-DEA model show that the
AEE in China showed the characteristics of an overall stable rise but unbalanced
development among provinces from 2007 to 2018. The average overall AEE was
0.66, with an annual average growth of 1%. The spatial disparity in AEE was mainly
derived from the difference between province groups with high AEE and those with
low AEE, with a contribution rate of 91.10%. Therefore, to promote high-quality
agricultural development in China, it is urgent for those provinces with a lower AEE
to improve their agriculture, referring to the experience of those with a high AEE;

(2) According to the input and output factor efficiency index, the efficiency indices of
agricultural resource consumption and pollution emission showed a slight rise, while
the agricultural fixed asset investment efficiency index declined with fluctuations; The
spatial discrepancy of the three types of efficiency indices is mainly derived from the
variation between the high-AEE group and the low-AEE group, with corresponding
contribution rates of more than 85%. A spatial comparison can help to determine the
reasons for a higher or lower AEE occurring in these provinces, summarize positive
experiences, and find major weaknesses and opportunities for improvement;

(3) To improve the level of AEE in China, it is suggested that we focus on strengthening
exchange and collaboration between provinces with a high AEE and those with a low
AEE and execute differentiated regional AEE improvement strategies. Based on the
spatiotemporal difference in AEE and its factor efficiency indices, key provinces and
the critical measures that should be taken to increase AEE in China are recognized.
The key provinces include Jiangsu, Tianjin, Liaoning, etc. Jiangsu should reduce the
intensity of agricultural nitrogen and phosphorus losses with moderate necessity and
improve the utilization efficiencies of blue water resources with mild necessity. For
Tianjin, the use efficiencies of both blue water resources and fixed asset investment
in agriculture strongly need to be advanced; improvements in machinery utilization
efficiency are moderately necessary; and there is also a mild necessity to reduce the
intensity of nitrogen and phosphorus losses.

Due to the availability of data on green and blue water input, nitrogen and phosphorus
loss, and fixed asset investment in agriculture at a small spatial scale, we chose province
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as the spatial dimension in this study. Xu [52] analyzed the AEE of counties in Shandong
Province, while Xiang [53] estimated the AEE in Pupiao Town at the village level, with the
indicators listed above not considered in their model. A small scale can help improve the
accuracy of calculations and present more specific and targeted suggestions for regional
development. Therefore, we are going to make efforts to collect and estimate the data and
evaluate AEE at a tiny scale in our next research. To distinguish the efficiency of each region
more clearly, the super-efficient SBM could be introduced to the undesirable dynamic DEA
model in future research. Moreover, although AEE estimation in this study shows the
historical situation and corresponding suggestions, it would also be very interesting and
valuable to predict the upcoming AEE trend, looking at the tendencies of labor, land, and
water inputs, as well as considering technology, production mode, and so on. That would
allow us to look at future pros and cons regarding AEE and find specific measurements to
improve agriculture production.
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