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Lifetime analysis of two commercial PV converters using multi-year 
degradation modelling 

Martin Bendix Fogsgaard *, Yi Zhang, Amir Sajjad Bahman, Francesco Iannuzzo, Frede Blaabjerg 
Department of Energy Technology, Aalborg University, Aalborg, Denmark   
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Keywords: 
Reliability 
Power electronics 
PV Converters 
Reliability prediction 
Degradation feedback 
Degradation based end-of-life 

A B S T R A C T   

This paper presents a practical method to perform multi-year degradation modeling for power electronics reli-
ability analysis. It will present how to combine a PV mission profile simplification method with a parameter 
degradation feedback mechanism. The overall method is presented, along with how to characterize the pa-
rameters for the method from experimental results. The method and the characterization method are demon-
strated against simulated wear-out curves based on experimental lifetime tests. The whole workflow is applied to 
analyze two commercial PV generator systems in order to compare the inclusion and exclusion of the degradation 
feedback on lifetime prediction. All model parameters are shown in the paper, and the used mission profiles will 
be published available online.   

1. Introduction 

Power electronics make up an ever-increasing part of the modern 
power grid e.g. with the increased installation of renewable energy 
sources [1] and it is an important technology to help to fight Global 
Warming [2]. 

Photovoltaic (PV) generator systems use power electronics both in 
the general operation of power point tracking and may contain power 
converters to boost the output voltage and/or convert to alternating 
current in order to connect to the power grid. 

When a PV generator system is planned, the reliability of the system 
is of great importance both for commercial and residential systems [3]. 

The reliability analysis is an important tool to determine whether the 
system is economically viable and it gives insight into the risk of system 
failure over time. A common reliability analysis workflow for a power 
electronic system is seen in Fig. 1. 

The workflow seen in Fig. 1 and variations thereof are used in 
numerous papers such as [4–9]. All of these papers use the workflow or 
adaptations, e.g. [9] combines it with artificial intelligence to find the 
optimum design parameters for system reliability. 

The planned location of a PV system is taken into account via a 
mission profile describing the operating conditions caused by the solar 
power and ambient temperature. An example of a mission profile can be 
seen in Fig. 2. 

The most time-consuming part of the mentioned workflow is the 

simulation of the system behaviour over an entire year. However, in 
some cases, the simulation time can be reduced [10–13]. 

Conventionally, some effects are neglected from reliability analysis 
because of the difficulty of integrating them into the simulation of 
mechanisms occurring at different timescales. One effect is the degra-
dation of the analyzed components, such as bond-wire lift-off and solder 
layer de-lamination. Studies such as [14] have found that degradation 
can have a significant effect on the tested device lifetime and efforts 
should be made to include these effects in the analysis. 

Damage modelling for IGBTs and power electronics in general has 
been investigated in previous literature such as [15–20]. 

This forms the basis of what will be investigated in this paper, 
degradation modeling will be performed on two commercial PV con-
verters and the effect of degradation on lifetime will be evaluated. 

2. The simplification method 

The simplification procedure of [12] can be used directly in the 
workflow outlined in Fig. 1 and greatly reduces the computation time of 
the reliability analysis. 

The time reduction is controlled by the user by choosing a number of 
representative days. 
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2.1. Principle of the method 

The method works by replacing the 365-day mission profile with a 
synthetic, simplified mission profile. The simplified profile is simulated 
using the original model and afterward, a 365-day junction temperature 
profile is reconstructed using the simulation results. 

The simplification method is performed as a part of the simulation 
pre-processing and post-processing, this makes the simplification 
method independent of the simulation model. Comparing Figs. 1 with 3 
shows where the pre- and post-processing steps are added, and it can be 
seen that the modeling step is retained. 

In this work, an averaged loss model and thermal network based on 
reference [21] is used, but other models may be used with the simpli-
fication method. 

An improved version can be found in [13], the basic principle is the 
same, but the synthesis methodology is improved in order to remove the 
dependence on arid climates. 

3. Multi-year degradation modelling 

The full multi-year degradation modeling workflow is a natural 
extension of the simplification model of Section 2 and [12]. As the 
simulation of a single year can be done in seconds, it becomes practical 
to not only simulate multiple years but also to add parameter evolution 
as a result of the degrading components and interfaces. 

The entire multi-year workflow can be seen in Fig. 4. The first box is 
the mission profile input containing both power and ambient tempera-
ture profiles. The same one-year profile can be repeated for multi-year 
analysis or a multi-year profile may be used. 

The month of the mission profile is simulated as described in Section 
2 and [12]. Then the junction temperature profile of that month is 
evaluated using Rainflow Counting, Palmgren-Miner’s Rule and the 
chosen damage model. The total accumulated damage is linked to each 
degrading component using the degradation function. 

d = 1 − (1 − D)k (1)  

Where d is degradation, D is the accumulated damage and k is the non- 
linear degradation shape parameter. 

For some degrading components the parameters will change very 
little during their life and only change near wear-out, for others, the 
damage and degradation will follow each other almost linearly, and 
finally some parameters “wear-in” at the beginning of their life and 
don’t change very much for the remainder of the lifetime. This is what 
Eq. (1) represents with the shape parameter k determining if the link is 
linear, wear-in, or wear-out. 

An example of a degrading parameter could be the electrical resis-
tance of a bond-wire foot. This can be seen in Eq. (2). 

R(ai, ao) ≈
ρAllbw
πr2 +

ρAlai
πr2 +

ρAldc
wf
(
lf − a

) (2) 

Where R is resistance, ρAl is resistivity, lbw is bond wire length. dc is 
crack thickness. wf is bond-wire foot width and r is bond wire radius. ai 

and ao are the lengths of cracks propagating from the inner bond wire tip 
and the outer bond wire tip. 

The thermal resistance evolution of the degraded solder layer, which 
is another degrading parameter, can be calculated similarly. 

When the parameter degradation has been calculated, the simulation 
is continued in the next month in the mission profile. This process is 
repeated until the degraded parameters have reached their end-of-life 
threshold, the same way that physical devices are considered worn out 
when their parameters degrade beyond the end-of-life threshold. 

4. Characterisation of parameter based degradation models 

The empirical data needed to apply this method is very similar to that 
conventionally used [22] for non-degradation approaches. Power 
cycling is conducted and the loading conditions and the number of cy-
cles to failure for each condition are recorded. Additionally, the evolu-
tion of each modeled degrading parameter must be recorded for each 
loading condition. If a simulation of thermal interface wear-out is 
required, then the evolution of thermal resistance during power cycling 
must be recorded. 

Once the power cycling is completed and the required quantities are 
recorded, the characterization can be done using a few equations and an 
optimization algorithm. 

First, an initial fitting is made based on the experimental life results. 
This fitting is based on initial guesses for A, B, C, and k. 

Secondly, degradation and damage equations are set up for each 

Fig. 1. Commonly used reliability 
analysis workflow for power elec-
tronics. The input to the modeling is a 
mission profile containing time-series 
data of the relevant input parameters 
such as input power and ambient 
temperature. The input is processed by 
a behavioral model, such as a loss 
model and thermal network, to trans-
late the input into a time-series profile 
of the resulting thermal loading. The 
loading profile is counted using the 
Rainflow Counting Algorithm and a 

damage model along with the Palmgren-Miner’s Rule of Linear Damage Accumulation is used to evaluate the damage to the system or component as a result of the 
input profile.   

Fig. 2. An example of a mission profile with both power and ambient tem-
perature profiles. 
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degrading parameter. The simulation model is based on the assumption 
that damage can be considered to be accumulated in discrete steps. As a 
result, the wear-out curves are split into several steps. For a given step, 
the junction temperature swing, damage of this step, and total accu-
mulated damage at the last step are known. This allows us to set up the 
following equations: 

Di =
Ni − Ni− 1

Ni
f

(3) 

Where Di is the damage of the current step, Ni − Ni− 1 is the number 
of cycles from the previous to this step. Ni

f is the number of cycles to 
failure for the current loading conditions which can be calculated using 
Eq. (6) and the A, B, and C fitting parameters. Another damage model 
can also be used. 

di = 1 −

(

1 −
∑i

j=1
Dj

)k

(4)  

Where di is the degradation of the current step, k is the crack shape 
parameter, and Dj is the damage of the jth step. The stepping procedure 
can be seen in Fig. 6. 

The fitted and experimental degradation evolution are compared to 
find the error of the fit. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
dfitted − dexperiment

)2
√

(5)  

RMSE is the root mean square error calculated from the fitted(dfitted) and 
experimental(dexperimental) degradation curves. dfitted is the complete series 
of all dis. 

Using Eqs. (3) to (5), the damage and degradation equations are 
linked to the experimental degradation curves, and using an optimiza-
tion algorithm such as the Newton-Raphson method, the optimal values 
for A, B, C, and k can be found. 

The methodology was followed for six loading conditions for the 
same power device. The simulated validation curves and experimental 
reference curves can be seen in Fig. 7. The experimental curves are 

Fig. 3. The pre and post-processing steps in relation to the methodology of Fig. 1.  

Fig. 4. The overall workflow for multi-year reliability analysis.  

Fig. 5. A comparison of the non-linear coupling of damage and degradation for 
different shape parameter values as given by Eq. (1). k=1 results in a linear 
coupling of degradation to damage, k > 1 is for wear-in effects, and k < 1 is for 
wear-out degradation. 

Fig. 6. Degradation points Pi− 1, Pi and Pi+1. The parameter(s) and the degra-
dation is considered to be constant between the cycling steps and it is updated 
when a new point is reached. 
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highlighted with crosses and the simulated curves are highlighted with 
diamonds. 

4.1. Example implementation on experimental results 

To provide experimental wear-out data to demonstrate the fitting 
process, DC power cycling was conducted on an IGBT module. The 
module used is a three-phase FS25R12KT3 module. It was attached to a 
fixed temperature cooling plate and cycled with 44.3 A current pulses 
with 5 s on and off time. The evolution of the temperature swings can be 
seen in blue in Fig. 8. 

The wear-out curve was processed using the workflow described in 
Section 4. The resulting fitted curve was compared to the original curve 
and the two curves can be seen in Fig. 8. 

5. Case study on commercial inverters 

The proposed methodology presented in previous sections is applied 
to two commercial PV inverters to compare them with the enabled an-
alyses and to demonstrate the possible results of the method. 

5.1. System 1 

The analysed system is an Impedance-source-based PV microinverter 
from UBIK Solutions [24]. It is a two-stage system with a Quasi-Z-Source 
series resonant DC-DC converter and a single phase grid-tied inverter 
with output filter. More details on the operation of the topology can be 
found in literature [25]. The topology can be seen in Fig. 9. 

As an overall reliability analysis has already been performed on this 
system [27], this work will focus on the effect of including the degra-
dation in the inverter subsystem. 

The inverter uses four SCT2120AF MOSFETs, where the electrical 
parameters for operation and loss modeling can be found in the data-
sheet [28]. 

The thermal parameters for both the MOSFETs and for the path from 
case to ambient can be extracted from the previous reliability analysis 
[27]. The parameters were extracted in Foster network form and it can 
be seen in Table 1. 

The reliability model for the bond-wires will be that determined 
experimentally in [29]. It is assumed that these parameters, while not 
experimentally determined for the exact transistors used, will give an 
accurate comparison between the inclusion and exclusion of degrada-
tion feedback in the analysis. The exact values for the model parameters 
are α = 5⋅1011 and m = 5.3 

The degradation shape parameter for the solder layer was charac-
terised from the experimental results of [30] and was found to be k =

0.1445. The damage model for the solder layer and the model param-
eters used will be those determined experimentally in [17]. 

Nf = AΔTB
j e

(

C
Tmean+273

)

(6) 

Where Nf is the number of cycles to failure, ΔTj is the temperature 
swing, Tmean is the mean temperature. A, B and C are model parameters 
with the values of A = 97.2231, B = − 3.1292 and C = 7.1667e + 03 
[17]. 

5.2. System 2 

The second studied system is a Danfoss TLX PRO+ system consisting 
of three parallel DC/DC boost converters and a three-phase Neutral- 
Point-Clamped inverter [31]. See the topology in Fig. 10. 

The actual power semiconductors of the system are unknown to these 
authors, so the thermal parameters and damage model parameters from 
another known system will be used [21]. These parameters are seen in 
Table 2. 

The damage model used is: 

Nf = A
(
ΔTj
)β1 ⋅e

β2
Tj,min+273tβ3

onI
β4
B Vβ5

C Dβ6 (7)  

Where Nf is the number of cycles to failure, ΔTj is the temperature 
swing, Tj,min is the minimum temperature of the cycle and ton is the cycle 
period. The fitting parameters are A = 9.37⋅1014, β1 = − 4.416, β2 =

1285, β3 = − 0.463, β4 = − 0.716, β5 = − 0.761 and β6 = − 0.5. The 
system parameters are IB = 12.5, VC = 15, and D = 30. 

The thermal case to ambient parameters for system 2 were extracted 
from a fluid flow simulation of the heatsink during operation. The ge-
ometry of the real system was simplified and built in COMSOL Multi-
physics, and simulated similarly to the process found in the application 
gallery [32]. The thermal parameters in Foster network form can be 
found in Table 2. 

Fig. 7. Simulated reference and fitted degradation curves for six loading con-
ditions from reference [23]. 

Fig. 8. Experimentally determined temperature evolution(blue) and fitted 
curve(red). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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5.3. Mission profiles 

Five real mission profiles from different locations will be used in the 
analysis. The locations are Arizona, Colorado, Denmark, Sacramento, 

and Spain. 
The mission profiles contain the irradiance and ambient temperature 

profiles for an entire year, sampled at a 1-minute resolution. 
The profiles have previously been used in [12] and [13], and the 

Denmark profile was also used in [27]. As profiles sampled at a reso-
lution with less than an hour per sample be difficult to come by, the 
profiles will be made available at the publication of the paper [33]. 

6. Study case: Commercial converter 1 

The UBIK system was modeled with the parameters of Section 5.1 
and subjected to all of the 5 mission profiles of Section 5.3. The tem-
perature swing, solder damage, and thermal resistance evolution can be 
seen in Fig. 11 which is initially linear, but as the resistance rises above a 
certain threshold the temperature swing will begin to increase notice-
ably. This in turn will increase the damage accumulation, which will 
increase the thermal resistance even more. This positive feedback 
mechanism caused by degradation is a major factor in the final lifetime 
prediction [14]. The projected lifetime from the period of linear damage 

Fig. 9. The entire PV generator system of [26]. The consists of a DC/DC converter stage and an inverter stage with output filter. The damage and degradation of S5 is 
the focus point of this paper, but the same analysis can be conducted for all semiconductors in the system. 

Table 1 
Thermal parameters from [27] and [28] in Foster network form.  

Level Resistance Capacitance 

Junction-Case 1 0.04197 [K/W] 0.001471 [J/K] 
Junction-Case 2 0.2677 [K/W] 0.06857 [J/K] 
Junction-Case 3 0.3778 [K/W] 0.006633 [J/K] 
Case-Ambient 1.759 [K/W] 2774 [J/K]  

Fig. 10. One leg of the NPC inverter system of the Danfoss TLX PRO+ (the 
other two identical legs, the L-filter, and three parallel input boost converters 
are not pictured). 

Table 2 
Thermal parameters of the Danfoss system in Foster network form.  

Level Resistance Capacitance 

Junction-Case 1 0.0324 [K/W] [21] 0.3086 [J/K] [21] 
Junction-Case 2 0.1782 [K/W] [21] 0.1122 [J/K] [21] 
Junction-Case 3 0.1728 [K/W] [21] 0.2894 [J/K] [21] 
Junction-Case 4 0.1566 [K/W] [21] 0.6386 [J/K] [21] 
Case-Ambient 1 0.0202 [K/W] 138.4 [J/K] 
Case-Ambient 2 0.0191 [K/W] 865 [J/K] 
Case-Ambient 3 0.0415 [K/W] 61.7 [J/K]  

Fig. 11. Damage and degradation evolution of Converter 1. The damage in-
creases linearly for most of the life of these systems, but at certain points, the 
thermal run-away mechanism kicks in because of the degradation feed-
back mechanism. 
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accumulation was calculated and Fig. 12 shows that the positive feed-
back mechanism reduces lifetime by 20–60+ years. 

The UBIK is a microinverter system wrapped in a plastic case. As 
such, the relative thermal resistance from junction to case is much lower 
than the resistance from case to ambient. This is the reason why the 
thermal resistance of the solder layer needs to rise to 40–60 times the 
original value before the temperature swing in Fig. 11 starts to increase. 

7. Study case: Commercial converter 2 

The lifetime evolution of the bond-wire and solder layer damage and 
the evolution of the thermal resistance can be seen in Fig. 13. In the 
figure, the thermal resistance is normalized according to the initial 
value, and a final value of “50” corresponds with a thermal resistance 
that is 50 times the initial value. The thermal resistance evolution of the 
Danfoss system is highly non-linear and exhibits an exponential increase 
in the final stage of life. 

In Fig. 13 the damage evolution of the bond-wire and solder layers 
increase linearly for the majority of the lifetime of the system, but near 
the end of life the device enters a phase with abnormal operation and a 
rapid increase of solder layer damage. In Fig. 13 the junction tempera-
ture profiles during the lifetime of the systems can be seen. Here it can be 
seen that the five systems had a greatly increased maximum temperature 
during the final period of their lifetime. 

The Converter 1 system experienced the same positive feedback 
phenomenon as the Converter 2 system, and the phenomenon was also a 
strong factor in determining the final lifetime. The initial linear damage 
rate was extrapolated to compare the lifetime without and with degra-
dation. The feedback mechanism was found to reduce lifetime by more 
than 50% compared to the linearly projected life as can be seen in 
Fig. 14. 

7.1. Impact of degradation shape parameter 

The range of k for solder layer delamination and the evolution of the 
thermal resistance was approximated from literature to find sample sets. 
These can be seen in Table 3. 

To show the impact of these parameters and the behaviour of the five 

Fig. 12. The effect of damage feedback on the simulated lifetime of Converter 1 
can be seen by comparing the blue and red lifetimes at each location. The red 
lifetimes were found using the proposed method of this paper and the blue 
lifetimes were found by repeating the yearly damage caused by an undegrading 
system. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 13. The damage and degradation evolution of Converter 2 for different 
mission profiles. 

Fig. 14. Lifetime prediction without(blue) and with degradation(red) of Con-
verter 2. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 3 
Degradation parameters from literature.  

Parameter a b k  

Case 1 0.02979 1.000111 4.278 [30] 
Case 2 0.0002544 0.9877 3.902 [34] 
Case 3 0.01764 1.08498 0.8485 [34] 
Case 4 0.000512 1.035 5.622 [17] 
Case 5 0.2152 0.7848 0.06 Experiment  
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sample sets in Table 3, they were compared using the simulation pro-
cedure of Fig. 4 and the Arizona mission profile. The behaviour can be 
seen in Fig. 15. 

To investigate the raw impact of the k parameter, the simulation was 
repeated with the Converter 2 system and the Arizona profile, only 
altering the k parameter from 1 (the linear case) to 5.5 (the maximum 
value of k from Table 3). As seen in Fig. 5, the higher the k value, the 
earlier the degradation will increase to 1. As a result, the higher the k 
value, the earlier the positive feedback mechanism will be activated, 
leading to a shorter lifetime for higher k values. This inverse propor-
tionality can be seen in Fig. 16 where higher k values will enter faster 
into abnormal operation. 

8. Conclusion 

This paper has presented an analysis of the lifetime of two com-
mercial PV systems considering the degradation of the thermal resis-
tance of the solder layer. The degradation modelling was presented in 
detail, along with how to characterize it. 

Degradation-based lifetime modelling offers two advantages 
compared to the conventional methodology. First, the degradation 
causes a change in the behaviour of the system, which in turn may cause 
a feedback loop of the damage which is accelerating the wear-out and 
thereby shorten the lifetime. 

Secondly, modelling the degradation enables a parametrically 
defined end-of-life, where failure can be defined as 10% increase in Vce 
(on), 20% increase in thermal resistance, 50% increase in power loss, or 
an increase in any other damage-sensitive parameter. 

Thanks to the simplification method of [13], the presented method 

including degradation feedback is fast enough to be practically used. 
The total time needed to fit the 6 degradation curves of Fig. 7 was 340 s, 
and the total time to simulate the validation curves was 330 s. 

The method was demonstrated using two system cases where it was 
found that the positive feedback mechanism strongly affect the system 
lifetime prediction for both systems as it was expected in [14]. 

The relative impact of the degradation shape parameter k was 
investigated using a parameter sweep of both k and of different sets of 
degradation parameters from literature. The higher the k is, the larger 
the impact of degradation will be. The k parameter for a degrading 
quantity can be used as an indicator for the impact of the degradation on 
that quantity. It can be used to decide whether the degradation of that 
parameter needs to be included in the modelling. 
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