
 

  

 

Aalborg Universitet

Deep learning image reconstruction algorithm for abdominal multidetector CT at
different tube voltages
assessment of image quality and radiation dose in a phantom study

Park, Hye Joo; Choi, Seo Youn; Lee, Ji Eun; Lim, Sanghyeok; Lee, Min Hee; Yi, Boem Ha;
Cha, Jang Gyu; Min, Ji Hye; Lee, Bora; Jung, Yunsub
Published in:
European Radiology

DOI (link to publication from Publisher):
10.1007/s00330-021-08459-8

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Park, H. J., Choi, S. Y., Lee, J. E., Lim, S., Lee, M. H., Yi, B. H., Cha, J. G., Min, J. H., Lee, B., & Jung, Y.
(2022). Deep learning image reconstruction algorithm for abdominal multidetector CT at different tube voltages:
assessment of image quality and radiation dose in a phantom study. European Radiology, 32(6), 3974-3984.
https://doi.org/10.1007/s00330-021-08459-8

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1007/s00330-021-08459-8
https://vbn.aau.dk/en/publications/bef8c1cd-da7f-4b08-94ee-869a2dd8288a
https://doi.org/10.1007/s00330-021-08459-8


https://doi.org/10.1007/s00330-021-08459-8

IMAGING INFORMATICS AND ARTIFICIAL INTELLIGENCE

Deep learning image reconstruction algorithm for abdominal 
multidetector CT at different tube voltages: assessment of image 
quality and radiation dose in a phantom study

Hye Joo Park1 · Seo‑Youn Choi1  · Ji Eun Lee1 · Sanghyeok Lim1 · Min Hee Lee1 · Boem Ha Yi1 · Jang Gyu Cha1 · 
Ji Hye Min2 · Bora Lee3,4 · Yunsub Jung5

Received: 22 July 2021 / Revised: 15 October 2021 / Accepted: 27 October 2021 
© The Author(s), under exclusive licence to European Society of Radiology 2022

Abstract
Objectives To compare the image quality and radiation dose of a deep learning image reconstruction (DLIR) algorithm 
compared with iterative reconstruction (IR) and filtered back projection (FBP) at different tube voltages and tube currents.
Materials and methods A customized body phantom was scanned at different tube voltages (120, 100, and 80 kVp) with 
different tube currents (200, 100, and 60 mA). The CT datasets were reconstructed with FBP, hybrid IR (30% and 50%), 
and DLIR (low, medium, and high levels). The reference image was set as an image taken with FBP at 120 kVp/200 mA. 
The image noise, contrast-to-noise ratio (CNR), sharpness, artifacts, and overall image quality were assessed in each scan 
both qualitatively and quantitatively. The radiation dose was also evaluated with the volume CT dose index  (CTDIvol) for 
each dose scan.
Results In qualitative and quantitative analyses, compared with reference images, low-dose CT with DLIR significantly 
reduced the noise and artifacts and improved the overall image quality, even with decreased sharpness (p < 0.05). Despite 
the reduction of image sharpness, low-dose CT with DLIR could maintain the image quality comparable to routine-dose CT 
with FBP, especially when using the medium strength level.
Conclusion The new DLIR algorithm reduced noise and artifacts and improved overall image quality, compared to FBP and 
hybrid IR. Despite reduced image sharpness in CT images of DLIR algorithms, low-dose CT with DLIR seems to have an 
overall greater potential for dose optimization.
Key Points
• Using deep learning image reconstruction (DLIR) algorithms, image quality was maintained even with a radiation dose 
reduced by approximately 70%.
• DLIR algorithms yielded lower image noise, higher contrast-to-noise ratios, and higher overall image quality than FBP 
and hybrid IR, both subjectively and objectively. 
• DLIR algorithms can provide a better image quality, much better than FBP and even better than hybrid IR, while facilitat-
ing a reduction in radiation dose.
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Abbreviations
ASIR  Adaptive statistical iterative reconstruction
CNR  Contrast-to-noise ratio
DCNN  Deep convolutional neural network
DLIR  Deep learning image reconstruction
FBP  Filtered back projection
HU  Hounsfield unit
IR  Iiterative reconstruction
mGy  Milligrays
ROI  Regions of interest
SSIM  Structural similarity

Introduction

Despite the continuous development of CT, medical radia-
tion exposure is still an important issue. Accordingly, in 
response to these expectations, the dose reduction technique 
has been constantly developed using tube current modula-
tion, decreasing tube voltage, and image reconstruction algo-
rithms [1–3].

Among them, focusing on the image reconstruction algo-
rithms in more detail, filtered back projection (FBP) was 
the conventionally used algorithm in image reconstruction 
owing to its faster reconstruction speed and easy implemen-
tation. However, it had several drawbacks in radiation dose 
reduction in terms of resolution, high image noise, artifacts, 
and image quality [4]. To overcome the particular shortcom-
ings of FBP, iterative reconstruction (IR) was introduced 
[5, 6]. Low-dose CT images acquired with the IR tech-
nique were evaluated for clinical practice while minimizing 
image noise and artifacts. Although IR was quite successful 
in terms of reducing dose and noise simultaneously, which 
was the main goal, the substantial noise reduction resulted 
in inevitable “oversmoothing,” leading to a “plastic-looking” 
or “unnatural” appearance of IR-reconstructed images [7]. 
According to previous studies [8, 9], a smoothed appear-
ance can result in a deterioration of subjective image quality 
and subsequently a significant decrease in the visibility of 
small structures, as shown in previous studies. This is why 
many radiologists were initially inclined to reject the routine 
implementation of IR algorithms and have questioned the 
diagnostic acceptability of IR compared to traditional FBP.

Faced with these limitations of IR, deep learning image 
reconstruction (DLIR) algorithms were developed by GE 
Healthcare (TrueFidelity™; GE Healthcare), which is 
trained with high-quality FBP datasets to learn how to dif-
ferentiate noise from signals [10, 11]. The design goal of 
DLIR algorithms is to generate a reconstructed image that 
outperforms previous IR techniques in terms of image qual-
ity, dose performance, and reconstruction speed. The DLIR 
engine generates the output image from an input sonogram 
that is acquired with low radiation dose, with use of deep 

convolutional neural networks (DCNNs)-based models. Dur-
ing training, the DCNNs analyze the data and synthesize 
a reconstruction function, which is optimized through the 
learning process and extensive testing of dataset for valida-
tion. The DLIR is an algorithm developed for image qual-
ity similar to “high dose FBP image,” as the FBP is the 
most ideal image reconstruction technique in a high-dose 
and optimal scan environment. The DLIR technique can be 
reconstructed in three modes (DLIR-L, M, and H), and the 
final output image is generated by varying the degree of the 
noise included in the image for each mode [11–13].

Several studies have attempted to verify the perfor-
mance of the DLIR technique to date [10, 14–19]; how-
ever, to the best of our knowledge, there have only been 
few studies using the DLIR algorithms developed by GE 
Healthcare (TrueFidelity™) [10, 17–19] and most of them 
were conducted using chest CT performed under a sin-
gle scanning parameter. We thought that a new study is 
needed to find out how DLIR succeeded in radiation dose 
reduction while compensating for the weaknesses of IR 
techniques, especially in various tube voltages and tube 
currents.

So, the purpose of our study was to compare the image 
quality, radiation dose, and diagnostic accuracy of a DLIR 
algorithm (TrueFidelity™) compared with a hybrid IR algo-
rithm (adaptive statistical iterative reconstruction V [ASIR-
V]) and FBP at different tube voltages and tube currents.

Materials and methods

Phantom

The trunk and bilateral thigh of the whole-body phan-
tom PBU-60 (Kyoto Kagaku Co., Ltd), simulating a man 
165 cm in height and 50 kg in weight, were used in this 
study (Fig. 1). The phantom was made of a radiological soft 
tissue substitute with embedded life-sized synthetic skeleton 
and organs such as the liver with portal and hepatic veins, 
kidneys, spleen, pancreas, stomach, sigmoid colon, rectum, 
and prostate. The phantom was placed on the CT bed in a 
head-first, supine position at the center of the gantry.

Since this study was performed with phantom not human 
patients, the institutional review board (IRB) approval was 
not required.

CT acquisition and image reconstruction algorithms

Acquisition of all CT images was performed on a 256-channel 
multi-detector CT (Revolution, GE Healthcare) equipped with 
hybrid IR and DLIR algorithms. This scanner can achieve a 
detector coverage of 160 mm in a single rotation at the iso-
center of rotation (detector configuration: 0.625 × 256 mm for 
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256-row multi-detector CT. The body phantom was scanned 
with three different tube voltages (80, 100, and 120 kVp) and 
three different tube currents (60, 100, and 200 mA). Accord-
ing to previous study dealing with image quality depending on 
reconstruction methods [6], the tube current values of 200 mA 
and 100 mA were arbitrarily used frequently, and the minimum 
value of the tube current was set at 60 as it was the minimum 
tube current allowed in this CT machine (Revolution CT, GE 
Healthcare). All other CT parameters were kept the same in 
the nine protocols used (gantry rotation speed of 1 s, pitch of 
0.992, and reconstruction slice thickness of 2.5 mm). The scan 
range was set from the lung bases to the bottom of the pelvic 
bones. Each of the nine raw research CT data sets was recon-
structed on an advanced image processing station (AW4.7, 
GE Healthcare) with FBP, 30% and 50% ASIR-V®, and three 
levels of TrueFidelity™ DLIR (low [L], medium [M], and 
high [H]). The percentage of ASIR-V® was determined as two 

levels most frequently used in clinical practice and previous 
studies [6, 10, 12, 13]. Thus, six CT datasets were created for 
each scan, and ultimately, 54 image series were generated. 
Basically, we assessed the image quality from different recon-
struction algorithms acquired at different dose levels against a 
well-defined reference standard of FBP at 120 kVp/200 mA.

Radiation dose measurement

CT radiation dose descriptors such as volume CT dose index 
 (CTDIvol, described in milligrays [mGy]) were recorded after 
completion of the CT examination for all image datasets.

Fig. 1  Axial abdominal CT 
images acquired with scanning 
parameters of 80 kVp/200 mA 
using different reconstruction 
algorithms: (a) filtered back 
projection (FBP), (b) adaptive 
statistical iterative reconstruc-
tion V (ASIR-V) 30%, (c) 
ASIR-V 50%, (d) low-level deep 
learning image reconstruction 
(DLIR-L), (e) medium-level 
DLIR (DLIR-M), and (f) high-
level DLIR (DLIR-H). The 
assessed score of qualitative 
overall image quality was high-
est at 4 for images reconstructed 
with the medium-strength DLIR 
algorithms. The overall image 
quality scores were 2, 2, 2, 3, 
4, and 3 for the reconstruction 
algorithms of FBP, ASIR-V 
30%, ASIR-V 50%, DLIR-L, 
DLIR-M, and DLIR-H, respec-
tively

a

c

e

b

d

f
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Assessment of subjective image quality (qualitative 
analysis)

All randomized CT image datasets were reviewed in a 
picture archiving and communication system (Deja-
View, version 3.0; DongEun IT) by two abdominal radi-
ologists (J.E.L. and S.Y.C., with 9 years and 12 years of 
experience in abdominal imaging, respectively). As all 
information such as tube voltage, tube current, and the 
reconstruction technique used during the CT scan were 
removed from the image, the reviewers were blinded to 
such scanning information. For subjective analysis, the 
two abdominal radiologists scored independently and 
immediately shared their opinions together. In very few 
cases of discordance, the final consensus was immedi-
ately achieved without delay. During the review, all data-
sets were displayed at soft tissue settings (window/level, 
400/40 Hounsfield unit [HU]) constantly. Evaluated sub-
jective parameters are as follows: sharpness, noise, arti-
facts, and overall image quality with five- or three-point 
grading scales [20] (Table 1).

Reviewers first scored each parameter of the images 
taken at 120 kVp/200 mA with FBP while looking at the 
criteria, then performed the quality assessments of the 
other image sets from different reconstructions acquired 
at different dose levels based on the score of the reference 
image.

Assessment of objective image quality (quantitative 
analysis)

Quantitative assessment of noise and contrast-to-noise ratio 
(CNR) was performed by another abdominal radiologist 
(S.L., with 15 years of experience in abdominal imaging), 
who was not involved in the qualitative analysis, using an 
advanced diagnostic workstation (AW4.7; GE Healthcare). 
Circular regions of interest (ROI) were drawn in homogenous 
areas of the right lobe of the liver parenchyma, avoiding large 
hepatic vessels (400–500  mm2) and the low-density middle 
hepatic vein (40–50  mm2). The sizes and the locations of the 
ROIs were fixed for all six reconstructed image sets of the 

same scan parameters. For assessing overall image noise, the 
standard deviation of the HU was measured three times in 
homogenous liver parenchyma in our phantom, and the mean 
value was recorded. Simultaneously, the HUs of the liver 
parenchyma and middle hepatic vein were also measured 
three times, and the mean values were recorded. The hepatic 
vein-to-liver CNR was calculated using the following for-
mula: CNR =  (ROIL –  ROIV)/N, where  ROIL is the mean HU 
of the liver parenchyma,  ROIV is the mean HU value of the 
middle hepatic vein, and N is noise. Quantitative measure-
ment of image sharpness and overall image quality was done 
by a physician (Y.S.J., with 14 years of biomedical engineer-
ing and medical image processing/analysis). Image sharpness 
was assessed using no-reference–based blur metrics, which 
analyze the sharpness by assessing the behavior of the adja-
cent pixel variation. The calculated metric value is expressed 
from 0 to 1, with lower values showing sharper images and 
higher values indicating blurrier images [17]. To evaluate 
overall image quality, a structural similarity (SSIM) index 
was used. SSIM is a metric that assesses structural changes 
of an image, compared to the reference image (full-reference 
method), by evaluating elements such as luminance, contrast, 
and structure (texture information) and calculating the results 
numerically with a scale ranging from − 1 (no similarity) to 1 
(identical) [21–24]. The reference image for measuring SSIM 
was also set as the images taken at 120 kVp/200 mA and 
reconstructed with the FBP technique.

Statistical analysis

The measurements were analyzed by a nonparametric analy-
sis of covariance (ANCOVA) based on ranks for the dataset 
comparison with adjustment for the tube voltage and the 
tube currents. The marginal mean of each measurement was 
estimated from the linear model adjusted for the tube cur-
rent and voltage. All the statistical analyses were performed 
using R (version 4.0.3, The R Foundation for statistical 
Computing).

Table 1  Grading scale for qualitative analysis of CT examinations

Scale Image quality parameters

Sharpness Noise Artifacts Overall diagnostic 
acceptability

1 Blurry Unacceptable noise Present and affecting image interpretation Unacceptable
2 Poorer than average Above-average noise Present but not affecting interpretation Suboptimal
3 Average Average noise No artifact Average
4 Better than average Less-than-average noise Not applicable Above average
5 Sharpest Minimal or no noise Not applicable Superior
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Results

Radiation dose

The radiation dose of the scan acquired at 120 kVp/200 mA 
was 14.49 mGy for  CTDIvol. The radiation dose decreased 
by approximately 65% between the 120- and the 80-kVp 
protocols and by approximately 70% between the 200- and 
the 60-mA protocols. Radiation doses for each set of scan 
parameters are summarized in Table 2.

Subjective image quality

First, the reference image was graded as 5, 3, 3, and 4 for 
sharpness, noise, artifacts, and overall diagnostic acceptabil-
ity, respectively. Despite a significant reduction in radiation 
dose, the following low-dose CT with ASIR-V or DLIR 
images were still graded as having similar or less image 
noise compared with the reference image: DLIR-H at 80 
kVp/60 mA and 100 kVp/60 mA, DLIR-M and DLIR-H at 
120 kVp/60 mA and 80 kVp/100 mA, all levels of DLIR at 
100 kVp/100 mA, ASIR-V 50% and all levels of DLIR at 
80 kVp/100 mA, and all levels of ASIR-V and DLIR at 120 
kVp/100 mA and 100 kVp/200 mA. As the radiation dose 
decreased, the artifacts tended to increase, but ASIR-V rather 
than FBP and DLIR rather than ASIR-V could complement 
the artifacts better. As for the sharpness, the highest score 
of 5 was given for the reference image, and when ASIR-V or 
DLIR was used other than FBP, and when a higher level of 
ASIR-V or DLIR was used, the grade lowered. Nevertheless, 
the overall diagnostic acceptability of the reference image 
was comparable with those of DLIR images obtained at 120 
kVp/100 mA, 100 kVp/200 mA, or 80 kVp/200 mA, espe-
cially for medium-level strength. Also, in overall diagnostic 
acceptability, if the images were taken at the same radiation 
dose, FBP, ASIR-V, and DLIR were scored in a higher and 
higher order. Detailed subjective image quality values are 
summarized in Table 3 (Fig. 2 and Fig. 3).

Objective image quality

Among the quantitative parameters of image quality we 
assessed, the reference image was defined as the image 
acquired at 120 kVp/200 mA with the FBP algorithm only 
for the SSIM index, which was then expressed as a relative 
value. In contrast, the other three parameters were expressed 
as absolute values without a reference image. If the radiation 
dose was equal, the image noise was lowest on DLIR, fol-
lowed by ASIR-V, and then FBP. Furthermore, as the blend-
ing level of ASIR-V and the level of DLIR were increased, 
the tendency for decreasing image noise was evident. Relat-
edly, CNR tended to increase more and more with the use 
of ASIR-V and DLIR, or with higher levels of ASIR-V and 
DLIR. Interestingly, the blur metrics value was lowest in the 
images reconstructed with the FBP images, and increased in 
ASIR-V or DLIR algorithms, indicating that the FBP algo-
rithm resulted in the sharpest images and the ASIR-V and 
DLIR algorithms resulted in the blurrier images. Addition-
ally, if the DLIR or ASIR-V was used for image reconstruc-
tion, the blur metrics increased as the intensity level lowered. 
The SSIM representing image quality was improved when 
using a higher radiation dose, higher level of ASIR-V, or 
higher level of DLIR. In addition, the difference in the SSIM 
values of images acquired with ASIR-V 50% and DLIR-L 
was the smallest among the various image sets. The lowest 
SSIM index was observed for FBP at all dose levels. All of 
the detailed objective image quality values are displayed in 
Supplementary Table 1 and Fig. 4 and there was a statisti-
cally significant difference between the measured values.

Discussion

In our study, a newly introduced DLIR algorithm yielded 
lower image noise, higher CNRs, and higher overall image 
quality, both subjectively and objectively. In addition, in 
quantitative analysis, the image sharpness of the DLIR 
images was better than those generated by ASIR-V or even 
FBP. Thus, we could conclude that the DLIR algorithm can 
provide a better image quality, much better than FBP and 
even better than ASIR-V, while reducing radiation dose.

The noise was remarkably reduced in our phantom study 
when using the DLIR algorithm. The DLIR algorithm True-
Fidelity™ was designed to differentiate signal from noise in 
order to reduce reconstructed image noise without changing 
its texture [11]. Our study also revealed that DLIR had better 
noise reduction performance than FBP and ASIR-V, and a 
progressive reduction in image noise was seen as the DLIR 
strength increased. In addition, higher CNR was observed 
with the DLIR algorithm than with FBP and ASIR-V as 
well, which was related to the noise reduction, and the CNR 
increased as the DLIR strength increased. Many previous 

Table 2  Scan voltage, current, and radiation dose for each dataset

Units are mGy for CTDIvol. CTDI CT dose index. Bold indicates the 
value of the reference image

Current (mA) Voltage (kV)

80 100 120

CTDIvol CTDIvol CTDIvol

60 1.5 2.78 4.35
100 2.5 4.63 7.25
200 4.99 9.25 14.49
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studies reported that ASIR-V could reduce the noise that 
is a critical issue in dose reduction, and this advantage of 
ASIR-V has been acknowledged until now [3, 6, 20, 25, 26]. 
Interestingly, in our study, although the objectively assessed 
noise in the images with middle- or high-level DLIR was 
lower than that obtained with ASIR-V 50%, the subjectively 
assessed noise was lower even in the images with low-level 
DLIR as compared to those with ASIR-V 50%. This slight 
difference might be because the quantitative value of noise, 
which is evaluated only by the SI of HU, has limitations in 
accurately representing other characteristics such as texture 
[27]. However, it should be noted that the image noise of the 
DLIR algorithm has a certain improving tendency over FBP 
and even over ASIR-V.

Blur metrics was initially proposed in 1997 and has 
been applied to control and quantify the image sharpness 
by assessing the blur effect of the edge [28–31]. The trade-
off relationship between noise and sharpness is one of the 
weaknesses of IR-based image reconstruction methods [7, 
20]. As the number of iterations increases, the noise disap-
pears, but the image sharpness also decreases. In quantitative 
and quantitative analyses using blur metrics in our study, 
the image sharpness degraded when using not only DLIR 

algorithm rather than FBP but also higher levels of DLIR. 
The degradation of image sharpness resulting in a blotchy 
appearance of the solid organs could compromise the diag-
nostic accuracy if it caused a well-defined lesion to appear 
less well-defined. Such degradation can make it difficult to 
differentiate a small hepatic cyst from metastasis in abdomi-
nal CT interpretation for radiologists and had been regarded 
as an important drawback of ASIR [32–34]. At the begin-
ning of this study, we expected that DLIR has a great advan-
tage in improving the noise and sharpness simultaneously, 
which was regarded to be the weakest point of ASIR-V in 
terms of image sharpness. In addition, there was a previous 
study by Nakamura et al. [35] which reported that DLIR 
improved the quality of abdominal CT images for the evalu-
ation of hypovascular hepatic metastases, as compared with 
hybrid IR. However, it should be noted that in the subjective 
and objective analyses in our study, the images became more 
blurred in either ASIR-V or DLIR than in FBP. As it is not 
possible to compare the blending percentage of ASIR-V and 
the mode of DLIR in one-to-one matching, it would be dif-
ficult to say which of the two, ASIR-V and DLIR, has more 
weakness in terms of the sharpness. However, despite these 
tough comparisons, considering other evaluated parameters 

Table 3  Qualitative analysis of image quality of CT images

FBP filtered back projection, ASIR-V adaptive statistical iterative reconstruction V, DLIR-L low-level deep learning imaging reconstruction, 
DLIR-M medium-level deep learning image reconstruction, DLIR-H high-level deep learning imaging reconstruction. Bold indicates the value of 
the reference image

Parameters Sharpness Noise Artifact Overall diagnostic 
acceptability

Current Scan Voltage 80 100 120 80 100 120 80 100 120 80 100 120

(kVp) (kVp) (kVp) (kVp)

60 mA FBP 2 2 3 1 1 2 1 1 2 1 1 2
ASIR-V 30% 2 2 3 1 1 2 1 1 2 1 1 2
ASIR-V 50% 1 1 2 1 2 3 1 2 2 1 1 1
DLIR-L 2 2 3 1 2 2 1 2 3 1 2 3
DLIR-M 2 2 2 2 2 3 2 2 3 2 2 3
DLIR-H 1 1 2 3 3 4 2 3 3 1 1 2

100 mA FBP 3 3 4 1 2 2 2 1 2 1 1 3
ASIR-V 30% 3 2 4 1 2 3 2 2 2 1 2 3
ASIR-V 50% 2 1 3 2 2 3 2 2 3 1 1 2
DLIR-L 2 2 3 2 3 3 2 2 3 2 2 4
DLIR-M 2 2 3 3 3 4 3 3 3 2 3 4
DLIR-H 2 1 2 3 4 5 3 3 3 2 2 3

200 mA FBP 3 3 5 2 2 3 3 3 3 2 2 4
ASIR-V 30% 3 3 4 2 3 4 3 3 3 2 3 4
ASIR-V 50% 3 3 3 3 4 5 3 3 3 2 3 4
DLIR-L 2 2 3 3 4 4 3 3 3 3 4 5
DLIR-M 2 2 3 3 5 5 3 3 3 4 4 5
DLIR-H 2 2 2 4 5 5 3 3 3 3 3 4

p value  < 0.0001  < 0.0001 0.0004  < 0.0001
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especially subjective overall diagnostic acceptability and 
objective SSIM index, we expect DLIR to be a better alter-
native in real clinical practice. We assume that there might 
be interfering factors due to other parameters that are insepa-
rable in the visual assessment such as noise, texture, and 
artifacts. To the best of our knowledge, although there have 
been few attempts to assess the CT image sharpness objec-
tively so far [36–38], further studies are needed to apply 
these values to actual clinical imaging.

Several studies have evaluated the image quality of CT 
with DLIR algorithm by assessing various indicators includ-
ing the noise, CNR, artifacts, spatial resolution, and diag-
nostic acceptability of CT images [10, 12–15, 39]. Although 
a few studies tried to assess the overall image quality quan-
titatively [22, 40, 41], to the best of our knowledge, there 
has been no study evaluating the overall image quality rep-
resented by objective indices in terms of abdominal CT or 

DLIR algorithm yet. In our study, we focused on the clini-
cally relevant application of SSIM, which is a numerical 
indicator for perceived image quality, in clinically avail-
able CT reconstruction techniques. Interestingly, all of the 
reported SSIM indices in our study were relatively high 
(> 0.99 on a scale from 0 to 1) even for low-dose scanning. 
Although it was a very small absolute difference, there was 
a certain directionality to the SSIM index, and considering 
the previous literature [22, 41], such a small difference in 
SSIM index might be regarded as a clinically relevant differ-
ence. Based on the overall image quality results in our study, 
when DLIR is used, the tube current should be set at 200 mA 
to lower the scan voltage to 100kVp or less, and the scan 
voltage should be set at 120kVp to lower the tube current 
to 100 mA, to obtain images of considerable quality com-
pared to that of a full-dose scan. However, since our study 
did not evaluate the tube current and scan voltage at tight 

Fig. 2  Axial abdominal CT 
images acquired with scanning 
parameters of 100 kVp/100 mA 
using different reconstruction 
algorithms: a filtered back pro-
jection (FBP), b adaptive statis-
tical iterative reconstruction V 
(ASIR-V) 30%, c ASIR-V 50%, 
d low-level deep learning image 
reconstruction (DLIR-L), e 
medium-level DLIR (DLIR-M), 
and f high-level DLIR (DLIR-
H). The assessed score of 
qualitative overall image quality 
was highest at 4 for images 
reconstructed with the medium-
strength DLIR algorithms. The 
overall image quality scores 
were 2, 2, 2, 3, 4, and 3 for the 
reconstruction algorithms of 
FBP, ASIR-V 30%, ASIR-V 
50%, DLIR-L, DLIR-M, and 
DLIR-H, respectively

a

c

e

b

d

f
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intervals, further study is needed. Furthermore, considering 
all evaluated parameters, medium strength is considered to 
produce images of best quality among the three different 
DLIR strength levels.

Our study has several potential limitations. First, our body 
phantom was simplified anatomically to mimic a real human 
body, and there might be a significant difference from actual 
body imaging, in which most are enhanced with contrast 

administration. Further human studies of abdominal CT with 
contrast enhancement will be needed in the future. Second, 
our study used a single scanner, so the question remains 
whether our results will be implemented in the same way 
on other scanners. Third, we did not perform an analysis of 
the contrast and spatial resolution, which should be done. 
Fourth, we had only one body phantom that mimicked a real 
human body and could not perform the same evaluation by 

a

b

Fig. 3  Line graphs representing objective image quality according 
to different image reconstruction algorithms with different radiation 
doses. When the deep learning image reconstruction (DLIR) was 
used for image reconstruction and as the DLIR strength increases, (a) 
the noise (measured CT number standard deviation) illustrated a pro-
gressive reduction, (b) the contrast-to-noise ratio was progressively 

increased, (c) the sharpness (measured by blur metrics) was improved 
when using DLIR rather than filtered back projection (FBP), but pro-
gressively worsened as the DLIR strength increased, and (d) the over-
all image quality (represented by structural similarity) was progres-
sively improved. ASIR-V adaptive statistical iterative reconstruction V
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using a different-sized phantom or real human body. Fifth, a 
bias may have been involved because the observers reviewed 
the reference standard image first, and then reviewed the 
quality of other images based on this. Finally, since blur 
metrics have not been evaluated in radiologic images so far, 
it is necessary to verify how well they are applied in actual 
clinical images, rather than for engineering.

In conclusion, new DLIR algorithms reduced noise and 
artifacts and improved overall image quality, compared to 
FBP and hybrid IR. Despite reduced image sharpness in CT 
images of DLIR algorithms, low-dose CT with DLIR seems 
to have an overall greater potential for dose optimization.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00330- 021- 08459-8.
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