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Abstract –Human Activity Recognition (HAR) is an important field with diverse applications. However, video-based HAR is challenging 
because of various factors, such as noise, multiple people, and obscured body parts. Moreover, it is difficult to identify similar activities 
within and across classes. This study presents a novel approach that utilizes body region relationships as features and a two-level 
hierarchical model for classification to address these challenges. The proposed system uses a Hidden Markov Model (HMM) at the 
first level to model human activity, and similar activities are then grouped and classified using a Support Vector Machine (SVM) at 
the second level. The performance of the proposed system was evaluated on four datasets, with superior results observed for the KTH 
and Basic Kitchen Activity (BKA) datasets. Promising results were obtained for the HMDB-51 and UCF101 datasets. Improvements of 
25%, 25%, 4%, 22%, 24%, and 30% in accuracy, recall, specificity, Precision, F1-score, and MCC, respectively, are achieved for the KTH 
dataset. On the BKA dataset, the second level of the system shows improvements of 8.6%, 8.6%, 0.85%, 8.2%, 8.4%, and 9.5% for the 
same metrics compared to the first level. These findings demonstrate the potential of the proposed two-level hierarchical system for 
human activity recognition applications.

Keywords: Human Activity Recognition(HAR);Hierarchical Model, Hidden Markov Model(HMM); Support Vector Machine(SVM)

1.  INTRODUCTION

Human activity recognition using video signals is a 
rapidly evolving field with applications in various do-
mains, such as surveillance systems [1], human-com-
puter interaction, and healthcare monitoring [2]. The 
ability to automatically analyze and understand hu-
man activities from video data has significant implica-
tions for improving safety, enhancing user experienc-
es, and enabling intelligent systems [3]. In this study, 
we present a comprehensive approach for human ac-
tivity recognition that leverages spatial-temporal fea-
tures and a two-level hierarchical method, integrating 
hidden Markov models (HMM) [4] and support vector 
machines (SVM) to achieve accurate and robust activ-
ity classification.

Our research aims to develop a practical framework 
that captures the dynamic nature of human activities 
by extracting meaningful features from video frames 
and modeling the temporal dependencies between 
different activity states. We employ a step-by-step pro-
cess from extracting spatial-temporal features to the fi-
nal classification of human activities to accomplish this.

The first step in our approach involves extracting spa-
tial-temporal features from the video frames. Recogniz-
ing that human appearance and motion play crucial 
roles in activity recognition, we begin by identifying 
humans in each frame using the method proposed in 
[5]. This technique combines a support vector machine 
(SVM) classifier and a histogram of oriented gradients 
(HOG) features to detect human regions accurately. 
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The SVM classifier effectively learns the decision 
boundaries between human and non-human regions, 
while the HOG features capture local shape and ap-
pearance information. By leveraging these techniques, 
we can robustly identify humans in the video frames, 
forming the basis for subsequent analysis.

To capture the spatial characteristics of human ac-
tivities, we further divide the human region into six seg-
ments: the head region, the torso region, and the lower 
body part, as shown in  Figure 3. This segmentation al-
lows us to focus on specific body regions and extract 
region-specific features. For each body region, we com-
pute the histogram of optical flow, which captures the 
motion information between consecutive video frames. 
The correlation between the histograms of optical flow 
for different body regions is then calculated, encoding 
the relationships and coordinated movements between 
these regions. This correlation-based approach results 
in a comprehensive feature vector that effectively rep-
resents the spatial interactions within the human body.

In addition to the spatial features, we recognize that 
temporal dynamics are essential for accurate activity 
recognition. We adopt a two-level hierarchical method 
to model and classify human activities accurately. In the 
first level, we employ hidden Markov models (HMMs) 
to capture the temporal dependencies and transitions 
between different activity states. HMMs are widely 
used in activity recognition tasks because they model 
sequential data well. HMMs can capture the underlying 
dynamics and temporal patterns by representing ac-
tivities as a sequence of hidden states. In our approach, 
we train HMMs on labeled training sequences, allowing 
them to learn the emission and transition probabilities. 
We use these probabilities to recognize unseen activi-
ties in test sequences, as shown in Figure 1.

From the confusion matrix obtained through the 
HMM classification, similar activities are grouped based 
on their patterns and transitions. This grouping en-
hances the discriminability of the activity classes and 
provides a foundation for the second level of our hier-
archical approach.

In the second level, as shown in Figure 2, we employ 
support vector machines (SVMs) for activity classifica-
tion. SVMs are well-established supervised learning al-
gorithms known for handling high-dimensional feature 
vectors and effectively separating data into different 
classes. The grouped activities from the first level serve 
as input to the SVM, allowing it to learn the discrimina-
tive patterns and decision boundaries between differ-
ent activity classes. Training the SVM on the grouped 
activities can make fine-grained distinctions between 
similar activities and generalize well to unseen data. 
The SVM classification stage serves as a refinement 
step, further improving the accuracy and robustness of 
activity recognition.

To evaluate the effectiveness of our approach, we 
conducted extensive experiments on benchmark data-

sets in human activity recognition. We compared the 
performance of our framework against state-of-the-art 
methods, including those based on deep learning ap-
proaches. The results demonstrate that our approach 
achieves competitive or superior performance in terms 
of accuracy, robustness, and computational efficiency. 

The key contribution of the proposed work are:

1. Two-level Hierarchical Structure: The paper intro-
duces a novel hierarchical model to enhance sys-
tem accuracy in human activity recognition, par-
ticularly in video-based scenarios.

2. Body Part Relationships: The research explores and 
leverages the interconnections among various 
body parts, enriching the feature set and leading 
to better recognition and classification of human 
activities.

The following is a general breakdown of the struc-
ture of this paper: Section 2 presents the methodology. 
Each component of the proposed system was elaborat-
ed from human detection in the video frame through 
activity modelling. The training of level one using HMM 
and level two using SVM is also described. The experi-
ment and results analysis are described in Section 3. 
Finally, Section 4 concludes the study.

Fig. 1. Level 1, where activities are recognized 
based on HMM models

Fig. 2. At level 2, we group activities based on 
the confusion matrix of level 1 and use SVM as a 

classifier
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Fig. 3. The Region of Interest (ROI) in a video frame

1.1. RElATED WORK

Human activity recognition (HAR) using video sig-
nals is a rapidly evolving field, with numerous studies 
proposing innovative approaches and methodologies. 
This literature survey reviews influential works in this 
area, focusing on different aspects of human activity 
recognition.

In early research, spatial-temporal features played a 
significant role in human activity recognition, and re-
searchers have explored various techniques to lever-
age these features effectively. In [6], which highlighted 
the inadequacy of direct 3D counterparts to commonly 
used 2D interest point detectors and proposed an al-
ternative approach. In [7], the researcher presented a 
novel methodology that utilized local features to over-
come the limitations of previous approaches of not 
detecting and localization of non-periodic activities. In 
[8], dense trajectories as features are used to enhance 
recognition accuracy. In [9], the authors proposed a 
novel method that uses local spatiotemporal color-
depth information to enhance the robustness and ac-
curacy of human action recognition in RGB-D videos. 
[10] proposed a sensing model capturing discrimina-
tive spatio-temporal features of human motion. In [11], 
they introduced a new paradigm for recognizing ag-
gressive human behaviors, such as boxing action, us-
ing a fusion of Spatio Temporal Interest Point (STIP) and 
Histogram of Oriented Gradient (HoG) features. In [12], 
it aimed to improve the efficiency of optical flow fea-
ture extraction and explored spatio-temporal feature 
fusion methods.

To improve the recognition of human activities in 
real-world scenarios, researchers have proposed hier-
archical models to address the challenges of activity 
recognition. In [13], the authors introduced the switch-
ing hidden semi-Markov model (S-HSMM). In [14], the 
authors applied the hierarchical hidden Markov model 
(HHMM) to capture the hierarchical nature of activities. 
In   [15], they focused on detecting unstructured human 
activities in unstructured environments. In [16], au-

thors proposed a spectral divisive clustering algorithm 
to extract hierarchies from tracklets. In [17], researchers 
developed a hierarchical sequence summarization ap-
proach for multi-temporal feature representations. In 
[18], deep hybrid models and active learning are com-
bined in a continuous activity learning framework. [19] 
addressed group activity recognition with deep LSTM 
and 2-stage temporal models. 

Recent advancements in HAR include the Progres-
sive Skeleton-to-sensor Knowledge Distillation (PSKD) 
model [20] for wearable sensor-based HAR using 
smartwatch accelerometer data. In [21], the authors 
developed a methodology for automatic accident de-
tection in surveillance videos to enhance safety and 
security systems. In [22], authors provided a compre-
hensive summary of deep neural network architectures 
in HAR, particularly convolutional neural networks 
(CNNs), offering insights into their advancements and 
applications.

Addressing key challenges in HAR, [23] introduced a 
rank-based fuzzy approach to capture transitional re-
lationships between postures in temporal sequences. 
In [24], they introduced keypoint-MoSeq, an unsuper-
vised machine-learning platform for identifying behav-
ioral modules from keypoint data. In [25], the authors 
proposed SparseFormer, a method inspired by human 
sparse visual recognition, which focuses on key visual 
elements. 

In conclusion, human activity recognition has wit-
nessed significant advancements through exploring 
spatial-temporal features and hierarchical models. 
Recent research has addressed vital challenges and 
introduced innovative approaches for improved recog-
nition, accuracy, and understanding of human actions. 
The integration of wearable sensors, deep neural net-
works, and human expertise shows promising direc-
tions for future research in this field.

2. METHODOlOgy

The initial steps in the proposed HAR approach involve 
pre-processing the video data and segmenting the re-
gion where the action occurs. Next, human detection 
is accomplished using HOG features calculated using 
Equation 1 and SVM as a classifier. We identify an active 
region by drawing a bounding box around the detected 
human in the frame, as shown in Figure 3. We subse-
quently partition the active region into six sub-blocks 
organized in a 3×2 grid, as depicted in Figure 3, and 
features are extracted from each sub-block. Feature ex-
traction focuses on identifying the connection between 
a pixel and its surrounding pixels in space and time. We 
achieve this by computing the relative motion between 
the pixels and the Optical Flow (OF) for each pixel.

(1)
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2.1. OPTICAl FlOW

To extract features, a rectangular Region of Interest 
(ROI) is defined by a bounding box, which is further 
subdivided into two columns and three rows, as 
depicted in Figure 3. The Optical Flow (OF) is computed 
for each subblock using the Lucas-Kanade method 
[26], as illustrated in Figure 4. This method is robust 
to changes in lighting and background clutter and 
is computationally efficient. According to the Lucas-
Kanade technique, the displacement of the visual 
content between subsequent frames in the vicinity 
of point p is low and roughly constant; thus, all pixels 
within a window with a center of p are expected to 
follow the OF equation, as given in Equation 2.

(a) (d) (e) (f )(c)(b)

Fig. 4. Optical flow of person who carries out the 
subsequent action a) Boxing b) Hand Waving  

c) Jogging d) Running e) Walking f ) Hand Clapping

(2)

where Ix (qi), Iy (qi), It (qi) are the partial derivatives of 
image I with respect to x, y, and t, respectively, evaluated 
at pixel q_i, (Vx, Vy) is the local image flow vector and q1, 
q2,…qn represent the pixels inside the window. 

Equation 2 can be expressed in matrix form Av=b, as 
shown in equation 3.

(3)

We obtain the solution to equation 3 using the least-
square method.

where, v is a 2×1 dimension vector. The magnitude 
and phase components of v are given by Equation 5.

(4)

(5)

where the components of v represent the velocities in x 
and y directions. From Equation 5, the optical flow his-
tograms were calculated for each body segment using 
computer-vision techniques. Optical flow represents 
the motion of pixels between consecutive frames of a 
video, and the histogram summarizes the distribution 
of this motion in different directions and magnitudes. 
The algorithm can capture distinctive motion patterns 
associated with various human activities by calculating 
the optical flow histograms for each body segment. Af-
ter calculating the histogram for all blocks in the ROI 
of a frame, they are concatenated to form a complete 
feature vector of size 1×54 for the video frame.

2.2. FEATURES BASED ON BODy PART 
INTERACTIONS

The proposed approach employs an autocorrelation 
strategy to capture the relationship and interaction be-
tween various body parts. The optical flow histograms 
for each body segment were cross-correlated with the 
histograms for all the other body segments to measure 
the similarity of their motion patterns. The resulting 
correlation matrix represents the inter-segment rela-
tionships and is used to build a hierarchical model that 
captures the overall structure of the human body and 
the relationships between its parts.

Cross-correlation was utilized to create feature vectors 
that link the six sub-blocks computed histograms. In 
addition, the cross-correlation determines the similari-
ties between two series based on their separation from 
one another. Equation 6 defines the cross-correlation 
function for the two histograms x[k] and y[k], which 
correspond to the two body regions.

(6)

where the value of k is -∞≤k≤∞. At k=0, Rxy=Ryx. The 
cross-correlation between one sub-block histogram 
and the remaining five sub-block histograms was 
calculated at k=0 to determine the similarity of each 
sub-histogram block to one another. The results are 
stored in a 1×6 vector. An identical approach was used 
for the remaining sub-blocks. A 1×6 vector is extracted 
from each sub-block, and this vector is combined with 
other vectors to form a 1×36 vector, which represents 
the feature vector of a single frame. The entire feature 
vector for a video sequence is created by applying 
this procedure to each video sequence frame and 
concatenating them. Once the feature vectors for all 
videos in a dataset are obtained, they are used to train 
the two-level proposed hierarchical model for HAR. In 
level one, each human activity is modelled using HMM. 
These feature vectors are used to train the HMM for 
each activity.
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2.3. lEVEl ONE OF THE PROPOSED 
 HIERARCHICAl MODEl

The proposed system utilizes the HMM to model each 
human action in the dataset at level one, as shown in 
Fig. 1. HMMs are generative probabilistic models that 
are used to generate hidden states based on observ-
able data [26].  

The proposed system employed an HMM in two 
stages. In the first stage, known as the training stage, 
each human activity is modelled by learning the model 
parameters λ=(A,B,π) from the training data such that 
P(O|λ), the probability of the observation sequence 
O=O1, O2…OT given the model λ, is maximized. The pa-
rameters of the HMM were A,B,π, where A represents 
the state transition probability matrix, B represents the 
observation symbol probability matrix, and π repre-
sents the initial state. The feature vectors derived from 
the video sequence frames create an observation se-
quence O.

In the second stage, referred to as the classification 
stage, the model that best captures the activity class for 
a particular observation sequence O=O1, O2…OT is chosen. 
We calculate the probability of the observation sequence 
given the activity model λ, denoted as P(O|λ). An activity 
model that maximizes the probability P(O|λ)is selected.

Equation 7 illustrates the P(O|λ) by adding the joint 
probabilities of all conceivable state sequences, q.

(7)

where, q1,q2…qN represents the N number of states, 
where qi represents the state at time step i, aqi qj  repre-
sents the probability of transition from state qi to state 
qj, and bqj

 (Ok ) represents the probability of observing 
the symbol (Ok ) in state qj.

HMM uses a Gaussian Mixture Model(GMM) to iden-
tify human behavior in the proposed system. The GMM 
models the probability distribution of features extract-
ed from video frames that capture human action, as 
shown in Equation 8, as a combination of M Gaussian 
distribution.

(8)

Where O denotes the observation being modeled, 
cjm represents the mixture weight for the mth mixture in 
state j, and 𝔑 indicates the Gaussian density with the 
mean and covariance matrices μjm and Ujm associated 
with state j and the mth mixture, respectively. Equation 
9 represents the constraint to be satisfied by mixing the 
weights, cjm.

(9)

After extracting feature vectors from all video signals 
in the dataset, human activities were modelled using 
the HMM. We evaluated the HMM models using the test 
signals to generate a confusion matrix. Finally, based 
on the confusion matrix, we clustered similar human 
activities in the first level. We provided them as input 
to the second level, where we used SVM as a classifier.

2.4. lEVEl TWO OF THE PROPOSED 
 HIERARCHICAl MODEl

Based on the output from level one, activities are 
now grouped together using the confusion matrix for 
level one. The confusion matrix helps us understand 
the performance of the classification model by show-
ing the number of correct and incorrect predictions for 
each activity. By analyzing this matrix, we can identify 
patterns and similarities between activities, allowing us 
to group them based on their classification results. This 
grouping will help us gain better insights and improve 
the accuracy of our classification process. At level two, 
the activities inside the group Gi, created after the first 
level, were classified using the SVM classifier, as shown 
in Figure 2. The SVM creates a hyperplane to classify 
data. It seeks to identify the appropriate hyperplane for 
classifying the data into distinct groups. We selected 
the hyperplane to have the largest possible distance 
between it and the nearest data points for each class. 
The data points closest to the hyperplane, also known as 
the maximum margin hyperplane, are called the support 
vectors. The given training set  consists of n data points 
of the form (x̄1, ȳ1),⋯,(x̄n, ȳn), where x̄i ∈ Rp, p- dimensional 
input feature vector, and ȳi is the target label for a binary 
classifier with values, {1,-1} are used for training the SVM. 
The values of ȳi, show the class to which point x̄i belongs 
to. The SVM algorithm searches for the maximum-mar-
gin hyperplane that separates the data points belonging 
to the class, ȳl=1 from ȳl=-1. The hyperplane constraint, 
which requires data to be on the proper side of the 
margin, is represented by Equation 10.

(10)

where b represents the offset of the hyperplane from 
the origin, and vector w depicts the orientation of 
the hyperplane. We can formulate the optimization 
problem as shown in Equation 11.

(11)

The classifier is determined by the w and b that solve 
the problem xyields⟶ sgn(w⋅x-b).

Let R={R1, R2,⋯,RP } be the P numbers of rows from the 
confusion matrix and let G={G1, G2,⋯,GQ } be the set of ele-
ments, where each element Gi is a set of similar activities. 
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Once we group identical activities from the output of 
the first level, we use the multi-class SVM, which is a 
collection of binary classifiers that distinguish between 
one of the classes and all the others (one-versus-all) or 
between every pair of classes (one-versus-one) to clas-
sify activities within each element Gi from the set G.

3. ExPERIMENTAl SETUP AND RESUlT ANAlySIS

Four datasets were used to evaluate the proposed 
method: KTH [27], SFB588 Basic Kitchen Activity (BKA) 
[28], HMDB-51 [29], and UCF101 [30]. This section pres-
ents the results and findings of our Human Activity Rec-
ognition (HAR) study. We analyze the performance of 
our proposed model through the following subtopics:

1. Feature Extraction and Cross-Validation: We discuss 
the feature extraction process and the robust cross-
validation techniques to ensure reliable results.

2. Selection of HMM Parameters: We discuss the 
empirical section of the number of states and the 
number of Gaussian mixers used in GMM  for mod-
eling the activities.

3. Confusion Matrix from Level 1 and Level 2: We pres-
ent and interpret the confusion matrices from Lev-
el 1 and Level 2 classifications, revealing improved 
prediction accuracy.

4. Effect of Feature Length on the Model: We discuss 
how varying feature lengths influence the model's 
accuracy and efficiency.

5. Comparison with Previous Work: Our model is com-
prehensively compared with existing approaches, 
showcasing advancements and improvements.

6. Evaluation on Real-World Video-Based Dataset: We 
assess our model's real-world applicability and per-
formance using video-based data, offering valu-
able insights for practical implementation.

7. Statistical Analysis: Key metrics, including precision 
and recall, are presented for quantitative evaluation.

By thoroughly examining these subtopics, we aim to 
provide a comprehensive understanding of our mod-
el's strengths and limitations, contributing to the ad-
vancement of HAR.

3.1. FEATURE ExTRACTION AND 
  CROSS-VAlIDATION

We extracted features from each frame of the input 
video sequence at 25 fps. Each frame yielded a feature 
vector of size 1×36, which was obtained by concatenat-
ing the extracted features. The feature matrix was cre-
ated by storing features from all videos in the dataset. 
The feature matrix is divided into two parts for training 
and testing the activity model. We trained the HMM 
using the first portion of the feature set, whereas we 
used the second portion for the evaluation and cross-
validation. For k-fold cross-validation, the feature set 
was randomly divided into k equally sized sub-parts.

During each iteration of the k-fold cross-validation, 
one sub-part was reserved as validation data, and the 
remaining k-1 sub-parts were utilized for training. This 
operation was performed k times, using each sub-part 
as validation data precisely once. Finally, the results 
from each k-fold were averaged or combined to esti-
mate the model's performance.

3.2. SElECTION OF HMM PARAMETERS

The first level of the system utilizes the HMM with the 
GMM. HMM represents the activity being performed, 
and GMMs model the probability distribution of the 
features extracted from the video sequence. The pa-
rameters of the HMM with GMM are A, B, π, number 
of states (N), and Gaussians in the mixture model (M). 
An empirical analysis was performed to determine the 
number of states N and Gaussian in the mixture model 
(M) by experimenting with different parameter values 
and evaluating the model's performance. The optimal 
values of N and M are determined by analyzing the sys-
tem's accuracy for various combinations of N and M, as 
shown in Fig. 5.

Fig. 5. Relationship between the accuracy of the 
system and the number of states.

3.3. CONFUSION MATRIx FROM  
 lEVEl 1 AND lEVEl 2 

Fig. 6 shows the confusion matrix from level one 
for the KTH and BKA datasets. In level one, activities 
are modelled using HMM, and then the probability of 
the observation sequence O given the model λ, P(O|λ) 
is calculated. Fig. 7 shows the confusion matrix from 
level two for the KTH and BKA datasets. In Level 2, the 
activities are grouped based on the confusion matrix 
obtained from Level one. For the KTH dataset, from the 
confusion matrix of Level one, as shown in Figure 6 (a), 
the activities related to the upper body's involvement 
were included in group one, and the activities involving 
the lower body were grouped in group two. Each 
group's activities were classified using a multi-class 
SVM at level two.
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(a)

(b)

Fig. 6. Confusion matrix generated by Level 1 
classification (a) KTH Dataset, where A: Boxing, 

B: Handwaving, C: Hand Clapping, D: Walking, E: 
Jogging, F: Running.(b) BKA Dataset, where 1. Chop, 

2. Grate, 3. Mash, 4. Mill, 5. Pour, 6. Roll 7. Saw, 8. 
Slice, 9. Stir, 10. Sweep

(a)

(b)

Fig. 7. Confusion matrix generated by Level 2 
classification. (a) KTH Dataset, where A: Boxing, 
B: Handwaving, C: Hand Clapping, D: Walking, E: 
Jogging, F: Running. (b) BKA Dataset, where 1. 

Chop, 2. Grate, 3. Mash, 4. Mill, 5. Pour, 6. Roll 7. Saw, 
8. Slice, 9. Stir, 10. Sweep

3.4. EFFECT OF FEATURE-lENgTH 
 ON THE PROPOSED MODEl

Features are created by concatenating the features 
obtained from one frame, and the number of frames 
required to generate a feature determines its length. 
The length of the feature vector affected the overall 
effectiveness of the system. Table 1 shows the number 
of frames for the accuracy of the proposed system 
for the KTH dataset. The proposed system's accuracy 
increased with the feature vector's length. The accuracy 
of the proposed method decreases when fewer frames 
are utilized for the feature vector.

Table 1. Relationship between the number of 
frames and the accuracy of the system on the KTH 

dataset

Number of Frames Accuracy
50 87.3
75 91.2
90 95.6

100 98.3

3.5. COMPARISON WITH PREVIOUS WORK

The proposed system was compared with a group 
of previously published studies. The results reveal that 
the proposed approach increases the accuracy rate for 
the KTH dataset by 0.4% compared to [31], as shown 
in Table 2. For the BKA dataset, Table 3 compares the 
proposed method with activity recognition using 
the Histogram of Oriented Optical Flow (HOOF) and 
Histogram of Feature Flow (HoFF) [28]. The accuracy of 
the proposed method is 97.1%.
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Method KTH Dataset
Schuldt [27] 71.72

Liu and Shah [32] 94.16

Bregonzio et al.[33] 94.33

Lin [34] 95.77

Moussa [31] 97.89

Proposed Method 98.3

Table 2. Performance comparison of the proposed 
method and other approaches on the KTH Dataset

Table 3. Comparison between Histogram of Optical 
Flow (HoOF) and Histogram of Feature Flow (HoFF) 

on the BKA Dataset

BKA dataset I  HoOF HoFF 
Unit recog. [27] 96.7 96.6

Proposed Method 97.1

3.6. EVAlUATION OF THE PROPOSED WORK 
 ON REAl-WORlD VIDEO-BASED DATASET

The experimental results obtained for various realis-
tic datasets, namely UCF101 and HMDB-51, are listed 
in Table 4 and Table 5, respectively. The accuracies ob-
tained for UCF101 and HMDB-51 are 84.6% and 69.2%, 
respectively.

Table 4. Performance comparison of the proposed 
method and other approaches on the UCF101 

Dataset

Model Accuracy
3-dimensional (3D) Residual ConvNet [35] 85.9

Multi-region Two-Stream R-CNN [36] 91.1

Optical Flow Guided Feature [37] 96

Two-stream+LSTM [38] 88.6

Proposed Method 84.6

Table 5. Performance comparison of the proposed 
method and other approaches on the HMDB-51 

Dataset

Model Accuracy
Two-stream I3D [39] 80.9

Multi-stream I3D [40] 80.92

TVNet + IDT [41] 72.6

Proposed Method 69.2

3.7. STATISTICAl ANAlySIS  
 OF THE PROPOSED SySTEM

Table 6 presents a statistical analysis of the proposed 
two-level HAR system, which evaluates its performance 
using six metrics: accuracy, recall, specificity, precision, 
F1-score, and Matthews Correlation Coefficient (MCC). 
The first level of the model employed an HMM for 
classification, whereas the second level used an SVM 
for further classification.

The second level of the proposed system significant-
ly outperformed the first level when tested on the KTH 
dataset, with improvements of 25%, 25%, 4%, 22%, 

24%, and 30% in accuracy, recall, specificity, Precision, 
F1-score, and MCC, respectively. On the BKA dataset, 
the second level of the system shows improvements of 
8.6%, 8.6%, 0.85%, 8.2%, 8.4%, and 9.5% for the same 
metrics compared to the first level.

The proposed system exhibits high precision and 
recalls to effectively identify activities and avoid false 
positives and negatives. The F1 score is a widely used 
metric for evaluating the performance of classification 
models because it considers both precision and re-
call. The F1 scores for the KTH and BKA datasets were 
98.33% and 94.67%, respectively, representing increas-
es of 24% and 8.4% compared to the first level. The 
results suggest that the proposed hierarchical system 
improves the classification ability of the system.

Table 6. Performance metrics of Level 1 and Level 2 
classifiers on KTH and BKA datasets.

Performance Metrics 
KTH Dataset Basic Kitchen Activities

level 1 level 2 level 1 level 2 

Accuracy 0.78 0.98 0.87 0.95 

Error 0.21 0.02 0.126 0.05 

Recall 0.79 0.98 0.874 0.95 

Specificity 0.96 0.99 0.99 0.99 

Precision 0.80 0.98 0.89 0.97 

False Positive Rate 0.043 0.003 0.014 0.0056 

F1-score 0.78 0.98 0.87 0.95 

Matthew's Correlation 
Coefficient 0.75 0.98 0.87 0.95 

4. CONClUSION

The proposed system consists of a two-level hierarchi-
cal framework for activity recognition, with the first level 
using HMM to categorize activities and the second using 
SVM for classification. The system can recognize similar 
activities, and experiments on four datasets showed that 
the hierarchical model outperformed the HMM and SVM 
applied separately, resulting in higher accuracy. The num-
ber of frames utilized for modeling affects the system's 
precision, with fewer frames resulting in poorer accuracy. 
The F1 scores for the KTH and BKA datasets were 98.33% 
and 94.67%, respectively, which is 24%and 8.4% rise 
compared to level one. The increase in the F1 score indi-
cates that the proposed model has low false-positive and 
false-negative values, and the system correctly identifies 
the classes. However, the system's performance on data-
sets such as HMDB-51 and UCF101 was lower because of 
factors such as the short video duration, cluttered back-
grounds, multiple people in the frame, and the occlusion 
of body parts. The proposed method relies on hand-craft-
ed features and pre-processing of video signals. Future 
work could explore using deep learning algorithms for 
feature extraction from real-world video signals.
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