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Abstract – In this paper, we investigate the performance enhancement of Multiple Input, Multiple Output, and Non-Orthogonal 
Multiple Access (MIMO-NOMA) wireless communication systems using an Artificial Intelligence (AI) based Q-Learning reinforcement 
learning approach. The primary challenge addressed is the optimization of power allocation in a MIMO-NOMA system, a complex 
task given the non-convex nature of the problem. Our proposed Q-Learning approach adaptively adjusts power allocation strategy 
for proximal and distant users, optimizing the trade-off between various conflicting metrics and significantly improving the system’s 
performance. Compared to traditional power allocation strategies, our approach showed superior performance across three principal 
parameters: spectral efficiency, achievable sum rate, and energy efficiency. Specifically, our methodology achieved approximately a 
140% increase in the achievable sum rate and about 93% improvement in energy efficiency at a transmitted power of 20 dB while 
also enhancing spectral efficiency by approximately 88.6% at 30 dB transmitted Power. These results underscore the potential of 
reinforcement learning techniques, particularly Q-Learning, as practical solutions for complex optimization problems in wireless 
communication systems. Future research may investigate the inclusion of enhanced channel simulations and network limitations 
into the machine learning framework to assess the feasibility and resilience of such intelligent approaches.

Keywords: MIMO-NOMA Networks, Power Allocation Strategies, Optimization of Wireless Communication Systems, Reinforcement 
Learning Techniques, Q-Learning Approach

1.  INTRODUCTION

The exponential proliferation of wireless devices, ac-
companied by a commensurate increase in data gen-
eration, has imposed unparalleled demands on con-
temporary wireless networks. This evolving landscape 
mandates a fundamental paradigmatic shift in the de-
sign and optimization strategies for forthcoming wire-
less communication systems, emphasizing maximizing 
Spectral efficiency (SE)  and Energy Efficiency (EE) [1, 
2]. NOMA has emerged as a seminal technology to ad-
dress these burgeoning challenges. Unlike conventional 
Orthogonal Multiple Access (OMA) schemes, NOMA 
enables the concurrent utilization of identical time-fre-

quency resources by multiple users, thereby substan-
tially augmenting both SE and system connectivity [3, 4].

MIMO-NOMA systems, which integrate MIMO technol-
ogy into NOMA, further enhance system capacity and ef-
ficiencies, providing an advanced solution for next-gen 
wireless networks [5]. Utilizing Spatial Data Multiplexing 
and Signal Diversity techniques, MIMO-NOMA systems 
are capable of realizing considerable improvements in 
data rate and EE. Nevertheless, the augmented complex-
ity of MIMO-NOMA, particularly concerning power alloca-
tion and user grouping strategies, introduces formidable 
challenges that must be meticulously addressed. [6, 7]. 
NOMA offers key advantages like enhanced connectiv-
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ity, reduced latency, and improved QoS, contributing to a 
more efficient wireless network [8, 9]. A salient constraint 
in the field of wireless communications is the stipulation 
that the quantity of user entities must not surpass the 
count of Radio Frequency (RF) Chains. However, NOMA 
overcomes this drawback by allowing various users to uti-
lize the equivalent frequency and time resource, which re-
sults in higher SE and improved quality of service [6]. Fig. 1 
demonstrates the NOMA system scheme [10].

Fig. 1. MIMO-NOMA wireless system scheme [4]

Reinforcement Learning (RL) offers a promising av-
enue for addressing the complexities of optimizing 
MIMO-NOMA systems. RL enables an agent to learn 
optimal strategies through trial-and-error interactions 
with the environment, receiving feedback as rewards 
or punishments. Based on this feedback, the algorithm 
adapts its actions to maximize long-term rewards [11]. 
Q-learning has garnered considerable focus within the 
domain of RL algorithms owing to its straightforward 
implementation and robust performance in addressing 
intricate challenges. [12].

This study contributes significantly to the field of wire-
less communication systems, particularly in the optimi-
zation of MIMO-NOMA systems through these points:

1. We propose an affordable methodology, employ-
ing Q-Learning methodologies to refine power 
management strategies within the MIMO-NOMA 
wireless communication systems framework. By 
applying the Q-learning approach, Our goal is to 
identify the best power allocation policy to maxi-
mize the total data rate while ensuring sufficient 
levels of  EE and SE.

2. We present a detailed system model that articu-
lates the complexities of power allocation within 
the context of MIMO-NOMA, Which provides a sol-
id foundation for understanding the intricacies of 
the problem and the motivation behind employ-
ing Q-learning as a solution.

3. We delve into the Q-learning approach particulari-
ties and demonstrate its application to the power 

allocation challenge in MIMO-NOMA configura-
tions. Our research highlights the capacity of Q-
learning to address complex optimization chal-
lenges in diverse network environments.

4. We validate our proposed approach through ex-
tensive simulations, providing illustrative results 
demonstrating significant improvements in the 
system’s performance compared to traditional 
methods. For example, our methodology achieves 
an approximate 140% increase in the achievable 
sum rate compared to conventional NOMA with 
identical transmitted Power and traditional meth-
ods such as that proposed in [13].

The literature review highlights various studies on 
MIMO-NOMA using RL, such as Q-learning and other 
approaches, pinpoints areas of incomplete under-
standing, assesses methodological approaches, and 
situates our study in the broader field landscape.

This study [14] proposes a novel resource allocation (RA) 
scheme for massive systems of MIMO-NOMA, leveraging 
a deep Q-learning network (DQN) and a neural network, 
which utilizes backpropagation to optimize power man-
agement, user grouping, and beamforming. The authors 
address the significant challenge of downlink RA, aiming 
to enhance the system’s SE while guaranteeing the con-
straint on the performance of the least efficient user. Their 
simulated tests indicate that the suggested approach can 
attain elevated SE for the system, closely mirroring the 
outcomes of comprehensive searches. This potentially im-
pactful approach could lead to more efficient and reliable 
wireless communication networks, although the authors 
acknowledge that further real-world testing is necessary 
to validate these findings.

The study [15] introduces a deep learning methodol-
ogy, SARSA λ, for optimizing uplink random access in 
NOMA-assisted URLLC networks. The algorithm is de-
signed to mitigate decoding inaccuracies in dynamic 
communication setups and tackles issues related to user 
grouping, RA optimization, and instantaneous feedback 
mechanisms. The method reaches convergence within a 
span of 200 episodes and attenuates the extended av-
erage error rate to an order of 10-2. Compared to con-
ventional OMA systems, NOMA-URLLC significantly out-
performs error probability and mean error performance 
over temporal intervals, exhibiting a superiority margin 
of 70%. The application of Deep RL (DRL) yields supe-
rior outcomes compared to both classical and SARSA Q-
Learning, manifesting in enhancements of 37% and 38% 
in average error execution, respectively.

This survey paper [16] explores the role of deep 
learning (DL) methods in overcoming the limitations 
of NOMA, a technology pivotal to 5G and beyond 5 G 
(B5G) development. Despite NOMA’s potential for en-
hancing user connectivity and system efficiency, its 
practical deployment is constrained by an inflexible 
design scheme and disparate signal-processing strate-
gies. However, DL-based NOMA can improve key per-
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formance indicators such as bit-error rate, throughput, 
latency, and RA. This analysis underscores DL’s trans-
formative capacity to address complex communica-
tion challenges and the benefits of its integration with 
emerging technologies. Future research directions 
point towards refining DL algorithms for optimized 
performance, lower latency, and more efficient RA, 
sparking interest in academic and industrial circles.

Reference [17] the use of RL in managing resources 
within wireless communication networks, specifically in 
a single-cell MIMO-NOMA network. The researchers ad-
dress the challenge of optimizing the total sum rate, a 
problem complicated by its non-convex nature. They pro-
pose an innovative solution that integrates joint beam-
forming and power allocation by the use of deep DRL. 
The proposed methodology entails partitioning users 
into two distinct clusters and formulating an algorithm 
designed to augment the cumulative data rate for one 
cluster, while concurrently preserving a minimum thresh-
old rate for the alternate cluster. The authors employ 
DQN and Double DQN-based algorithms to address this 
optimization challenge. Empirical findings validate the ef-
ficacy of the proposed algorithmic framework, resulting 
in marked improvements in the cumulative data through-
put and rapid stabilization to a steady-state equilibrium.

Authors in [12] suggest a new RA scheme for massive 
antenna MIMO-NOMA systems using a multi-agent deep 
Q-network (DQN) algorithm. This approach addresses the 
slow convergence and suboptimal optimization of tradi-
tional algorithms. The researchers create an integrated 
optimization framework for beamforming, power allo-
cation, and user grouping. Various RL networks are used 
to allocate Power smartly and group users to improve 
the system’s overall rate. The RA results are fed back into 
each DQN for iterative optimization. Simulations show 
that multi-agent DQN improves SE. The study focuses on 
optimizing both user grouping and power management 
in massive MIMO-NOMA systems, achieving a balance be-
tween power allocation and user clustering while main-
taining good performance for weaker users.

In [18], the article explores the susceptibility of NOMA 
systems to intelligent interference-based attacks using a 
zero-sum game framework. The base station (BS) deter-
mines the transmission power across several antennas 
as the leader. Conversely, in the follower role, the jam-
mer  A Stackelberg equilibrium is attained within the 
context of the game, considering variables such as the 
impact of numerous antennas and the states of the radio 
channels. An RL-based power control strategy is intro-
duced to enhance communication efficiency against in-
telligent jammers. The hotbooting technique and Dyna 
architecture are used to speed up the Q-learning-based 
power management, maximizing NOMA transmission 
efficiency. Simulations show significant increases in total 
sum rates of data and user utilities compared to the stan-
dard approach. Future work will extend this research to 
practical situations involving smart interference with 
multiple jamming policies.

This paper [19] introduces a unique solution for Ran-
dom Access (RA) optimization in ultra-dense Machine 
Type Communications (MTC), a central use case for 5G 
and beyond. The method employs Q-Learning and 
NOMA, facilitating dynamic RA slot allocation to MTC 
devices and enhancing network throughput significant-
ly compared to existing techniques. The proposed solu-
tion necessitates a minimal increase in complexity on 
the device end and limited feedback from the BS. Simu-
lations show that a larger discount factor results in bet-
ter performance, particularly in many-device scenarios, 
offering faster convergence and improved throughput. 
This method outperforms existing solutions, promising 
substantial gains in network performance.

The paper [20], introduces a deep Q-learning (DQL) 
framework to boost the efficiency of an internal NOMA 
of Visible Light Communication (NOMA-VLC) down-
link network, a crucial component in future wireless 
communication networks. The focus is on joint power 
management and Light Emitting Diode (LED) trans-
mission angle tuning, improving challenge, aiming to 
optimize the average sum rate and EE. Findings sug-
gest that the recommended method substantially en-
hances the efficiency of NOMA-VLC systems, notably 
for increased user counts, requiring less computational 
complexity compared to the “Genetic Algorithm” (GA) 
and “Differential Evolution” (DE) techniques. Moreover, 
the combined optimization of power distribution and 
LED transmission angle gains more effectiveness with 
growing users, surpassing the traditional solely opti-
mal power allocation method.

This paper [21] proposes a deep Q-learning-based RA 
approach for uplink NOMA in a cognitive radio network 
(CRN) to maximize long-term throughput. This work fo-
cuses on secondary users (SUs) with limited battery ca-
pacity, which can extend their operations using energy 
harvested from solar sources. The method combines 
NOMA and “Time Division Multiple Access” (TDMA) to 
reduce system complexity. As an agent, the Secondary 
BS (SBS) aims to optimally allocate transmission energy 
to single users in each time slot through interaction with 
the system environment. Simulation results indicate that 
this approach outperforms conventional schemes, en-
hancing the performance of energy harvesting-powered 
CRNs over extended operations. The proposed method 
offers a solution for systems with large state space and 
action space, presenting the SBS with an optimal power 
allocation policy learned from environmental dynamics.

Subsequent to this introduction, Section 2 expounds 
upon our proposed methodology, delineating the Q-
Learning approach and its applicability in optimizing 
power management within a MIMO-NOMA framework. 
This segment rigorously articulates the problem formu-
lation and its associated mathematical constructs. Sec-
tion 3 depicts an exhaustive compilation of discussions 
and results, substantiating the efficacy of our intended 
scheme in elevating the attainable aggregate data rate, 
EE, and SE. Comparative analyses with conventional 
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power management mechanisms are introduced to 
underscore the merits of integrating Q-learning. In 
Section 4, we synthesize our conclusions and suggest 
avenues for prospective research that could further for-
tify AI techniques’ contribution in optimizing wireless 
communication paradigms. Finally, Section 5 enumer-
ates all the references cited in this manuscript.

2. METHODOLOGY

This section outlines the research methodology, 
which entails the utilization of the Q-Learning algo-
rithm for power assignment within the scheme of a 
MIMO-NOMA system. 

2.1. THE SYSTEM MODEL OF MIMO-NOMA 

In the scrutinized downlink MIMO-NOMA schemes, a 
multi-antenna is installed at the BS to facilitate serve 
for multi-user equipment sharing the same frequency 
and temporal resources. The users are partitioned into 
two distinct categories: proximal and distant, based on 
their distance to the BS. For efficacious allocation of 
transmitted Power, the BS employs a power allocation 
schema that apportions the available Power among 
these two classifications of users. The signals the user 
terminals receive are afflicted by path loss and con-
taminated by “Additive White Gaussian Noise” (AWGN). 
Figure 2 represents the system model under discussion 
of the proposed MIMO-NOMA scheme.

Fig. 2. The system model of the proposed work

2.2. PROBLEM FORMULATION

The intended paradigm seeks to fine-tune the power 
distribution among proximal and distant users within 
the wireless communication infrastructure of the MI-
MO-NOMA system. The overarching goal is to maxi-
mize the attainable aggregate data rate of the system. 
This optimization objective must be realized while con-
currently preserving adequate levels of EE and SE.

Let’s denote the assigned Power for the proximal 
and distant users as a1 and a2, such that a1 + a2 = 1. 
The proximal user also defines the channel gain as g1 
and the distant user as g2. The Power of noise is repre-
sented as no. The achievable rate for the proximal user 
(R1n) and the distant user (R2n) are determined by the 
subsequent formulas of Shannon Capacity [3, 22]:

(1)

(2)

Where pt is the total transmitted power from the BS, 
and log2 represents the base-2 logarithm.

The total sum-rate (Rn) of the system can be calcu-
lated as the sum of R1n and R2n [23]:

(3)

The EE and SE of the system are defined as [13]:

(4)

(5)

where the circuit power is denoted by Pc is, and the band-
width (BW) is represented by BW.

The maximization challenge is thus defined as:

Maximize: Optimize the function involving variables a1, 
a2 given a fixed transmission power pt  while adhering to 
constraints C1, C2.This can be formally expressed as [23]:

(6)

(7)

Where C1 Indicates that the aggregate of the transmit-
ted Power across all user entities must equate to one. a1 
+ a2 =1. C2 guarantees that the allocated power value of 
any user in the system must be a positive value.

The issue delineated in Eq. (6) constitutes a non-
convex optimization quandary, particularly when the 
system encompasses more than two user entities. Un-
der such circumstances, the problem escalates in com-
plexity and becomes intractable through conventional 
optimization techniques. To address this challenge, the 
present study advocates the employment of the Q-
Learning algorithm, a model-free RL methodology, as 
a viable solution strategy.

2.3. Q-LEARNING ALGORITHM

The Q-Learning algorithm serves as a model-free RL 
mechanism devised to address the maximization men-
tioned above challenge. The fundamental premise of 
the Q-Learning paradigm is to cultivate a policy that 
directs an agent in choosing apt actions contingent 
upon particular conditions or scenarios. The Q-learning 
methodology incorporates a Q-table, a data structure 
that retains the projected rewards associated with ex-
ecuting specific actions in defined states. The entries 
within the Q-table undergo iterative modification 
guided by a predetermined update equation [24]:

Where,

•	 Q[s, a] designates the quantified Q-factor cor-
responding to a specific state-action pair (s, a) 
encompassing the aggregated reward accrued 
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through the execution of action (a) within the con-
text of state (s).

•	 The learning coefficient, symbolized as α, stipu-
lates the extent to which newly assimilated data 
supersedes extant information throughout the 
learning trajectory.

•	 The instant reward, annotated as r, constitutes the 
value realized subsequent to the state transition from 
(s) to (s’) facilitated by the enactment of action (a).

•	 The discount coefficient, denoted by y, delineates 
the relative importance or weighting conferred 
upon prospective rewards within the framework of 
the RL procedure.

•	 The expression “max Q[s’, a’]” ignifies the maximal 
projected subsequent reward attainable upon 
transition to the subsequent state (s’), given the 
consideration of all plausible actions (a’). This cor-
responds to the peak Q-value amongst the set of 
feasible actions in the ensuing state.

Our Q-Learning approach in MIMO-NOMA systems 
is based on varying power allocation coefficients, path 
loss exponents, and critical system performance de-
terminants. The reward structure is centered on the 
achievable sum rate, incentivizing the algorithm to 
optimize performance. The Q-Learning framework, a 
model-free RL technique, learns by interacting with the 
MIMO-NOMA system environment and updating the 
Q-table based on the received rewards. This process 
progressively guides future action selection, culminat-
ing in maximizing cumulative reward.

2.4. PERFORMANCE METRICS

The Q-learning performance is evaluated using three 
main measurements: achievable data rate, EE, and SE. 
These metrics help quantify how effectively the algo-
rithm improves the system’s performance.

Achievable Sum Rate: This metric denotes the total 
data rate the MIMO-NOMA scheme can uphold, com-
puted as the sum of individual rates for proximal and 
distant users as per Eq. (3). The main goal is to maxi-
mize this sum rate.

Energy Efficiency (EE): This metric evaluates the 
system’s effectiveness in utilizing energy for data trans-
mission. It is calculated as the ratio of the achievable 
sum rate to the total power expenditure, encompass-
ing both transmit Power and circuit power, as speci-
fied in Equation (4). An elevated EE value indicates the 
system’s capability to sustain a greater data rate while 
maintaining identical power consumption.

Spectral Efficiency (SE): This metric gauges the 
system’s adeptness in capitalizing on the available fre-
quency spectrum for data transmission. Specifically, it 
evaluates the system’s ability to use the allocated BW 
for information conveyance judiciously. It is mathemat-
ically determined as the ratio of the attainable aggre-

gate data rate to the BW, in accordance with Equation 
(5). A superior SE index signifies the system’s proficien-
cy in supporting an elevated data rate while operating 
within identical BW constraints.

These performance indicators are computed for each 
conventional MIMO-NOMA system and the intended 
MIMO-NOMA framework incorporating the Q-Learning 
methodology. The enhancement observed in these 
measurements substantiates the efficacy of the ad-
vanced Q-Learning-driven power allocation schema. 
Algorithm 1, delineated below, furnishes a structured 
procedure for implementing Q-Learning to optimize 
power allocation and the path loss exponent within the 
confines of a MIMO-NOMA system. By systematically se-
lecting actions that elevate the Q-value across multiple 
episodes, the algorithm is poised to identify a policy that 
could potentially augment the system’s performance in 
the domains of achievable data rates, EE, and SE.

Algorithm 1: Q-Learning Optimization for  
MIMO-NOMA System

1. Initialization:
•	 Set the simulation parameters, including distances 

d1, d2, number of users N transmission power pt, 
Bandwidth BW, noise power no, and circuit power pc.

•	 Initialize the Q-learning parameters: learning rate 
α, discount factor γ, exploration rate ϵ, and number 
of episodes for Q-learning nepisodes.

•	 Define the action space as the product of possible 
values for the power allocation coefficient a1 and 
the path loss exponent η.

•	 Initialize the Q-table with zero values.
2. For each episode in nepisodes:
•	 Initialize the cumulative reward to zero.
•	 For each user in N

 - Select an action using the epsilon-greedy policy.
 - Extract the power allocation coefficient a1 and the 

path loss exponent η from the selected action.
 - Compute the channel gains h1, h2 for each user.
 - Calculate the square of the absolute value of the 

channel gain g1, g2.
 - Calculate the achievable sum rate R1, R2 for each 

user and store the mean of the rates.
 - Compute the reward as the mean of the achiev-

able rates.
 - Update the Q-table using the Q-learning update 

rule.
 - Add the reward to the cumulative reward.

•	 Store the cumulative reward for the episode.
3. After all episodes:
•	 Select the optimal action as the one with the maxi-

mal Q-value.
•	 Extract the optimal power allocation coefficient 

a1opt
. and the optimal path loss exponent ηopt. from 

the optimal action.
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Table 1. The simulation system parameters of the 
proposed system

Parameter Description Value(s)

d1 Separation metric among user ‘1’ and BS 200

d2 Separation metric among user ‘2’ and BS 500

N The system’s user count 1000

Pt
Transmission power magnitudes 

expressed in dBm

[-30, -25, -20, 
-15, -10, -5, 0, 
5, 10, 15, 20, 

25, 30]

BW Bandwidth 1 MHz

No
The power  of Noise Magnitude 

Specified in dBm -114 dBm

Pc Circuit consumed Power 100 W

alpha The learning rate of Q-learning 0.5

gamma Discount coefficient of Q-learning 0.95

epsilon The Exploration rate of Q-learning 0.1

episodes Number of Q-learning episodes 1000

etas Path loss exponent (eta) discretized 
values

[2.0, 3.0, 4.0, 5.0, 
6.0]

a1s
Power allocation coefficient (a1) 

discretized values
[0.5, 0.6, 0.7, 0.8, 

0.9]

Original
The conventional NOMA standard from 
reference [13] is used as the benchmark 

for comparing our results.
-

Fig. 3. The achievable data rate parameterized 
corresponding to the Power transmitted

Fig. 4. SNR parameterized as a function 
of Power transmitted

•	 Using the optimal action, calculate the achievable 
rates, energy efficiency, SE, and signal-to-noise ratio.

•	 Plot the results and compare them with the system 
without Q-learning.

3. RESULTS AND DISCUSSION

The ensuing section will elucidate and critically 
evaluate the results garnered from our investigation, 
focusing specifically on the efficacy of the Q-Learning 
paradigm in improving the MIMO-NOMA system. In the 
context of our examination, we make reference to the 
system parameters encapsulated in Table 1, enumer-
ating the values for diverse parameters. We postulate 
that the BS is endowed with flawless Channel State In-
formation (CSI) for all constituents of the user network. 
This assumption signifies that the BS possesses precise 
awareness of the CSI for each user, thereby facilitating 
optimum decision-making and RA paradigms.

Our Q-learning approach for MIMO-NOMA systems 
provides adaptability through learning from system ex-
periences, simplifies complex optimization by learning 
a policy mapping states to actions, and ensures scal-
ability by efficiently handling large action spaces.

3.1. ACHIEVABLE SUM RATE

The inaugural graph delineates the attainable ag-
gregate data rates corresponding to each of the con-
ventional and Q-Learning methodologies, plotted cor-
responding to transmission power. Examination of the 

graphical representation reveals a direct correlation be-
tween the sum rates and transmit Power levels for both 
methods. Notably, the Q-Learning algorithm consis-
tently surpasses the performance metrics of the conven-
tional approach across the entire spectrum of transmis-
sion power magnitudes. This observation substantiates 
the efficacy of the Q-Learning paradigm in the realm 
of power assignment for sum-rate optimization. Figure 
3 elucidates the achievable data rate corresponding to 
varying magnitudes of transmission power; the intend-
ed scheme manifests a convergent augmentation of 
140% in comparison to conventional NOMA techniques 
when evaluated at identical transmitted power levels.

3.2. SIGNAL-TO-NOISE RATIO

The following diagram illustrates the SNR for each con-
ventional and Q-Learning scheme, plotted against trans-
mit Power, assuming perfect CSI for all users. Both plots 
reveal a comparable direct correlation between transmit-
ted Power and SNR, with no significant differences in SNR 
between the methods. Fig. 4 compares the SNR for the 
benchmark and proposed systems, confirming that SNR 
is predominantly contingent upon the transmission pow-
er and channel conditions, variables that remained invari-
ant across both methodologies. This suggests that the 
Q-Learning approach can improve specific performance 
metrics without negatively affecting other metrics.
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Fig. 5. The EE of the proposed scheme in contrast to 
Traditional NOMA

Fig. 6. The SE of the Intended Paradigm in 
Comparison with Conventional NOMA

Fig. 7. The EE Enhancement Attributable to the 
Implementation of the Q-Learning Algorithm

Fig. 8. The Increment in Achievable Sum Rate by 
Adopting the Q-Learning Algorithm

3.3. ENERGY EFFICIENCY

The third chart compares the EE for the conventional 
and Q-Learning methods, with EE plotted against transmit 
Power in Fig. 5. The empirical findings reveal that the Q-
Learning methodology uniformly eclipses the traditional 
approach in the realm of EE, irrespective of the magnitude 
of transmit Power. This suggests that the Q-Learning-
based power management yields higher data rates while 
keeping power consumption constant. Notably, at 20 dB 
of transmission power, the intended Q-Learning method 
outstrips the conventional by an appreciable perfor-
mance differential of approximately 93%. These outcomes 
underscore the advantages of integrating Q-Learning into 
power management, enabling more efficient power utili-
zation while achieving superior data rates. 

3.4. SPECTRAL EFFICIENCY

The next diagram delineates the SE metrics for both 
the benchmark and proposed systems employing the 
Q-Learning algorithm. Figure 6 portrays that the Q-
Learning methodology consistently registers higher 
SE across all levels of transmitted Power. This attests to 
the efficacy of the Q-Learning algorithm in maximizing 
the data-rate within the identical BW allocation, high-
lighting its utility in improving MIMO-NOMA systems. 
Specifically, at a transmit power setting of 30 dB, the SE 
of the proposed Q-Learning framework surpasses that 
of the conventional NOMA approach by an appreciable 
margin of approximately 88.6%.

3.5. IMPROVEMENT WITH Q-LEARNING

Two graphical representations, shown in Figs. 7 
and 8, elucidate the advancements achieved via the 
Q-Learning algorithm. These figures empirically cor-
roborate the pronounced improvements in both per-
formance metrics, juxtaposing the Q-Learning meth-
odology with the conventional approach across a di-
verse range of transmit power levels. The Q-Learning 
algorithm manifests the most salient augmentation in 
EE within the power range of 0 to 20 dB. Concurrently, 
the most notable enhancement in the sum rate is ob-
served within the power spectrum of -5 to 30 dB.

3.6. ACCUMULATED REWARD PER EPISODE

The final figure, denoted as Fig. 9, exhibits the accu-
mulated reward accrued per episode within the con-
text of the Q-Learning methodology. The figure reveals 
an ascending trajectory of rewards as a function of the 
episode count, substantiating that the algorithm is un-
dergoing a learning process and progressively enhanc-
ing its operational performance. The incremental trend 
in the cumulative reward serves as empirical evidence 
of the Q-Learning algorithm’s effectiveness in discern-
ing an optimal power allocation strategy.

To sum up, the intended Q-Learning-based power 
management methodology engenders substantial en-
hancements in the operational execution of the MIMO-
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4. CONCLUSION

In this research, we proposed and meticulously in-
vestigated an AI-based reinforcement Q-Learning ap-
proach for performance optimization in MIMO-NOMA 
wireless communication systems. Our Q-Learning ap-
proach in MIMO-NOMA systems is based on varying 
power allocation coefficients, path loss exponents, and 
key system performance determinants. The reward 
structure is centered on the achievable sum rate, incen-
tivizing the algorithm to optimize performance. The Q-
Learning framework, a model-free RL technique, learns 
by interacting with the MIMO-NOMA system environ-
ment and updating the Q-table based on the received 
rewards. This process progressively guides future ac-
tion selection, culminating in maximizing cumulative 
reward. 

Our results showed a substantial enhancement in the 
achievable sum rate, EE, and SE, compared to tradition-
al MIMO-NOMA systems. We got 140%, 93%, and 88.6% 
higher performance for each previously mentioned 
performance metric, respectively, compared with tradi-
tional NOMA systems; this underscores the capacity of 
our Q-Learning approach to adaptively manage power 
between users, effectively optimizing the trade-off be-
tween these critical system performance metrics.

Based on the successes of this study, future work 
could expand in several potential directions. Investi-
gating other RL methodologies beyond Q-Learning, 
including deep reinforcement learning or policy gradi-
ent techniques, could be compelling in improving the 
performance of MIMO-NOMA systems to a greater ex-
tent. Second, our approach could be applied to more 
complex communication scenarios, including massive 
MIMO systems or cooperative NOMA networks, of-
fering insights into the scalability and adaptability of 

AI-based power allocation. Lastly, with the advent of 
5G and beyond wireless networks, integrating our AI-
based methodology with other emerging technolo-
gies like edge computing or the Internet of Things 
(IoT) could be examined to foster comprehensive and 
efficient solutions for future wireless communication 
systems. Furthermore, The implications of the research 
on practical applications and real-world deployments 
could be explored.
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