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Abstract. In this paper, we formulate a mean-variance portfolio selection problem of
an insurer who manages her underlying risk by purchasing proportional reinsurance and
investing in a financial market consisting of a bank account and a risky asset following
jump-diffusion dynamics with random parameters. We then obtain a time-consistent equi-
librium strategy via a flow of backward stochastic differential equations. Finally, we apply
our results to a mean-reverting Lévy-Ornstein-Uhlenbeck process and obtain closed form
solutions.
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1. Introduction

The classical results on the mean-variance formulation for the portfolio allocation
problem proposed by [9] in 1952 has inspired several extensions. Due to the presence
of a nonlinear expectation, the dynamic mean variance problem is time-inconsistent.
Therefore, it does not satisfy the Bellman principle, that is, optimal control today
may not be optimal tomorrow. Recently, researches on time-consistent problems
of time-inconsistent ones have attracted the attention of many scholars. In [2],
it is studied the dynamic mean-variance portfolio problem and its time-consistent
solution is derived using dynamic programming. In [3], the authors consider a time-
inconsistent problem in a general continuous time framework. They established an
extended Hamilton-Jacobi-Bellman (HJB) equation and the associated verification
theorem (for more details see [15, 4], and references therein).

Otherwise, managing risks is always an important topic for investors and compa-
nies, and reinsurance has proved to be an effective way to control risks for insurers.
Many researchers pay much attention to the investment-reinsurance problems under
the mean-variance criterion. In [22], the authors studied the optimal time-consistent
policies of an investment-reinsurance problem and an investment-only problem un-
der the mean-variance criterion for an insurer. They proved that the two problems
have the same investment policies. This problem was then extended to a jump-
diffusion case by [23]. An optimal investment-reinsurance problem with delay under
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the diffusion framework is considered in [12]. The authors solved the problem via a
maximum principle approach. See e.g. [1, 7].

Most of the works mentioned above considered problems with deterministic pa-
rameters under a Markovian setting. However, for long-term investment problems,
it is important to consider the randomness of parameters, jump fluctuations on
the risky asset price and surplus process, path dependence and memory. This mo-
tivates our approach to consider a mean-variance investment-reinsurance problem
with jumps under a non-Markovian framework.

Recently, [6] considered a general time-inconsistent linear quadratic problem in a
non-Markovian system with random parameters. Through a system of forward back-
ward stochastic differential equations (FBSDEs), the authors derived a necessary
and sufficient condition for equilibrium controls and then presented a mean-variance
portfolio selection problem as a special case. In [16], their mean-variance problem is
extended to incorporate regime-switching. Further, a similar linear quadratic prob-
lem with jumps is considered in [13]. The authors applied their results to solve
a mean-variance portfolio selection problem in a jump-diffusion financial market
with deterministic coefficients. In [18], the authors considered an optimal time-
consistent reinsurance-investment strategy selection problem in a financial market
with a jump-diffusion risky asset solved by the dynamic programming approach. A
similar problem with constant coefficients as in [18] is also considered in [24], but
in this case, the insurer is allowed to purchase combining quota-share and excess of
loss reinsurance for claims. Other references include [20, 19, 21].

In this paper, we model a claim process using a pure jump process and the stock
price using a geometric jump-diffusion process. This model is an extension of [14]
to a jump-diffusion case. Although the presence of jumps and random coefficients
reflects the reality more, they have shown to bring more mathematical difficulties to
the corresponding problem. Following a similar method in [14] and [17], we derive the
equilibrium control strategies for investment and reinsurance via a flow of FBSDEs.
Then we apply our results to a mean-reverting Lévy-Ornstein-Uhlenbeck stochastic
interest rate, where we obtain the corresponding equilibrium strategies by solving
partial integro-differential equations (PIDEs). The results obtained in this paper
can also be viewed as an extension of a mean-variance selection problem considered
in [13] to a more general market model with random parameters.

The rest of the paper is organized as follows: in Section 2, we give a formulation
of the optimal investment-reinsurance problem with jumps and define the time-
consistent equilibrium strategy. In Section 3, we derive an open-loop equilibrium
strategy via a system of FBSDEs and prove the existence and the uniqueness result
of the corresponding BSDEs with jumps. We also state the uniqueness result of the
equilibrium control strategy. In Section 4, we discuss an example with a stochastic
interest rate defined by a mean-reverting Lévy-Ornstein-Uhlenbeck process, which
concludes the paper.

2. Model formulation

Let T > 0 be a finite time horizon representing the investment period and (Ω,F , {Ft},
P) a complete filtered probability space. We define on (Ω,F , {Ft},P) a one dimen-
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sional Brownian motion {W (t), 0 ≤ t ≤ T} and two independent Poisson random
measures N(t, ·) and N0(t, ·) with the corresponding Lévy measures defined by ν(·)
and ν0(·), respectively. The compensated Poisson random measures are given by

Ñ(dt, dζ) := N(dt, dζ)− ν(dζ)dt

and
Ñ0(dt, dζ) := N0(dt, dζ)− ν0(dζ)dt.

Furthermore, we consider the following spaces:

� Lp
Ft
(Ω;R) - the space of Ft-measurable functions ξ : Ω 7→ R, such that

E[ |ξ|p] <∞, where p ≥ 1.

� Hp
F (s, t;R) - the space of F-adapted functions Z : [s, t]× Ω 7→ R such that

E
[∫ t

s

|Z(u)|pdu
]
<∞.

� S2F (Ω;C([s, t]);R) - the space of F-adapted càdlàg processes Y : Ω× [s, t] 7→ R
such that

E[ sup
t∈[0,T ]

|Y (t)|p] <∞.

� Hp
ν,F - the space of predictable processes Υ : Ω× [s, t]× R 7→ R, such that

E
[∫ t

s

∫
R
|Υ(u, z)|pν(dz)du

]
<∞.

Suppose that the insurance risk process is given by

dR(t) = p(t)dt−
∫ ∞

0

ζN0(dt, dζ), (1)

where the premium rate p(t) is Ft-progressively measurable and uniformly bounded
with values in H2

F (s, t;R).
Assume that the insurer receives the premium continuously at the rate c(t) =

(1 + k(t))p(t), where k(t) is a relative security loading of the insurer. We assume
that it is an Ft-adapted process. With no investment and reinsurance strategy, the
surplus process X(t) of the insurer is given by

dX(t) = c(t)dt− dR(t)

= k(t)p(t)dt+

∫ ∞

0

ζN0(dt, dζ). (2)

In order to control the claim risks, we assume that the insurer acquires a new business
by purchasing proportional reinsurance as follows: Let u0(t) ≥ 0 be the retention
level. The insurer pays 100u0(t)% of the claim, while the re-insurer pays the rest,
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i.e., 100(1 − u0(t))% of the claim. Therefore, the insurer should pay (1 + u(t))(1−
u0(t))p(t) to the re-insurer, where u(t) ≥ u0(t) is the reinsurance security loading.

Then, the surplus process of the insurer after purchasing the proportional rein-
surance is given by

dX(t) = (1 + k(t))p(t)dt− (1 + u(t))(1− u0(t))p(t)dt− u0(t)dR(t)

= (k(t)− u(t) + u(t)u0(t))p(t)dt+

∫ ∞

0

ζu0(t)N
0(dt, dζ).

Furthermore, we assume that the insurer can invest its wealth in the financial market
composed by a risk-free asset and a risky share. Suppose that the risk-free asset has
price B(t) defined by

dB(t) = r(t)B(t)dt,

where r(t) is the risk-free interest rate. We assume that the interest rate is contin-
uously bounded and Ft-adapted with values in H2

F (s, t;R). The risky asset S(t) is
defined by the following geometric jump-diffusion process:

dS(t) = S(t)
[
µ(t)dt+ σ(t)dW (t) +

∫
R
γS(t, ζ)Ñ(dt, dζ)

]
, (3)

where µ(t), σ(t) ∈ H2
F (s, t;R), γS(t, ·) ∈ H2

ν,F (s, t;R) are Ft-predictable bounded
processes on the interval t ∈ [0, T ], representing the appreciation rate, volatility and
jump rate, respectively. We also assume that γS(t, ·) is bounded below by −1.

Suppose that the value amount that the insurer invests in the risky asset at time
t is denoted by π(t). The wealth process is then given by

dY (t) = (Y (t)− π(t))
dB(t)

B(t)
+ π(t)

dS(t)

S(t)
+ dX(t)

=
[
r(t)Y (t) + u(t)u0(t)p(t) + (µ(t)− r(t))π(t) + (k(t)− u(t))p(t)

+

∫ ∞

0

ζu0(t)ν
0(dζ)

]
dt+ π(t)σ(t)dW (t) +

∫
R
π(t)γS(t, ζ)Ñ(dt, dζ)

+

∫ ∞

0

ζu0(t)Ñ
0(dt, dζ). (4)

Definition 1. A strategy {(π(t), u0(t))}t∈[0,T ] is said to be admissible if it satisfies
the following conditions:

1. (π(t), u0(t)) ∈ H2
F (0, T ;R)×H2

F (0, T ;R), and

2. The SDE (4) has a unique strong solution Y (t) ∈ H2
F (0, T ;R).

We denote by A a set of all admissible strategies.

We will now formulate the investment-reinsurance mean variance investment
problem without pre-commitment. In order to understand such kind of problems, we
first define the pre-commitment mean variance optimization problem. This problem
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can be described as the maximization over all the admissible strategies (π(·), u0(·))
of the following functional:

J (0, Y (0), π(·), u0(·)) :=
1

2
Var0[Y (T )]− λE0[Y (T )],

where λ is the risk aversion parameter. Here, E0[·], Var0[·] are the expectation and
variance conditioned on the event [Y (0) = y], respectively.

For any given (t, Y (t)), we define the mean-variance cost functional of the insurer
by

J (t, Y (t), π(·), u0(·)) :=
1

2
Vart[Y (T )]− λEt[Y (T )],

where λ > 0.
Our aim is to solve the following minimization problem of an insurer:

J (t, Y (t), π∗(·), u∗0(·)) = inf
(π(·),u0(·))∈A

J (t, Y (t), π(·), u0(·)). (5)

This problem is a continuous time version of a standard mean-variance investment
problem where we want to minimize the risk by the conditional variance 1

2Vart[Y (T )],
while controlling the utility of final wealth λEt[Y (T )]. Studying the mean-variance
portfolio selection problem of an insurer helps investors to make informed investment
decisions, manage risks, enhance financial performance, comply with regulations, and
gain a competitive advantage in the insurance market. These factors are crucial to
insurers to thrive in a complex and competitive financial landscape.

Note that from the expectation function in the variance cost function, our prob-
lem (5) is a nonlinear function acting on the conditional expectation, which leads to
a time-inconsistent optimization problems pointed out in [3]. Therefore, an optimal
strategy at time t does not guarantee the optimality of J at subsequent moments
s > t. However, since the time horizon T is very long, the investment-reinsurance
preference may change over time; then it becomes very important to formulate the
time-consistent optimal investment-reinsurance problem. Following [3, 6, 14], we
define an equilibrium strategy which is consistent with time change, i.e., the optimal
strategy derived at time t should agree with the optimal strategy at time t+ϵ, ϵ > 0.

Definition 2. A pair of strategies (π∗(·), u∗0(·)) ∈ H2
F (0, T ;R) × H2

F (0, T ;R) is
an equilibrium control strategy if for any t ∈ [0, T ) and (ν1, ν2) ∈ H2

F (0, T ;R) ×
H2

F (0, T ;R), {
πϵ(s) := π∗(s) + ν11[t,t+ϵ](s), for t ≤ s < T

uϵ0(s) := u∗0(s) + ν21[t,t+ϵ](s), for t ≤ s ≤ T

satisfies the property

lim
ϵ→0

inf
J (t,X∗(t), πϵ(·), uϵ0(·))− J (t,X∗(t), π∗(·), u∗0(·))

ϵ
≥ 0.

The equilibrium value function is defined by

Φ(t, Y ∗(t)) = J (t, Y (t), π∗(·), u∗0(·)). (6)

Since the equilibrium strategy above is defined in the class of open-loop controls,
(π∗(·), u∗0(·)) and Y ∗(·) are called an open-loop equilibrium strategy and an open-
loop equilibrium state process, respectively.
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3. An open-loop equilibrium strategy

We first give a sufficient condition for the equilibrium strategy, which generalizes
[17, 14] to a jump-diffusion case.

Theorem 1. Suppose that the following conditions hold:

1. There exists Y ∗(·) ∈ S2F (0, T ;R) and (P (·, t), Z1(·, t), Z2(·, t), Z3(·, t)) ∈ S2F (0,
T ;R) × H2

F (0, T ;R) × H2
ν,F (0, T ;R) × H2

ν0,F (0, T ;R) that solve the following
forward-backward system of equations:

dY ∗(s) =
[
r(s)Y ∗(s)+u(s)u∗0(s)p(s)+(µ(s)−r(s))π∗(s)+(k(s)−u(s))p(s)

+

∫ ∞

0

ζu∗0(s)ν
0(dζ)

]
ds+π∗(s)σ(s)dW (s)+

∫
R
π∗(s)γS(s, ζ)Ñ(ds, dζ)

+

∫ ∞

0

ζu∗0(s)Ñ
0(ds, dζ), (7)

dP (s, t) = −r(s)P (s, t)ds+ Z1(s, t)dW (s) +

∫
R
Z2(s, t, ζ)Ñ(ds, dζ)

+

∫ ∞

0

Z3(s, t, ζ)N
0(ds, dζ) (8)

Y ∗(0) = y0, P (T, t) = Y ∗(T )− Et[Y
∗(T )]− λ.

2. Suppose that for

Λ1(s, t) = (µ(s)− r(s))P (s, t) + σ(s)Z1(s, t) +

∫
R
γS(s, ζ)Z2(s, t, ζ)ν(ζ)

Λ2(s, t) =
(
u(s)p(s) +

∫ ∞

0

ζν0(dζ)
)
P (s, t) +

∫ ∞

0

ζZ3(s, t, ζ)ν
0(dζ),

it holds that

lim
ϵ→0

inf
1

ϵ
Et

[∫ t+ϵ

t

Λi(s, t)ds
]
= 0, a.s., for s ∈ [t, T ], where i = 1, 2. (9)

Then, the strategy (π∗(·), u∗0(·)) ∈ H2
F (0, T ;R)×H2

F (0, T ;R) is an equilibrium control
strategy for any t ∈ [0, T ].

Proof. Suppose that (π∗(·), u∗0(·)) satisfy (1) and (2) above. For a given strategy
(πϵ(·), uϵ0(·)), we define the process Y t,ϵ,ν1,ν2

1 := Y t,ϵ,ν1,ν2(·) − Y ∗(·), where Y ∗(·)
and Y t,ϵ,ν1,ν2(·) are the state processes associated to the strategies (π∗(·), u∗0(·)) and
(πϵ(·), uϵ0(·)), respectively. Then, from (7), we can easily check that

dY t,ϵ,ν1,ν2

1 (s) =
[
r(s)Y t,ϵ,ν1,ν2

1 (s) + (µ(s)− r(s))ν11[t,t+ϵ](s)

+
(
u(s)p(s) +

∫ ∞

0

ζν0(dζ)
)
ν21[t,t+ϵ](s)

]
ds

+σ(s)ν11[t,t+ϵ](s)dW (s) +

∫
R
ν11[t,t+ϵ](s)γS(s, ζ)Ñ(ds, dζ)

+

∫ ∞

0

ν2ζ1[t,t+ϵ](s)Ñ
0(ds, dζ)
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and Y t,ϵ,ν1,ν2

1 (·) ∈ S2F (0, T ;R). Note that this is a linear SDE, so its solutions exist
and are unique. Moreover, one can check that

J (t, Y ∗(t), πϵ(·), uϵ0(·))− J (t, Y ∗(t), π∗(·), u∗0(·)) =
1

2
Vart[Y

t,ϵ,ν1,ν2

1 (T )] + J1(t),

where
J1(t) = Et[(Y

∗(T )− Et[Y
∗(T )]− λ)Y t,ϵ,ν1,ν2

1 (T )].

Applying Itô’s formula for SDEs with jumps (Theorem 1.16, [11]) to
Y t,ϵ,ν1,ν2

1 (s)P (s, t), we have:

dY t,ϵ,ν1,ν2

1 (s)P (s, t)

= (Λ1(s, t)ν11[t,t+ϵ](s) + Λ2(s, t)ν21[t,t+ϵ](s))ds

+[σ(s)ν1P (s, t)1[t,t+ϵ](s) + Y t,ϵ,ν1,ν2

1 (s)Z1(s, t)]dW (s)

+

∫
R
[ν1γS(s, ζ)(P (s, t)+Z2(s, t, ζ))1[t,t+ϵ](s)+Y

t,ϵ,ν1,ν2

1 (s)Z2(s, t, ζ)]Ñ(ds, dζ)

+

∫ ∞

0

[ν2ζ(P (s, t)+Z3(s, t, ζ))1[t,t+ϵ](s)+Y
t,ϵ,ν1,ν2

1 (s)Z3(s, t, ζ)]Ñ
0(ds, dζ).

Taking the conditional expectation, we see that

J1(t) = Et

[ ∫ T

t

(Λ1(s, t)ν11[t,t+ϵ](s) + Λ2(s, t)ν21[t,t+ϵ](s))ds
]
.

Then, by condition (2) of the theorem, we have

lim
ϵ→0

inf
1

ϵ
J1(t) = lim

ϵ→0
inf

1

ϵ
Et

[ ∫ T

t

(Λ1(s, t)ν11[t,t+ϵ](s)+Λ2(s, t)ν21[t,t+ϵ](s))ds
]
= 0,

which completes the proof.

Next, we are going to derive the equilibrium control strategy such that the first
condition in Theorem 1 is satisfied. We construct the solution to (8) by the following
ansatz:

P (s, t) = P0(s){P1(s)Y
∗(s)− Et[P1(s)Y

∗(s)] + E[λP2(s)]− λP3(s)}, (10)

where (P0(s), Q0(s),K0(s, ·)) and (Pi(s), Qi(s),Ki(s, ·),Mi(s, ·)), i = 1, 2, 3 solve the
following BSDEs:{

dP0(s) = −r(s)P0(s)ds+Q0(s)dW (s) +
∫
RK0(s, ζ)Ñ(ds, dζ), for 0 ≤ s < T

P0(T ) = 1,

(11)
and 

dPi(s) = −fi(s, ·)ds+Qi(s)dW (s)+
∫
RKi(s, ζ)Ñ(ds, dζ)

+
∫∞
0
Mi(s, ζ)Ñ

0(ds, dζ),

P1(T ) = P3(T ) = 1, and P2(T ) = 0,

(12)
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for fi(s, ·) to be defined later.
For each fixed t, by applying Itô’s formula to (10) with respect to s, we have:

dP (s, t) =
{
P0(s)

{
P1(s)

[
r(s)Y ∗(s) + u(s)p(s)u∗0(s) + (µ(s)− r(s))π∗(s)

+(k(s)− u(s))p(s) +

∫ ∞

0

ζu∗0(s)ν
0(dζ)

]
−f1(s)Y ∗(s) + σ(s)π∗(s)Q1(s)

+

∫
R
π∗(s)γS(s, ζ)K1(s, ζ)ν(dζ) +

∫ ∞

0

ζu∗0(s)M1(s, ζ)ν
0(dζ)

−Et

[
P1(s)

[
r(s)Y ∗(s) + u(s)p(s)u∗0(s) + (µ(s)− r(s))π∗(s)

+(k(s)− u(s))p(s) +

∫ ∞

0

ζu∗0(s)ν
0(dζ)

]
−f1(s)Y ∗(s) + σ(s)π∗(s)Q1(s)

+

∫
R
π∗(s)γS(s, ζ)K1(s, ζ)ν(dζ) +

∫ ∞

0

ζu∗0(s)M1(s, ζ)ν
0(dζ)− λf2(s)

]}
−rP (s, t)+λP0(s)f3(s)+Q0(s)(σ(s)π

∗(s)P1(s)+Q1(s)Y
∗(s)−λQ3(s))

+

∫
R
K0(s, ζ)[π

∗(s)γS(s, ζ)(P1(s) +K1(s, ζ)) +K1(s, ζ)Y
∗(s)

−λK3(s, ζ)]ν(dζ)
}
ds+

[
P0(s)

(
σ(s)π∗(s)P1(s) +Q1(s)Y

∗(s)

−λQ3(s)
)
+Q0(s)

(
P1(s)Y

∗(s)− Et[P1(s)Y
∗(s)] + E[λP2(s)]

−λP3(s)
)]
dW (s)+

∫
R

[
(P0(s)+K0(s, ζ)) (π

∗(s)γS(s, ζ)(P1(s)+K1(s, ζ))

+K1(s, ζ)Y
∗(s)− λK3(s, ζ)) +K0(s, ζ)

(
P1(s)Y

∗(s)− Et[P1(s)Y
∗(s)]

+E[λP2(s)]− λP3(s)
)]
Ñ(ds, dζ) + P0(s)

∫ ∞

0

(
u∗0(s)ζ(P1(s) +M1(s, ζ))

+M1(s, ζ)Y
∗(s)− λM3(s, ζ)

)
Ñ0(ds, dζ). (13)

Comparing the coefficients of dW (s), Ñ(ds, dζ) and Ñ0(ds, dζ) with (8), we get:

Z1(s, t) = P0(s)
(
σ(s)π∗(s)P1(s) +Q1(s)Y

∗(s)− λQ3(s)
)
+Q0(s)

(
P1(s)Y

∗(s)

−Et[P1(s)Y
∗(s)] + E[λP2(s)]− λP3(s)

)
; (14)

Z2(s, t, ζ) = (P0(s) +K0(s, ζ))(π
∗(s)γS(s, ζ)(P1(s) +K1(s, ζ)) +K1(s, ζ)Y

∗(s)

−λK3(s, ζ)) +K0(s, ζ)
(
P1(s)Y

∗(s)− Et[P1(s)Y
∗(s)] + E[λP2(s)]

−λP3(s)
)
; (15)

Z3(s, t, ζ) = P0(s)
(
u∗0(s)ζ(P1(s) +M1(s, ζ)) +M1(s, ζ)Y

∗(s)− λM3(s, ζ)
)
. (16)

Note that from the limit function in (9), we can deduce that

Λ1(t, t) = 0 and Λ2(t, t) = 0, ∀ t ∈ [0, T ].
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Then,

(µ(s)− r(s))P (s, s) + σ(s)Z1(s, s) +

∫
R
γS(s, ζ)Z2(s, s, ζ)ν(ζ) = 0,(

u(s)p(s) +

∫ ∞

0

ζν0(dζ)
)
P (s, s) +

∫ ∞

0

ζZ3(s, s, ζ)ν
0(dζ) = 0,

which implies that

π∗(s) = ϕ1(s)Y
∗(s) + ψ1(s), (17)

u∗0(s) = ϕ2(s)Y
∗(s) + ψ2(s), (18)

where

ϕ1(s) = −
σ(s)Q1(s) +

∫
R

(
1 + K0(s,ζ)

P0(s)

)
γS(s, ζ)K1(s, ζ)ν(dζ)

P1(s)
(
σ2(s) +

∫
R

(
1 + K0(s,ζ)

P0(s)

)(
1 + K1(s,ζ)

P1(s)

)
γ2S(s, ζ)ν(dζ)

) ; (19)

ψ1(s) = − 1

P1(s)
(
σ2(s) +

∫
R

(
1 + K0(s,ζ)

P0(s)

)(
1 + K1(s,ζ)

P1(s)

)
γ2S(s, ζ)ν(dζ)

) ×

×
[
λ(P2(s)− P3(s))

(
µ(s)− r(s) + σ(s)

Q0(s)

P0(s)
+

∫
R
γS(s, ζ)

K0(s, ζ)

P0(s)
ν(dζ)

)
−λ

(
σ(s)Q3(s) +

∫
R
γS(s, ζ)

(
1 +

K0(s, ζ)

P0(s)

)
K3(s, ζ)ν(dζ)

)]
; (20)

ϕ2(s) = − 1∫∞
0
ζ2(P1(s) +M1(s, ζ))ν0(dζ)

∫ ∞

0

ζM1(s, ζ)ν
0(dζ) and (21)

ψ2(s) = − 1∫∞
0
ζ2(P1(s) +M1(s, ζ))ν0(dζ)

[
λ
(
up+

∫ ∞

0

ζν0(dζ)
)
(P2(s)− P3(s))

−λ
∫ ∞

0

ζM3(s, ζ)ν
0(dζ)

]
. (22)

Furthermore, we compare the ds term in (8) with that in (13) to obtain the following
equation:

P0(s)
{
r(s)Y ∗(s)P1(s) + u∗0(s)

(
u(s)p(s)P1(s) +

∫ ∞

0

ζ(P1(s) +M1(s, ζ))ν
0(dζ)

)
+π∗(s)

(
(µ(s)− r(s))P1(s) + σ(s)Q1(s) +

∫
R
γS(s, ζ)K1(s, ζ)ν(dζ)

)
+(k(s)− u(s))p(s)P1(s)− f1(s)Y

∗(s)
}
+λP0(s)f3(s) + π∗(s)P1(s)

(
σ(s)Q0(s)

+

∫
R
γS(s, ζ)

(
1 +

K1(s, ζ)

P1(s)

)
K0(s, ζ)ν(dζ)

)
+Y ∗(s)

(
Q0(s)Q1(s)

+

∫
R
K0(s, ζ)K1(s, ζ)ν(dζ)

)
−λQ0(s)Q3(s)− λ

∫
R
K0(s, ζ)K3(s, ζ)ν

0(dζ)
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−P0(s)Et

[
r(s)Y ∗(s)P1(s)+u

∗
0(s)

(
u(s)p(s)P1(s)+

∫ ∞

0

ζ(P1(s)+M1(s, ζ))ν
0(dζ)

)
+π∗(s)

(
(µ(s)− r(s))P1(s) + σ(s)Q1(s) +

∫
R
γS(s, ζ)K1(s, ζ)ν(dζ)

)
+(k(s)− u(s))p(s)P1(s)− f1(s)Y

∗(s) + λf2(s)
]
= 0. (23)

Note that the above equation is of the form A(s) + b(s)Et[B(s)] = 0, where

A(s) :=P0(s)
{
r(s)Y ∗(s)P1(s)+u

∗
0(s)

(
u(s)p(s)P1(s)+

∫ ∞

0

ζ(P1(s)+M1(s, ζ))ν
0(dζ)

)
+π∗(s)

(
(µ(s)− r(s))P1(s) + σ(s)Q1(s) +

∫
R
γS(s, ζ)K1(s, ζ)ν(dζ)

)
+(k(s)−u(s))p(s)P1(s)− f1(s)Y

∗(s)
}
+λP0(s)f3(s)+π

∗(s)P1(s)
(
σ(s)Q0(s)

+

∫
R
γS(s, ζ)

(
1 +

K1(s, ζ)

P1(s)

)
K0(s, ζ)ν(dζ)

)
+Y ∗(s)

(
Q0(s)Q1(s)

+

∫
R
K0(s, ζ)K1(s, ζ)ν(dζ)

)
−λQ0(s)Q3(s)− λ

∫
R
K0(s, ζ)K3(s, ζ)ν

0(dζ)

and

B(S) := r(s)Y ∗(s)P1(s) + u∗0(s)
(
u(s)p(s)P1(s) +

∫ ∞

0

ζ(P1(s) +M1(s, ζ))ν
0(dζ)

)
+π∗(s)

(
(µ(s)− r(s))P1(s) + σ(s)Q1(s) +

∫
R
γS(s, ζ)K1(s, ζ)ν(dζ)

)
+(k(s)− u(s))p(s)P1(s)− f1(s)Y

∗(s) + λf2(s).

Following these arguments, equation (23) is satisfied if A(s) = 0, i.e.,

P0(s)
{
r(s)Y ∗(s)P1(s) + u∗0(s)

(
u(s)p(s)P1(s) +

∫ ∞

0

ζ(P1(s) +M1(s, ζ))ν
0(dζ)

)
+π∗(s)

(
(µ(s)− r(s))P1(s) + σ(s)Q1(s) +

∫
R
γS(s, ζ)K1(s, ζ)ν(dζ)

)
+(k(s)− u(s))p(s)P1(s)− f1(s)Y

∗(s)
}
+λP0(s)f3(s) + π∗(s)P1(s)

(
σ(s)Q0(s)

+

∫
R
γS(s, ζ)

(
1 +

K1(s, ζ)

P1(s)

)
K0(s, ζ)ν(dζ)

)
+Y ∗(s)

(
Q0(s)Q1(s

+

∫
R
K0(s, ζ)K1(s, ζ)ν(dζ)

)
−λQ0(s)Q3(s)− λ

∫
R
K0(s, ζ)K3(s, ζ)ν

0(dζ) = 0.

From this, we substitute π∗(s) and u∗0(s) from (17)-(18) to get the following generator
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functions (suppressing the variable s):

f1(s, P1, Q1,K1,M1) (24)

= rP1 +
1

P0

(
Q0Q1 +

∫
R
K0K1ν(dζ)

)
−

σ(s)Q1(s) +
∫
R

(
1 + K0(s,ζ)

P0(s)

)
γS(s, ζ)K1(s, ζ)ν(dζ)

P1(s)
(
σ2(s) +

∫
R

(
1 + K0(s,ζ)

P0(s)

)(
1 + K1(s,ζ)

P1(s)

)
γ2S(s, ζ)ν(dζ)

) ×

×
[
(µ− r)P1 + σQ1 + σ

Q0

P0
P1 +

∫
R

(
K1 +

K0

P0
(P1 +K1)

)
γSν(dζ)

]
−

∫∞
0
ζM1ν

0(dζ)∫∞
0
ζ2(P1(s) +M1(s, ζ))ν0(dζ)

×
[
upP1 +

∫ ∞

0

ζ(P1 +M1)ν
0(dζ)

]
;

f3(s, P3, Q3,K3,M3) (25)

=
1

P0

(
Q0Q3 +

∫
R
K0K3ν(dζ)

)
−k − u

λ
pP1

+
1

P1(s)
(
σ2(s) +

∫
R

(
1 + K0(s,ζ)

P0(s)

)(
1 + K1(s,ζ)

P1(s)

)
γ2S(s, ζ)ν(dζ)

)
×
[
(µ− r)P1 + σQ1 + σ

Q0

P0
P1 +

∫
R

(
K1 +

K0

P0
(P1 +K1)

)
γSν(dζ)

]
×
[
(P2 − P3)

(
µ− r + σ

Q0

P0
+

∫
R
γS
K0

P0
ν(dζ)

)
−σQ3

−
∫
R
γS(s, ζ)

(
1 +

K0(s, ζ)

P0(s)

)
K3(s, ζ)ν(dζ)

]
+

1∫
R γS(s, ζ)

(
1 + K0(s,ζ)

P0(s)

)
K3(s, ζ)ν(dζ)

×
[
upP1 +

∫ ∞

0

ζ(P1 +M1)ν
0(dζ)

]
×
[
(P2 − P3)

(
up+

∫ ∞

0

ζν0(dζ)
)
−
∫ ∞

0

ζM3ν
0(dζ)

]
.

Moreover, the term under the expected value in (23) should also be zero, i.e., B(s) =
0. Hence

r(s)Y ∗(s)P1(s) + u∗0(s)
(
u(s)p(s)P1(s) +

∫ ∞

0

ζ(P1(s) +M1(s, ζ))ν
0(dζ)

)
+π∗(s)

(
(µ(s)− r(s))P1(s) + σ(s)Q1(s) +

∫
R
γS(s, ζ)K1(s, ζ)ν(dζ)

)
+(k(s)− u(s))p(s)P1(s)− f1(s)Y

∗(s) + λf2(s) = 0,
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which similarly implies that (suppressing the variable s)

f2(s, P2, Q2,K2,M2) (26)

= f3(s, P3, Q3,K3,M3)−
1

P0

(
Q0Q3 +

∫
R
K0K3ν(dζ)

)
+
Y ∗

λP0

[
Q0Q1 +

∫
R
K0K1ν(dζ)

−
σ(s)Q1(s) +

∫
R

(
1 + K0(s,ζ)

P0(s)

)
γS(s, ζ)K1(s, ζ)ν(dζ)

P1(s)
(
σ2(s) +

∫
R

(
1 + K0(s,ζ)

P0(s)

)(
1 + K1(s,ζ)

P1(s)

)
γ2S(s, ζ)ν(dζ)

)
×
(
σQ1 +

∫
R
γSK1ν(dζ)

)]
−

σ(s)Q1(s) +
∫
R

(
1 + K0(s,ζ)

P0(s)

)
γS(s, ζ)K1(s, ζ)ν(dζ)

P1(s)
(
σ2(s) +

∫
R

(
1 + K0(s,ζ)

P0(s)

)(
1 + K1(s,ζ)

P1(s)

)
γ2S(s, ζ)ν(dζ)

)
×
[
(P2 − P3)

(
µ− r + σ

Q0

P0
+

∫
R
γS
K0

P0
ν(dζ)

)
−σQ3

−
∫
R
γS(s, ζ)

(
1 +

K0(s, ζ)

P0(s)

)
K3(s, ζ)ν(dζ)

]
.

Remark 1. It is easy to see that (11) is a linear BSDE with jumps. Then, following
Proposition 3.4.1 in [5], there exists a unique solution (P0, Q0, K0) ∈ S2F (0, T ;R)×
H2

F (0, T ;R)×H2
ν,F (0, T ;R) such that

P0 = Et

[
e
∫ T
t

r(s)ds
]
,

for any t ∈ [0, T ]. Moreover,∫ T

t

Q0(s)dW (s) and

∫ T

t

∫
R
K0(s, ζ)Ñ(ds, dζ)

are bounded mean oscillation martingales, with Q0 and K0 derived by the martingale
representation theorem.

Furthermore, we state the following proposition for the existence and uniqueness
of the solution to (12), with the generators given by (24)-(26), respectively.

Proposition 1. The system of BSDEs in (12) admits a unique solution (Pi, Qi,Ki,
Mi) ∈ S2F (0, T ;R)×H2

F (0, T ;R)×H2
ν,F (0, T ;R)×H2

ν0,F (0, T ;R), for any p > 1.

Proof. Note that the generator function f1 is quadratic w.r.t diffusion control Q1

and the jump controlsK1 andM1. Then, one can check if fi satisfies the assumptions
(H1) and (H2) in [10]. The result then follows from ([8], Proposition 5.1) and ([10],
theorems 1 and 2). To prove (12), for i = 2, 3, we first define the following BSDE
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(P4, Q4,K4,M4) := (P2 − P3, Q2 −Q3,K2 −K3,M2 −M3). Then

dP4(s) =
{

1
P0

(
Q0Q3 +

∫
RK0K3ν(dζ)

)
− Y ∗

λP0

[
Q0Q1 +

∫
RK0K1ν(dζ)

−
σ(s)Q1(s)+

∫
R

(
1+

K0(s,ζ)

P0(s)

)
γS(s,ζ)K1(s,ζ)ν(dζ)

P1(s)

(
σ2(s)+

∫
R

(
1+

K0(s,ζ)

P0(s)

)(
1+

K1(s,ζ)

P1(s)

)
γ2
S(s,ζ)ν(dζ)

)
×
(
σQ1 +

∫
R γSK1ν(dζ)

)]
+

σ(s)Q1(s)+
∫
R

(
1+

K0(s,ζ)

P0(s)

)
γS(s,ζ)K1(s,ζ)ν(dζ)

P1(s)

(
σ2(s)+

∫
R

(
1+

K0(s,ζ)

P0(s)

)(
1+

K1(s,ζ)

P1(s)

)
γ2
S(s,ζ)ν(dζ)

)
×
[
P4

(
µ− r + σQ0

P0
+
∫
R γS

K0

P0
ν(dζ)

)
−σQ3 −

∫
R γS(s, ζ)

(
1 + K0(s,ζ)

P0(s)

)
K3(s, ζ)ν(dζ)

]}
ds

+Q4(s)dW (s) +
∫
RK4(s, ζ)Ñ(ds, dζ) +

∫∞
0
M4(s, ζ)Ñ

0(ds, dζ),
P4(T ) = −1.

(27)

This is a linear BSDE with jumps. Then, by ([5], propositions 3.3.1 and 3.4.1), there
exists a unique solution (P4, Q4,K4,M4) ∈ S2F (0, T ;R)×H2

F (0, T ;R)×H2
ν,F (0, T ;R)×

H2
ν0,F (0, T ;R).
We can now rewrite the BSDE for (P3, Q3,K3,M3) with

f ′3(s, P3, Q3,K3,M3)

=
1

P0

(
Q0Q3 +

∫
R
K0K3ν(dζ)

)
−k − u

λ
pP1

+
1

P1(s)
(
σ2(s) +

∫
R

(
1 + K0(s,ζ)

P0(s)

)(
1 + K1(s,ζ)

P1(s)

)
γ2S(s, ζ)ν(dζ)

)
×
[
(µ− r)P1 + σQ1 + σ

Q0

P0
P1 +

∫
R

(
K1 +

K0

P0
(P1 +K1)

)
γSν(dζ)

]
×
[
P4

(
µ− r + σ

Q0

P0
+

∫
R
γS
K0

P0
ν(dζ)

)
−σQ3

−
∫
R
γS(s, ζ)

(
1 +

K0(s, ζ)

P0(s)

)
K3(s, ζ)ν(dζ)

]
+

1

+
∫
R γS(s, ζ)

(
1 + K0(s,ζ)

P0(s)

)
K3(s, ζ)ν(dζ)

×
[
upP1 +

∫ ∞

0

ζ(P1 +M1)ν
0(dζ)

]
×
[
P4

(
up+

∫ ∞

0

ζν0(dζ)
)
−
∫ ∞

0

ζM3ν
0(dζ)

]
.

According to ([5], propositions 3.3.1 and 3.4.1), there exists a unique solution
(P3, Q3,K3,M3) ∈ S2F (0, T ;R)×H2

F (0, T ;R)×H2
ν,F (0, T ;R)×H2

ν0,F (0, T ;R).
Then, the unique solution for (P2, Q2,K2,M2) is given by (P2, Q2,K2,M2) =

(P4 + P3, Q4 +Q3,K4 +K3,M4 +M3). This completes the proof.
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The following theorem states the main result of this paper.

Theorem 2. Let (π∗(·), u∗0(·)) be given by (17)-(18) and Y ∗(·) the corresponding
solution to (4). If

E
[
sup

t∈[0,T ]

|Q2
0(t)|2

]
< ∞, (28)

E
[
sup

t∈[0,T ]

∫
R
|K2

0 (t, ζ)|2ν(dζ)
]
< ∞. (29)

Then, (π∗(·), u∗0(·)) is an open-loop equilibrium strategy for our problem (5).

Proof. Applying the Itô formula in the ansatz P (·, ·) in (10), the controls Z1(·, ·),
Z2(·, ·, ·), Z3(·, ·, ·) in (14)-(16) were derived by comparing the coefficients of (8)
and (13). Therefore, (P (·, ·), Z1(·, ·), Z2(·, ·, ·), Z3(·, ·, ·)) is the solution to BSDE (8).
Moreover, Equation (7) is a linear SDE. Therefore, from (28), (29) and Proposition
1, both ϕj(·) and ψj(·), j = 1, 2, in (19)-(22) are uniformly bounded, which im-
plies that (π∗(·), u∗0(·)) is bounded. Hence, Y ∗(·) ∈ S2F (0, T ;R) and (π∗(·), u∗0(·)) ∈
H2

F (0, T ;R)×H2
F (0, T ;R). Then, by Theorem 1, (π∗(·), u∗0(·)) is an open-loop equi-

librium strategy.

Following arguments similar to [13], Theorem 4.2, one can prove the following
uniqueness result.

Theorem 3. Let (P0, Q0,K0) and (Pi, Qi,Ki,Mi), i = 1, 2, 3 be the solutions to
BSDEs (11)-(12). Then, (π∗(·), u∗0(·)) given by (17)-(18) is the unique equilibrium
investment strategy for our optimization problem stated in (5).

Next, we show the equilibrium value function and the efficient frontier.

Proposition 2. The equilibrium value function at time t is given by

Φ(t, Y ∗(t)) =
1

2
Et

{∫ T

t

[
(Y ∗(s)Q1(s) + σ(s)π∗(s)P1(s)− λQ2(s))

2

+

∫
R
(Y ∗(s)K1(s, ζ) + γS(s, ζ)π

∗(s)P1(s)− λK2(s, ζ))
2ν(dζ)

+

∫ ∞

0

(Y ∗(s)M1(s, ζ) + ζu∗0(s)P1(s)− λQ2(s))
2ν0(dζ)

]
ds
}

−λ(Y ∗(t)P1(t)− λP2(t)). (30)

Furthermore, the corresponding efficient frontier is given by

V art[Y
∗(T )] = Et

{∫ T

t

[
(Y ∗(s)Q1(s) + σ(s)π∗(s)P1(s)− λQ2(s))

2

+

∫
R
(Y ∗(s)K1(s, ζ) + γS(s, ζ)π

∗(s)P1(s)− λK2(s, ζ))
2ν(dζ)

+

∫ ∞

0

(Y ∗(s)M1(s, ζ) + ζu∗0(s)P1(s)− λQ2(s))
2ν0(dζ)

]
ds
}
. (31)
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Proof. By Itô’s formula, it is easy to check that

d(Y ∗P1 − λP2) = (Y ∗Q1 + σπ∗P1 − λQ2)dW (s)

+

∫
R
(Y ∗K1 + γSπ

∗(P1 +K1)− λK2)Ñ(ds, dζ)

+

∫ ∞

0

(Y ∗M1 + ζu∗0(P1 +M1)− λQ2)Ñ
0(ds, dζ).

Then

Y ∗(T ) = Y ∗(T )P1(T )− λP2(T )

= Y ∗(t)P1(t)− λP2(t) +

∫ T

t

(Y ∗Q1 + σπ∗P1 − λQ2)dW (s)

+

∫ T

t

∫
R
(Y ∗K1 + γSπ

∗(P1 +K1)− λK2)Ñ(ds, dζ)

+

∫ T

t

∫ ∞

0

(Y ∗M1 + ζu∗0(P1 +M1)− λQ2)Ñ
0(ds, dζ)

and
Et[Y

∗(T )] = Y ∗(t)P1(t)− λP2(t).

Following similar arguments as above in (Y ∗(t)P1(t)− λP2(t))
2, we have

Et[(Y
∗(T ))2] = (Et[(Y

∗(T ))])2 + Et

{∫ T

t

[
(Y ∗(s)Q1(s) + σ(s)π∗(s)P1(s)− λQ2(s))

2

+

∫
R
(Y ∗(s)K1(s, ζ) + γS(s, ζ)π

∗(s)P1(s)− λK2(s, ζ))
2ν(dζ)

+

∫ ∞

0

(Y ∗(s)M1(s, ζ) + ζu∗0(s)P1(s)− λQ2(s))
2ν0(dζ)

]
ds
}
.

Then (30) and (31) follow from (6) and the definition of the efficient frontier, re-
spectively.

4. Application to the stochastic interest rate

We consider the interest rate r(·) defined by the mean-reverting Lévy-Ornstein-
Uhlenbeck as follows:{

dr(t) = α(a− r(t))dt+ βdW (t) +
∫
R γζÑ(dt, dζ), for 0 ≤ t ≤ T

r(0) = r0 > 0,
(32)

where α, a, β, γ > 0, ζ ∈ R.
Moreover, we assume that for the risky asset (3), σ > 0 and γS > 0 are determin-

istic bounded functions and µ(·) = r(·) + θ(·), where θ(·) > 0 is also a deterministic
bounded function.

As in [14, 17], we point out that r(·) in (32) is not bounded as previously assumed
in this paper. However, the boundedness of the coefficients is only used to prove the
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existence and uniqueness of the solutions of the BSDEs and the integrability of the
wealth process.

We consider the following important lemma, which extends lemma 4.1 in [17] to
the jump-diffusion case.

Lemma 1. For any constant κ ≥ 0, we have E
[
supt∈[0,T ] e

κ|r(t)|
]
<∞.

Proof. Note that (32) is a linear SDE with jumps. Its solution is then given by

r(t) = e−αt
[
r0 + a

(
eαt − 1

)
+

∫ t

0

βeαsdW (s) +

∫ t

0

∫
R
γζeαsÑ(ds, dζ)

]
.

Then for any κ ≥ 0,

eκr(t) = exp
{
κe−αt

[
r0 + a

(
eαt − 1

)
+

∫ t

0

βeαsdW (s) +

∫ t

0

∫
R
γζeαsÑ(ds, dζ)

]}
≤ D exp

{
e−αt

[1
2

∫ t

0

|κσeαs|2ds+
∫ t

0

∫
R

(
eγκζe

αs

− 1− γκζeαs
)
ν(dζ)ds

]}
×(M(t))e

−αt

,

where D > 0 is a constant and

M(t) = exp
{
−
∫ t

0

[1
2
|κσeαs|2 +

∫
R

(
eγκζe

αs

− 1− γκζeαs
)
ν(dζ)

]
ds

+

∫ t

0

κσeαsdW (s) +

∫ t

0

∫
R

(
eγκζe

αs

− 1
)
Ñ(ds, dζ)

}
.

One can easily check that

dM(t) = M(t−)
[
κσeαtdW (t) +

∫
R

(
eγκζe

αt

− 1
)
Ñ(dt, dζ)

]
and

sup
t∈[0,T ]

M(t) < ∞.

Hence

E
[
sup

t∈[0,T ]

(M(t))e
−αt

]
< ∞, which implies that E

[
sup

t∈[0,T ]

eκr(t)
]
< ∞.

Then, the result follows.

In the following proposition, we derive the solutions to BSDEs (11) and (12).

Proposition 3. Suppose that the interest rate r(·) is given by (32) and let ϕ(t) =
1
α

(
1− e−α(T−t)

)
. Then, the solutions to BSDEs (11) and (12) are given by:

(P0(t), Q0(t),K0(t, ζ))=
(
G0(t)e

ϕ(t)r(t), βϕ(t)G0(t)e
ϕ(t)r(t), G0(t)e

ϕ(t)r(t)
(
eγζ − 1

))
,

(P1(t), Q1(t),K1(t, ζ))=
(
G1(t)e

ϕ(t)r(t), βϕ(t)G1(t)e
ϕ(t)r(t), G1(t)e

ϕ(t)r(t)
(
eγζ − 1

))
,

(P2(t), Q2(t),K2(t, ζ))=(G2(t), 0, 0),

(P3(t), Q3(t),K3(t, ζ))=(G2(t)−G3(t), 0, 0),
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where

G0(t) = exp
{∫ T

t

[
aαϕ(s) +

1

2
β2ϕ2(s) +

∫
R

(
eγζϕ(s) − 1− γζϕ(s)

)
ν(dζ)

]
ds
}
, (33)

G1(t) = exp
{∫ T

t

[
ϕ(s)

(
aα+

3

2
β2ϕ(s)

)
+

∫
R

((
eγζ−1

)2

+eγζϕ(s)−1−γζϕ(s)
)
ν(dζ)

−
σβϕ(s) +

∫
R γSe

γζ
(
eγζ − 1

)
ν(dζ)

σ2 +
∫
R γ

2
Se

2γζν(dζ)
×
[
θ(s) + 2σβϕ(s)

+

∫
R
γS

(
e2γζ − 1

)
ν(dζ)

]]
ds
}
, (34)

G3(t) = e
∫ T
t

Γ1(s)ds
(∫ T

t

Γ2(s)e
−

∫ T
s

Γ1(z)dzds− 1
)
,

G2(t) =

∫ T

t

(
(1− Γ1(s))G3(s) + Γ2(s)

)
ds. nonumber

The functions Γ1(·) and Γ2(·) are given by equations (36)-(37) below.

Proof. From the definition of the interest rate in (32), we can conclude that M1 =
M2 =M3 = 0. We consider the following partial integro-differential equation (PIDE)
using the generalized Feynman-Kac formula:

Fi,t(t, r) + α(a− r)Fi,r(t, r) +
1

2
β2Fi,rr(t, r) +

∫
R

(
Fi(t, r + γζ)− Fi(t, r)

−γζFi,r(t, r)
)
ν(dζ) + fi

(
t, Fi(t, r), βFi,r(t, r), Fi(t, r + γζ)− Fi(t, r)

)
= 0. (35)

If (35) admits a unique classical solution, then by Itô’s formula, we know that

(Pi, Qi,Ki) = (Fi(t, r), βFi,r(t, r), Fi(t, r + γζ)− Fi(t, r)), i = 0, 1, 2, 3

satisfy BSDEs (11) and (12).

Moreover, we observe that ϕ(t) = 1
α

(
1−e−α(T−t)

)
satisfies the following ordinary

differential equation (ODE):{
ϕ′(t)− αϕ(t) + 1 = 0, for 0 ≤ t ≤ T
ϕ(T ) = 0.

We consider the following ansatz:

F0(t, r) = G0(t)e
ϕ(t)r(t), F1(t, r) = G1(t)e

ϕ(t)r(t),

F2(t, r) = G2(t) and F3(t, r) = G2(t)−G3(t).

Then, inserting F0(t, r) and F1(t, r) into (35), after some algebraic calculations, we
obtain the following linear ODEs:{

G0,t(t)+G0(t)
[
aαϕ(t)+ 1

2β
2ϕ2(t)+

∫
R

(
eγζϕ(t)−1−γζϕ(t)

)
ν(dζ)

]
=0, t ∈ [0, T ]

G0(T ) = 1,
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and 

G1,t(t) +G1(t)
{
ϕ(s)

(
aα+ 3

2β
2ϕ(s)

)
+
∫
R

((
eγζ − 1

)2

+ eγζϕ(s) − 1− γζϕ(s)
)
ν(dζ)

−
σβϕ(s)+

∫
R γSeγζ

(
eγζ−1

)
ν(dζ)

σ2+
∫
R γ2

Se2γζν(dζ)

×
[
θ(s) + 2σβϕ(s) +

∫
R γS

(
e2γζ − 1

)
ν(dζ)

]}
= 0, t ∈ [0, T ]

G1(T ) = 1,

which imply (33) and (34). We now have to solve for G2(·) and G3(·). Motivated
by (27), we first look for the solution to (P4, Q4,K4), since M4 = 0. We look
for the ansatz function F4(t, r) in the form F4(t, r) = G3(t). After some algebraic
calculations, we obtain the following linear ODE:{

G3,t(t)− Γ1(t)G3(t) + Γ2(t) = 0, t ∈ [0, T ]

G3(T ) = −1,

where

Γ1(t) =
σβϕ(t) +

∫
R γSe

γζ
(
eγζ − 1

)
ν(dζ)

σ2 +
∫
R γ

2
Se

2γζν(dζ)
×
(
θ(t) + σβϕ(t)

+

∫
R
γS

(
eγζ − 1

)
ν(dζ)

)
, (36)

Γ2(t) =
[(σβϕ(t) + ∫

R γSe
γζ
(
eγζ − 1

)
ν(dζ)

)2

G0(t)
(
σ2 +

∫
R γ

2
Se

2γζν(dζ)
)

−
(
β2ϕ2(t) +

∫
R

(
eγζ − 1

)2

ν(dζ)
)
eϕ(t)r

]Y ∗(t)G1(t)

λ
. (37)

Its solution is then given by

G3(t) = e
∫ T
t

Γ1(s)ds
(∫ T

t

Γ2(s)e
−

∫ T
s

Γ1(z)dzds− 1
)
.

Finally, to solve for i = 2, we can see that, based on (26) and the ansatz F2(t, r) =
G2(t), PIDE (35) becomes the following linear ODE:

G2,t(t) + (1− Γ1(t))G3(t) + Γ2(t) = 0,

with the terminal condition G2(T ) = 0. We then have that

G2(t) =

∫ T

t

(
(1− Γ1(s))G3(s) + Γ2(s)

)
ds,

which completes the proof.
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The strategy (π∗(t), u∗0(t)) in (17)-(18) becomes

π∗(s) = ϕ1(s)Y
∗(s) + ψ1(s),

u∗0(s) = ψ2(s),

where

ϕ1(s) = −
σβϕ(s) +

∫
R γSe

γζ
(
eγζ − 1

)
ν(dζ)

σ2 +
∫
R γ

2
Se

2γζν(dζ)
;

ψ1(s) = −
λG3(s)

(
θ(s) + σβϕ(s) +

∫
R γS

(
eγζ − 1

)
ν(dζ)

)
G1(s)

(
σ2 +

∫
R γ

2
Se

2γζν(dζ)
) e−ϕ(s)r(s);

ψ2(s) = −
λ
(
up+

∫∞
0
ζν0(dζ)

)
G3(s)

G1(s)
∫∞
0
ζ2ν0(dζ)

e−ϕ(s)r(s),

and Y ∗ is the corresponding surplus process.
Furthermore, conditions (28) and (29) are also satisfied, i.e.,

E
[
sup

t∈[0,T ]

|Q2
0(t)|2

]
= E

[
sup

t∈[0,T ]

βϕ2(t)G2
0(t)e

2ϕ(t)r(t)
]
< ∞ ;

E
[
sup

t∈[0,T ]

∫
R
|K2

0 (t, ζ)|2ν(dζ)
]
= E

[
sup

t∈[0,T ]

∫
R
G2

0(t)e
2ϕ(t)r(t)

(
eγζ − 1

)2

ν(dζ)
]
< ∞.

Then, by Theorem 2, (π∗(t), u∗0(t)) describe the equilibrium strategy.
Finally, from (30) and (31), the equilibrium value function and the corresponding

efficient frontier become:

Φ(t, Y ∗(t)) =
1

2
Et

{∫ T

t

[
(βϕ(s)G1(s)Y

∗(s) + σπ∗(s)G0(s))
2

+

∫
R
(γSπ

∗(s)G1(s) + Y ∗(s)G1(s)(e
γζ − 1))2ν(dζ)

+

∫ ∞

0

ζ2(u∗0(s)G1(s))
2ν0(dζ)

]
e2ϕ(s)r(s)ds

}
−λ(Y ∗(t)G1(t)e

ϕ(t)r(t) − λG2(t)),

V art[Y
∗(T )] = Et

{∫ T

t

[
(βϕ(s)G1(s)Y

∗(s) + σπ∗(s)G0(s))
2

+

∫
R
(γSπ

∗(s)G1(s) + Y ∗(s)G1(s)(e
γζ − 1))2ν(dζ)

+

∫ ∞

0

ζ2(u∗0(s)G1(s))
2ν0(dζ)

]
e2ϕ(s)r(s)ds

}
.

Remark 2. If the interest rate is a constant r > 0, then α = a = β = γ = 0. It is
easy to check that ϕ(t) = T−t, G0(t) = G1(t) = 1, G3(t) = −1 and G2(t) = −(T−t).
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The equilibrium strategy, the value function and the efficient frontier become:

π∗(t) =
λθe−(T−t)r

σ2 +
∫
R γ

2
Sν(dζ)

,

u∗0(t) =
λ
(
up+

∫∞
0
ζν0(dζ)

)
∫∞
0
ζ2ν0(dζ)

e−(T−t)r,

Φ(t, Y ∗(t)) =
1

2

∫ T

t

[
σ2(π∗(s))2 +

∫
R
γ2S(π

∗(s))2ν(dζ)

+

∫ ∞

0

ζ2(u∗0(s))
2ν0(dζ)

]
e2(T−s)rds

−λ(Y ∗(t)e(T−t)r + λ(T − t))

V art[Y
∗(t)] =

∫ T

t

[
σ2(π∗(s))2 +

∫
R
γ2S(π

∗(s))2ν(dζ)

+

∫ ∞

0

ζ2(u∗0(s))
2ν0(dζ)

]
e2(T−s)rds.

We observe that when the interest rate is constant, the equilibrium strategy is in-
dependent of the surplus process. Moreover, the optimal investment strategy is an
increasing function of time and expected return θ. This implies that as the time ap-
proaches maturity, the insurer will keep more investments in the risky asset. More-
over, it is decreasing with respect to volatility σ and jump rate γS. In this case, when
σ and γS increased, the insurer would reduce his investment in the risky asset. The
findings are consistent with the results existing in the literature, see e.g., [18, 19, 21].
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