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Abstract. In this paper, we construct new discrete chaotic dynamical systems on a 2D
Cantor set by using the shift map, a 0-preadded map and a 2-preadded map. We also
obtain a collection of chaotic dynamical systems using the elements of the symmetry group
of the square.
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1. Introduction

The notion of dynamical system has several applications in some important fields
of mathematics, physics, chemistry and biology (for more details, see [1, 6, 10]). A
dynamical system is called a chaotic dynamical system if it satisfies the following
conditions: “sensitive dependence on initial conditions”, “topological transitivity”
and “density of periodic points” (for details, see [6] ).

In this paper, we define a chaotic dynamical system on one of the classical self-
similar set two-dimensional (2D) Cantor set C × C by inspiring the shift map on
the classical Cantor set C. We also construct new chaotic dynamical systems with
the help of the elements of the Dihedral group D4 (symmetries of the square in the
plane). We express these dynamical systems by using code representation of the
points of the 2D Cantor set.

The shift map is one of the classical examples of chaotic dynamical systems
expressed by code representations of the points. There exist several examples of
chaotic dynamical systems defined with the help of this famous map on classical
self-similar sets such as the Tent map and Smale’s horseshoe map on the Cantor set
([3]). In [2] and [11], the authors define chaotic dynamical systems on the self-similar
sets the Sierpinski Triangle and the Box fractal.

For the purpose of this manuscript, we first give a short overview of the notion
of iterated function systems.
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1.1. Iterated function systems

Let (X, d) be a complete metric space and {wi : X → X | i = 1, 2, . . . , n} a fi-
nite family of contractions with contractivity ratios 0 < ri < 1. The system
{X;wi, i = 1, 2, . . . , n} is called an iterated function system (IFS) (see [5]). In [8],
the author proves that there exists a unique nonempty compact set A ⊂ X such
that

A =

n⋃
i=1

wi(A),

which is called the attractor of the IFS.
The classical Cantor set C is the attractor of the iterated function system {R;

ϕ0, ϕ2}, where

ϕ0(x) =
x

3
and ϕ2(x) =

x

3
+

2

3
(1)

are the similarities with similarity ratio 1
3 .

1.2. Code representations of the points of C × C

Let ω = ω1ω2 · · ·ωk be a word with length k, where ωi ∈ {0, 2} for i = 1, 2, . . . , k.
Let Cω := ϕω(C) = ϕω1ω2···ωk

(C) where ϕω1ω2···ωk
= ϕω1

◦ ϕω2
◦ · · · ◦ ϕωk

and ϕ0,
ϕ2 are the functions defined in (1). We call Cω as a Cantor set of level k (C is the
unique Cantor set of level 0). Note that there exist 2k Cantor sets of level k for
a nonnegative integer k. By the Cantor completeness criteria, for any word (with
infinite length) ω1ω2 · · ·ωk · · · (ωi ∈ {0, 2}), the intersection of the nested sets

ϕω1
(C) ⊃ ϕω1ω2

(C) ⊃ · · · ⊃ ϕω1ω2···ωk
(C) ⊃ · · ·

is a singleton

∞⋂
k=1

ϕω1ω2···ωk
(C) which contains a unique point, say a. Then we call

ω1ω2ω3 · · · as a code representation of the point a ∈ C (for more details, see [9]) and
we write a = ω1ω2ω3 · · · throughout the paper. We note that every point of C has
a unique code representation since the Cantor set is totally disconnected (for more
details, see [5]).

We can represent the points of C × C by using the code representations of the
points of C as follows: Let (a, b) ∈ C×C, α = α1α2 · · ·αk · · · and β = β1β2 · · ·βk · · ·
be the code representations of the points a and b, respectively. Then we set a certain
pair (α, β) as the code representation of the point (a, b) ∈ C × C. We also set
Cω,θ := Cω × Cθ = ϕω(C)× ϕθ(C) as a 2D Cantor set of level k for the words ω, θ
with length k.

Let (a, b), (c, d) ∈ C×C and (α1α2 · · · , β1β2 · · · ), (γ1γ2 · · · , δ1δ2 · · · ) be the code
representations of these points, respectively. In this paper, we use the following
well-known metric d on C × C:

d((a, b), (c, d)) =

√√√√( ∞∑
i=1

αi − γi
3i

)2

+

( ∞∑
i=1

βi − δi
3i

)2

(2)
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Remark 1. Let α = α1α2 · · ·αk · · · and β = β1β2 · · ·βk · · · be the code representa-
tions of the points a, b ∈ C respectively. For the sake of clarity, throughout the paper
we write a = α, b = β and (a, b) = (α, β) ∈ C × C.

2. A new chaotic dynamical system on C × C

In this subsection, we first construct a chaotic dynamical system using the shift map
and the mappings called a 0−preadded map and a 2−preadded map.

We first remind of the well-known shift map on the Cantor set. Let a =
α1α2α3 · · · ∈ C, the mapping σ : C → C,

σ(α1α2α3 · · · ) = α2α3α4 · · ·

is called the shift map. Geometrically, σ maps a Cantor set of level k to a Cantor set
of level (k−1), that is, σ(Cα1α2···αk

) = Cα2···αk
. It is a similarity map (an extension)

with similarity ratio 3.
We now define 0−preadded and 2−preadded maps which will be used for the con-

struction of new dynamical systems. Let a = α1α2α3 · · · ∈ C. Then the mappings
τ0, τ2 : C → C defined as

τ0(α1α2α3 · · · ) := 0α1α2α3 · · ·
τ2(α1α2α3 · · · ) := 2α1α2α3 · · ·

are called a 0−preadded map and a 2−preadded map respectively. In contrast to
the shift map, the 0−preadded map or the 2−preadded map, respectively, add 0 or
2 to the beginning of the code of the point. In fact, the image of a Cantor set of level
k under τ0 and τ2 is a Cantor set of level (k+ 1). In general, τ0(Cα1···αk

) = C0α1···αk

and τ2(Cα1···αk
) = C2α1···αk

. Unlike the shift map, τ0 and τ2 are contractions (also
similitudes) with similarity ratio 1/3.

While {C;σ} is one of the most well-known chaotic dynamical systems in the
sense of Devaney ([6]), {C; τ0} and {C; τ2} are not chaotic dynamical systems in the
sense of Devaney since sensitive dependence on initial conditions does not hold.

However, one can easily show that the dynamical system {C×C; f} is also chaotic
where f(x, y) = (σ(x), σ(y)) (for an image example of the extension f on C×C, see
Figure 1).

Now consider the dynamical system {C×C; f = (f1, f2)}, where f1, f2 ∈ {σ, τ0, τ2}.
The only case where the dynamical system {C×C; f} is chaotic is where f1 = f2 = σ.
It can easily be seen that using τ0 or τ2 in one component of f (i.e. fi = τj for some
i ∈ {1, 2} and some j ∈ {0, 2}), {C × C; f} does not yield a chaotic dynamical
system (for a better understanding of the function f see e.g. Figure 2).

But surprisingly, if we define the dynamical system as in (3), we obtain a new
chaotic dynamical system on {C × C} as stated in Theorem 1. By defining Φ in
(3), we add the term deleted from the first component with σ (indeed, the first term
of the code of a point, 0 or 2) to the second component with the corresponding
preadded map (τ0 or τ2).
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(a) (b)

Figure 1: (a) C0,0 (b) f(C0,0), where f(x, y) = (σ(x), σ(y))

Figure 2: (a) C0,0 (b) f(C0,0), where f(x, y) = (τ2(x), τ0(y)) (f contracts the set C0,0 horizontally
and vertically with ratio 1/3)

Theorem 1. Consider the map Φ : C × C −→ C × C,

Φ(a, b) = (σ(a), τα(b)), (3)

where α is the first term of the code representation of the point a ∈ C. Then
{C × C; Φ} is a chaotic dynamical system in the sense of Devaney.

Remark 2. In the book [6], the author defines a chaotic dynamical system so-called
two-sided shift map on the two-dimensional Cantor set. One can easily prove that
this dynamical system (the two-sided shift map) is homeomorphic to Φ given in
Theorem 1, which says Φ is also chaotic.

Although Φ is homeomorphic to the two-sided shift map in [6], Φ is expressed
more clearly by using directly the codes of the points of C × C, which gives us
some advantages (computation of periodic points, etc.) to understand the chaotic
behaviour of the dynamical system Φ on the two-dimensional Cantor set.

Although we know that the dynamical system Φ is chaotic since the two-sided
shift map is, we give the proof of Theorem 1 by using our notations for a better
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understanding of the proofs of the theorems in the next section.

Proof. We first note that the expression of the function Φ in terms of the code of
the point (a, b) = (α1α2α3 · · · , β1β2β3 · · · ) ∈ C × C is

Φ(a, b) = (α2α3 · · · , α1β1β2β3 · · · ).

Since Φ is a continuous map, according to [4] it is enough to show that the conditions
of topological transitivity and density of periodic points are satisfied. On the other
hand, here the conditions topological transitivity and existence of a dense orbit are
equivalent (due to the Proposition 1 in [7]), thus we show that Φ has a dense orbit
instead of topological transitivity.

We first prove that the set of periodic points is dense in C × C. By a simple
calculation we get

Φn(a, b) = (αn+1αn+2αn+3 · · · , αnαn−1 · · ·α2α1β1β2β3 · · · ), (4)

where Φn = Φ ◦ Φ ◦ · · · ◦ Φ︸ ︷︷ ︸
n times

for n ≥ 1. Thus clearly, the 2n-periodic points of Φ can

be expressed as

(α1α2 · · ·αnβnβn−1 · · ·β2β1, β1β2 · · ·βnαnαn−1 · · ·α2α1).

To show that the periodic points are dense, we must find a periodic point close
enough to each point of C × C. Let (p, q) = (p1p2 · · · , q1q2 · · · ) ∈ C × C. Choose

r ∈ N such that
√
2

3r < ε for a given ε > 0. It is easy to verify that the point

(x, y) = (p1p2 · · · prqrqr−1 · · · q2q1, q1q2 · · · qrprpr−1 · · · p2p1)

is a 2r-periodic point. Furthermore, the point (x, y) is close enough to the given
(p, q) since

d((x, y), (p, q)) ≤

√(
2

3r+1
+

2

3r+2
+ · · ·

)2

+

(
2

3r+1
+

2

3r+2
+ · · ·

)2

=

√
2

3r
< ε,

which says that the periodic points of Φ are dense in C × C.
Let Bn (n block) be all combinations of length n consisting of 0 and 2 for a

positive even integer n. For example, B2 and B4 are as follows:

B2 = 00022022

B4 = 0000000200200022020002020220022220002002202020222200220222202222.

Let x := B2B4B6 · · · . Let (p, q) = (p1p2p3 · · · , q1q2q3 · · · ) be an arbitrary point in
C × C and ε > 0. There exists a block

qkqk−1 · · · q2q1p1p2 · · · pk

in x, where q1 is the nth term of x. From equation (4)

Φn(x, y) = (p1p2 · · · pk · · · , q1q2 · · · qk · · · )

for any y ∈ C and thus we obtain d(Φn(x, y), (p, q)) ≤
√
2

3k
< ε, which says that the

point (x, y) ∈ C × C has a dense orbit.



176 K. Yılmaz, Y. Özdemi̇r and F. D. Koparal

3. The construction of a family of chaotic dynamical systems
on C × C via the symmetries of the unit square

It is possible to obtain new dynamical systems by combining the function Φ defined
in (3) and the elements of the Dihedral group D4. Indeed, we use the restriction
of the functions of the well-known Dihedral group D4 = {ρ0, ρ1, ρ2, ρ3, µ1, µ2, δ1, δ2}
to the 2D Cantor set to define a new dynamical system. In Figure 3, we give a
pictorial description of the maps ρ0, ρ1, ρ2, ρ3, µ1, µ2, δ1 and δ2 on the unit square
[0, 1]× [0, 1].

Let (a, b) ∈ C ×C. The symmetries in the group D4 restricted to C ×C can be
expressed explicitly as

ρ0(a, b) = (a, b) ρ1(a, b) = (b̃, a) ρ2(a, b) = (ã, b̃) ρ3(a, b) = (b, ã),

µ1(a, b) = (ã, b) µ2(a, b) = (a, b̃) δ1(a, b) = (b̃, ã) δ2(a, b) = (b, a),

which can be easily verified (see also Figure 4(b) for verification).

Figure 3: Pictorial description of the the symmetries of the square

For a point a = α1α2α3 · · · ∈ C, we define the point ã := α̃1α̃2α̃3 · · · , where
x̃ = 2 − x for x ∈ {0, 2}, i.e. x̃ = 2 if x = 0 and x̃ = 0 if x = 2. By definition, it
is obvious that the point ã is the reflection of the point a about the point x = 1/2
(see Figure 4(a)). Similarly, let (a, b) ∈ C ×C. Then the points (ã, b) and (a, b̃) are
the reflections of the point (a, b) about the lines x = 1/2 and y = 1/2 , respectively,
and (ã, b̃) is the point obtained by rotating the point (a, b), 180◦ (counterclockwise)
about the origin O of the unit square (see Figure 4(b)).
Now, consider the dynamical system Φη on C × C depending on η ∈ D4 as

Φη(a, b) = (Φ ◦ η)(a, b), (5)
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(a) (b)

a ã

(a, b) (ã, b)

(ã, b̃)(a, b̃)

Figure 4: (a) A point in C and its symmetry about the point 1
2
, (b) A point in C×C and its image

under the symmetries ρ0, µ2, ρ2, µ1.

where Φ is the function defined in (3).

Theorem 2. Let Φη be the function given in (5).

i. If η ∈ {ρ0, ρ2, µ1, µ2}, then {C × C; Φη} is a chaotic dynamical system,

ii. If η ∈ {ρ1, ρ3, δ1, δ2}, then {C × C; Φη} is not a chaotic dynamical system

in the sense of Devaney.

Proof. i) Since Φη is a continuous map, it is enough to show that the density of
periodic points and the existence of a dense orbit are satisfied. First, consider the
case η = µ1. We can express the function Φµ1

as

Φµ1
(a, b) = (α̃2α̃3α̃4 · · · , α̃1β1β2β3 · · · ),

where (a, b) = (α1α2α3 · · · , β1β2β3 · · · ) ∈ C × C.
Density of periodic points: To show that the set of periodic points is dense
in C × C, we need to find a periodic point close enough to the arbitrary (a, b) =
(α1α2α3 · · · , β1β2β3 · · · ) ∈ C × C. We obtain

Φnµ1
(a, b) = (αn+1αn+2αn+3 · · · , αnα̃n−1αn−2 · · ·α2α̃1β1β2β3 · · · ), (6)

for all positive even integers n. In this case, the 2n−periodic points are in the
following form:

(α1α2 · · ·αnβ̃nβn−1 · · · β̃2β1, β1β2 · · ·βnαnα̃n−1 · · ·α2α̃1). (7)

In order to prove that the periodic points are dense in C×C, we must find a periodic
point close enough to each arbitrary point in C×C. Let (p, q) = (p1p2 · · · , q1q2 · · · ) ∈
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C × C and ε > 0 is given. Choose r ∈ N such that
√
2

3r < ε. If we choose

x = p1p2 · · · pr q̃rqr−1 · · · q̃2q1 and y = q1q2 · · · qrprp̃r−1 · · · p2p̃1,

then the point (x, y) is the 2r−periodic point of the map. Since the first r terms of
x and p are the same, just like y and q, it follows that

d((x, y), (p, q)) ≤
√

2

3r
< ε.

Thus the periodic points of Φµ1
are dense in C × C.

Existence of a dense orbit: Let Bn (an n block) be all combinations of length
n consisting of 0 and 2 for a positive even integer n and let x := B2B4B6 · · · . Let
(p, q) = (p1p2p3 · · · , q1q2q3 · · · ) ∈ C × C and ε > 0. There exists a block

q̃kqk−1 · · · q̃2q1p1p2 · · · pk

in x, where q1 is the nth term of x and k is an odd integer. From equation (6)

Φnµ1
(x, y) = (p1p2 · · · pk · · · , q1q2 · · · qk · · · )

for any y ∈ C, so then

d(Φnµ1
(x, y), (p, q)) ≤

√
2

3k
< ε.

Thus the point (x, y) ∈ C ×C has a dense orbit and consequently {C ×C; Φµ1
}

is a chaotic dynamical system.
Now consider the case η = µ2. Some 2n-periodic points of Φµ2

are in the form

(α1α2 · · ·αnβ̃nβn−1 · · · β̃2β1, β1β2 · · ·βnαnα̃n−1 · · ·α2α̃1)

for all positive even integers n. Similarly, we can obtain the 2n-periodic points of
Φρ0 and 2m-periodic points of Φρ2 as

(α1α2 · · ·αnβnβn−1 · · ·β1, β1β2 · · ·βnαnαn−1 · · ·α1)

and
(α1α2 · · ·αmβmβm−1 · · ·β1, β1β2 · · ·βmαmαm−1 · · ·α1)

for all positive integers n and for all positive even integers m, respectively. Using
these facts, the statement can be proven similarly as done η = µ1.
ii) First, we consider the case η = ρ1. In this case, the function Φρ1 can be expressed
as

Φρ1(a, b) = (β̃2β̃3β̃4 · · · , β̃1α1α2α3 · · · ).
{C × C; Φρ1} is not a chaotic dynamical system in the Devaney sense:
It is enough to show that the condition of topological transitivity does not hold. For
that purpose, we choose open sets as U ⊂ C00,00 and V ⊂ C02,02. Let (a, b) ∈ C00,00.
The code representation of the point is (00α3α4 · · · , 00β3β4 · · · ). When the orbit of
the point is examined, then for all n ≥ 1 we obtain

Φnρ1(a, b) = Φn+4
ρ1 (a, b). (8)
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In fact, (8) is satisfied for all points in C×C. On the other hand, according to (8), one
can easily verify that Φnρ1(a, b) /∈ V , for all n ∈ N. Obviously, Φnρ1(C00,00) ∩ V = ∅,
for all n ∈ N, and since U ⊂ C00,00, we conclude that

Φnρ1(U) ∩ V = ∅,

which means that Φρ1 does not satisfy the condition of topological transitivity.
Therefore, {C × C; Φρ1} is not chaotic in the sense of Devaney.

For the case η = ρ3 one can verify that Φnρ3(a, b) = Φn+4
ρ3 (a, b) for all (a, b) ∈ C×C

and n ≥ 1, i.e. each point in C × C is a periodic point with period 4 of ρ3,
as in the case η = ρ1. Similarly, for the cases η = δ1 and η = δ2 we obtain
Φnη (a, b) = Φn+2

η (a, b) for all (a, b) ∈ C × C and n ≥ 1, i.e. each point in C × C is
a periodic point with period 2 of δ1 and δ2. Thus, similarly to the case η = ρ1, one
can show that the related dynamical system is not chaotic in these cases since the
topological transitivity condition does not hold.

In (5), to define Φη, we choose τ0 or τ2 according to the code representation
of the first component of the point η(a, b). We can express the function Φη in a
different form as

Φη(a, b) = (σ(ηx), τα(ηy)),

where (ηx, ηy) = η(a, b) and α is the first term of the code representation of the point
ηx ∈ C. More clearly, in Φη, after applying η, σ is applied to the first component
and τ0 or τ2 is applied to the second component depending on ηx which is the first
component of η(a, b). If we choose τ0 or τ2 according to a ∈ C not ηx, we can obtain
different dynamical systems on C × C. Although different dynamical systems have
been obtained with this choice, the chaoticity characters of these new dynamical
systems are the same for each η, as stated in Theorem 3.

Theorem 3. Let η ∈ D4 and Ψη(a, b) = (σ(ηx), τα(ηy)) be the function on C × C,
where (ηx, ηy) = η(a, b) and α is the first term of the code representation of the point
a ∈ C. Then

i. If η ∈ {ρ0, ρ2, µ1, µ2}, then {C × C; Ψη} is a chaotic dynamical system,

ii. If η ∈ {ρ1, ρ3, δ1, δ2}, then {C × C; Ψη} is not a chaotic dynamical system

in the sense of Devaney.

Proof. We left the easy proof to the readers which can be done in a similar way to
the proof of Theorem 2.
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