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 The application of magnetic bearings has become more frequent 

during the last 20 years and represents a significant aspect of 

improvements in the construction of machines with rotary motion. 

With the advancement of technology, the number of applications 

in which magnetic bearings have found their application is 

increasing. In this paper, it is shown how the effect of magnetic 

forces can annul the negative influence of unbalance, which 

suddenly appeared in a rotor supported in active magnetic 

bearings. Such cases may occur in operation due to breakage and 

rotor parts falling off (e.g., fan blades), which will lead to a sudden 
change in the mass balance of the rotor system and dislocation of 

the centre of mass in relation to the geometric centre of the rotor. 

In the paper, a mathematical model of the dynamic behaviour of a 

rigid rotor in active magnetic bearings was developed. The model 

is nonlinear and has five degrees of freedom and can only be 

solved numerically. The Newmark beta method and the Newton-

Raphson method were used to solve the system of nonlinear 

differential equations. The results of the simulation showed the 

advantages of using active magnetic bearings for annulling sudden 

occurrences of unbalance in rotary machines. 
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1 Introduction 
 

The bearings represent one of the most important elements in the construction of a rotary machine. They 
support rotating elements and have the task of ensuring relative movement and load transfer from moving 

elements to the machine construction, as well as ensuring the required accuracy between parts in relative 

movement [1]. Friction and mechanical vibrations are the main causes of problems that prevent bearings from 
performing their function effectively in machines [2-5]. Therefore, active magnetic bearings (AMB) are 

increasingly being used in applications for the support of rotating elements. Unlike conventional bearings, 

AMBs create magnetic forces that allow the rotor to float in a magnetic field, without contact between the 

bearing and the rotor [6]. The absence of physical contact avoids friction, which results in a reduction of power 
losses in the system. On the other hand, by controlling the magnetic forces that are generated on the poles of 

the electromagnet, it is possible to counteract the disruptive forces that cause the vibrations of the rotating 

system. In this way, vibrations are reduced and the accuracy of rotor rotation increases [7]. This is especially 
important for applications that require high rotor speeds because using AMB can significantly increase the 

number of revolutions compared to applications with conventional bearings [8]. 

The idea of supporting the rotor in magnetic bearings appeared immediately with the first patents for 
passive magnetic levitation [9,10], which is related to the period around 1842 and the British mathematician 

Earnshaw [11]. Over time, the conclusion was reached that it is necessary to control and adjust the forces 

produced by ferromagnetic materials for the body to achieve stable levitation [12, 13]. This led to the 

emergence and development of AMB. Higuchi et al. [14] applied frequency domain iterative learning control 
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(FILC) to control AMBs. However, the foundations of the first decentralized control model for rotors supported 

in magnetic bearings were laid by Fan and Lee [15]. Knopse et al proposed an adaptive vibration control (AVC) 

model [16] similar to iterative learning control in the frequency domain. All these models use sensors and 
actuators to continuously monitor and control the response to external disturbances, thus improving the 

stability and precision of the rotation of the system itself. The system uses algorithms to identify the strength 

of vibrations and adjusts the control parameters accordingly, to soothe the rotor and reduce vibrations. 
The most common control system used to control the AMB system in rigid rotors is PID control 

(Proportional-Integral-Derivative control) [17, 18, 19]. Muminović et al., for flexible rotors, propose PI-D 

control. In [20] they examine the performance of a flexible rotor/AMB system in the case of PID and PI-D 

control, both in combination with NOTCH filters. Using PID control, Štimac et al. have proposed a vibration-
damping model using magnetic forces for a flexible rotor supported in an AMB [21]. Numanoy and Srisertpol 

also use PID controllers to reduce vibrations of the rotor/AMB system [7]. The vibration reduction benefits of 

AMB were exploited by Park et al. to increase the precision of rollers used in printing machines [22]. 
Srinivas et al. presented in [23] a detailed overview of the techniques used for vibration damping using AMB 

systems. Mass unbalance is singled out as the primary source of vibration in rotating machines. Several 

different factors are identified as causes of unbalance, such as [24]: 

• Construction requirements - mainly refers to the impossibility of constructing symmetric rotors; 
• Errors that exist in the structure of the rotor, i.e., inhomogeneity of the rotor material; 

• Irregularities resulting from imprecise mechanical processing, i.e., rotor asymmetry; 

• Improper and inadequate installation of rotating elements; 
• Deformations that occur during exploitation as a consequence of the load; 

• Breakages and damage of rotating elements, as well as damage resulting from wear and tear; 

• Disturbances in the mass balance due to the appearance of impurities. 
The research performed to reduce the intensity of vibrations that are a consequence of unbalance by using 

AMBs is mainly heading in two basic directions [25]: 

• The automatic balancing method refers to the tendency for the rotor to turn around its axis of inertia 

(that is, the actual axis of rotation), and this can be achieved by annulling the synchronous electromagnetic 
forces. This method is used in cases where it is not necessary to achieve high rotation accuracy of the rotor, 

and the air gap that exists between the rotor and the stator in the AMB is large enough. 

• The unbalance compensation method refers to the tendency for the rotor to rotate around its axis of 
symmetry, and this can be achieved by compensating the force that arises because of the unbalance. This 

method is more suitable for cases that require precise rotation of the rotary elements, but for the application of 

this method, a high-power amplifier, and attractive magnetic forces on the bearings due to the presence of a 
large residual unbalance are required. So back in 1996, Herzog et al. in [26] developed a model that uses a 

NOTCH filter to remove synchronous control currents and reduce vibrations resulting from unbalance. On the 

other hand, Schuhmann et al. [27] studied the improvement of rotor rotation accuracy using a Kalman filter to 

reduce the impact of unbalance vibrations on the system. Shafai et al. [28] managed to obtain the Fourier 
coefficients of vibrations that are a consequence of unbalance using the iterative algorithm through the method 

of automatic balancing. 

More recently, Kejian et al. [29] proposed a method based on which data on the position of the unbalance 
mass is collected in real time. Cui et al. [30] identified the static mass unbalance by applying the unbalance 

detection method and achieved zero deviation magnetic field levitation control of the rotor. On the other hand, 

Hutterer et al. [31] applied a two-stage modulation approach to control the unbalance. In the works of Chen et 

al. [32], as well as Xu et al. [33], the damping of vibrations due to unbalance was controlled by applying the 
NOTCH filter, as developed much earlier by Herzog. Bian et al. [34] developed a model for the reduction of 

vibrations of the AMB system without the use of a rotation speed sensor by means of a nonlinear adaptive 

algorithm. The effectiveness of their model was proven experimentally. Most of the causes which are the 
consequence of the unbalance appearance can be corrected to a greater or lesser extent with adequate 

interventions before exploitation. However, unknown unbalances occur very often in the operation of 

machines, and this was analysed by Xu et al. in [35]. Sudden occurrences of unbalance during exploitation are 
a serious hazard that occurs in the case of breaking and/or tearing of individual parts of the rotary system, e.g., 

breakage of fan blades or turbine parts, etc. Often, the vibrations caused by such failures require an immediate 

stop of the machine, which can be extremely unfavourable for the rest of the production process, even though 

the damage is not great enough to require an immediate stop of the machine. As a rule, such cases cause, in 
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addition, to repair and maintenance costs, enormous downtime costs because the system had to be stopped and 

production shut down at an unfavourable moment. Precisely AMB provides the possibility to annul this kind 

of sudden occurrence of unbalance without stopping the machines, immediately after it occurs during the actual 
exploitation. In this way, the need for an unplanned machine stop can often be postponed until a more 

favourable moment for production [36]. 

The aim of this paper is to research the possibility of applying AMBs to annul the impact of the sudden 
appearance of rotor unbalance due to various damages that occur in rotary machines. In the paper a 

mathematical model that describes the above-mentioned problem that often occurs in practice is developed. 

The mathematical model serves for further development of the AMB control system in the event of such sudden 

failures. In the paper, the differential equations of the motion of the rigid rotor in the AMB were derived, 
considering the working and other loads that occur during the operation of the machine, as well as the 

disruptive forces caused by the sudden appearance of unbalance and attractive forces that occur on the poles 

of the electromagnet. By solving the differential equations, the control magnetic forces are obtained, which 
must be enacted to soothe the rotor and damp out the vibrations. The Newmark beta method and the Newton-

Raphson method were used to solve differential equations. 

 

2 Basic characteristics of active magnetic bearings 
 

Magnetic bearings can be derived as passive magnetic bearings (PMB), active magnetic bearings (AMB), 

and a combination of these two types of performance (hybrid MB) [12]. Full suspension of the rotor by using 
passive bearings in all six degrees of freedom is not possible because there is always one unstable degree of 

freedom [11]. For the system to be completely stable, that is, to achieve support in all six degrees of freedom, 

it is necessary to act on the rotor with some external force, and this can be achieved by installing an 
electromagnet. By supplying the current to the electromagnets, a magnetic field is created that opposes the 

force of gravity and thus allows ferromagnetic bodies to levitate. Active magnetic bearings are machine 

elements that, in synergy with electronic components, form a single mechatronic system that can improve the 

support conditions of machines with linear or rotary motion. 
Based on the standard configuration [37] of active magnetic bearings, it is possible to explain the basic 

principle of operation of a simple magnetic bearing system, which consists of a rotor supported in only one 

direction (Figure 1): 
 

  
 

Figure 1. Schematic representation of the operation principle of a simple system of AMBs. 

 

The sensor measures the displacement of the rotor from the reference position, and the micro-processor as 

a controller sends a control signal to the amplifier, acting on data from the sensor. The amplifier converts this 
control signal into a control current, and the control current generates a magnetic field in the active magnets. 

The resulting magnetic forces affect the rotor in such a way that it remains in its levitating position [12]. The 

rotor that levitates in the magnetic field of the stator, besides the magnetic force, is affected by the force of its 
weight, and other active and disruptive forces that occur during exploitation. In order for the rotor to be in a 

stable position, it is necessary for the system of forces acting on the rotor to be in balance, i.e., that the magnetic 

force is in balance with all the internal and external forces of the rotating system. If the current that flows 

through the electromagnets is not regulated, the magnetic force will not be in balance with the other forces 
acting on the rotor, which will lead to contact between the rotor and the stator. To avoid such situations, sensors 
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are introduced into the magnetic bearing system that continuously measure the deviation of the rotor from the 

reference position. 

 
2.1 The calculation of attractive magnetic force 

 

To explain the attractive magnetic force created by an electromagnet more easily, it is necessary to start 

from a simple active magnetic bearing system, that is, from a radial single-pole active magnetic bearing (Figure 
2 a). The equation for calculating the attractive magnetic force for a radial single-pole active magnetic bearing 

is as follows:  

 

 
𝐹 =

1

4
𝜇0 ∙ 𝐴0 ∙ 𝑛

2 ∙
𝑖2

𝑠2
∙ 𝑐𝑜𝑠𝛼 = 𝑘 ∙

𝑖2

𝑠2
 (1) 

 

where μ0 is the magnetic permeability of vacuum, A0 is the cross-section of the air gap, n is the number of 
electromagnet windings, magnetic forces act on the rotor with an angle α, i is the current flowing through the 

windings, s is the air gap between electromagnet and rotor, and 𝑘 =
1

4
𝜇0𝐴0𝑛

2𝑐𝑜𝑠𝛼 a constant that depends on 

the geometry of the electromagnets used for the AMB system [12]. 
 

 
 

                              (a)                                                                           (b) 
 

Figure 2. a) Radial single-pole active magnetic bearing; b) Differential control of one pair of poles of 

active magnetic bearing. 

 
Considering that the mentioned case with only one pole of the electromagnet (Figure 2a) is not used in practice, 

by combining them and forming a pair of poles, a structural combination of electromagnets is obtained, which 

enables the control of the ferromagnetic rotor in several axes. 
The forces with which electromagnets act on the rotor during operation can be both positive and negative 

at the same time. Active magnetic bearings work in differential operation mode (Figure 2b) [12]. This means 

that one electromagnet in a pair is powered by the sum of the stable current 𝑖0, which maintains the rotor in 

the reference position at the air gap 𝑠0, and the regulation current 𝑖𝑥. The total current on that magnet is 𝑖1 =
𝑖0 + 𝑖𝑥. The second electromagnet in the pair is powered by their difference (𝑖2 = 𝑖0 − 𝑖𝑥). In accordance with 

the action of the electromagnet on the ferromagnetic rotor, the distances between the rotor and the stator are: 
 

 for first pole: 

 
 𝑠1 = 𝑠0 − 𝑥,  (2) 

 for second pole: 

 
 𝑠2 = 𝑠0 + 𝑥.  (3) 
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Based on the differential operating mode of the active magnetic bearing system and applying the equation for 

obtaining the attractive force (1), the equation for calculating the attractive force for one pair of poles (X or Y 

axis) of the electromagnet is obtained: 
 

 
𝐹 = 𝐹+ + 𝐹− = 𝑘 ∙ [

(𝑖0 + 𝑖𝑥)
2

(𝑠0 − 𝑥)
2
−
(𝑖0 − 𝑖𝑥)

2

(𝑠0 + 𝑥)
2
] (4) 

 

By observing the active magnetic bearing system and by its linearization, i.e., presuming that the rotor does 

not deviate from the reference position and that 𝑥 ≪ 𝑠0, the equation for the ideal model for the calculation of 
the attractive magnetic force can be obtained: 

 

 
𝐹 =

4 ∙ 𝑘 ∙ 𝑖0

𝑠0
2 ∙ 𝑐𝑜𝑠𝛼 ∙ 𝑖𝑥 +

4 ∙ 𝑘 ∙ 𝑖0
2

𝑠0
3 ∙ 𝑐𝑜𝑠𝛼 ∙ 𝑥 = 𝑘𝑖 ∙ 𝑖𝑥 + 𝑘𝑠 ∙ 𝑥 (5) 

 

where 𝑘𝑖 is force – current factor: 

 

 
𝑘𝑖 =

4 ∙ 𝑘 ∙ 𝑖0

𝑠0
2 ∙ 𝑐𝑜𝑠𝛼 (6) 

 

and 𝑘𝑠 is force – displacement factor: 

 

 
𝑘𝑠 = −

4 ∙ 𝑘 ∙ 𝑖0
2

𝑠0
3 ∙ 𝑐𝑜𝑠𝛼 (7) 

 

3 Mathematical model of the dynamic behaviour of a rigid rotor in active magnetic bearings 

due to the influence of unbalance 
 

Active magnetic bearings provide the possibility of active control of rotor vibrations that may be the result 

of various causes. One of the most common causes is the sudden appearance of unbalance during machine 

operation, due to breakage of fan blades, accumulation of dirt on the rollers of the rotary mill, etc. These 
phenomena will cause sudden and very strong vibrations due to an unbalance in rotary machines. Because of 

attractive magnetic forces, it is possible to continuously position the axis of inertia in relation to the axis of 

rotation, which can significantly annul the impact of unbalance, and thus reduce the intensity of vibrations that 

are a consequence of sudden unbalance. The mathematical model of the active influence of radial magnetic 
bearings on the sudden occurrence of unbalance was derived for the rotor system with two AMBs, which is 

shown in Figure 3.  

 

 
 

(a)                                                                                    (b) 
 

Figure 3. (a) Structural configuration of an active magnetic bearing with two pairs of poles;  

(b) Structural model of the rotor system supported on two radial active magnetic bearings. 
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The system consists of two radial active magnetic bearings and has 5 degrees of freedom (two degrees of 

freedom for translational movement in the radial directions x-y, two for rotational movement around the x-y 

axis, and one degree of freedom for rotational movement in the direction of the z axis). To monitor the position 
of the rotor axis, two displacement sensors are placed next to the radial bearings. The coordinate system is 

placed in the centre of the rotor system (point O), that is, it is obtained by the intersection of the plane П (the 

plane in which the centre of mass of the rotor is located, and which is normal to the axis z - the axis of rotation) 
and the axis of symmetry of the magnetic bearings A and B (sL). Point P represents the intersection of the axis 

of symmetry of the rotor (sR) and the plane П, and point C is obtained by the intersection of the axis of inertia 

of the rotor (iR) with the plane П and represents the new position of the centre of mass of the rotor.  

The angles of rotation around the axes of the coordinate system x, y, and z are denoted by θx, θy, and θz. 
The distances of the radial active magnetic bearings (bearing A and bearing B) from the coordinate origin O 

are represented by dA and dB, while the sensor distances from the coordinate centre O are indicated by dsA and 

dsB. The attractive magnetic forces used to position the rotor are marked with: fxA and fyA (magnetic bearing A) 
and fxB and fyB (magnetic bearing B). For the structural model of the rotor system shown in Figure 3b, the 

equation of the dynamic movement of the rotor supported on radial active magnetic bearings according to 

Newton's law of motion (Newton's second law) and the equations for the rigid rotor model with five degrees 

of freedom of movement can be written as: 
 

 

{
 
 

 
 

𝑚�̈�𝑖 = 𝑓𝑥𝐴 + 𝑓𝑥𝐵 +𝑚𝑒�̇�𝑧
2𝑐𝑜𝑠𝜃�̇�𝑡

 𝐽𝑥�̈�𝑥𝑖 + 𝐽𝑧𝜃�̇��̇�𝑦𝑖 = 𝑓𝑦𝐴𝑑𝐴 − 𝑓𝑦𝐵𝑑𝐵 − χ ∙ �̇�𝑧
2 ∙ (𝐽𝑥 − 𝐽𝑧) ∙ cos 𝜃�̇�𝑡

𝑚�̈�𝑖 = 𝑓𝑦𝐴 + 𝑓𝑦𝐵 −𝑚𝑔 +𝑚𝑒�̇�𝑧
2𝑠𝑖𝑛𝜃�̇�𝑡

𝐽𝑦�̈�𝑦𝑖 − 𝐽𝑧𝜃�̇��̇�𝑥𝑖 = −𝑓𝑥𝐴𝑑𝐴 + 𝑓𝑥𝐵𝑑𝐵 + χ ∙ �̇�𝑧2 ∙ (𝐽𝑦 − 𝐽𝑧) ∙ 𝑠𝑖𝑛 𝜃�̇�𝑡

 (8) 

 

where is 𝑚 rotor mass,  𝐽𝑥 and 𝐽𝑦 transverse moments of inertia, 𝐽𝑧 represents the polar moment of inertia of a 

rigid rotor, 𝑚𝑔 = 𝐹𝑔 is the force arising from the weight of the rotor, 𝑚𝑒�̇�𝑧
2 = 𝐹𝑐 and χ�̇�𝑧

2(𝐽𝑟 − 𝐽𝑧) = 𝐹𝑐 

centrifugal forces resulting from unbalance.  

If the transverse moments of inertia are greater than the polar moment of inertia (𝐽𝑥 , 𝐽𝑦 ≫ 𝐽𝑧) a rigid rotor can 

be viewed as a long rod. Considering that the excitation (static) current is supplied to the electromagnets 𝑖0 

which creates a magnetic field in which the rotor levitates, the influence of the weight force of the rigid rotor 
can be ignored.  

According to the equation for linearization of the attractive magnetic force (5), the following relations are 

obtained for the attractive forces of electromagnets of radial bearings A and B: 
 

                                           𝑓𝑥𝐴
+ = 𝑘𝑠𝑥𝐴 + 𝑘𝑖𝑖1                              𝑓𝑥𝐴

− = −𝑘𝑠𝑥𝐴 + 𝑘𝑖𝑖3 

                                          𝑓𝑦𝐴
+ = 𝑘𝑠𝑦𝐴 + 𝑘𝑖𝑖2                             𝑓𝑦𝐴

− = −𝑘𝑠𝑦𝐴 + 𝑘𝑖𝑖4 

                                          𝑓𝑥𝐵
+ = 𝑘𝑠𝑥𝐵 + 𝑘𝑖𝑖5                            𝑓𝑥𝐵

− = −𝑘𝑠𝑥𝐵 + 𝑘𝑖𝑖7 

                                          𝑓𝑦𝐵
+ = 𝑘𝑠𝑦𝐵 + 𝑘𝑖𝑖6                           𝑓𝑥𝐵

− = −𝑘𝑠𝑥𝐵 + 𝑘𝑖𝑖7 

(9) 

 
Because the displacement of the rotor from the reference position is observed in radial active magnetic 

bearings, it is necessary to translate the displacement from the coordinate system into the bearing positions. 

The displacement translation is represented by the following relations: 

 
 

{
 

 
𝑥𝐴 = 𝑥𝑖 − 𝑑𝐴 ∙ 𝜃𝑦𝑖
𝑦𝐴 = 𝑦𝑖 + 𝑑𝐴 ∙ 𝜃𝑥𝑖
𝑥𝐵 = 𝑥𝑖 + 𝑑𝐵 ∙ 𝜃𝑦𝑖
𝑦𝐵 = 𝑦𝑖 − 𝑑𝐵 ∙ 𝜃𝑥𝑖

 (10) 
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By further arranging the obtained relations (10), the final form of the rotor movement is obtained as a function 

of the movement in the magnetic bearings A and B: 

 
 

𝑥𝑖 =
𝑑𝐵𝑥𝐴 + 𝑑𝐴𝑥𝐵

𝑑
                            𝑦𝑖 =

𝑑𝐵𝑦𝐴 + 𝑑𝐴𝑦𝐵
𝑑

 

𝜃𝑥𝑖 ≈ 𝑡𝑔𝜃𝑥𝑖 =
𝑦𝐴 − 𝑦𝐵
𝑑

                    𝜃𝑦𝑖 ≈ 𝑡𝑔𝜃𝑦𝑖 =
𝑥𝐵 − 𝑥𝐴
𝑑

 
(11) 

 

where 𝑑 is total length between two magnetic bearings. 
By applying the first and second derivatives to equations (11) and inserting them and equations (9) into (8), 

the final equations of the dynamic movement of the rotor in the positions of the magnetic bearings A and B 

are obtained: 

 
 

�̈�𝐴 +
𝐽𝑧𝜃�̇�𝑑𝐴
 𝐽𝑦𝑑

(�̇�𝐴 − �̇�𝐵) − 𝑥𝐴 (
2𝑘𝑠
𝑚

+
2𝑘𝑠𝑑𝐴

2

 𝐽𝑦
) − 𝑥𝐵 (

2𝑘𝑠
𝑚

−
2𝑘𝑠𝑑𝐴𝑑𝐵
 𝐽𝑦

)

= 𝑖𝑥𝐴 (
𝑘𝑖
𝑚
+
𝑘𝑖𝑑𝐴

2

 𝐽𝑦
) + 𝑖𝑥𝐵 (

𝑘𝑖
𝑚
−
𝑘𝑖𝑑𝐴𝑑𝐵
 𝐽𝑦

) + 𝑒�̇�𝑧
2𝑐𝑜𝑠𝜃�̇�𝑡 + χ ∙ �̇�𝑧

2

∙
(𝐽𝑦 − 𝐽𝑧) ∙ 𝑑𝐴

𝐽𝑦
∙ 𝑠𝑖𝑛 𝜃�̇�𝑡 

(12) 

 

 
�̈�𝐵 −

𝐽𝑧𝜃�̇�𝑑𝐵
 𝐽𝑦𝑑

(�̇�𝐴 − �̇�𝐵) − 𝑥𝐴 (
2𝑘𝑠
𝑚

−
2𝑘𝑠𝑑𝐴𝑑𝐵
 𝐽𝑦

) − 𝑥𝐵 (
2𝑘𝑠
𝑚

+
2𝑘𝑠𝑑𝐵

2

 𝐽𝑦
)

= 𝑖𝑥𝐴 (
𝑘𝑖
𝑚
−
𝑘𝑖𝑑𝐴𝑑𝐵
 𝐽𝑦

) + 𝑖𝑥𝐵 (
𝑘𝑖
𝑚
+
𝑘𝑖𝑑𝐵

2

 𝐽𝑦
) + 𝑒�̇�𝑧

2𝑐𝑜𝑠𝜃�̇�𝑡 + χ ∙ �̇�𝑧
2

∙
(𝐽𝑦 − 𝐽𝑧) ∙ 𝑑𝐵

𝐽𝑦
∙ 𝑠𝑖𝑛 𝜃�̇�𝑡 

(13) 

 

 
�̈�𝐴 +

𝐽𝑧𝜃�̇�𝑑𝐴
 𝐽𝑥𝑑

(�̇�𝐵 − �̇�𝐴) − 𝑦𝐴 (
2𝑘𝑠
𝑚

+
2𝑘𝑠𝑑𝐴

2

 𝐽𝑥
) − 𝑦𝐵 (

2𝑘𝑠
𝑚

−
2𝑘𝑠𝑑𝐴𝑑𝐵
 𝐽𝑥

)

= 𝑖𝑦𝐴 (
𝑘𝑖
𝑚
+
𝑘𝑖𝑑𝐴

2

 𝐽𝑥
) + 𝑖𝑦𝐵 (

𝑘𝑖
𝑚
−
𝑘𝑖𝑑𝐴𝑑𝐵
 𝐽𝑥

) + 𝑒�̇�𝑧
2𝑠𝑖𝑛𝜃�̇�𝑡 − χ ∙ �̇�𝑧

2

∙
(𝐽𝑥 − 𝐽𝑧) ∙ 𝑑𝐴

𝐽𝑥
∙ 𝑐𝑜𝑠 𝜃�̇�𝑡 

(14) 

 

 
�̈�𝐵 −

𝐽𝑧𝜃�̇�𝑑𝐵
 𝐽𝑥𝑑

(�̇�𝐵 − �̇�𝐴) − 𝑦𝐴 (
2𝑘𝑠
𝑚

−
2𝑘𝑠𝑑𝐴𝑑𝐵
 𝐽𝑥

) − 𝑦𝐵 (
2𝑘𝑠
𝑚

+
2𝑘𝑠𝑑𝐵

2

 𝐽𝑥
)

= 𝑖𝑦𝐴 (
𝑘𝑖
𝑚
−
𝑘𝑖𝑑𝐴𝑑𝐵
 𝐽𝑥

) + 𝑖𝑦𝐵 (
𝑘𝑖
𝑚
+
𝑘𝑖𝑑𝐵

2

 𝐽𝑥
) + 𝑒�̇�𝑧

2𝑠𝑖𝑛𝜃�̇�𝑡 − χ ∙ �̇�𝑧
2

∙
(𝐽𝑥 − 𝐽𝑧) ∙ 𝑑𝐵

𝐽𝑥
∙ 𝑐𝑜𝑠 𝜃�̇�𝑡 

(15) 

 

4 Solution of the mathematical model 
 

In the previous chapter, a mathematical model of the dynamic behaviour of a rigid rotor supported on two 

radial active magnetic bearings was derived. The model has five degrees of freedom of movement. The derived 
model considers the case when there are known static and dynamic unbalances in the rotor structure. For a 

simpler calculation, the elastic properties of the rotor structure, magnetic nonlinearities that can occur in the 

active magnetic bearing system, the influence of eddy currents, the dissipation of magnetic flux, the influence 
of the current signal amplifier, and the power supply that exists in the system are ignored. The resulting 

mathematical model of the dynamic motion of the rigid rotor cannot be solved analytically, so to obtain the 
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solutions of the derived differential equations, the problem must be solved using numerical methods. To solve 

and approximate the final dynamic equations the Newmark beta method was used [38].  

By applying Taylor's series and Lagrange's theorem, the first order and second order derivatives of the 
Newmark beta method in the direction of the x-y axis can be obtained, which read [39]: 

 

 
�̇�𝑖+1 =

𝑑𝑥𝑖
𝑑𝑡

= 𝑎1 ∙ (𝑥𝑖+1 − 𝑥𝑖) − 𝑎4 ∙ �̇�𝑖 − 𝑎5 ∙ �̈�𝑖 (16) 

 

 
�̇�𝑖+1 =

𝑑𝑦𝑖
𝑑𝑡

= 𝑎1 ∙ (𝑦𝑖+1 − 𝑦𝑖) − 𝑎4 ∙ �̇�𝑖 − 𝑎5 ∙ �̈�𝑖 (17) 

 

 
�̈�𝑖+1 =

𝑑2𝑥𝑖
𝑑𝑡2

= 𝑎0 ∙ (𝑥𝑖+1 − 𝑥𝑖) − 𝑎2 ∙ �̇�𝑖 − 𝑎3 ∙ �̈�𝑖 (18) 

 

 
�̈�𝑖+1 =

𝑑2𝑦𝑖
𝑑𝑡2

= 𝑎0 ∙ (𝑦𝑖+1 − 𝑦𝑖) − 𝑎2 ∙ �̇�𝑖 − 𝑎3 ∙ �̈�𝑖 (19) 

 

where the coefficients a0 - a5 represent the coefficients of the Newmark beta method, which are calculated 

according to the following relations: 
 

 
𝑎0 =

1

𝛽 ∙ 𝑡2
                                              𝑎3 =

1

2∙𝛽
− 1  

 

 𝑎1 =
𝛼

𝛽 ∙ 𝑡
                                              𝑎4 =

𝛼

𝛽
− 1 (20) 

 

 
𝑎2 =

1

𝛽 ∙ 𝑡
                                            𝑎5 =

𝑡

2
∙ (
𝛼

𝛽
− 2)  

 
The coefficients of the Newmark beta method depend on the coefficients α and β, and on the time step size t. 

The solution of the motion equations is determined within the time interval 0 ≤ t ≤ tN. This time interval is split 

into N equal subintervals using the set of nodes ti, i = 0...N. These nodes form the grid on the interval [0, tN ], 
where the distance between the nodes represents the grid step which can be obtained by: 

 

 
∆𝑡 =

𝑡𝑁
𝑁

 (21) 

 

The generalized coordinates x_i and y_i depend on the location of the nodes t_i, and they are determined by 
the following equations [39]: 

 

 𝑡𝑖 = 𝑖 ∙ ∆𝑡, 𝑖 = 0, . . , 𝑁 
 

𝑥𝑖 = 𝑥(𝑡𝑖) 𝑎𝑛𝑑 𝑦𝑖 = 𝑦(𝑡𝑖) 
(22) 

 

To obtain the most accurate solutions using the Newmark beta method, the trapezoidal rule is used, that is, 
the assumption where α = 1⁄2 and β = 1⁄4, i.e., when the acceleration varies on average during the time interval 

[39]. The time step size is inverse to the sampling frequency, and the higher the sampling frequency, the more 

accurate will be the solutions of the equations using numerical methods. 

By substituting equations (16) - (19) into the final equations of the dynamic movement of the rotor (12) - (15), 

the following relations for the time interval are obtained 𝑡𝑖 , 𝑖 = 0. . 𝑛: 
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 𝑓𝑥𝐴 = 𝑎0 ∙ (𝑥𝐴(𝑖+1) − 𝑥𝐴𝑖) − 𝑎2 ∙ �̇�𝐴𝑖 − 𝑎3 ∙ �̈�𝐴𝑖

+
𝐽𝑧𝜃�̇�𝑑𝐴
 𝐽𝑦𝑑

(𝑎1 ∙ (𝑦𝐴(𝑖+1) − 𝑦𝐴𝑖) − 𝑎4 ∙ �̇�𝐴𝑖 − 𝑎5 ∙ �̈�𝐴𝑖 − (𝑎1 ∙ (𝑦𝐵(𝑖+1) − 𝑦𝐵𝑖)

− 𝑎4 ∙ �̇�𝐵𝑖 − 𝑎5 ∙ �̈�𝐵𝑖)) − 𝑥𝐴 (
2𝑘𝑠
𝑚

+
2𝑘𝑠𝑑𝐴

2

 𝐽𝑦
) − 𝑥𝐵 (

2𝑘𝑠
𝑚

−
2𝑘𝑠𝑑𝐴𝑑𝐵
 𝐽𝑦

)

− 𝑖𝑥𝐴 (
𝑘𝑖
𝑚
+
𝑘𝑖𝑑𝐴

2

 𝐽𝑦
) − 𝑖𝑥𝐵 (

𝑘𝑖
𝑚
−
𝑘𝑖𝑑𝐴𝑑𝐵
 𝐽𝑦

) − 𝑒�̇�𝑧
2𝑐𝑜𝑠𝜃�̇�𝑡 − χ ∙ �̇�𝑧

2

∙
(𝐽𝑦 − 𝐽𝑧) ∙ 𝑑𝐴

𝐽𝑦
∙ 𝑠𝑖𝑛 𝜃�̇�𝑡 = 0 

(23) 

 

 𝑓𝑥𝐵 = 𝑎0 ∙ (𝑥𝐵(𝑖+1) − 𝑥𝐵𝑖) − 𝑎2 ∙ �̇�𝐵𝑖 − 𝑎3 ∙ �̈�𝐵𝑖

−
𝐽𝑧𝜃�̇�𝑑𝐵
 𝐽𝑦𝑑

(𝑎1 ∙ (𝑦𝐴(𝑖+1) − 𝑦𝐴𝑖) − 𝑎4 ∙ �̇�𝐴𝑖 − 𝑎5 ∙ �̈�𝐴𝑖 − (𝑎1 ∙ (𝑦𝐵(𝑖+1) − 𝑦𝐵𝑖)

− 𝑎4 ∙ �̇�𝐵𝑖 − 𝑎5 ∙ �̈�𝐵𝑖)) − 𝑥𝐴 (
2𝑘𝑠
𝑚

−
2𝑘𝑠𝑑𝐴𝑑𝐵
 𝐽𝑦

) − 𝑥𝐵 (
2𝑘𝑠
𝑚

+
2𝑘𝑠𝑑𝐵

2

 𝐽𝑦
)

− 𝑖𝑥𝐴 (
𝑘𝑖
𝑚
−
𝑘𝑖𝑑𝐴𝑑𝐵
 𝐽𝑦

) − 𝑖𝑥𝐵 (
𝑘𝑖
𝑚
+
𝑘𝑖𝑑𝐵

2

 𝐽𝑦
) − 𝑒�̇�𝑧

2𝑐𝑜𝑠𝜃�̇�𝑡 − χ ∙ �̇�𝑧
2

∙
(𝐽𝑦 − 𝐽𝑧) ∙ 𝑑𝐵

𝐽𝑦
∙ 𝑠𝑖𝑛 𝜃�̇�𝑡 = 0 

(24) 

 

 𝑓𝑦𝐴 = 𝑎0 ∙ (𝑦𝐴(𝑖+1) − 𝑦𝐴𝑖) − 𝑎2 ∙ �̇�𝐴𝑖 − 𝑎3 ∙ �̈�𝐴𝑖

+
𝐽𝑧𝜃�̇�𝑑𝐴
 𝐽𝑥𝑑

(𝑎1 ∙ (𝑥𝐵(𝑖+1) − 𝑥𝐵𝑖) − 𝑎4 ∙ �̇�𝐵𝑖 − 𝑎5 ∙ �̈�𝐵𝑖 − (𝑎1 ∙ (𝑥𝐴(𝑖+1) − 𝑥𝐴𝑖)

− 𝑎4 ∙ �̇�𝐴𝑖 − 𝑎5 ∙ �̈�𝐴𝑖)) − 𝑦𝐴 (
2𝑘𝑠
𝑚

+
2𝑘𝑠𝑑𝐴

2

 𝐽𝑥
) − 𝑦𝐵 (

2𝑘𝑠
𝑚

−
2𝑘𝑠𝑑𝐴𝑑𝐵
 𝐽𝑥

)

− 𝑖𝑦𝐴 (
𝑘𝑖
𝑚
+
𝑘𝑖𝑑𝐴

2

 𝐽𝑥
) − 𝑖𝑦𝐵 (

𝑘𝑖
𝑚
−
𝑘𝑖𝑑𝐴𝑑𝐵
 𝐽𝑥

) − 𝑒�̇�𝑧
2𝑠𝑖𝑛𝜃�̇�𝑡 + χ ∙ �̇�𝑧

2

∙
(𝐽𝑥 − 𝐽𝑧) ∙ 𝑑𝐴

𝐽𝑥
∙ 𝑐𝑜𝑠 𝜃�̇�𝑡 = 0 

(25) 

 
 𝑓𝑦𝐵 = 𝑎0 ∙ (𝑦𝐵(𝑖+1) − 𝑦𝐵𝑖) − 𝑎2 ∙ �̇�𝐵𝑖 − 𝑎3 ∙ �̈�𝐵𝑖

−
𝐽𝑧𝜃�̇�𝑑𝐵
 𝐽𝑥𝑑

(𝑎1 ∙ (𝑥𝐵(𝑖+1) − 𝑥𝐵𝑖) − 𝑎4 ∙ �̇�𝐵𝑖 − 𝑎5 ∙ �̈�𝐵𝑖 − (𝑎1 ∙ (𝑥𝐴(𝑖+1) − 𝑥𝐴𝑖)

− 𝑎4 ∙ �̇�𝐴𝑖 − 𝑎5 ∙ �̈�𝐴𝑖)) − 𝑦𝐴 (
2𝑘𝑠
𝑚

−
2𝑘𝑠𝑑𝐴𝑑𝐵
 𝐽𝑥

) − 𝑦𝐵 (
2𝑘𝑠
𝑚

+
2𝑘𝑠𝑑𝐵

2

 𝐽𝑥
)

− 𝑖𝑦𝐴 (
𝑘𝑖
𝑚
−
𝑘𝑖𝑑𝐴𝑑𝐵
 𝐽𝑥

) − 𝑖𝑦𝐵 (
𝑘𝑖
𝑚
+
𝑘𝑖𝑑𝐵

2

 𝐽𝑥
) − 𝑒�̇�𝑧

2𝑠𝑖𝑛𝜃�̇�𝑡 + χ ∙ �̇�𝑧
2

∙
(𝐽𝑥 − 𝐽𝑧) ∙ 𝑑𝐵

𝐽𝑥
∙ 𝑐𝑜𝑠 𝜃�̇�𝑡 = 0 

(26) 

 

To solve the system of equations (23) – (26) the Newton-Raphson method for solving the system of differential 
equations was used. The Jacobian matrix of the system (23) – (26), which consists of partial derivatives, is as 

follows: 
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𝐽 =

[
 
 
 
 
 
 
 
 
𝜕𝑓𝑥𝐴
𝜕𝑥𝐴

𝜕𝑓𝑥𝐴
𝜕𝑦𝐴

𝜕𝑓𝑥𝐴
𝜕𝑥𝐵

𝜕𝑓𝑥𝐴
𝜕𝑦𝐵

𝜕𝑓𝑦𝐴

𝜕𝑥𝐴

𝜕𝑓𝑦𝐴

𝜕𝑦𝐴

𝜕𝑓𝑦𝐴

𝜕𝑥𝐵

𝜕𝑓𝑦𝐴

𝜕𝑦𝐵
𝜕𝑓𝑥𝐵
𝜕𝑥𝐴
𝜕𝑓𝑦𝐵

𝜕𝑥𝐴

𝜕𝑓𝑥𝐵
𝜕𝑦𝐴
𝜕𝑓𝑦𝐵

𝜕𝑦𝐴

𝜕𝑓𝑥𝐵
𝜕𝑥𝐵
𝜕𝑓𝑦𝐵

𝜕𝑥𝐵

𝜕𝑓𝑥𝐵
𝜕𝑦𝐵
𝜕𝑓𝑦𝐵

𝜕𝑦𝐵 ]
 
 
 
 
 
 
 
 

 (27) 

 

If solving for the time interval ti, i = 0…n, the relation (xA(i+1), yA(i+1), xB(i+1), yB(i+1)) = (xA0, yA0, xB0, yB0)  
represents the first solution of the system of equations (23) – (26), then the following relation applies to the 

other members of the given sequence in the time interval: 

 
 

[

𝑥𝐴(𝑖+1),𝑘+1
𝑦𝐴(𝑖+1),𝑘+1
𝑥𝐵(𝑖+1),𝑘+1
𝑦𝐵(𝑖+1),𝑘+1

] = [

𝑥𝐴(𝑖+1),𝑘
𝑦𝐴(𝑖+1),𝑘
𝑥𝐵(𝑖+1),𝑘
𝑦𝐵(𝑖+1),𝑘

] − 𝐽−1 ∙

[
 
 
 
 
𝑓𝑥𝐴(𝑥𝐴(𝑖+1),𝑘 , 𝑦𝐴(𝑖+1),𝑘 , 𝑥𝐵(𝑖+1),𝑘 , 𝑦𝐵(𝑖+1),𝑘)

𝑓𝑦𝐴(𝑥𝐴(𝑖+1),𝑘 , 𝑦𝐴(𝑖+1),𝑘 , 𝑥𝐵(𝑖+1),𝑘 , 𝑦𝐵(𝑖+1),𝑘)

𝑓𝑥𝐵(𝑥𝐴(𝑖+1),𝑘 , 𝑦𝐴(𝑖+1),𝑘 , 𝑥𝐵(𝑖+1),𝑘 , 𝑦𝐵(𝑖+1),𝑘)

𝑓𝑦𝐵(𝑥𝐴(𝑖+1),𝑘 , 𝑦𝐴(𝑖+1),𝑘 , 𝑥𝐵(𝑖+1),𝑘 , 𝑦𝐵(𝑖+1),𝑘)]
 
 
 
 

 (28) 

 

Centrifugal forces which tend to throw the rotor out of balance act on a rigid rotor with an unbalance in its 
structure. For a rotor supported on two radial AMBs to remain in a state of equilibrium during exploitation, it 

is necessary to act on it by attractive magnetic forces. That is why the movement of the rotor must be 

continuously monitored, and attractive magnetic forces must be generated to match the strength of the 

centrifugal forces. The attractive magnetic forces solely depend on the strength of the control currents, by 
means of which, in addition to the stable currents that maintain the rotor in a hovering position, perform the 

positioning of the rotor via pairs of electromagnets depending on the direction of displacement.  

The requirement that is required to obtain the values of the control currents, which must be brought to the 
electromagnets to counteract the centrifugal forces due to the existence of unbalance, is the following: 

 for control currents in the x axis direction for magnetic bearings A and B: 

 

 𝑖𝑥𝐴 ∙ 𝑣1𝑖𝐴 + 𝑖𝑥𝐵 ∙ 𝑣1𝑖𝐵 +𝑤1 = 0 
 

𝑖𝑥𝐴 ∙ 𝑣2𝑖𝐴 + 𝑖𝑥𝐵 ∙ 𝑣2𝑖𝐵 + 𝑤2 = 0 
(29) 

 

 for control currents in the x axis direction for magnetic bearings A and B: 

 

 𝑖𝑦𝐴 ∙ 𝑣3𝑖𝐴 + 𝑖𝑦𝐵 ∙ 𝑣3𝑖𝐵 +𝑤3 = 0 
 

𝑖𝑦𝐴 ∙ 𝑣4𝑖𝐴 + 𝑖𝑦𝐵 ∙ 𝑣4𝑖𝐵 +𝑤4 = 0 
(30) 

 

The requirement for obtaining control currents represents a system of four equations with four unknowns 

(control currents in the x and y directions for magnetic bearings A and B). By solving the mentioned system 
of equations, the values of the control currents are obtained: 

 

 for control currents in the x-axis direction for magnetic bearings A and B: 

 
 

𝑖𝑥𝐴 =
𝑤1 ∙

𝑣2𝑖𝐵
𝑣1𝑖𝐵

− 𝑤2

𝑣2𝑖𝐴 −
𝑣1𝑖𝐴 ∙ 𝑣2𝑖𝐵
𝑣1𝑖𝐵

 

 

𝑖𝑥𝐵 = −
𝑤1 + 𝑖𝑥𝐴 ∙ 𝑣1𝑖𝐴

𝑣1𝑖𝐵
 

(31) 
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 for control currents in the x-axis direction for magnetic bearings A and B: 
 

 

𝑖𝑦𝐴 =
𝑤3 ∙

𝑣4𝑖𝐵
𝑣3𝑖𝐵

− 𝑤4

𝑣4𝑖𝐴 −
𝑣3𝑖𝐴 ∙ 𝑣4𝑖𝐵
𝑣3𝑖𝐵

 

 

𝑖𝑦𝐵 = −
𝑤3 + 𝑖𝑦𝐴 ∙ 𝑣3𝑖𝐴

𝑣3𝑖𝐵
 

(32) 

 

Where: 

                                            
 

𝑤1 = 𝑒�̇�𝑧
2𝑐𝑜𝑠𝜃�̇�𝑡 + χ ∙ �̇�𝑧

2 ∙
(𝐽𝑦 − 𝐽𝑧) ∙ 𝑑𝐴

𝐽𝑦
∙ 𝑠𝑖𝑛 𝜃�̇�𝑡 

 

𝑤2 = 𝑒�̇�𝑧
2𝑐𝑜𝑠𝜃�̇�𝑡 + 𝜒 ∙ �̇�𝑧

2 ∙
(𝐽𝑦 − 𝐽𝑧) ∙ 𝑑𝐵

𝐽𝑦
∙ 𝑠𝑖𝑛 𝜃�̇�𝑡 

 

𝑤3 = 𝑒�̇�𝑧
2𝑠𝑖𝑛𝜃�̇�𝑡 − χ ∙ �̇�𝑧

2 ∙
(𝐽𝑥 − 𝐽𝑧) ∙ 𝑑𝐴

𝐽𝑥
∙ 𝑐𝑜𝑠 𝜃�̇�𝑡 

 

𝑤4 = 𝑒�̇�𝑧
2𝑠𝑖𝑛𝜃�̇�𝑡 − χ ∙ �̇�𝑧

2 ∙
(𝐽𝑥 − 𝐽𝑧) ∙ 𝑑𝐵

𝐽𝑥
∙ 𝑐𝑜𝑠 𝜃�̇�𝑡 

 

𝑣1𝑖𝐴 = (
𝑘𝑖
𝑚
+
𝑘𝑖𝑑𝐴

2

 𝐽𝑦
) ; 𝑣1𝑖𝐵 = 𝑣2𝑖𝐴 = (

𝑘𝑖
𝑚
−
𝑘𝑖𝑑𝐴𝑑𝐵
 𝐽𝑦

) ; 𝑣2𝑖𝐵 = (
𝑘𝑖
𝑚
+
𝑘𝑖𝑑𝐵

2

 𝐽𝑦
) 

 

𝑣3𝑖𝐴 = (
𝑘𝑖
𝑚
+
𝑘𝑖𝑑𝐴

2

 𝐽𝑥
) ; 𝑣3𝑖𝐵 = 𝑣4𝑖𝐴 = (

𝑘𝑖
𝑚
−
𝑘𝑖𝑑𝐴𝑑𝐵
 𝐽𝑥

) ; 𝑣4𝑖𝐵 = (
𝑘𝑖
𝑚
+
𝑘𝑖𝑑𝐵

2

 𝐽𝑥
) 

(33) 

 

A program was created in Matlab for solving the system of equations and managing the position of the 

centre of mass of the rotor in relation to the axis of rotation, based on the mathematical model developed above. 

The developed program simulates the behaviour of a real rotor system with active magnetic bearings during 
exploitation. As a result, a simulation of the operation of the dynamic system is obtained, at the moment of 

unbalance and after the corrective action of the system of active magnetic bearings.  

The parameters of the rigid rotor system supported on two radial active magnetic bearings required to obtain 
the simulation results are shown in Table 1. 

At the initial moment of time 𝑡 = 0 for the rigid rotor system supported in two radial AMBs A and B, the 

following assumptions were made: 

 The air gap is fixed (𝑠0), and is the same for both active magnetic bearings, as is the excitation stable 

current (𝑖0) that maintains the rotor in a hovering position, meaning that the rotor is in the reference 

position, and there is no deviation at the initial moment of time. In addition, it was assumed that the 
velocities and accelerations of the system in the direction of the coordinate axes at the initial moment 

are equal to zero. 

 It is assumed that the eccentricity and angular eccentricity of the centre of mass are known, so that the 

centrifugal force acting on the system due to static and dynamic unbalance is known. 
After entering the parameters and setting the initial conditions for the rigid rotor model, it is necessary to 

choose an adequate sampling frequency and time step size. The simulation was performed for a sampling 

frequency of fs = 1000 [Hz]. 
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Table 1. Parameter values of the rigid rotor system supported on magnetic bearings. 
 

Parameter Magnitude Unit 

Rotor mass – m 2000 [g] 

Rotor radius – r 25 [mm] 

Rotor length – h 500 [mm] 

Polar moment of inertia – Jz 625·103 [gmm2] 

Transverse moment of inertia (x – osa) – Jx 4.1979·107 [gmm2] 

Transverse moment of inertia (y – osa) – Jy 4.1979·107 [gmm2] 

Rotor angular velocity – �̇�𝒛 21π [1/s] 

Rotor rpm – nr 630 [1/min] 

Distance from bearing A to the coordinate origin – dA 260 [mm] 

Distance from bearing B to the coordinate origin – dB 200 [mm] 

Total distance between two bearings – d 460 [mm] 

Magnetic permeability – µ 12.5663706·10-7 [N/A2] 

Cross section of the magnet core – A0 625 [mm2] 

Number of electromagnet windings – N  220 / 

Inclination angle of the magnetic pole of the core – γ 22.5 [°] 

Exciting stable current ¬ i0 1.75 [A] 

Initial air gap – s0 1 [mm] 

Factor force – current – ki  61.4594 [N/A] 

Factor force – displacement - ks -107.554 [N/mm] 

Eccentricity of the center of mass – e  1 [mm] 

Angular eccentricity of the center of mass – χ  0.05 [rad] 

 

4.1 AMB system control model 
 

The mathematical modelling so far aimed to develop methods for the calculation of control parameters 

(control currents) for the control model that would be used to automatically balance the rigid rotor in the 

magnetic bearing. This subsection presents the basic concept for automatic balancing of a rigid rotor in an 

AMB. As a typical mechatronic system, the system of AMBs uses a control unit that defines the control signals 
based on which the electromagnetic actuators control the rigid rotor by analysing data supplied by the 

displacement sensor. The control unit, sensors, and electromagnetic actuators constitute the control system of 

the AMB (Figure 4). To achieve the positioning of the rigid rotor around the equilibrium position, it is 
necessary to apply appropriate control algorithms. In AMB systems, PID controllers are widely used, because 

they are characterized by good stability, high precision, and very suitable modulation of parameters.  

The AMB system is based on MIMO (Multiple Input Multiple Output) control architecture, but with the 
use of PID control models, the system can be easily observed and modelled through a suitable number of SISO 

(Single Input Single Output) control systems. In this way, PID controllers position the rigid rotor around the 

reference position by calculating the error between the measured and desired position values for each position. 

 

 
 

Figure 4. Block diagram of the AMB system control model. 
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5 Analysis and discussion of simulation results 
 

Based on the data shown in Table 1, a simulation of operation was performed in a situation where the rotor 
is exposed to centrifugal force due to unbalance, (e.g., parts of the rotor falling off), and is not actively 

controlled, as well as in the situation, in which the rigid rotor is actively controlled and thereby neutralizes the 

centrifugal force that results from unbalance. Due to the impetuous occurrence of unbalance, a centrifugal 

force is generated that pushes the rotor out of its equilibrium position.  
The occurrence of unbalance in the system causes an increase in the amplitude of vibrations in magnetic 

bearings A and B, which is shown in the left half of the graphics in Figure 5.  

 

 

 
 

Figure 5. Graphic representation of rotor displacement along the x and y axes for AMBs A and B when 

during exploitation comes to the active control of the rigid rotor. 

 
By analysis of the left half of the graphics in Figure 5, it can be observed that the rigid rotor during exploitation 

deviates from the reference position due to the presence of centrifugal force. That displacement occurs within 

the limits of the air gap that exists between the rigid rotor and the magnetic bearings. Even though the 

displacement is contained within the limits of the air gap, the increase in the vibration amplitudes of the 
displacement is not good, and must be returned to an adequate level, by application of active attractive forces 

to the rigid rotor to return it to its normal state. Because of active control currents and their resulting magnetic 

forces, the rotor calms down and the vibration amplitudes become significantly smaller (right half of the graph 
in Figure 5). In that way, active magnetic forces return the rotor to a normal state and enable the smooth 

continuation of the exploitation of the rotor. This is best shown by the 3D graphics in Figure 6. 

The vibration amplitude peak for magnetic bearing A in the case when there is no active control of the 

rigid rotor in the system is 𝑥𝐴 = 0.2968 mm, while in the situation when the rotor is actively controlled it is 

𝑥𝐴 = 0.051 mm (Figure 5). For magnetic bearing B without active rotor control, the vibration amplitude 

reaches its peak at a value of 𝑥𝐵 = 0.3695 mm, while in the case where there is active control in the system, 

the amplitude value is 𝑥𝐵 = 0.0683 mm (Figure 5). By comparing these values, it can be determined that by 
applying active control through active magnetic bearings there is a reduction of vibrations intensity by 

approximately 6 times. 
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Figure 6. Graphic representation of rotor displacement along the x and y axes for active magnetic 

bearings A and B when during exploitation comes to the active control of the rigid rotor. 

 

In the case when there is no active control in the system, the rotor deviates from the equilibrium position 
during exploitation and due to the unbalanced rotates around the new axis of rotation (that is, the inertia 

axis of the rotor) (Figure 7a).  

In the case where there is active control the influence of the unbalance is annulled so that the inertial axis 
closely coincides with the actual axis of rotation. This is manifested by a significant reduction in the orbit 

of vibrations, which can be seen in Figure 7 b. 

 

  
 

(a) 
 

(b) 
 

Figure 7. Graphic representation of the orbit - positions of the rotor axis in active magnetic bearings A 
and B; (a) without active control; (b) with active control. 

 

Figure 8 shows the graphs of the centrifugal force in magnetic bearings A and B. By looking at the graphs, 
it can be noticed the difference in the strength of the centrifugal force, i.e., that the centrifugal force has a 

greater influence in the plane of the magnetic bearing B.  

As already stated, the reason for this difference is the unequal distance of the bearings from the center of 

mass of the rigid rotor. 
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(a) 

 
(b) 

 

Figure 8. Graphic representation of the centrifugal force caused by the unbalance in the x and y planes 

of the rigid rotor structure: (a) in the magnetic bearing A; (b) in magnetic bearing B. 
 

Active magnetic bearings act on the rotor with attractive magnetic forces to cancel the influence of 

centrifugal forces. The strength of the attractive magnetic forces depends solely on the amount of control 
current supplied to the electromagnets. Figure 9. shows graphs of control currents for magnetic bearings 

A and B. Analysis of the graphs for centrifugal force and control currents shows that a higher value of 

control current is needed to cancel out a larger centrifugal force. 
 

 
(a) 

 
(b) 

 

Figure 9. Graphical representation of the control currents required to position the rotor in the 
equilibrium position: (a) in the magnetic bearing A; (b) in magnetic bearing B. 
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6 Conclusion  
 

Modern mechatronic systems whose work is based on the rotary movement of working elements during 
exploitation can be greatly influenced by external factors that tend to throw the system out of balance. Mass 

unbalance in the structure of the rigid rotor has been identified as one of the main sources that leads the system 

to a chaotic state. AMBs are imposed as a realistic and possible solution to reduce the amplitude of vibrations 

caused by the occurrence of unbalance. This solution for the supporting of rotating parts of the mechatronic 
system enables constant monitoring of the vibration level and continuous positioning of the rotor. Continuous 

positioning means that the rigid rotor is maintained in an equilibrium position regardless of the disruptive 

forces that occur in the system during exploitation. Since AMBs represent a classic mechatronic system, the 
research for the possibilities of application of these bearings to reduce the impact of vibrations caused by 

unbalance required a special approach and the application of theoretical, analytical, numerical, and 

programming research. Based on the developed mathematical model that describes the dynamic behaviour of 
a rigid rotor supported by two radial AMBs, a program was created that simulates the operation of such a 

system.  

The case in which an unbalance appears in the rotor structure was considered when considering the research 

problem. The following conclusions may be made based on the results obtained for the general case: 

 By applying AMBs, the negative influence of centrifugal force can be successfully and adequately 
annulled by means of attractive magnetic forces. In this way, the increased level of vibrations caused by 

the impetuous and sudden appearance of unbalance is largely reduced. This leads to the successful return 

of the rigid rotor to its normal operating state, which enables the uninterrupted operation of the machine 
system. 

 AMBs provide certain advantages when supporting rotating parts compared to conventional bearings, 

so their use allows for the possibility of active vibration control, which significantly improves the 

working performance of rotating machines.  
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