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Abstract
Individuals identified as Aricidea assimilis Tebble, 1959 were collected from ten localities across the Mediterranean Sea 
from 0.5 to 225 m depth in order to have a wide coverage of the species habitats and geographic range and to assess the 
effects of environmental factors and biogeographical barriers on molecular and morphological diversity. Two mitochondrial 
and one nuclear markers were used to reconstruct phylogenetic relationships and test the occurrence of cryptic species. We 
observed two highly divergent lineages, one including all individuals from shallow, sandy environments (<10 m depth) and 
the other with the individuals from deeper muddy bottoms (30–225 m depth). Less pronounced divergence was detected 
between morphologically distinct brackish-water individuals and the remaining shallow-water individuals. The divergence 
observed between deep-water and shallow-water lineages is consistent with the hypothesis of distinct species. The 
ambiguous results of species delimitation tests applied to the two shallow-water sub-lineages might instead suggest 
a process of incipient speciation, even if this hypothesis needs additional evidence. These results suggest that sediment 
represents the main factor driving genetic divergence and ultimately cryptic speciation in A. assimilis, while other depth- 
associated factors and geographical barriers do not seem to significantly contribute to the genetic architecture of this 
species, suggesting the occurrence of wide-range larval dispersal.

Keywords: Paraonidae, cryptic species, incipient species, genetic divergence, Mediterranean Sea

Introduction

Among polychaetes, the family Paraonidae is 
a rather diverse group with more than 120 described 
species occurring on soft bottoms from the tidal 
zone to the abyssal depths (Grosse et al. 2021). In 
several marine environments, Paraonidae represent 
the dominant taxon in terms of abundance and bio
mass, and contribute to sediment dynamics, food 
webs and many other ecological processes (Gibbs  

1965; Blake 1996; Quiroz-Martinez et al. 2012). 
Despite their importance, many aspects of the biol
ogy of Paraonidae, such as their reproductive fea
tures and population connectivity, are still scarcely 
known (Grosse et al. 2021). Moreover, many nom
inal species show a very wide distribution and some 
of them are considered cosmopolitan (Strelzov  
1973). This characteristic, together with the high 
level of intraspecific morphological variability, was 
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interpreted as a possible clue of cryptic speciation 
(Katzmann & Laubier 1975). In fact, molecular data 
reported by Langeneck et al. (2019) showed the 
occurrence of several cases of divergent lineages 
within single nominal species, suggesting that the 
number of species within Paraonidae is currently 
underestimated. Nonetheless, cryptic diversity and 
speciation processes in Paraonidae are largely 
unknown, in particular as regards the role played 
by environmental factors and biogeographical breaks 
and boundaries in the diversification of this family.

According to scientific literature, Aricidea assimilis 
Tebble 1959, is a species that typically occurs in 
sandy and muddy bottoms from 2 to 300 meters 
depth (Castelli 1987). As for several paraonid spe
cies, its actual distribution is somewhat unclear. Even 
though Strelzov (1973) reported A. assimilis from the 
Northern Pacific Ocean, Red Sea and Southern 
Atlantic Ocean, the majority of reliable records are 
referred to the Mediterranean Sea and adjacent 
Atlantic waters (Tebble 1959; Laubier & Ramos  
1974; Katzmann & Laubier 1975; Castelli 1985,  
1987; Çinar et al. 2014; Erdoğan-Dereli & Çinar  
2020). Blake (1996) argued that records from the 
Pacific Ocean by Strelzov (1973) and Hobson 
(1976) should probably be referred to different spe
cies, and this most likely accounts also for Lovell’s 
(2002) report for the Andaman Sea (Indian Ocean). 
In addition, the high degree of morphological varia
bility within A. assimilis accounts for taxonomic 
uncertainties surrounding this taxon. In fact, the 
species was misidentified as Aricidea fauveli 
Hartman, 1957 (= A. lopezi) (Bellan 1965), Aricidea 
fragilis Webster, 1879 (Amoureux 1970), and 
Aricidea lopezi Berkeley & Berkeley, 1956 (Strelzov  
1973). Moreover, A. assimilis was redescribed as 
Aricidea mutabilis by Laubier and Ramos (1974), 
who highlighted the high degree of intraspecific mor
phological variability. These authors observed a high 
degree of variability in the size and shape of prosto
mial antenna, which may vary from very long to 
relatively short. Even though Katzmann and 
Laubier (1975) raised the doubt that short-antenna 
and long-antenna forms of A. assimilis could actually 
represent separate species, they provisionally consid
ered them conspecific. It is noteworthy that the short- 
antenna form was erroneously interpreted as conspe
cific with the Pacific A. lopezi (Strelzov 1973; Castelli  
1987). More recently, Erdoğan-Dereli and Çinar 
(2020) described Aricidea pseudoassimilis for the Sea 
of Marmara, suggesting that A. assimilis specimens 
with short prostomial antenna might belong to this 
species.

The exclusive use of morphological data in several 
cases revealed itself misleading when describing the 

actual diversity of a group of organisms. This is 
particularly true for annelids, where cryptic and 
pseudo-cryptic species are continuously discovered 
(Nygren 2014) and morphological variability and 
phenotypic plasticity might lead to incorrect conclu
sions on boundaries between species (Meyer et al.  
2008; Syomin et al. 2017; Righi et al. 2019). An 
integrated approach is therefore necessary to disen
tangle the actual diversity of polychaete taxa. 
Moreover, the vast majority of studies on cryptic 
speciation in annelids focused on genetic differences 
and geographical distribution of lineages. While the 
role of biogeography is obvious in the separation of 
lineages occurring in different biogeographical sec
tors, or with a strongly skewed geographical distri
bution (Iannotta et al. 2009; Cossu et al. 2015), in 
several cases cryptic species occur in sympatry or 
even in syntopy (Carr et al. 2011; Nygren & Pleijel  
2011; Langeneck et al. 2020). In this case, the evo
lutionary reasons underlying lineage separation are 
often unclear, and might involve adaptation to dif
ferent environmental conditions, such as depth, 
sediment grain (Bleidorn et al. 2006; Luttikhuizen 
& Dekker 2010), or even finer adaptations, such as 
a shift in the reproductive period (Boidin-Wichlachz 
et al. 2021).

In this study, we employed an integrative 
approach to assess the occurrence of cryptic species 
within A. assimilis in the Mediterranean Sea, in 
order to understand if different lineages are morpho
logically distinguishable, and to identify possible 
environmental drivers leading to genetic divergence 
and ultimately speciation.

Materials and methods

A total of 88 individuals of Aricidea assimilis were 
collected from ten Mediterranean localities, six in 
the Western and four in the Eastern Mediterranean 
Sea. The sampling depth varied from 0.5 to 225 m 
and the local sample size ranged from 2 to 28 indi
viduals; small sample size was due to the low density 
reached by the species, and the impossibility to 
obtain additional samples in some localities. 
(Figure 1; Table I).  

Sediment samples were collected with a Van Veen 
grab or with a hand corer by free-diving, and subse
quently sieved with a 0.5 mm mesh. When possible, 
individuals of A. assimilis were sorted alive, other
wise sorting was carried out after fixation of the 
whole sample in 96% ethanol. Prior to DNA extrac
tion, morphological traits, and especially the length 
of the antenna, were observed under microscope; it 
should be noted, however, that in most specimens 
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the prostomial antenna was often missing or 
damaged. Specimens were stored in 96% ethanol 
at 4 or −20°C until DNA extraction. DNA was 
extracted whenever possible from the posterior part 
of the individual, while the anterior part was kept as 
morphological voucher and deposited in the poly
chaete collection of the Natural History Museum of 
the University of Pisa (MSNP); for some specimens, 
however, the extraction of DNA from the whole 
individual was necessary.

DNA extraction was carried out using the 
GenElute™ Mammalian Genomic DNA Miniprep 
Kit distributed by Sigma-Aldrich, following the 
manufacturer’s instructions. Individuals fixed with 
4% neutralised formaldehyde in seawater (a part of 
the Tuscan Archipelago material) were first de- 
contaminated with diluted sodium hypochlorite, 
and then washed ten times in phosphate buffered 
saline solution before extraction, following the pro
tocol by Forcina et al. (2015). The mitochondrial 
regions coding for 16S rRNA and cytochrome 
c oxidase subunit I (COI) and a nuclear region 

including the ITS regions with a small portion of 
the 28S rRNA (henceforth ITS) were amplified. 16S 
rDNA amplification was obtained using the primer 
pair 16S ANNNF (5’-GCGGTATCCTGACCGT 
RCWAAGGTA-3’) and 16S_ANNR (5’-TCCTAA 
GCCAACATCGAGGTGCCAA-3’) (Sjölin et al.  
2005), whereas for COI amplification the annelid- 
specific primers POLYLCO (5’-GAYTATWTTCA 
ACAAATCATAAAGATATTGG-3’) and 
POLYHCO (5’-TAMACTTCWGGGTGACCAA 
ARAATCA-3’) (Carr et al. 2011) were employed. 
In some cases semi-nested PCRs were performed 
using the combination of POLYLCO and the cus
tom-designed Par-R-2 (5’- GGRTCAWAGAAW 
GT-3’) and of the custom-designed Par-F-1 (5’- 
CACGCCTTCCTAATAAT-3’) and POLYHCO. 
ITS amplification was carried out using the primers 
ITS-F (5’-TCGTAACAAGGTTTCCGTAGG-3’) 
and ITS-R (5’- GGTCCGTGTTTCAAGACGG 
G-3’) (Di Giuseppe et al. 2013). Polymerase chain 
reaction (PCR) amplifications were carried out in 
20 μL solutions using 1.5 mM of MgCl2, 0.2 mM 

Figure 1. Sampling localities of Aricidea assimilis in the Mediterranean Sea.

Table I. Sampling localities of the Aricidea assimilis individuals employed in this study. Legend: BW: Brackish–water; SM: Shallow marine; 
IM: Intermediate marine; DM: Deep marine; S: Silty sand; C: Silt or clayish silt; N: number of specimens.

Locality Latitude Longitude Depth (m) Environment Sediment N

Banyuls–sur–Mer 42.4875° N 3.1618° E 32 IM C 2
Bonifacio 41.4166° N 9.3000° E 80 DM C 2
San Teodoro Pond 40.8096° N 9.6766° E 0.5 BW S 2
Tuscan Archipelago 43.5437° N 9.9955° E 110 DM C 5
Cala di Forno 42.6193° N 11.0840° E 7 SM S 3
Canyon Dohrn 40.7382° N 14.2040° E 225 DM C 11
Marina di Ravenna 44.4699° N 12.3149° E 8 SM S 23
Cattolica 43.9822° N 12.7525° E 5 SM S 28
Strait of Otranto 41.1757° N 16.9021° E 75–120 DM C 9
Chrysochou Bay (Latsi) 35.0659° N 32.3943° E 30 IM C 4
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of each dNTP, 0.1 μM of each primer, 1 U of 
DreamTaq DNA polymerase (Thermo Scientific), 
and ~2.5 ng of template DNA. For 16S rDNA and 
ITS the PCR profile was set as follows: initial dena
turing step at 94°C for 3 min, 34 cycles of denatur
ing at 94°C for 45s, annealing at 50°C for 1 min, 
and extending at 72°C for 1 min, with a final 
extending step at 72°C for 7 min. For COI, anneal
ing temperature was set at 45°C. A negative control 
was included in each reaction. PCR products were 
precipitated with sodium acetate and absolute etha
nol and sent to Macrogen Europe for sequencing.

Sequences were aligned with ClustalX v. 2.1 
(Larkin et al. 2007) and alignments were checked 
and edited with BIOEDIT v. 7.2.5 (Hall 1999). To 
ensure the reliability of the alignments for phyloge
netic inference, automatic alignment trimming was 
performed by the program trimAl v. 1.4 (Capella- 
Gutierrez et al. 2009) with the method option –auto
mated1. Sequence evolution models were assessed 
using MEGA X v. 10.2.5 (Kumar et al. 2016) and 
under the Akaike Information Criterion (AIC) 
(Akaike 1974). Alignments of the three different 
genes were concatenated in Sequence Matrix v. 1.8 
(Vaidya et al. 2011). Sequences of Cirrophorus bran
chiatus Ehlers, 1908, Cirrophorus nikebianchii 
Langeneck, Barbieri, Maltagliati & Castelli, 2017, 
Levinsenia demiri Çinar, Dağli & Açik, 2011, 
Paradoneis armata Glémarec, 1966, Paradoneis cf. 
ilvana Castelli 1985 and Paradoneis lyra (Southern, 
1914), were used as outgroup (Genbank accession 
numbers: see Table SM1). A Bayesian consensus 
phylogenetic tree based on the three concatenated 
markers was constructed using MrBayes v. 3.2.7 
(Ronquist et al. 2011). Two replicate runs were 
carried out with three Markov chains per run for 
2 × 106 generations. Each chain was sampled every 
100 generations to obtain 20000 sampled trees. The 
first 5000 sampled trees (25%) were discarded as 
burn-in, with the remaining 15000 trees used to 
estimate the Bayesian posterior probability (PP) of 
tree nodes. The convergence of Bayesian analyses 
was checked through the standard deviation of split 
frequencies that should reach a value <0.01 at the 
end of the analysis (Ronquist et al. 2011). 
A maximum-likelihood tree of the concatenated 
alignment was produced with MEGA X v. 10.2.5 
(Kumar et al. 2016) with the computation of 1000 
bootstrap replications. Additionally, phylogenetic 
trees were inferred independently for each gene 
and each method according to parameters described 
above.

Pairwise K2P distances (Kimura 1980) were cal
culated in R using the ape package (Paradis et al.  
2004). The separation at species level of the 

identified lineages was tested using two different 
single-locus species delimitation tests. The 
Automatic Barcoding Gap Discovery approach 
(ABGD) uses a range of prior intraspecific diver
gences to infer from sequence data a model-based 
one-sided confidence limit for intraspecific diver
gence. Thereafter, the algorithm detects the barcod
ing gap as the first significant gap beyond this limit 
and uses it to partition data, automatically sorting 
sequences into hypothetical species (Puillandre et al.  
2012). The Poisson Tree Processes approach 
(PTP), on the other hand, uses phylogenetic trees, 
and in particular branch length (as proxy of number 
of substitutions), based on the principle that the 
number of substitutions between species is signifi
cantly higher than the number of substitutions 
within species (Zhang et al. 2013).

Haplotype networks were constructed by using 
the R package pegas (Paradis 2010), following the 
statistical parsimony method of Templeton et al. 
(1992). This method estimates the maximum num
ber of differences among haplotypes as a result of 
single mutation. It groups haplotypes differing from 
one substitution together, then from two, three, etc., 
and computes a cladogram displaying linkages that 
have a probability >0.95 of being true.

Results

Phylogenetic reconstruction and species delimitation

We obtained 46 sequences of a 606 bp portion of 
COI (GenBank accession numbers OM416165 to 
OM416210), 84 sequences of a 285 bp portion of 
16S (GenBank accession numbers OM416044 to 
OM416129) and 17 sequences of a 643 bp portion 
of ITS (GenBank accession numbers OM419196 to 
OM419212). The best fitting nucleotide substitu
tion model was GTR+G + I (Tavaré 1986) for all 
markers. The concatenated alignment, including the 
outgroup sequences, was 1595 bp long.

The Bayesian tree (Figure 2) showed a high 
degree of molecular divergence between deep- and 
shallow-water individuals. Less pronounced diver
gence can be observed between all marine shallow- 
water individuals and specimens from the brackish- 
water San Teodoro pond. The above-described 
clusters are supported by high values of posterior 
probability (PP > 0.95) (Figure 2). These groups 
are further supported by the maximum-likelihood 
concatenated tree (Fig. SF1) with a bootstrap sup
port of 100 for the deep-water and shallow-water 
clade and 100 for the shallow subgroup. All single- 
gene phylogenies supported the first clade regardless 
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of the phylogenetic method, although sometimes 
with lower node support (Fig. SF2-SF7).

For the COI dataset, K2P distances within groups 
ranged between 0% and 4%. Sequences of shallow- 
water marine and brackish-water individuals were 
separated by 6–7% genetic distances. Distances 
between deep-water and shallow-water individuals 
ranged from 19% to 28% (Figure 3); however, 
those calculated for the 16S and ITS markers were 
not as wide. For 16S, within-group distances were 
0% to 1.5%, while slightly higher distances were 
retrieved between marine and brackish shallow- 
water individuals (2–3%). The distance between 
deep-water and shallow-water individuals ranged 
from 14% to 17% (Figure 3). Pairwise K2P dis
tances calculated for ITS reached 2% of divergence 
within groups and 12–16% between the shallow- 
marine and deep-marine group (Figure 3); unfortu
nately, we were not able to obtain ITS sequences for 
the San Teodoro Pond specimens.

ABGD and PTP species delimitation tests were 
consistent in supporting the separation at species 

level of the shallow-water and the deep-water 
lineages, according to COI and 16S markers 
(Figure 2). Nevertheless, the two tests provided 
conflicting results regarding the brackish-water and 
marine shallow groups (Figure 2). In fact, the COI 
dataset suggested the separation of these lineages 
into different species, while the 16S dataset did not.

Haplotype networks

All haplotype networks showed a reciprocally mono
phyletic structure (Jenkins et al. 2018), and the 
shallow and deep lineages were separated by a high 
number of mutational steps: 99 for COI (Figure 4), 
33 for 16S (Figure 4) and 63 for the ITS network 
(Figure 4). Sequences of the brackish-water indivi
duals from San Teodoro Pond were separated from 
shallow-water marine ones by 33 steps in the COI 
haplotype network and 6 steps in the 16S network. 
In each of the shallow-water and deep-water groups, 
all networks contained a highly frequent haplotype, 
shared by a large number of individuals; up to 8, 14, 

Figure 2. Bayesian inference phylogenetic tree of Aricidea assimilis based on the concatenated alignments of COI, 16S and ITS markers. 
Node values indicate Bayesian posterior probabilities. Each label prefix corresponds to the specimen sampling locality with BAN: Banyuls- 
sur-Mer; COR: Bonifacio; ALA: San Teodoro Pond; TAR: Tuscan Archipelago; CDF: Cala di Forno; CDO: Canyon Dohrn; RAV: 
Marina di Ravenna; CAT: Cattolica; SOT: Strait of Otranto; CYP: Chrysochou Bay. Coloured dots next to tip labels represent the 
individual morphotypes when they could be determined. Benthic environment and sediment type data associated with the specimen are 
represented by colour bars. Species delimitations proposed by ABGD and PTP tests are represented by interrupted lines on the right side 
of the tree, in black for COI and in grey for 16S.
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Figure 3. K2P distance ranges observed in the three markers examined for A. assimilis. White: distances between individuals sampled in 
the same habitat type; Gray: distances between brackish–water and marine shallow individuals; Black: distances between deep and 
shallow–water individuals.

Figure 4. Statistical parsimony haplotype networks of COI, 16S and ITS markers in the A. assimilis complex. In the networks, each 
haplotype is represented by a circle. The size of the circle corresponds to the number of individuals displaying that haplotype. The 
haplotype scales are drawn on the right of the haplotype networks. Numbers on links between haplotypes indicate the number of 
mutational steps separating them. Haplotypes are colored according to the origin of individuals.

Cryptic speciation in Aricidea assimilis 1251



25 individuals in ITS, COI, 16S networks, respec
tively. The 16S network also displayed an additional 
highly frequent haplotype (15 sequences) corre
sponding to sequences from shallow-water marine 
individuals. Except for the shallow-water group in 
the COI network, specimens from populations of 
the Western and Eastern Mediterranean basins 
shared the most frequent haplotypes. This pattern 
was also found in two less frequent haplotypes of the 
16S representation (Figure 4), which included 
sequences from Cala di Forno (Western 
Mediterranean) and Cattolica (Eastern 
Mediterranean). Many unique haplotypes were 
separated by one or two mutational steps from the 
most frequent haplotypes in the 16S and ITS net
works. Conversely, in the COI network, unique hap
lotypes were often separated from the most frequent 
haplotype by a higher number of mutational steps. 
This is especially true for sequences from 
Chrysochou Bay (Cyprus, Eastern Mediterranean), 
connected to the most frequent haplotype by eight 
mutational steps, and a part of the sequences from 
the Strait of Otranto, connected to the most fre
quent haplotype by 11 mutational steps (however, 
the majority of sequences from the Strait of Otranto 
were closer to the shared haplotype and intermixed 
with a Tyrrhenian sequence from Canyon Dohrn).

Discussion

Although several clues of cryptic speciation in 
Paraonidae were found in Langeneck et al.’s 
(2019) molecular phylogenetic reconstruction, the 
present study gave for the first time a deeper insight 
into the distribution of cryptic lineages across the 
Mediterranean Sea, allowing to infer on possible 
reasons for the observed diversification. Katzmann 
and Laubier’s (1975) hypothesis about the occur
rence of a species complex within the morphospecies 
Aricidea assimilis is validated by the current study. 
Nevertheless, results did not support the hypothesis 
on taxonomic separation between short- and long- 
antenna individuals (Strelzov 1973; Laubier & 
Ramos 1974), suggesting that a correct interpreta
tion of morphological characters is more complex 
than previously considered. In fact, both marine 
clades included specimens with short and long 
antenna. The holotypes of A. assimilis and Aricidea 
mutabilis, which are considered synonymous 
(Katzmann & Laubier 1975), were sampled on low 
infralittoral/high circalittoral bottoms sensu Pérès 
and Picard (1964) (50 to 60 m depth) (Tebble  
1959; Laubier & Ramos 1974), suggesting that the 
two taxa are actually synonymous, and the name 
Aricidea assimilis should be employed for the deep- 

water lineage (30–120 m). In fact, the specimens 
from Banyuls-sur-Mer, sampled rather close to the 
type locality of A. mutabilis, and the Levantine speci
mens examined are likely to correspond to 
A. assimilis s.s. However, topotypic material would 
be needed to clarify this point. Specimens from San 
Teodoro pond showed a good morphological corre
spondence with the recently described Aricidea pseu
doassimilis, which is characterised by a shorter, blunt 
antenna and branchiae with blunt tips, but the 
genetic distance towards the remaining marine indi
viduals did not allow to consider them as univocally 
separated at species level. The holotype and the 
majority of paratypes of A. pseudoassimilis were 
sampled at around 10 m depth, although the exam
ined material included specimens collected down to 
100 m (Erdoğan-Dereli & Çinar 2020). Even 
though we did not have the opportunity to examine 
specimens from the Sea of Marmara (type locality of 
A. pseudoassimilis), it is possible that this name could 
be applied to the shallow-water lineage. However, 
the morphological differences highlighted by 
Erdoğan-Dereli and Çinar (2020) between the two 
taxa do not seem to be relevant to separate the two 
clades. The inconsistency between morphotypes and 
genetic lineages suggests that the aforementioned 
morphological features may depend on factors 
other than phylogenetic relationships, such as onto
geny or phenotypic plasticity, and caution should be 
taken when using such features to diagnose 
Paraonidae species, as already observed for other 
polychaete families (Meyer et al. 2008; Iannotta 
et al. 2009; Langeneck et al. 2020).

Results of the present study highlighted that the 
individuals of A. assimilis analysed are separated in 
three mitochondrial lineages. The deep-water line
age is clearly distinguished from the shallow-water 
counterpart, which in turn is composed by one 
widespread marine sub-lineage, and another sub- 
lineage detected only in the brackish-water San 
Teodoro Pond, as depicted in the phylogenetic tree 
(Figure 2). Even if all nodes at the basis of these 
clades showed high statistical support, the diver
gence between the deep-water and the shallow- 
water groups is remarkably higher than that between 
the two shallow-water sub-lineages. Genetic dis
tance values between deep-water and shallow-water 
individuals (Figure 3) are clearly in the range of 
interspecific distances detected by other studies on 
polychaetes (Pleijel et al. 2009; Nygren & Pleijel  
2011; Neal et al. 2014). This outcome is confirmed 
by the pattern retrieved with the nuclear ITS frag
ment and, along with the consistent result of the two 
species delimitation tests on the three genes, allowed 
to consider the deep- and shallow-water lineages as 
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separated at species level. On the other hand, the 
distances observed between the two shallow-water 
sub-lineages are approximately four- to five-fold 
lower, even though the distance calculated through 
COI sequences is remarkably higher than the 3% 
value proposed as species’ boundary by Hebert 
et al. (2003). It is worth noting, however, that recent 
studies stressed that the identification of a barcoding 
gap is more important than the setting of a fixed 
threshold (Čandek & Kuntner 2015; Kvist 2016). 
Moreover, intraspecific distances of several annelid 
taxa turned out to be higher than 3%, being closer to 
the values of 6.2–6.4% identified in this study (Kvist  
2016; Lobo et al. 2016). Therefore, the divergence 
observed between the two shallow-water sub- 
lineages is consistent with the hypothesis of conspe
cific individuals, which is also in agreement with the 
results of the species delimitation tests performed on 
the 16S dataset. However, this interpretation is 
poorly satisfying for two reasons. The first clue 
towards a different interpretation of these results is 
represented by the absence of geographical segrega
tion between the two sub-lineages. In fact, 
Tyrrhenian shallow marine individuals are geneti
cally closer to Adriatic shallow marine ones than to 
brackish-water individuals from the Tyrrhenian Sea. 
This suggests that, even if the separation between 
the brackish-water and the shallow marine lineages 
is more recent than the separation between the deep 
and the shallow clades, it is nevertheless old enough 
to be detected over the geographical separation. 
A more formal clue was provided by the ambiguous 
results of species delimitation tests, that in the case 
of COI separated the two groups at species level, but 
failed in doing so with 16S rDNA (Figure 2). 
A similar ambiguous situation has been retrieved 
between the closely related species Diopatra neapoli
tana (Delle Chiaje, 1828) and Diopatra aciculata 
Knox & Cameron, 1971. Also in this case, COI 
sequences allowed to readily separate the two spe
cies, while the distinction was distinctly lower when 
considering 16S rDNA sequences, and nuclear mar
kers did not show any separation between the two 
alleged species, suggesting that the speciation pro
cess is still ongoing (Elgetany et al. 2020). The 
relationship between the shallow-water marine line
age and the brackish-water lineage is very similar to 
that retrieved between D. neapolitana and 
D. aciculata by Elgetany et al. (2020) and suggests 
that these lineages should be regarded as two inci
pient species (Mallet 2007), within the so-called 
“grey zone” of speciation. Hausdorf (2011) under
lined that randomly sampled molecular markers do 
not always allow to distinguish between incipient 
species. This is particularly true when considering 

recombinant nuclear markers with lower mutation 
rates, but it can also be retrieved in case of mito
chondrial markers with different mutation rates 
(Elgetany et al. 2020). Nonetheless, despite having 
been historically considered as neutral, and as such 
widely employed for phylogeographical reconstruc
tions, mitochondrial markers may be subject to 
a certain degree of selection, which may impair 
their informativeness (Ballard & Whitlock, 2004). 
In fact, inconsistent diversity patterns between COI 
and other markers have been retrieved in marine 
invertebrates; for instance, Casu et al. (2011) 
found in the ribbed limpet Patella ferruginea 
Gmelin, 1791 an almost monomorphic COI, against 
a clear spatial genetic structure retrieved with ISSR 
markers. In this case, COI seemed instead to show 
a higher variability with respect to 16S rDNA, but in 
both cases a selective process (stabilising selection in 
the case of P. ferruginea, divergent selection in the 
case of brackish-water A. assimilis) might be respon
sible for this discordance in genetic patterns. 
Moreover, although interesting, these data are 
based on a very limited number of individuals from 
a single brackish-water environment, and therefore 
any conclusion drawn should be taken with consid
erable caution.

While the shallow-water clades occurred from the 
surface to 10 m depth, the deep-water clade was 
widespread from around 30 to more than 200 m 
depth, ranging from the mid-infralittoral stage to 
the upper bathyal stage (Pérès & Picard 1964). 
Therefore, A. assimilis does not seem to be signifi
cantly affected by some of the environmental factors 
associated with depth, such as pressure, or tempera
ture, as these factors show significant variations in 
the bathymetric range where the deep-water clade 
occurs. Also a direct influence of the seasonal ther
mocline can be excluded, since in the 
Mediterranean Sea seasonal variations in tempera
ture around 10°C are detectable down to 60–70 m 
(Houpert et al. 2015), well below the 30 m isobath 
where the deeper clade was retrieved, both in the 
Western and in the Eastern Mediterranean Sea. It is 
worth noting that the shallower sampling sites in the 
Western Mediterranean (mid-infralittoral to high- 
circalittoral, 30–100 m) are located in the superficial 
Atlantic Water mass, the deeper Tyrrhenian ones 
(100–225 m) are included into the Tyrrhenian 
Intermediate Water mass (Napolitano et al. 2019), 
the deep Adriatic sample has been obtained in an 
area characterised by mixing between Levantine 
Intermediate Water and South Adriatic Deep 
Water (Modified Levantine Intermediate Water – 
Orlić et al. 1992), and lastly, the sample from 
Cyprus is included into the Levantine Surface 
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Water mass (Sur et al. 1993). The absence of 
genetic diversification between populations of 
A. assimilis associated to different water masses sup
ports the scarce effect of physical-chemical variables 
typically associated to the distinction of water 
masses, as temperature and salinity. Instead, it is 
likely that the most relevant ecological factor distin
guishing the two main clades of A. assimilis is repre
sented by sediment granulometry, which is related 
to depth, but shows a major change within the first 
tens of meters. In fact, samples in the shallow-water 
clade have been collected on sand, with a limited 
amount of silt, whereas samples in the deep-water 
clade have been obtained from silt or silty clay. 
Interestingly, despite the pronounced molecular 
divergence, individuals from shallow-water marine 
and deep-water marine environments could not be 
morphologically distinguished. It has been argued 
that early divergent species accumulate first differ
ences in physiological, behavioral or reproductive 
traits rather than morphological ones (Struck et al.  
2018), thus, they can remain morphologically undis
tinguishable. However, the divergence between 
these lineages does not suggest the speciation event 
to be more recent than for other morphologically 
distinct species of Aricidea, according to phyloge
netic reconstructions carried out on Paraonidae 
(Langeneck et al. 2019). The inconsistency between 
morphological and genetic characters might be the 
result of drift or stabilizing selection, and may repre
sent a case of morphological stasis (Struck et al.  
2018). On the other hand, despite a less pronounced 
molecular divergence, the brackish lineage and shal
low marine lineages can be separated by the size of 
the antenna, which is always short and with blunt tip 
in brackish individuals, and the length of branchiae, 
which is constant in individuals from San Teodoro 
pond but gradually increases in all marine speci
mens. This observation could suggest a limited 
effect of brackish-water environments on molecular 
evolution, probably due to the connectivity between 
brackish-water and marine environments that allows 
a certain degree of gene flow (Cognetti & Maltagliati  
2000). The occurrence of speciation processes in 
brackish-water environments has been confirmed in 
recent years by molecular studies (Maltagliati et al.  
2000, 2001; Beheregaray & Sunnucks 2001; 
Trabelsi et al. 2002; Sanna et al. 2013) and, at 
some extent, present results are consistent with the 
hypothesis that these environments may play an 
important role in lineage diversification. The selec
tive pressure of brackish-water environments is often 
considered a strong driver for morphological diver
sification; in fact, brackish-water environments are 
often characterised by clearly differentiated 

morphotypes (Cognetti 1954; Maltagliati et al.  
2001), even if these differences often do not reflect 
patterns of genetic diversity (Heras & Roldán 2011; 
Jimoh et al. 2013), or appear to be distinctly wider 
than molecular data would suggest (Maltagliati et al.  
2001). On the other hand, the frequency of unfa
vourable events and stressful conditions in brackish- 
water environments might cause local extinctions 
and thus hamper diversification processes. In parti
cular, the divergent morphotype of A. assimilis 
known for San Teodoro pond since the 1990s 
(Martinelli et al. 1997) was not found in 
a subsequent sampling of 2019, due to an extensive 
dystrophic crisis that significantly affected environ
mental quality of this brackish-water ecosystem (J. 
Langeneck, pers. obs.). The distribution of the brack
ish-water lineage of A. assimilis is currently 
unknown, but it is likely that it is vulnerable to the 
current increase of extreme weather events asso
ciated to climate change affecting brackish-water 
environments (Vignes et al. 2009). The comparison 
of the studied specimens with Atlantic sequences of 
A. laubieri deposited in GenBank showed that this 
species is clearly distinct from Mediterranean speci
mens and does not belong to the A. assimilis species 
complex.

Geographical boundaries seem to have a distinctly 
lower effect on diversification within the Aricidea 
assimilis complex. Our work showed that Adriatic 
and Tyrrhenian individuals were not separated by 
phylogenetic reconstruction (Figure 4). A slight 
diversification of Eastern Mediterranean haplotypes 
from Chrysochou Bay was retrieved in the COI net
work; nonetheless, a similar pattern was found in 
a part of the specimens from the Strait of Otranto, 
while other specimens from the same population 
were closer to the most frequent haplotype. The co- 
occurrence of separate haplotype clusters within the 
same population was retrieved in both vertebrates 
(Angiulli et al. 2016) and invertebrates (Langeneck 
et al. 2020) characterised by wide-range dispersal of 
larval stages and might depend on past events of 
vicariance driven by biogeographical barriers that 
subsequently disappeared (Avise 2000). While 
most frequent haplotypes that are shared by indivi
duals from different Mediterranean sites may alter
natively be explained by high population size or 
haplotype ancestry (Posada & Crandall 2001), the 
fact that much rarer haplotypes are shared by shal
low-water specimens of the Tyrrhenian and Adriatic 
Seas strongly indicates a high degree of connectivity. 
Indeed, these seas are separated by two phylogeo
graphic breaks (Villamor et al. 2014), namely the 
Sicilian Strait and the Strait of Otranto. Usually, 
polychaetes and other marine invertebrates with 

1254 J. Langeneck et al.



direct development are geographically structured 
between the Adriatic and the Tyrrhenian Sea 
(Abbiati & Maltagliati 1996; Virgilio & Abbiati  
2004; Cossu et al. 2015), whereas for species with 
dispersal phases genetic divergence between these 
two basins is lower or absent (Abbiati & Maltagliati  
1992; Iannotta et al. 2007; Weber et al. 2015; 
Modica et al. 2017). In the present study, both the 
deep- and shallow-water lineages showed the 
absence of geographical structuring. Thus, the 
observed phylogeographic pattern in the two species 
identified in the A. assimilis complex suggests that 
their development comprises a relatively long-lived 
pelagic larval phases with high potential for disper
sal. However, there are no reliable reports of plank
tonic larvae that can be assigned to this family 
(Blake 1996), and several species show epitoke 
modifications, large-sized eggs and sometimes dor
sal brooding of juveniles (Grosse et al. 2021). These 
features led to the hypothesis that this family is 
characterised by direct development (Giangrande  
1997), which is however not supported by the phy
logeographic pattern detected in this study. The 
reason for the scarcity of Paraonidae larvae in plank
tonic samples is unclear; it is possible that reproduc
tive events are sporadic and rather limited 
throughout the year, and that this feature makes 
their detection difficult, but the hypothesis of direct 
development for a part of the known species cannot 
be discarded based on current data. According to 
the molecular data presented by Langeneck et al. 
(2019), some nominal taxa (e.g., Aricidea cerrutii 
Laubier, 1966) show the occurrence of several cryp
tic lineages, while others (e.g., Aricidea claudiae 
Laubier, 1967) are genetically homogeneous across 
the Mediterranean Sea. Further detailed studies on 
a wider array of Paraonidae species are needed to 
clarify if the phylogeographic pattern detected in the 
A. assimilis species complex can be generalised to all 
representatives of this family, or if different species 
and groups are characterised by different reproduc
tive and developmental features.
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