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Abstract. Lower Extremity Fugl-Meyer Assessment (FMA-LE) is recommend-

ed as the primary outcome for assessing motor function in post-stroke popula-

tion. However, the subjectivity, dependency on professional experience, and 

time-consuming visual inspection by healthcare professionals limit the use of 

FMA-LE in clinical practice. Contrarily to clinical scales, sensor-based assess-

ments can automatically provide objective measurements of motor function. 

This work advances literature by evaluating the Spearman correlation between 

the FMA-LE clinical scores and both spatiotemporal and electromyographic 

(EMG) measures, acquired during different mobility walking tasks (self-

selected speed, maximum speed, maximum cadence, maximum step length, and 

maximum step height). Data were extracted from ARRA dataset, including 27 

post-stroke participants. The results showed that step length (0.44 ≤ r ≤ 0.60), 

stride time (-0.48 ≤ r ≤ -0.40), and cadence (0.40 ≤ r ≤ 0.46) spatiotemporal 

measures, and peak power frequency (PKF) EMG measure of gluteus medius (r 

= 0.42), lateral hamstring (0.40 ≤ r ≤ 0.46), and vastus medialis (0.42 ≤ r ≤ 

0.45) muscles revealed significant strong correlations in multiple walking tasks. 

Overall, spatiotemporal measures presented higher correlations with FMA-LE 

than EMG measures. These findings are promising for future research to devel-

op artificial intelligence methods to estimate the Lower FMA clinical scores for 

motor assessment, maximizing its use in clinical practice. 

Keywords: Healthcare Automation, Human Motor Assessment, Sensor-based 

Assessment. 
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1 Introduction 

Stroke affects worldwide 14 million people per year with an economic impact of €64 

billion [1–3]. The epidemiological perspectives of stroke in Europe for the 21st  centu-

ry indicate that the aging of the population would lead to an incidence increase, being 

more people left with long-term disabilities [4, 5]. Muscle paralysis or partial loss of 

muscle strength, postural instability, and impaired functional motor ability are post-

stroke sequelae addressed during physical rehabilitation [6]. 

Clinical scales such as Fugl-Meyer Assessment (FMA) scale are essential for diag-

nostic and therapeutic purposes in clinical practice once they allow a common lan-

guage between healthcare professionals that facilitates comparisons of patients and 

treatments and, thus, guides critical treatment choices for rehabilitation [7].  Moreo-

ver, in research, clinical scales are helpful as standard measures, allowing to test the 

efficacy of a particular intervention and sensor-based assessments that in the future 

can be used in clinical practice [7].  

Lower Extremity FMA (FMA-LE) is usually applied in research [8] due to being 

recommended as the primary outcome to assess motor function in populations with 

stroke [9]. It is a stroke-specific performance-based impairment score that evaluates 

lower limb motor function by visually inspecting multiple motor tasks instructed to 

the patient [10–12]. It results in a time-consuming procedure for healthcare profes-

sionals [10–13]. Although it presents excellent inter- and intra-rater reliability, the 

clinical scale is dependent on professional experience, what may introduce subjectivi-

ty, asking for possible improvements in clinical practice [10–13].  

Sensors such as force plates, optical motion capture, and electromyographic 

(EMG) systems are usually applied in gait analysis settings, allowing an objective 

evaluation of human motor performance [14]. Contrarily to clinical scales, sensors do 

not rely on intensive visual inspection and return quantitative objective measurements 

[14]. In this manner, current literature can benefit from investigating potential correla-

tions between objective sensor-based measures during a single task of walking with 

FMA-LE score to maximize its clinical use.  

Previous studies have investigated correlations between sensor-based measure-

ments and FMA but focuses on the upper extremity [15–18]. As appointed by Rech et 

al. [19], fewer studies are available focusing on Lower Extremity FMA. Moreover, 

the existing studies [19, 20] are limited to spatiotemporal measurements, not includ-

ing physiological ones such as EMG, and did not study other motor tasks than walk-

ing at self-selected speed.  

This work addresses these open aspects. It aims to evaluate the correlation between 

sensor-based spatiotemporal and EMG measures acquired during different mobility 

walking tasks (self-selected speed, maximum speed, maximum cadence, maximum 

step length, and maximum step height) with FMA-LE clinical scores. It attempts to 

answer the following research question: “How are objective spatiotemporal and EMG 

measures of post-stroke walking correlated with FMA-LE scores?”. The paper out-

comes will contribute to maximizing the use of FMA-LE in clinical practice to sup-

port clinical decisions concerning diagnosis and treatment prescription towards an 

efficient recovery of stroke survivors.  
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The paper is organized as follows. Firstly, the post-stroke participants, the proce-

dures undertaken during the clinical protocol, and the FMA-LE are described. Sec-

ondly, the EMG and spatiotemporal sensor-based measures are identified, and the 

data processing involved in deriving EMG-based and spatiotemporal measures is 

detailed. Thirdly, the statistical methods are identified, and the resulting correlations 

are presented and discussed.  

2 Methods 

2.1 Participants 

Data for this paper were extracted from ARRA dataset [21]. It includes 27 post-stroke 

participants (9 female, 60.15±12.08 years, 92.07±18.72 kg, 22.85±6.95 FMA-LE 

score) recruited from the Medical University of South Carolina (USA). All partici-

pants provided written informed consent, and the Institutional Review Board ap-

proved the protocol. The following subject inclusion criteria were applied: (1) a histo-

ry of single unilateral stroke more than six months before the study, (2) ability to walk 

over 10 m on a level surface, (3) free of significant lower extremity joint pain, con-

tractures, range of motion limitations, and significant sensory deficits, (4) walk daily 

in the home, (5) with no severe cognitive deficits, (6) no significant cardiovascular 

impairments contraindicative to walking.  

2.2 Procedures 

The participants were instructed to walk during three 30-s trials on an instrumented 

treadmill at their self-selected walking speed (SS), maximum speed (FC), maximum 

cadence (QS), maximum step length (LS), and maximum step height (HS), being 

these mobility tasks randomly executed.  

Clinical measures were obtained through the FMA-LE, performed once per partic-

ipant before treadmill walking. Sensor-based measures were collected during walking. 

Kinematic data were recorded at 120 Hz from a 12-camera motion capture system 

(PhaseSpace, CA) using reflective markers placed on limbs and torso following a 

modified Helen Hayes marker set. Treadmill’s force plates allowed the acquisition of 

3D ground reaction forces (GRF) at 2000 Hz. Kinematic and GRF data were filtered 

using a fourth-order Savitzky-Golay least-square polynomial filter and resampled at 

100 Hz. Spatiotemporal measures were derived from kinematic and GRF data. EMG 

data were acquired at 1000 Hz (Motion Lab Systems, LA) from the paretic tibialis 

anterior (TA), soleus (SO), medial gastrocnemius (MG), vastus medialis (VM), rectus 

femoris (RF), medial hamstrings (MH), lateral hamstrings (LH), and gluteus medius 

(GM) muscles. EMG average cycle timing curves were filtered with a zero-lag, 

fourth-order, band-pass Butterworth filter between 4 and 40 Hz. Then, each EMG 

signal was rectified and normalized to its peak value during each trial.  
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2.3 Clinical Measures: Lower Fugl-Meyer Assessment 

The FMA-LE evaluates stroke victims’ lower limb motor function, including domains 

of movement, coordination, speed, and reflex action of the hip, knee, and ankle joints 

[10–12]. For the movement domain, the participants are instructed to perform voli-

tional movement within synergies in a supine position, mixing synergies in a sitting 

position, and with little or no synergy in a standing position [12]. For the coordination 

and speed domains, the participants are asked to move the heel to the kneecap of the 

opposite leg five times as fast as possible in a supine position [12]. Items are scored 

on an ordinal scale of 0 (cannot perform/high disability), 1 (partial disability), and 2 

(no disability) [12]. Overall motor scores range from 0 (hemiparetic) to a maximum 

of 34 (healthy motor performance) for the lower extremity [12]. According to Kwong 

et. al, low and high disability is considered if FMA-LE ≥ 21 and FMA-LE < 21, re-

spectively [23].  

2.4 Sensor-based Measures and Data Processing 

Spatiotemporal Measures. 

 ARRA dataset provides spatiotemporal parameters for each gait cycle derived 

from kinematic and GRF data, including non-paretic (NP) and paretic (P) step and 

stride length, stride time, and cadence. Step and stride lengths are the distance be-

tween the point of initial contact of one foot and the point of initial contact of the 

opposite and same foot, respectively, during walking [25]. Stride time is the amount 

of time between the initial contact of one foot and the initial contact of the same foot 

during walking [25]. Cadence is the number of steps performed per minute of walking 

[25].  

 

EMG Measures. 

ARRA dataset provides normalized and rectified EMG curves for each trial and 

muscle. From these curves, we computed mean, median and peak power frequencies, 

since EMG-based frequency domain features are widely used [24].  

Mean frequency, MNF, was calculated as a ratio between the sum of the product of 

the EMG power spectrum intensity, P, and the frequency, f, and the sum of the power 

spectrum intensity (Eq. 1) [24]. 

 𝑀𝑁𝐹 =  
∑ 𝑃𝑗×𝑓𝑗

𝑀
𝑗=1

∑ 𝑃𝑗
𝑀
𝑗=1

, (1) 

where j is a frequency bin, and M is the length of the frequency bin. 

Median frequency, MDF, was determined as the frequency at which the EMG 

power spectrum intensity, P, is divided into two regions with equal amplitude (Eq. 2) 

[24].  

 ∑ 𝑃𝑗
𝑀𝐷𝐹
𝑗=1 = ∑ 𝑃𝑗

𝑀
𝑗=𝑀𝐷𝐹  (2) 
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Peak frequency, PKF, consists of frequency at which the maximum power occurs 

(Eq. 3) [24].  

 𝑃𝐾𝐹 = max(𝑃𝑗) , 𝑗 = 1, … , 𝑀 (3) 

2.5 Statistical Analysis 

Shapiro-Wilk tests were used to evaluate the normality of sensor-based measure-

ments. Spearman’s correlation coefficients, r, were assessed to verify the correlation 

between FMA-LE scores and sensor-based measures for parametric and non-

parametric variables. The strength of correlations was interpreted as a negligible rela-

tionship if r=0.01-0.19, weak if r=0.20-0.29, moderate if r=0.30-0.39, strong if 

r=0.40-0.69, and very strong if r≥0.7 [26]. The Spearman’s correlation p-value was 

analyzed to determine if the correlation has a statistically significant meaning, occur-

ring when the p-value < 0.05 (significance level). Statistical analyses were conducted 

using IBM SPSS software version 26.0 (IMP Corp, USA). 

3 Results 

3.1 Spatiotemporal Measures Correlated with Lower Fugl-Meyer Assessment 

Scores 

Table 1 presents the correlation results between spatiotemporal measures and FMA-

LE scores. All correlations were statistically significant (p-value ≤ 0.01) with the 

exception for P step length in QS task. NP step length, paretic stride time, and ca-

dence were highlighted as strongly correlated spatiotemporal measures (0.40 ≤ |r| ≤ 

0.60) with FMA-LE during all mobility tasks.  The stride length measure only did not 

show strong correlations for QS task (0.43 ≤ r ≤ 0.47), while the P step length only 

revealed strong correlations for the LS task (r = 0.42).  

Moreover, we observed that as the FMA-LE increased, meaning a reduced disabil-

ity level, the P stride time decreased (negative correlation), while the NP step length 

and cadence measures increased (positive correlation) (Table S1 from Supplementary 

Material).  

3.2 EMG Measures Correlated with Lower Fugl-Meyer Assessment Scores 

Table 2 presents the correlation results between EMG measures and FMA-LE scores 

for each mobility walking task. Results indicate that the correlations vary according to 

the mobility tasks. For the SS, the MNF of soleus, MDF and PKF of vastus medialis 

and lateral hamstring, PKF of medial gastrocnemius, hamstring, and rectus femoris, 

and all EMG measures from gluteus medius showed statistically significant correla-

tions with FMA-LE scores (p-value ≤ 0.02). The stronger ones are from lateral ham-

string and gluteus medius (0.42 ≤ r ≤ 0.44), being that the MDF and PKF lateral ham-

string and PKF gluteus medius increased with the increase of FMA-LE score (Table 

S2 from Supplementary Material).  
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Table 1. Spearman’s correlation coefficients and related p-values, r (p-value), for 

each spatiotemporal measure during each mobility walking task (SS, FC, QS, LS, HS) 

correlated with FMA-LE scores. Darker orange indicates a stronger correlation coef-

ficient. Statistically significant correlations (p-value<0.05) are indicated with * 

 

Spatiotemporal 

measure 

Mobility walking task 

SS FC QS LS HS 

P stride length  
0.47* 

(<0.01) 

0.44* 

(<0.01) 

0.34* 

(<0.01) 

0.44* 

(<0.01) 

0.45* 

(<0.01) 

NP stride length  
0.47* 

(<0.01) 

0.44* 

(<0.01) 

0.33* 

(<0.01) 

0.44* 

(<0.01) 

0.43* 

(<0.01) 

P step length  
0.33* 

(<0.01) 

0.31* 

(0.01) 

0.16 

(0.16) 

0.42* 

(<0.01) 

0.29* 

(0.01) 

NP step length  
0.60* 

(<0.01) 

0.51* 

(<0.01) 

0.46* 

(<0.01) 

0.44* 

(<0.01) 

0.51* 

(<0.01) 

P stride time  
-0.42* 

(<0.01) 

-0.40* 

(<0.01) 

-0.48* 

(<0.01) 

-0.41* 

(<0.01) 

-0.43* 

(<0.01) 

Cadence 
0.42* 

(<0.01) 

0.40* 

(<0.01) 

0.46* 

(<0.01) 

0.41* 

(<0.01) 

0.43* 

(<0.01) 

 

Intended for the FC mobility task, the PKF of tibialis anterior and medial gas-

trocnemius, MNF and PKF of soleus, MDF and PKF of gluteus medius, lateral and 

medial hamstring, and all EMG measures from vastus medialis revealed statistically 

significant correlations (p-value ≤ 0.03). The strong ones are PKF of medial gas-

trocnemius and vastus medialis (0.42 ≤ r ≤ 0.45), presenting positive correlations 

(Table S2 from Supplementary Material).  

Regarding the QS, the PKF soleus, MNF and PKF of rectus femoris, MDF and 

PKF of medial gastrocnemius and hamstring, and all EMG measures of vastus medi-

alis, lateral hamstring, and gluteus medius are statistically significant correlated with 

FMA-LE scores (p-value ≤ 0.04). The MDF and PKF measures of vastus medialis and 

lateral hamstring muscles and the PKF of gluteus medius (0.40 ≤ r ≤ 0.42) are the 

stronger correlations, all positively correlated with FMA-LE scores.  

For the LS mobility task, the MNF of medial gastrocnemius and hamstring mus-

cles, MNF and MDF soleus, and PKF of tibialis anterior, lateral hamstring, and glute-

us medius are statistically significant correlated with FMA-LE scores. The MNF 

measure of soleus is the stronger one (r = -0.45), decreasing as the FMA-LE score 

increases (Table S2 from Supplementary Material).  

Concerning the HS, the statistically significant correlated EMG measures are MNF 

soleus, MDF and PKF gluteus medius, PKF from tibialis anterior, medial gastrocnem-

ius and hamstring, and all EMG measures from vastus medialis and lateral hamstring 

(p-value ≤ 0.02). The strong correlations are from MDF and PKF vastus medialis and 

lateral hamstring (0.40 ≤ r ≤ 0.46), being positively correlated with FMA-LE scores 

(Table S2 from Supplementary Material). 
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Table 2. Spearman’s correlation coefficients and related p-values, r (p-value), for each EMG 

measure during each mobility walking task (SS, FC, QS, LS, HS) correlated with FMA-LE 

scores. Darker orange indicates a stronger correlation coefficient. Statistically significant corre-

lations (p-value<0.05) are indicated with * 

EMG measure  
Mobility walking task 

SS FC QS LS HS 

MNF tibialis anterior  
0.12 

(0.33) 

0.09 

(0.42) 

0.18 

(0.13) 

-0.16 

(0.18) 

0.10 

(0.42) 

MDF tibialis anterior  
0.15 

(0.22) 

0.12 

(0.29) 

0.09 

(0.45) 

0.02 

(0.86) 

0.16 

(0.19) 

PKF tibialis anterior  
0.19 

(0.12) 

0.28* 

(0.02) 

0.13 

(0.27) 

0.32* 

(<0.01) 

0.35* 

(<0.01) 

MNF soleus 
-0.28* 

(0.02) 

-0.38* 

(<0.01) 

-0.12 

(0.30) 

-0.45* 

(<0.01) 

-0.30* 

(0.01) 

MDF soleus 
-0.03 

(0.81) 

0.12 

(0.29) 

0.20 

(0.09) 

-0.27* 

(0.02) 

0.02 

(0.89) 

PKF soleus 
0.19 

(0.10) 

0.28* 

(0.01) 

0.37* 

(<0.01) 

0.07 

(0.55) 

0.19 

(0.10) 

MNF medial gastrocnemius 
-0.17 

(0.15) 

-0.14 

(0.25) 

-0.09 

(0.45) 

-0.32* 

(<0.01) 

-0.17 

(0.14) 

MDF medial gastrocnemius 
0.22 

(0.06) 

0.21 

(0.07) 

0.24* 

(0.04) 

-0.08 

(0.49) 

-0.11 

(0.34) 

PKF medial gastrocnemius 
0.28* 

(0.02) 

0.42* 

(<0.01) 

0.35* 

(<0.01) 

0.23 

(0.05) 

0.38* 

(<0.01) 

MNF vastus medialis 
0.20 

(0.09) 

0.32* 

(<0.01) 

0.37* 

(<0.01) 

-0.05 

(0.68) 

0.26* 

(0.02) 

MDF vastus medialis 
0.32* 

(0.01) 

0.36* 

(<0.01) 

0.40* 

(<0.01) 

0.14 

(0.22) 

0.40* 

(<0.01) 

PKF vastus medialis 
0.30* 

(0.01) 

0.45* 

(<0.01) 

0.42* 

(<0.01) 

0.21 

(0.06) 

0.42* 

(<0.01) 

MNF rectus femoris 
0.14 

(0.26) 

-0.06 

(0.60) 

0.26* 

(0.03) 

-0.14 

(0.24) 

-0.03 

(0.82) 

MDF rectus femoris 
0.03 

(0.82) 

-0.14 

(0.23) 

0.20 

(0.10) 

-0.13 

(0.26) 

-0.02 

(0.84) 

PKF rectus femoris 
0.24* 

(0.04) 

0.02 

(0.88) 

0.36* 

(<0.01) 

0.13 

(0.26) 

0.17 

(0.16) 

MNF lateral hamstring 
0.17 

(0.15) 

0.16 

(0.18) 

0.35* 

(<0.01) 

-0.13 

(0.27) 

0.27* 

(0.02) 

MDF lateral hamstring 
0.43* 

(<0.01) 

0.35* 

(<0.01) 

0.40* 

(<0.01) 

0.11 

(0.37) 

0.42* 

(<0.01) 

PKF lateral hamstring 
0.44* 

(<0.01) 

0.35* 

(<0.01) 

0.40* 

(<0.01) 

0.27* 

(0.02) 

0.46* 

(<0.01) 

MNF medial hamstring 
0.03 

(0.79) 

0.10 

(0.38) 

0.13 

(0.26) 

-0.26* 

(0.03) 

-0.05 

(0.64) 
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EMG measure 
Mobility walking task 

SS FC QS LS HS 

MDF medial hamstring 
0.20 

(0.09) 

0.24* 

(0.03) 

0.25* 

(0.03) 

-0.14 

(0.24) 

0.01 

(0.92) 

PKF medial hamstring 
0.28* 

(0.02) 

0.34* 

(<0.01) 

0.37* 

(<0.01) 

0.19 

(0.11) 

0.30* 

(0.01) 

MNF gluteus medius 
0.28* 

(0.02) 

0.05 

(0.67) 

0.26* 

(0.03) 

-0.08 

(0.49) 

0.23 

(0.05) 

MDF gluteus medius 
0.37* 

(<0.01) 

0.24* 

(0.03) 

0.36* 

(<0.01) 

0.07 

(0.56) 

0.25* 

(0.03) 

PKF gluteus medius 
0.42* 

(<0.01) 

0.33* 

(<0.01) 

0.42* 

(<0.01) 

0.35* 

(<0.01) 

0.36* 

(<0.01) 

 

4 Discussion 

This work aims to describe how spatiotemporal and EMG measures are correlated 

with FMA-LE clinical scores to complement this clinical scale with significant and 

strong correlated objective measures. The founded correlations may foster the use of 

spatiotemporal and EMG measures in clinical practice to objectively guide critical 

treatment choices for post-stroke rehabilitation, personalizing the rehabilitation pro-

gram according to the patient’s disability level.  

Answering the research question, both spatiotemporal and EMG measures revealed 

statistically significant correlations with FMA-LE scores, indicating that their monot-

ony is linked. In fact, spatiotemporal measures achieved more strength correlation 

coefficients (0.60 and 0.46 are the maximum correlation coefficients for spatiotem-

poral and EMG measures, respectively) than EMG measures. These maximum values 

are related to step length and PKF lateral hamstring during SS and HS walking tasks, 

respectively. However, the lateral hamstring muscle also showed a stronger correla-

tion for the SS mobility walking task (r = 0.44). It should be noted that spatiotemporal 

measures have the advantage of not implicating a time-consuming subject preparation 

as EMG measures because it is not needed a skin preparation procedure [8]. However, 

both spatiotemporal and EMG measures proved to be suitable for validating the im-

pact of rehabilitation robotics such as lower limb exoskeletons in stroke population’s 

disability level, and for personalizing the robot’s assistance according to user’s needs. 

Concerning spatiotemporal measures correlated with FMA-LE scores, the disabil-

ity level of stroke survivors decreases as long as they can step more times per minute 

(increased cadence) and perform longer and faster steps (increased step and stride 

length and reduced stride time), justifying why these measures are used for biofeed-

back training in current research [27]. Rech et al. also obtained a significant correla-

tion for cadence (r = 0.58), stride length (r = 0.44), and step length (r = 0.36) [19]. 

Regarding EMG measures correlated with FMA-LE scores, although the lateral 

hamstring revealed a stronger correlation during the SS mobility walking task, the 

gluteus medius also presented this behavior (r = 0.42), being both the stronger corre-



9 

lated muscles. However, for faster speed walking (FC mobility task), the medial gas-

trocnemius and vastus lateralis (strong correlation strength) overcome lateral ham-

string and gluteus medius (moderate correlation strength), indicating that speed 

changes muscle activation pattern as announced in [28]. During maximum cadence 

walking, lateral hamstring and gluteus medius are also highlighted as strong correla-

tions in adjunction to the vastus medialis muscle. The soleus muscle exhibited a 

strong correlation only for the LS, while the tibialis anterior, rectus femoris, and me-

dial hamstring are not strongly correlated with FMA-LE scores during any mobility 

walking task. On the other hand, gluteus medius (SS and QS tasks), lateral hamstring 

(SS, QS, and HS tasks), and vastus medialis (FC, QS, and HS tasks) revealed strong 

correlations in multiple mobility tasks. Therefore, the correlations between EMG 

measures with FMA-LE clinical scores innovatively explored in this work showed 

dependency on the mobility walking task.  

Regardless of the mobility task and muscle studied, the PKF EMG-based feature 

demonstrated more correlations than MDF followed by MNF, being usually positively 

correlated with FMA-LE scores, as mentioned in [29]. Along these lines, an increase 

in clinical score occurs for increased mean, median, and peak power frequencies. 

Moreover, based on achieved results, we can identify the most appropriate walking 

task to collect clinical meaningful spatiotemporal and EMG measures. Considering 

spatiotemporal measures, the mobility walking task presenting the highest number of 

significant strong correlations is LS (6 significant strong correlations), followed by 

SS, FC, and HS (5 significant strong correlations), and then QS (only 1 significant 

strong correlation). For EMG measures, the mobility walking task offering the highest 

number of significant strong correlations is QS (5 significant strong correlations), 

followed by HS (4 significant strong correlations), SS and FC (2 significant strong 

correlations), and then LS (only 1 significant strong correlation).  

This study is limited to the lack of open-source datasets with sensor-based 

measures from stroke survivors [18]. EMG measures are limited to frequency domain 

features from rectified EMG timing curves. Although rectified EMG is a better pre-

dictor of the components of motor unit synchronization than the corresponding unrec-

tified EMG at low contraction strengths [32], it was not possible to benchmark it with 

the correlations for unrectified EMG and neither time-frequency features that require 

smaller computational costs [31]. Future research should move towards recording and 

publishing datasets comprising physiological measures such as raw EMG and spatio-

temporal measures from stroke population to increase comprehension of their needs.  

5 Conclusions 

This work showed that sensor-based spatiotemporal and EMG measures during walk-

ing are statistically significant strongly correlated with FMA-LE clinical scores. Step 

length, stride time, and cadence spatiotemporal measures were strongly correlated 

with the clinical scores during any mobility walking task, presenting higher correla-

tions with FMA-LE than EMG measures. In fact, EMG measures from the tibialis 

anterior, rectus femoris, and medial hamstring were not strongly correlated with 
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FMA-LE scores during any task. However, PKF measure of gluteus medius, lateral 

hamstring, and vastus medialis muscles revealed strong correlations in multiple tasks.  

Moreover, the most appropriate walking task to collect multiple clinical meaningful 

spatiotemporal and EMG measures are LS and QS, respectively. These findings are 

promising to enable the use of spatiotemporal and EMG measures in clinical practice 

to support clinical diagnosis and treatment prescription and the future development of 

artificial intelligence methods to estimate the FMA-LE clinical scores. 

Acknowledgments 

The results published here are based on data obtained from Steven A. Kautz and 

Richard R. Neptune’s Dataset [21]: Medical University of South Carolina Stroke Data 

(ARRA) (ICPSR 37122). 

References 

1.  Luengo-Fernandez R, Leal J, Candio P, Violato M The economic impact of stroke in 

Europe 

2.  Johnson CO, Nguyen M, Roth GA, et al (2019) Global, regional, and national burden 

of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 

2016. Lancet Neurol 18:439–458. https://doi.org/10.1016/S1474-4422(19)30034-1 

3.  Li S, Francisco GE, Zhou P (2018) Post-stroke Hemiplegic Gait: New Perspective and 

Insights. Front Physiol 9:1–8. https://doi.org/10.3389/fphys.2018.01021 

4.  Béjot Y, Bailly H, Durier J, Giroud M (2016) Epidemiology of stroke in Europe and 

trends for the 21st century. Presse Med 45:e391–e398. 

https://doi.org/10.1016/j.lpm.2016.10.003 

5.  (2017) Burden Of Stroke Report Launched In EU Parliament. In: SAFE. 

https://strokeeurope.eu/burden-of-stroke-report-launched-in-eu-parliament/. Accessed 

27 May 2019 

6.  Goldman R (2017) The Effects of Stroke on the Body. In: healthline. 

https://www.healthline.com/health/stroke/effects-on-body#1. Accessed 19 Feb 2019 

7.  Quinn T, Harrison, McArthur (2013) Assessment scales in stroke: clinimetric and 

clinical considerations. Clin Interv Aging 201. https://doi.org/10.2147/CIA.S32405 

8.  Pinheiro C, Figueiredo J, Cerqueira J, Santos CP (2022) Robotic Biofeedback for Post-

Stroke Gait Rehabilitation: A Scoping Review. Sensors 22:7197. 

https://doi.org/10.3390/s22197197 

9.  Bushnell C, Bettger JP, Cockroft KM, et al (2015) Chronic Stroke Outcome Measures 

for Motor Function Intervention Trials. Circ Cardiovasc Qual Outcomes 8:S163–S169. 

https://doi.org/10.1161/CIRCOUTCOMES.115.002098 

10.  Duncan PW, Propst M, Nelson SG (1983) Reliability of the Fugl-Meyer Assessment 

of Sensorimotor Recovery Following Cerebrovascular Accident. Phys Ther 63:1606–

1610. https://doi.org/10.1093/ptj/63.10.1606 

11.  Sanford J, Moreland J, Swanson LR, et al (1993) Reliability of the Fugl-Meyer 

Assessment for Testing Motor Performance in Patients Following Stroke. Phys Ther 



11 

73:447–454. https://doi.org/10.1093/ptj/73.7.447 

12.  Sullivan KJ, Tilson JK, Cen SY, et al (2011) Fugl-Meyer Assessment of Sensorimotor 

Function After Stroke. Stroke 42:427–432. 

https://doi.org/10.1161/STROKEAHA.110.592766 

13.  Siniscalchi A (2022) Use of stroke scales in clinical practice: Current concepts. 

Turkish J Emerg Med 22:119. https://doi.org/10.4103/2452-2473.348440 

14.  Routson RL, Kautz SA, Neptune RR (2014) Modular organization across changing 

task demands in healthy and poststroke gait. Physiol Rep 2:e12055. 

https://doi.org/10.14814/phy2.12055 

15.  Julianjatsono R, Ferdiana R, Hartanto R (2017) High-resolution automated Fugl-

Meyer Assessment using sensor data and regression model. In: 2017 3rd International 

Conference on Science and Technology - Computer (ICST). IEEE, pp 28–32 

16.  Gebruers N, Truijen S, Engelborghs S, De Deyn PP (2014) Prediction of upper limb 

recovery, general disability, and rehabilitation status by activity measurements 

assessed by accelerometers or the fugl-meyer score in acute stroke. Am J Phys Med 

Rehabil 93:245–252. https://doi.org/10.1097/PHM.0000000000000045 

17.  Song X, Chen S, Jia J, Shull PB (2019) Cellphone-Based Automated Fugl-Meyer 

Assessment to Evaluate Upper Extremity Motor Function After Stroke. IEEE Trans 

Neural Syst Rehabil Eng 27:2186–2195. 

https://doi.org/10.1109/TNSRE.2019.2939587 

18.  Tozlu C, Edwards D, Boes A, et al (2020) Machine Learning Methods Predict 

Individual Upper-Limb Motor Impairment Following Therapy in Chronic Stroke. 

Neurorehabil Neural Repair 34:428–439. https://doi.org/10.1177/1545968320909796 

19.  Rech KD, Salazar AP, Marchese RR, et al (2020) Fugl-Meyer Assessment Scores Are 

Related With Kinematic Measures in People with Chronic Hemiparesis after Stroke. J 

Stroke Cerebrovasc Dis 29:104463. 

https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104463 

20.  Lin S-I (2005) Motor function and joint position sense in relation to gait performance 

in chronic stroke patients. Arch Phys Med Rehabil 86:197–203. 

https://doi.org/10.1016/j.apmr.2004.05.009 

21.  Kautz SA, Neptune RR (2018) Medical University of South Carolina Stroke Data 

(ARRA). In: ICPSR. https://www.icpsr.umich.edu/web/ICPSR/studies/37122 

22.  Sanchez N (2021) Stroke Initiative for Gait Data Evaluation (STRIDE), United States, 

2012-2020. In: ICPSR. https://www.icpsr.umich.edu/web/ICPSR/studies/38002# 

23.  Kwong PWH, Ng SSM (2019) Cutoff Score of the Lower-Extremity Motor Subscale 

of Fugl-Meyer Assessment in Chronic Stroke Survivors: A Cross-Sectional Study. 

Arch Phys Med Rehabil 100:1782–1787. https://doi.org/10.1016/j.apmr.2019.01.027 

24.  Oskoei MA, Huosheng Hu (2008) Support Vector Machine-Based Classification 

Scheme for Myoelectric Control Applied to Upper Limb. IEEE Trans Biomed Eng 

55:1956–1965. https://doi.org/10.1109/TBME.2008.919734 

25.  Perry J (1992) Gait Analysis: Normal and Pathological Function. SLACK 

Incorporated 

26.  Dancey CP, Reidy J (2007) Statistics without maths for psychology. Pearson education 

27.  Guzik A, Drużbicki M, Kwolek A, et al (2020) Analysis of the association between 

selected factors and outcomes of treadmill gait training with biofeedback in patients 



12 

with chronic stroke. J Back Musculoskelet Rehabil 33:159–168. 

https://doi.org/10.3233/BMR-170991 

28.  Srivastava S, Patten C, Kautz SA (2019) Altered muscle activation patterns (AMAP): 

an analytical tool to compare muscle activity patterns of hemiparetic gait with a 

normative profile. J Neuroeng Rehabil 16:21. https://doi.org/10.1186/s12984-019-

0487-y 

29.  Hussain I, Park S-J (2021) Prediction of Myoelectric Biomarkers in Post-Stroke Gait. 

Sensors 21:5334. https://doi.org/10.3390/s21165334 

30.  Wang Y, Mukaino M, Ohtsuka K, et al (2020) Gait characteristics of post-stroke 

hemiparetic patients with different walking speeds. Int J Rehabil Res 43:69–75. 

https://doi.org/10.1097/MRR.0000000000000391 

31.  Xu Y, Shu X, Sheng X, et al (2021) Assessment of sEMG Performance and its 

Correlation with Upper Fugl-Meyer Assessment in Stroke Patients. In: 2021 27th 

International Conference on Mechatronics and Machine Vision in Practice (M2VIP). 

IEEE, pp 522–527 

32.  Ward NJ, Farmer SF, Berthouze L, Halliday DM (2013) Rectification of EMG in low 

force contractions improves detection of motor unit coherence in the beta-frequency 

band. J Neurophysiol 110:1744–1750. https://doi.org/10.1152/jn.00296.2013 

 


