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Abstract. This paper presents an implementation of the node-based smoothed finite element method 
and Reissner-Mindlin plate theory for a four node isoparametric shell element to improve the 
numerical precision and computational efficiency subjected to free vibration analysis of textile-like 
sheet materials. A one smoothing cell integration scheme in the strain smoothing technique is 
implemented to contrast the shear locking phenomenon that may exists in the analysis for moderately-
thick and thick shell models. Various numerical results of free vibration analysis for a multi-layer 
nonwoven fabric sample are compared with other existing analytical solutions and numerical 
solutions in literatures to demonstrate the effectiveness of the present method. An advantage of the 
present formulation is that it can improve the numerical precision without decreasing the 
computational efficiency. 

Introduction 
The finite element method (FEM) is an efficient tool for analyses of shell/plate structures to help 

understanding of vibration and buckling behavior of textile-like sheet materials, e.g., the basic 
practical problem of residual curvature in the fusible interlinings [1-3], through garment 
manufacturing and also during its use as a garment, as detailed in references [4-6]. However, FEM 
has some limitations or drawbacks being found during its intensive applications, including in 
references [7-10]. The node-based smoothed finite element method (NS-FEM), presented by Liu and 
his coworkers [11-14], is a method formulated through the combinations of the conventional FEM 
and some techniques from the meshfree methods, and have partly resolved some known issues 
existing in standard FEM. The strain smoothing stabilization technique evaluates the nodal strain as 
the divergence of a spatial average of the compatible strain field avoiding the derivative evaluations 
of mesh-free shape functions at nodes and hence eliminates defective modes [10, 15, 16]. This 
technique avoids evaluating derivatives of mesh-free shape functions at nodes and therefore 
eliminates defective modes. This paper is to present a finite element formulation of plate/shell 
structures based on the node-based strain smoothing technique in finite elements and Mindlin-
Reissner plate theory. The present method illustrates that the numerical solution can help increasing 
the numerical accuracy and the computational efficiency for free vibration analysis of textile-like 
sheet materials. 
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Finite Element Formulation  

Assume that a fabric sheet is a three-dimensional elastic domain Ω ∈ ℝ3 as a solid body being thin 
in thickness but having significant length in other two directions [17, 18]. The domain Ω has a 
Lipschitz-continuous boundary Γ and a body force b. The first parts of boundary Γ, namely Γ𝑢𝑢 where 
Dirichlet conditions u� are prescribed, and the second part denoted with Γ𝑡𝑡 where Neumann conditions 
t = t ̅are also prescribed. Γ𝑢𝑢 and Γ𝑡𝑡  construct a partition of the boundary Γ for instance Γ = Γ𝑢𝑢 ∪ Γ𝑡𝑡.  

The static equilibrium equation governing the solid can be written in term of the stress field as 

𝐋𝐋T𝛔𝛔 + 𝐛𝐛 = 𝟎𝟎 in Ω. (1) 
Let 𝐃𝐃 be the elasticity matrix [18, 19] that governs the material constants of the solid for plane 

stress analysis [13, 18, 20, 21] in the present formulation. The stresses 𝛔𝛔 relate to the strains 𝛆𝛆 via the 
generalized Hook’s law (also known as the constitutive equations), which gives 

𝛔𝛔 = 𝐃𝐃𝛆𝛆. (2) 

The strain matrix 𝛆𝛆 relates to the displacements in the form of compatibility equations (or the 
kinematic equations) 

𝛆𝛆 = 𝐋𝐋𝐋𝐋, (3) 

with 𝐋𝐋 is the displacement component at a point in Ω. Substituting Eq. 8 into Eq. 7 which gives the 
equilibrium equation in terms of the displacements.  

The conditions of Dirichlet boundary Γ𝑢𝑢 and the Neumann boundary Γ𝑡𝑡 are also defined as 

𝐋𝐋 = 𝐋𝐋Γ, (4) 

𝐋𝐋𝑛𝑛T𝛔𝛔 = 𝐭𝐭Γ, (5) 

in which 𝐋𝐋𝑛𝑛 is the matrix of unit outward normal components. Hence, the strain energy (or potential 
energy) for elastic solid can be quantified via 

𝐔𝐔 = 1
2 ∫ 𝛆𝛆𝑇𝑇(𝐱𝐱)𝛔𝛔(𝐱𝐱)Ω dΩ = 1

2 ∫ 𝛆𝛆𝑇𝑇(𝐱𝐱)𝐜𝐜𝛆𝛆(𝐱𝐱)Ω dΩ. (6) 

The configuration domain Ω ∈ ℝ3 that forms the shell mid-surface based on the Mindlin-Reissner 
plate theory being defined by 

𝑉𝑉 = �(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ∈ ℝ3|(𝑥𝑥,𝑦𝑦) ∈ Ω ⊂ ℝ2, 𝑧𝑧 ∈ �− 𝑡𝑡
2

, 𝑡𝑡
2
��. (7) 

For approximation of the stress state in a moderately thick shell, to which the analysis of the 
membrane deformations can be performed, the displacement assumption gives 

𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑢𝑢0(𝑥𝑥,𝑦𝑦) + 𝑧𝑧𝛽𝛽𝑥𝑥(𝑥𝑥,𝑦𝑦)
𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑣𝑣0(𝑥𝑥,𝑦𝑦) + 𝑧𝑧𝛽𝛽𝑦𝑦(𝑥𝑥,𝑦𝑦)
𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑤𝑤0(𝑥𝑥,𝑦𝑦)

. (8) 

in which 𝑢𝑢0, 𝑣𝑣0 and 𝑤𝑤0 denote the displacement components along 𝑥𝑥-, 𝑦𝑦- and 𝑧𝑧-directions, 
respectively. 𝛽𝛽𝑥𝑥  and  𝛽𝛽𝑦𝑦 stand for the normal rotations to the undeformed mid-surface corresponding 
to the 𝑥𝑥-𝑧𝑧 and 𝑦𝑦-𝑧𝑧 planes having 𝛽𝛽𝑥𝑥 = 𝜕𝜕w

𝜕𝜕𝑥𝑥
 and 𝛽𝛽𝑦𝑦 = 𝜕𝜕w

𝜕𝜕𝑦𝑦
. 

The membrane strain 𝛆𝛆𝑚𝑚, curvature strain 𝛆𝛆𝑏𝑏 are calculated from the corresponding 2D differential 
operators 𝐋𝐋, as presented in Eq. 8, which are 

𝑳𝑳2𝐷𝐷𝑚𝑚 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕
𝜕𝜕𝑥𝑥

0

0 𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑥𝑥⎦
⎥
⎥
⎥
⎤

 and 𝐋𝐋2𝐷𝐷𝑏𝑏 =

⎣
⎢
⎢
⎢
⎡ 0 𝜕𝜕

𝜕𝜕𝑥𝑥

− 𝜕𝜕
𝜕𝜕𝑦𝑦

0
−𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑦𝑦⎦
⎥
⎥
⎥
⎤

. (9) 
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From the displacement components in Eq. 8 with 𝐋𝐋 = [𝑢𝑢0 𝑣𝑣0 𝑤𝑤0]𝑇𝑇 and 𝛃𝛃 = [𝛽𝛽𝑥𝑥 𝛽𝛽𝑦𝑦]𝑇𝑇, Eq. 9 
can be rewritten as 

𝛆𝛆𝑚𝑚 = 𝑳𝑳2𝐷𝐷𝑚𝑚 𝒖𝒖 = �
𝑢𝑢0,𝑥𝑥
𝑣𝑣0,𝑦𝑦

𝑢𝑢0,𝑦𝑦 + 𝑣𝑣0,𝑥𝑥

�, 𝛆𝛆𝑏𝑏 = 𝑳𝑳2𝐷𝐷𝑏𝑏 𝜷𝜷 = �
𝛽𝛽𝑥𝑥,𝑥𝑥
−𝛽𝛽𝑦𝑦,𝑦𝑦

𝛽𝛽𝑥𝑥,𝑦𝑦 − 𝛽𝛽𝑦𝑦,𝑥𝑥

�, (10) 

while the transverse shear strain 𝛆𝛆𝑠𝑠 can be quantified using 

𝜺𝜺𝑠𝑠 = �
𝛾𝛾𝑥𝑥𝑦𝑦
𝛾𝛾𝑦𝑦𝑦𝑦� = �

𝑤𝑤,𝑥𝑥 + 𝛽𝛽𝑥𝑥
𝑤𝑤,𝑦𝑦 − 𝛽𝛽𝑦𝑦

�. (11) 

Let the problem domain Ω ∈ ℝ3 be discretized into a set of N𝑒𝑒 four-node isoparametric 
quadrilateral shell elements Ω𝑒𝑒 referred to as Q4 with boundary Γ𝑒𝑒 and the total number of nodes N𝐼𝐼. 
Let N𝐼𝐼(𝐱𝐱) and 𝐝𝐝𝐼𝐼 = [𝑢𝑢𝐼𝐼 𝑣𝑣𝐼𝐼 𝑤𝑤𝐼𝐼 𝜃𝜃𝑥𝑥𝐼𝐼 𝜃𝜃𝑦𝑦𝐼𝐼]𝑇𝑇, respectively, indicate the bilinear shape functions and 
the vector of nodal degrees of freedom associated with node 𝐼𝐼. The displacement assumption [22] and 
strains in Eq. 13 and Eq. 15 within any element Ω𝑒𝑒 can be written as 

𝒖𝒖ℎ = ∑

⎣
⎢
⎢
⎢
⎡
N𝐼𝐼(𝐱𝐱) 0 0 0 0

0 N𝐼𝐼(𝐱𝐱) 0 0 0
0 0 N𝐼𝐼(𝐱𝐱) 0 0
0 0 0 0 N𝐼𝐼(𝐱𝐱)
0 0 0 N𝐼𝐼(𝐱𝐱) 0 ⎦

⎥
⎥
⎥
⎤

𝑛𝑛𝐼𝐼
𝐼𝐼=1 𝐝𝐝𝐼𝐼 , (12) 

𝛆𝛆𝑚𝑚 = ∑ 𝐁𝐁𝐼𝐼𝑚𝑚𝐝𝐝𝐼𝐼𝐼𝐼 , 𝛆𝛆𝑏𝑏 = ∑ 𝐁𝐁𝐼𝐼𝑏𝑏𝐝𝐝𝐼𝐼𝐼𝐼 , 𝛆𝛆𝑠𝑠 = ∑ 𝐁𝐁𝐼𝐼𝑠𝑠𝐝𝐝𝐼𝐼𝐼𝐼 , (13) 

𝐁𝐁𝐼𝐼𝑚𝑚 = �
N𝐼𝐼,𝑥𝑥 0 0 0 0

0 N𝐼𝐼,𝑦𝑦 0 0 0
N𝐼𝐼,𝑦𝑦 N𝐼𝐼,𝑥𝑥 0 0 0

�, (14) 

𝐁𝐁𝐼𝐼𝑏𝑏 = �
0 0 0 N𝐼𝐼,𝑥𝑥 0
0 0 −N𝐼𝐼,𝑦𝑦 0 0
0 0 −N𝐼𝐼,𝑥𝑥 N𝐼𝐼,𝑦𝑦 0

�, (15) 

𝐁𝐁𝐼𝐼𝑠𝑠 = �
0 0 N𝐼𝐼,𝑥𝑥 0 N𝐼𝐼
0 0 N𝐼𝐼,𝑦𝑦 −N𝐼𝐼 0 �. (16) 

In the free analysis, the formulation of a Mindlin-Reissner shell can be written in the matrix form, 

𝐦𝐦𝑒𝑒�̈�𝐝 + 𝐤𝐤𝑒𝑒𝐝𝐝=0, (17) 

where the element stiffness matrix 𝐤𝐤𝑒𝑒and element mass matrix 𝐦𝐦𝑒𝑒 are given as 

𝐤𝐤𝑒𝑒 = ∫ (𝐁𝐁𝑚𝑚)𝑇𝑇Ω𝑒𝑒 𝐃𝐃𝑚𝑚𝐁𝐁𝑚𝑚dΩ + ∫ (𝐁𝐁𝑏𝑏)𝑇𝑇Ω𝑒𝑒 𝐃𝐃𝑏𝑏𝐁𝐁𝑏𝑏dΩ + ∫ (𝐁𝐁𝑠𝑠)𝑇𝑇Ω𝑒𝑒 𝐃𝐃𝑠𝑠𝐁𝐁𝑠𝑠dΩ, (18) 

𝐦𝐦𝑒𝑒 = ∫ 𝐍𝐍𝑇𝑇
Ω𝑒𝑒 𝐦𝐦𝐍𝐍dΩ, 𝐦𝐦 = 𝜌𝜌

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑡𝑡 0 0 0 0 0
0 𝑡𝑡 0 0 0 0
0 0 𝑡𝑡 0 0 0
0 0 0 0 𝑡𝑡3

12
0

0 0 0 𝑡𝑡3

12
0 0

0 0 0 0 0 0⎦
⎥
⎥
⎥
⎥
⎥
⎤

, (19) 

with 𝜌𝜌 being the density of the fabric sheet. 

The stiffness co-efficient of the drilling degrees of freedom 𝜃𝜃𝑦𝑦𝐼𝐼 associated with each node 𝐼𝐼 ∈ Ω𝑒𝑒, 
as figured out in the literatures [21, 23], is set to be 

Solid State Phenomena Vol. 333 221



 

𝜃𝜃𝑦𝑦𝐼𝐼 = 10−3 × 𝑚𝑚𝑚𝑚𝑥𝑥{diag(𝐤𝐤𝐼𝐼𝑒𝑒)}, (20) 

the element stiffness matrix related to node I is, therefore, written as 

𝐤𝐤𝐼𝐼𝑒𝑒 = �
𝐤𝐤𝐼𝐼𝑚𝑚2𝑥𝑥2 𝟎𝟎2×3 0
𝟎𝟎3×2 𝐤𝐤𝐼𝐼𝑏𝑏 + 𝐤𝐤𝐼𝐼𝑠𝑠 0
𝟎𝟎1×2 𝟎𝟎1×3 𝜃𝜃𝑦𝑦𝐼𝐼

�. (21) 

The shear locking phenomenon may exist in moderately thick shell models as figured out in works 
[21, 23-26]. In the present formulation, the shear strain term is evaluated using one smoothing cell 
integration scheme (see Eq. 24) in the strain smoothing technique to overcome the shear locking 
problem. 

Consider the node-based strain smoothing technique, each of element Ω𝑒𝑒 ∈ Ω is further subdivided 
into 4 triangular elements, in which the centroid node of Ω𝑒𝑒 is the first node of each sub triangular 
element, with Ω𝑒𝑒 = ⋃ Ω𝑘𝑘𝑠𝑠4

𝑘𝑘=1 , Ω𝑖𝑖𝑠𝑠 ∩ Ω𝑗𝑗𝑠𝑠 = ∅, 𝑖𝑖 ≠ 𝑗𝑗 (𝑖𝑖 = 1, … ,4; 𝑗𝑗 = 1, … ,4), and Ω𝑘𝑘𝑠𝑠  indicates the 𝑘𝑘th 
smoothing domain of the element Ω𝑒𝑒. Each smoothing domain has the total number 𝑛𝑛𝑏𝑏𝑠𝑠  of boundary 
segments that Γ𝑘𝑘𝑠𝑠 = ⋃ Γ𝑘𝑘𝑏𝑏𝑒𝑒

𝑛𝑛𝑏𝑏
𝑠𝑠

𝑏𝑏=1  with Γ𝑖𝑖𝑠𝑠 ∩ Γ𝑗𝑗𝑠𝑠 = ∅, 𝑖𝑖 ≠ 𝑗𝑗 (𝑖𝑖 = 1, … ,𝑛𝑛𝑏𝑏𝑠𝑠 ; 𝑗𝑗 = 1, … , 𝑛𝑛𝑏𝑏𝑠𝑠). The total number 
of smoothing domains within each discretized element Ω𝑒𝑒 can be equal to the total number of 
discretized elements Ω𝑒𝑒 within the system domain Ω. This means that one discretized element Ω𝑒𝑒 can 
be used as one smoothing domain Ω𝑘𝑘𝑠𝑠 . Now, direct apply strain smoothing technique with linear strain 
fields for static as in works [9, 27, 28] to Eq. 13 which can be approximated as 

𝛆𝛆𝑚𝑚(𝐱𝐱𝑘𝑘) = 1
𝐴𝐴𝑘𝑘
𝑠𝑠 ∫ 𝒏𝒏.𝒖𝒖(𝐱𝐱𝑘𝑘)Γ𝑘𝑘

𝑠𝑠 𝑑𝑑Γ = 1
𝐴𝐴𝑘𝑘
𝑠𝑠 ∑ �

𝑏𝑏�𝑘𝑘𝐼𝐼𝑥𝑥 0 0 0 0 0
0 𝑏𝑏�𝑘𝑘𝐼𝐼𝑦𝑦 0 0 0 0
𝑏𝑏�𝑘𝑘𝐼𝐼𝑦𝑦 𝑏𝑏�𝑘𝑘𝐼𝐼𝑥𝑥 0 0 0 0

� .𝒅𝒅𝐼𝐼3
𝐼𝐼=1 , (22) 

𝛆𝛆𝑏𝑏(𝐱𝐱𝑘𝑘) = 1
𝐴𝐴𝑘𝑘
𝑠𝑠 ∫ 𝒏𝒏.𝒖𝒖(𝐱𝐱𝑘𝑘)Γ𝑘𝑘

𝑠𝑠 𝑑𝑑Γ = 1
𝐴𝐴𝑘𝑘
𝑠𝑠 ∑ �

0 0 𝑏𝑏�𝑘𝑘𝐼𝐼𝑥𝑥 0 0 0
0 −𝑏𝑏�𝑘𝑘𝐼𝐼𝑦𝑦 0 0 0 0
0 −𝑏𝑏�𝑘𝑘𝐼𝐼𝑥𝑥 𝑏𝑏�𝑘𝑘𝐼𝐼𝑦𝑦 0 0 0

� .𝒅𝒅𝐼𝐼3
𝐼𝐼=1 , (23) 

𝛆𝛆𝑠𝑠(𝐱𝐱) = 1
𝐴𝐴𝑒𝑒 ∫ 𝒏𝒏.𝒖𝒖(𝐱𝐱)Γ𝑒𝑒 𝑑𝑑Γ = 1

𝐴𝐴𝑒𝑒
∑ �

0 0 𝑏𝑏�𝑘𝑘𝐼𝐼𝑥𝑥 0 𝑏𝑏�𝑘𝑘𝐼𝐼
0 0 𝑏𝑏�𝑘𝑘𝐼𝐼𝑦𝑦 −𝑏𝑏�𝑘𝑘𝐼𝐼 0

� .𝒅𝒅𝐼𝐼4
𝐼𝐼=1 , (24) 

with 

𝑏𝑏�𝑘𝑘𝐼𝐼𝑥𝑥 = 1
𝐴𝐴𝑘𝑘
𝑠𝑠 ∫ 𝑛𝑛𝑥𝑥𝑁𝑁𝐼𝐼Γ𝑘𝑘

𝑠𝑠 𝑑𝑑Γ = 1
𝐴𝐴𝑘𝑘
𝑠𝑠 ∑ 𝑛𝑛𝑥𝑥𝑏𝑏 .𝑁𝑁𝐼𝐼(x𝑏𝑏𝐺𝐺). 𝑙𝑙𝑏𝑏

𝑛𝑛𝑏𝑏
𝑠𝑠

𝑏𝑏=1 , (25) 

𝑏𝑏�𝑘𝑘𝐼𝐼𝑦𝑦 = 1
𝐴𝐴𝑘𝑘
𝑠𝑠 ∫ 𝑛𝑛𝑦𝑦𝑁𝑁𝐼𝐼Γ𝑘𝑘,𝑐𝑐

𝑒𝑒 𝑑𝑑Γ = 1
𝐴𝐴𝑘𝑘
𝑠𝑠 ∑ 𝑛𝑛𝑦𝑦𝑏𝑏 .𝑁𝑁𝐼𝐼(x𝑏𝑏𝐺𝐺). 𝑙𝑙𝑏𝑏

𝑛𝑛𝑏𝑏
𝑠𝑠

𝑏𝑏=1 . (26) 

In Eqs. 22, 23 and 24, 𝐴𝐴𝑒𝑒 = ∫ 𝑑𝑑ΩΩ𝑒𝑒  is the area of Ω𝑒𝑒, while 𝐴𝐴𝑘𝑘𝑠𝑠 = ∫ 𝑑𝑑ΩΩ𝑘𝑘
𝑠𝑠  is the area of the 𝑘𝑘th 

smoothing domain Ω𝑘𝑘𝑠𝑠 ⊂ Ω𝑒𝑒. In Eq. 25 and Eq. 26, 𝑛𝑛𝑥𝑥𝑏𝑏 and 𝑛𝑛𝑦𝑦𝑏𝑏 indicate the components of the 
outward unit normal to the 𝑏𝑏th boundary segment and x𝑏𝑏𝐺𝐺  is the coordinate value of Gauss point of 
the 𝑏𝑏th boundary segment. 

For analyzing the free vibration effect, the discretized governing equation in terms of the global 
stiffness matrices 𝐊𝐊 and the global mass matrix 𝐌𝐌 regarding to Eq. 18 and Eq 19, which given 

𝐌𝐌�̈�𝒅 − 𝐊𝐊𝒅𝒅 = 𝟎𝟎. (27) 

Substitute the general solution 𝒅𝒅 = 𝒅𝒅�exp(𝑖𝑖𝑖𝑖𝑡𝑡) into Eq. 27, the natural frequency 𝑖𝑖 can be 
quantified by solving 

(𝐊𝐊 − 𝑖𝑖2𝐌𝐌)𝒅𝒅� = 𝟎𝟎. (28) 

222 Textile Materials



 

Numerical Example and Results 
In present study, a numerical example for a linear static free vibration analysis of multi-layer 

nonwoven fabric sheet, a wide range of the sub-cell Ω𝑐𝑐𝑠𝑠 ⊂ Ω𝑒𝑒 is considered, together with the simply 
supported boundary conditions. The non-dimensional natural frequencies 𝜛𝜛 for a non-woven fabric 
sheet having the thickness-to-length ratio 𝑡𝑡

𝐿𝐿
, the shear factor corrections 𝑘𝑘 and the Poisson's ratio 𝜈𝜈 

are shown in Fig. 1. 

 
Figure 1. Mode shapes of non-dimensional natural frequency 𝜛𝜛 for a square simply supported non-
woven fabric sheet with 𝑡𝑡

𝐿𝐿
= 0.1, 𝑘𝑘 = 0.8333, 𝜈𝜈 = 0.3 and 35 × 35 Ω𝑒𝑒. 

The numerical results of linear static and free vibration analysis, as illustrated in Fig. 1, indicate a 
good agreement to the to the analytical solution (Mindlin's theory) [29], and numerical solutions based 
on MITC4 and conventional FEM under the simply supported boundary conditions.  

Conclusion 
The present method can reduce the practical implementation effort and computational cost in 

comparison to the standard FEM approaches. The shear locking problem has been resolved via the 
implementation using one smoothing cell integration in the strain smoothing technique. The 
numerical results show that the solutions can improve numerical accuracy and computational 
efficiency subjected to free vibration analysis of textile-like sheet materials. 
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