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Abstract: In the Architecture, Engineering, and Construction (AEC) industry, particularly civil 

engineering, the Finite Element Method (FEM) is a widely applied method for computational 

designs. In this regard, computational simulation has increasingly become challenging due to 

uncertain parameters, significantly affecting structural analysis and evaluation results, especially 

for composite and complex structures. Therefore, determining the exact computational parameters 

is crucial since the structures involve many components with different material properties, even 

removing some additional components affects the calculation results. This study presents a solution 

to increase the accuracy of the finite element (FE) model using a swarm intelligence-based approach 

called the particle swarm optimization (PSO) algorithm. The FE model is created based on the 

structure’s easily observable characteristics, in which uncertainty parameters are assumed 

empirically and will be updated via PSO using dynamic experimental results. The results show that 

the finite element model achieves high accuracy, significantly improved after updating (shown by 

the evaluation parameters presented in the article). In this way, a precise and reliable model can be 

applied to reliability analysis and structural design optimization tasks. During this research project, 

the FE model considering the PSO algorithm was integrated into an actual bridge’s structural health 

monitoring (SHM) system, which was the premise for creating the initial digital twin model for the 

advanced digital twinning technology. 
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1. Introduction 

Computational models or numerical models play a very important role in today’s 

sciences. In the AEC industry, it is an effective tool for continuous structural monitoring, 

damage detection, life estimation, and determination of optimal servicing and 

maintenance strategies. New and advanced numerical modeling methods are increasingly 

being developed. However, the generated numerical models need to be strictly adhered 

to in terms of accuracy and reliability in analysis results. Therefore, the errors and 

uncertainties associated with model assumptions often lead to inaccuracies and 

uncertainties that must be quantified. This has led to the development of model update 

methods that aim to calibrate the numerical model. These methods are based on the actual 

behavior of the structure as determined through static and/or dynamic testing of the 

structure. 

Finite element (FE) models are typically used in numerical modeling for various 

types of structures. An FE model simulates structural behavior, primarily based on easily 

surveyable parameters such as geometrical features or structural diagrams. When dealing 

with complex structures, minimizing the model to speed up computation and save 

resources is necessary. In this regard, various assumptions based on analyst views are 

included for simplification. Nevertheless, the model might have many uncertain 
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parameters (material properties, section profiles, boundary conditions, and others). 

Consequently, the FE models will result in an approximate output, which means those FE 

models are helpful only when no high accuracy is required and cannot perform any 

further intensive work. For in-depth analysis such as structural health monitoring, design 

optimization, or reliability analysis, the initial FE model should have more a�ention paid 

to modeling optimization and accuracy improvements. In practice, the error between the 

actual structure and FE models can be reduced but never eliminated. Current efforts focus 

on minimizing the errors as much as possible. Updating the model improves accuracy and 

gives actual structure-like responses.  

Several current studies have used the static behavior of the structure to update the 

FE model. For example, updating the beam model using random parameters under static 

stress [1], updating inaccurate parameters relying on the deformation of structures under 

static loads [2,3], and updating the FE model for the highway bridge by combining 

dynamic–static long-gauge strain responses [4]. In addition, some advanced FE models 

were proposed to deal with particular types of composite structures [5–7]. However, these 

solutions are currently laborious and costly, and there are too many uncertain factors, 

such as loads acting on the structure, measurement methods, or challenges in collecting 

data.  

Recently, vibration identification or  continuous data collection methods have been 

significantly developed with high accuracy [8,9]. They overcome some of the 

disadvantages of the static method. Based on the structure’s dynamic properties, such as 

natural frequency, mode shapes, or modal damping ratio, a numerical model can be 

created which is very close to the behavior of the actual object and serves many different 

purposes. In this regard, several other researchers have succeeded in the implementation 

of FE methods. Lessons learned can be referred to for updating the FE model from in situ 

dynamic displacement measurement [10]; updating the cantilever bridge model 

manually, the frequencies should first be identified and selected as the objective function 

to update the model [11]; using the modal properties analyzed from the simple concrete 

bridge to update the model [12]. Moreover, dynamic characteristics can be used to update 

the FE model for different structure types [13–15]. These methods are often time-

consuming to test the parameters and consume many computer resources gradually. 

Nevertheless, their accuracy is still not as good, requiring an optimization method to 

improve the technical goals. Additionally, the updated structure is mostly those simulated 

by a fixed material without the participation of composites. 

Based on input parameters from experiments (can be static or dynamic behavior of 

the structure), various model update solutions have been researched and developed. The 

solution commonly used in structural model updates is to change the uncertainty 

parameters so that the analysis results are similar to the experimental results. These 

methods rely on trial and error in the selection of structural parameters such as geometry, 

material properties, and boundary conditions. With a small number of parameters for 

simple, less detailed structures, updating the model is quite simple. However, the usual 

solutions are relatively tricky when the number of parameters increases. Many researchers 

have started using optimization algorithms to solve this problem. They allow searching 

for results in a large space, while ensuring resource savings for the execution 

environment. 

Optimizing algorithms with the FE methods also aids the engineers in fast calculation 

and improvement of the FE modeling, achieving the highest accuracy. For example, an 

optimization algorithm was used to update the FE model of the bridge structures based 

on sensitivity analysis [16]; an approach was proposed to update the model by combining 

simulated annealing and genetic algorithms (GA) [17]; the response surface method and 

GA were used to update a model for a simple concrete bridge [18]; and GA was also 

applied for updating the Canonica Bridge FE model [19]. Furthermore, various research 

has proposed and applied the optimization of algorithms to improve the used cuckoo 

search algorithm in the search mechanism of FE model parameters [20–24]. It is worth 
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saying that optimization algorithms are a powerful mathematical tool for solving 

technical problems, especially in the engineering fields. They are practical and widely 

applicable in updating the FE model. 

Optimization algorithms fall into three main categories: heuristic search methods, 

mathematical methods, and metaheuristic methods. In particular, the metaheuristic 

method is a random search method that simulates the biological evolution in nature or 

the social behavior of species. This method is considered to have more advantages than 

the other two methods. The most commonly used algorithms are genetic algorithms (GA), 

ant colony optimization (ACO) and particle swarm optimization (PSO). The published 

results [25] show that the PSO algorithm has faster convergence time in large-scale 

problems, especially in the problem of updating large structural models. The PSO 

algorithm does not require detailed mathematical description and finds the best possible 

value by optimizing an objective function. This helps to perform fast model updates in 

large structures, saving computational resources while achieving accuracy. 

In this research, FE model updating regarding the central part from the core 

structures of the bridge, a large composite plate, is presented. The composite plate is 

composed of several materials working together. An initial FE model is created based on 

uncertain material parameters and boundary conditions. With the data processed by 

actual vibration measurements, the dynamic characteristics of the composites are 

determined, including frequency and mode shapes. These properties are the outputs of 

the FE model. The correlation index between the model and experimental results is 

minimal using the PSO optimization algorithm combined with the objective function. The 

results obtain the corresponding parameters of the model after being updated. These 

properties are needed to correct the model, creating a temporary digital replica of the 

structure at a specified time. Some other authors also used this approach [26,27], but the 

structures considered were usually simple and made of a single material, not composite 

materials. 

This paper consists of four main parts: introduction, research methods and 

approaches, case study, and conclusion. After the introduction, the approach of the model 

update method is presented. Then, a specific case study on the real structure is performed. 

Finally, some conclusions were formulated during the implementation. The main 

contributions of this paper are (i) providing a general theory and structural model update 

solution; (ii) presenting solutions for collecting and processing vibration data in large 

structures; (iii) presenting the steps to update the model by combining the vibration 

measurement results with the optimization algorithm; and (iv) proving the effectiveness 

of the optimization algorithm (PSO) in model updating.  

2. Research Methods and Approach 

Considering a finite structure of degrees of freedom, the structure’s partial oscillation 

differential equation has the form [28] 

    0u t u t M K
 

(1)

Here, M—mass matrix of the structure and K—stiffness matrix of the structure. 

The two equations of oscillation of the masses have the form 

   sini i iu t A t  
 (2)

   2 sini i iu t A t    
 (3)

Substitute the equations and components into Equation (1): 
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(5)

Simplify to obtain the equation to determine the specific type of vibration: 

2 0j   K M 
 

(6)

The natural frequency (f = ω/2π) and natural vibration mode shape (φi) determined 

through Equation (5) or (6) are significant features of the structure and are often used to 

determine the accuracy of the FEM model. It is easy to see that, for a structure, the dynamic 

characteristic is unique and is influenced by K (stiffness matrix) and M (mass matrix). 

However, these two parameters are uncertain parameters due to material properties and 

boundary conditions. For structures using composite materials, the behavior of materials 

is simultaneously influenced by many factors. Therefore, finding an exact equivalent to 

the combination of the constituent materials often has to be determined through 

experimentation and difficulty. The number of variables in the stiffness and mass matrices 

is also numerous and complex. To provide an accurate model for other analysis purposes, 

it is necessary to have a method to calculate and select the best parameters of the model. 

The essence of the problem of parameter accuracy uncertainty is choosing a set of 

numbers as the best solution to the mathematical or simulation problem to be solved. For 

a variable parameter, the search is fast and can be done manually. However, when the 

number of solutions is large, this seems impossible because of the significant computation. 

Although computers can support the calculation, it is time consuming and resource 

consuming. 

The particle swarm optimization (PSO) algorithm was established and developed 

based on the ideas of swarm intelligence to find solutions for optimization problems in a 

particular search space [29,30]. To understand the PSO algorithm be�er, observe a simple 

example of a flock of birds foraging. The foraging space is now the entire three-

dimensional space. At the beginning of the search, the whole flock flies in a specific 

direction, which can be very random. However, after a while of searching, some 

individuals in the flock began to find a place that contains food. Depending on the amount 

of food found, the individual sends a signal to others searching in the vicinity. This signal 

propagates throughout the population. Based on the information received, each 

individual will adjust their flight direction and speed in the order of where there is the 

most food. Such communication is often viewed as a phenotype of herd intelligence. This 

mechanism helps the whole flock of birds to find out where there is the most food in the 

vast search space. Figure 1 clearly illustrates the PSO algorithm when used to search for 

extreme value. 
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(a) (b) (c) 

Figure 1. Illustration of the PSO algorithm: (a) particles in a swarm; (b) particles looking for “food”; 

and (c) food locations found and reported to gather particles. 

In swarm optimization, each particle searches a space by itself, remembering the best 

value and informing others. Other instances will receive the information and decide to 

continue the search or report its location so that some other cases continue to act. So that 

values in search space will be found quickly and accurately, two important parameters 

are the location of an instance and the search velocity. These two parameters are expressed 

through the formulas for updating the position and updating the velocity of the instance 

[30]: 

( 1) ( ) ( 1)i i ix t x t v t     
(7)

1 1 2 2 bes( 1) w ( ( ) ( )) ( ( ))i i i i i
tv t v C r p t x t C r G x t       

(8)

where xi—the position of instance i at different times; vi—the speed of individual i; w—

the parameter of inertial weight; r1 and r2 are random values from 0 to 1; each individual 

has the best position at pi(t); C1 and C2 represent the population’s cognitive coefficient; and 

Gbest—the best location of the entire population. Each individual is characterized by its 

velocity vector and position in space. 

The goal of structural model updates in FEM is to find values for uncertain variables. 

These values help the model have a behavior almost equivalent to the real object, which 

means the difference between numeric model results and experimental measurements is 

drastically reduced. To evaluate the similarity between the FE model and practical 

structure, an objective function is built based on the natural frequency and the mode shape 

of the structure [31]: 
2 2 2

2 2
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(10)

where n—number of modes shape considered; MAC [32]—modal assurance criterion; φk, 

� ̃� �̃� are mode shapes from the FEM and experiment; �� ; �̃� ��, �̃� are frequencies from 

the FEM and experiment; and T represents the transposed matrix. The PSO algorithm 

determines the objective function’s minimum (convergence), and the implementation 

diagram is shown in Figure 2 below. 
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Figure 2. Methodological approach for FE model updating using PSO. 

3. Case Study 

3.1. Introduction to the Composite Plate Structure 

The plate structure is a full-size laboratory model of the cantilever section of Thang 

Long Bridge—the bridge connecting the two banks of the Red River in Hanoi, Vietnam. 

The structure consists of 3 main parts: the upper plate structure, the I steel beam structure, 

and the steel box girder placed on the steel blocks. A cantilever structure is generated by 

a�aching and fixing one plate’s end to the wall. Some views and structural details of the 

plate composite are shown in Figures 3 and 4. 

  

(a) (b) 

Figure 3. Structural plate in the laboratory: (a) test setup; (b) structural details. 
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Figure 4. Design of plate structure. 

The slab comprises 0.065 m thick UHPC concrete and 0.014 m thick steel plate. The 

two materials work together through welded studs on the steel plate’s surface. An I-

section beam and a box-section girder are used to support the slab, and both of these parts 

have a height of 0.8 m. Transverse stiffeners reinforce the entire plate structure. The overall 

dimensions of the slab structure are 3.3 × 7.250 × 0.865 (m). 

3.2. Experimental Measurement of Plate Vibration 

3.2.1. Vibration Measurement 

On the surface of the plate structure, eight sensor accelerometers (PCB-393B12) with 

high sensitivity were used to respond to signal acquisition. The sensitivities and labels of 

the sensors are detailed in Table 1. The natural vibrational properties of the slab are 

measured through excitations with a random force using a hydraulic jack placed above 

the structure. Since the number of sensors is limited while the DOFs to be determined are 

more numerous, it is necessary to divide the measuring points accordingly as reference 

points and roving points. The vibration measurement grid is divided into 12 measurement 

combinations, each consisting of a maximum of 8 sensors. Sensors at positions 3, 6, and 35 

are used as reference points, and other points are moved in turn at other points in the 

measuring grid to obtain data from many different locations on the plate. 

Table 1. Detailed parameters of sensors. 

No. Label Sensitivity (V/g) 

1 31 1.077 

2 34 1.051 

3 37 1.069 

4 38 1.059 

5 39 1.073 

6 40 1.039 

7 41 1.051 

8 42 1.063 

2
5
0

stiffeners

t o p v iew

7250
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With each measurement se�ing, the data recording time is approximately 20 min 

(about 900–1200 s). The sampling frequency here, according to sensor details, is 1651 Hz. 

Figure 5 shows the grid of measuring points on the plate surface. The measurement points 

from this measurement grid are also the points to extract data and update the model for 

the digital model. Data from points one to seven are collected vertically and horizontally. 

Meanwhile, data at the remaining points are collected vertically. Figure 6 shows the 

equipment installed on the structure and the measurement process. 

 

Figure 5. The measurement grid: red—reference points 3, 6, and 35; black—roving points. 

  
(a) (b) 

Figure 6. The process of measurement and sensor placement in one setup: (a) Data collection 

process; (b) Sensor placement in one setup. 

3.2.2. Data Processing—Modal Analysis 

In this step, a Matlab-based tool called MACEC was developed [33,34] to analyze the 

measurement data. The method for processing data is as follows (Figure 7): 
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Figure 7. Process of system identification. 

First, the data needs to be preprocessed. A measuring grid is created on the MACEC 

system. The measuring points are assigned and numbered, corresponding to the actual 

measuring points. Input parameters such as sensor label, sensitivity, data and measure 

are assigned to each measuring point. The measured signal data is often skewed and does 

not coincide with the balance axis; the remove-offset function removes these components 

from the measurement data. 

Based on input data and data obtained from preprocessing (noise removal, data 

classification into corresponding nodes), a model with complete data for measurement 

points is formed. System identification is accomplished using the covariance-based 

stochastic subspace identification (SSI-COV) technique [35,36]. Figure 8 demonstrates that 

this composite plate’s frequency range of most tremendous significance is between 0 and 

60 Hz. Specific criteria must be specified to obtain a clear stabilizing diagram using the 

state-space modeling for orders 2 to 120 in that measurement (Figure 9). Based on 

knowledge from numerous similar constructs, the following criteria were selected to 

concretize and characterize the modality: frequency stabilization (1%), damping ratio 

stabilization (5%), and mode shape stabilization (1%). 

 

Figure 8. The signal’s spectrum from the frequency domain. 
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Figure 9. Stabilization diagram obtained by using SSI-COV. 

Theoretically, a structure would have infinitely many vibrational shape modes. 

However, most of them would not contribute to the structural response evaluation. 

Dynamic parameters (natural frequency, damping ratio, and mode shape) are identified 

based on the stable poles. Usually, only the first few mode shapes of vibration are 

considered for the structure’s dynamic behavior. Just relying on the main, low-frequency 

vibration pa�erns is enough to solve the problem of finite element model updating. 

According to the structure’s collected response, in the stabilization diagram, the five 

vertical poles signify the five mode shapes of the plate structure. They consist of three 

torsion modes and two vertical bending modes. 

The standard deviation of the natural frequency is calculated to assess the defined 

modes’ effectiveness. Because the values of std.f are low, each se�ing’s system recognition 

quality is high. Modal phase alignment (MPC) measures the mode shape’s departure from 

actual values, MPC = 1 corresponds to the pure real mode. Every MPC value is higher 

than 0.998. A structure with light and/or proportional damping physics modes is likely to 

be realistic, so the elevated MPC result typically indicates a mode that has been precisely 

defined. Figure 10 shows a plot of the experiment’s mode shapes: 

   

(a) (b) (c) 

  

(d) (e) 

Figure 10. Five first mode shapes from the measurement: (a) Mode shape 1: f1 = 7.47 Hz, 1st torsion; 

(b) Mode shape 2: f2 = 8.62 Hz, 1st vertical bending; (c) Mode shape 3: f3 = 24.99 Hz, 2nd torsion; (d) 

Mode shape 4: f4 = 36.16 Hz, 2nd vertical bending; and (e) Mode shape 5: f5 = 48.81 Hz, 3rd torsion. 
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Results from setups are the average values shown in Table 2: 

Table 2. Measurement results of the plate structure. 

Mode f (Hz) std.f 

1 7.47 0.020 

2 8.62 0.024 

3 24.99 0.082 

4 36.16 0.112 

5 48.81 0.080 

3.3. Initial Finite Element Model 

An FE model is built with the Stabil toolbox [37]. This model will be produced before 

making experimental measurements to analyze the dynamic behavior of the actual 

structure so that the sensor grid can be arranged. The FE model uses 4-node shell elements 

(shell4) and beam elements (for box beam and I-beams) simultaneously (Figure 11). 

 

 

(a) (b) 

Figure 11. Type of element in FE model: (a) shell4; (b) seam. 

To be easy to control and update later, the element nodes are located at the sensor 

positions compared to the experiment. Details of the FE model are detailed in the 

following list: 

 There are 70 nodes and 69 elements that model the plate structure. In that, there are 

54 shell4 elements and 15 beam elements. The cross-section of the components 

includes 5 types. 

 Primary structure: The plate under consideration is made of 0.014 m thick steel plate, 

strengthened by transverse stiffeners. The design documents are the basis for the FE 

model‘s material properties: the Young’s modulus of UHPC slab: Ec = 35 GPa, 

Young’s modulus of steel: Es = 210 GPa, concrete density ρc = 2500 kg/m3, steel 

density ρs = 7850 kg/m3, other nonstructural taken into account as the added volume. 

 Box beam and I-beam are the beam elements in the model, using the same material 

as the steel plate. I-beams are discontinuous: two sections of the beam with variable 

cross-section are built cross-section based on first-order function. 

 Boundary conditions: A rigid link between the plate head and the wall is built into 

the model by locking all DOFs of the plate structure head. In addition, according to 

reality, the nodes below the box girder (nodes 12, 22, 42, and 52 in the model) are 

considered by “bearing” with initial kb = 1 × 1010 N/m stiffness. 

The FE model is shown in Figure 12. 
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Figure 12. Finite element model of composite plate. 

Utilizing the Block-Lanczos method, the FE model’s dynamic analysis is carried out. 

Table 3 and Figure 13 present the first five mode shapes and frequencies. 

Table 3. The results of the FE model’s dynamic analysis. 

Mode f-Simulation (Hz) f-Measurement (Hz) Error (%) MAC Type 

1 7.102 7.47 4.92 0.87 1st torsion 

2 9.282 8.62 7.67 0.85 1st vertical bending 

3 23.472 24.99 6.07 0.86 2nd torsion 

4 38.227 36.16 5.71 0.63 bending 

5 46.105 48.81 5.54 0.66 3rd torsion 

Error = |fsimulation − fmeasurement| × 100/fmeasurement. 

  
 

(a) (b) (c) 

  

(d) (e) 

Figure 13. First five mode shapes from the simulation: (a) Mode shape 1: f1 = 7.102 Hz, 1st torsion; 

(b) Mode shape 2: f2 = 9.282 Hz, 1st vertical bending; (c) Mode shape 3: f3 = 23.472 Hz, 2nd torsion; 

(d) Mode shape 4: f4 = 38.227 Hz, 2nd vertical bending; and (e) Mode shape 5: f5 = 46.105 Hz, 3rd 

torsion. 

The MAC values are determined through Formula (10) between the FE model results 

and the actual measurements. The first 3 MAC values greater than 0.85 show good 
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agreement between each pair of mode shapes. However, the next 2 MAC values do not 

reach this minimum value. The correlation between the calculated and measured mode 

shape vectors are not guaranteed. The frequency values are also significantly different. 

This is a common situation for initial FE models, most of which cannot extract modes with 

high accuracy. Meanwhile, depending on the calculation requirements of the structure, 

some structures need high accuracy for structure health monitoring, to diagnose damage, 

and to make major predictions. Accuracy is important for maintenance or for accurate 

calculations to achieve the highest efficiency in military constructions and structures. 

There are many uncertain parameters such as material properties, stiffness parameters, 

etc. For this reason, it is recommended to perform a model update procedure to reduce 

errors. 

3.4. Update Model Parameters through the PSO Algorithm 

In some actual large structures, it is pre�y challenging to determine the dimensions 

and geometrical features of the structure so that the geometric features will be considered 

an uncertain parameter. However, in this case, the parameters of the geometrical 

dimensions can be completely accurate based on detailed measurements or design 

documents, so this can be considered a specific parameter to reduce the amount of 

computation. 

Usually, the material parameters should be determined through direct tests 

(destructive tests). Thereby, the exact parameters will be selected. However, this is 

relatively expensive. For existing structures, sampling interference will affect the 

structure. In the case of the plate under consideration, UHPC was applied for the first time 

at a construction site in Vietnam. Therefore, the parameters of UHPC are entirely 

unknown. In addition, uncertain parameters related to steel materials and bearing 

stiffness are only empirical estimates. Moreover, the fact that the two materials, UHPC 

and steel, are combined by working together through the rivet system also influences the 

structural stiffness calculation results, and this part will be adjusted and updated through 

the parameters of UHPC and steel. 

The model’s uncertain parameters are described in detail in Table 4. 

Table 4. Uncertainty parameters of model 

No. Uncertainty Parameters Initial Value Upper Bound Lower Bound 

1 

Young’s modulus 

- UHPC: Ec (GPa) 

- Steel Es (GPa) 

 

33.91 

200 

 

33.91 

210 

 

29.91 

190 

2 

Weight density 

- UHPC: ρc (kg/m3) 

- Steel ρs (kg/m3) 

 

2500 

7850 

 

2800 

8000 

 

2400 

7800 

3 
Stiffness of bearing 

- kb (N/m) 

 

1 × 1010 

 

4 × 1010 

 

4 × 107 

After obtaining the unnecessary parameters, update the model with the objective 

function. The update process is performed and processed on a computer with Intel(R) 

Core(TM) spec i5-10400F CPU @ 2.90 GHz 2.90 GHz, 8 GB RAM. In the PSO algorithm, 

the population is generated with 50 individuals. For the purpose of convergence, assign 

the value 0.3 to the inertial weight parameter (w), where social and cognitive learning 

coefficients are C1 = 2 and C2 = 2, respectively [38]. The fitness must not change by more 

than 10−7 from one iteration to the next, or the number of iterations must not exceed 100, 

both of which were set as ending criteria for the PSO loops. The convergence curve when 

using PSO is shown in Figure 14. 
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Figure 14. Fitness function convergence curve using PSO. 

The updated uncertainty parameters and FE model after using the PSO are presented 

in Tables 5 and 6. 

Table 5. Updated parameters 

No. Uncertain Parameters Initial Value Updated Value 

1 

Young’s modulus 

- Concrete Ec (GPa) 

- Steel Es (GPa) 

 

33.91 

200 

 

32.37 

209.98 

2 

Weight density 

- Concrete ρc (kg/m3) 

- Steel ρs (kg/m3) 

 

2500 

7850 

 

2776.8 

7958.5 

3 
Stiffness of bearing 

- kb (N/m) 

 

1 × 1010 

 

1.378 × 108 

Table 6. Analysis results of the plate after updated 

Mode 
f-Simulation 

(Hz) 

f-Measurement 

(Hz) 
Error (%) MAC Type 

1 7.45 7.47 0.27 0.96 1st torsion 

2 8.61 8.62 0.12 0.92 1st vertical bending 

3 24.91 24.99 0.32 0.95 2nd torsion 

4 36.43 36.16 0.74 0.94 Bending 

5 48.13 48.81 1.39 0.91 3rd torsion 

Error = |fsimulation − fmeasurement| × 100/fmeasurement. 

The FE model’s MAC values before and after updating are displayed in Figure 15. 

After being updated, the accuracy of the model has increased a lot. These MAC values 

show good agreement between the FE and the actual models. 
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(a) 

 

(b) 

Figure 15. MAC values of mode shapes: (a) before model updating; (b) after model updating. 

The first model was established based on the characteristics that are easy to 

investigate, and the analytical experience had a relatively high error rate compared to the 

experimental measurements. After updating the model, the natural frequency of errors 
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between calculation and measurement is significantly reduced, and the model has high 

accuracy and reliability (Figure 16). 

 

Figure 16. Comparison of error frequency difference before and after model update using PSO. 

The calculation results show that, after about 30 iterations performed by PSO, the 

model parameters converge and give good results, minimizing the process of testing 

parameters in the modeling. 

More than just updating the model with material specifications, other uncertain 

parameters can be changed if the exact parameters are unknown. This work can be of great 

significance for structural safety assessments. For example, when there is an updated 

model of a structure, when the structure fails, zoning and damage assessment will be 

calculated by selecting the uncertainty parameters for the structure within the damaged 

area. The calculation results can evaluate the deterioration of structural function and 

propose reasonable repair and upgrade measures. 

The updated model becomes a temporary digital twin of the structure at a specified 

time. Based on this model, other techniques will be further researched and developed to 

create an interactive data stream between the real and virtual models to create a complete 

digital twin. 

4. Conclusions 

This paper describes a technique for updating the finite element model for composite 

plate structure using a particle swarm optimization algorithm. After the model is updated, 

the numerical results and experimental results exhibit a high degree of correspondence. 

The key findings are summed up as follows: 

 PSO demonstrates how it can be used to solve engineering-related issues. It can 

improve the accuracy of the FE analysis while reducing the calculation process with 

results that are close to the actual test of the structure. Furthermore, the initial FE 

model can be updated by selecting and adjusting the uncertain parameters of the 

structure. On the other hand, this procedure is combined with experimental results; 

consequently, the FE model is relatively accurate compared with reality(the most 

significant deviation between simulation and experimental measurements was 

noticeably reduced from 7.67% to 0.12%). 

 Regarding the digital twinning creation, a temporary twin should first be created as 

soon as possible at the early stage of the operational stage. This work can be done by 
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updating the uncertainty parameters of the FE model. Using PSO aids to speed up 

calculations while maintaining high model correctness. For structures using 

composites, updating material parameters is essential because the performance of 

single materials may not be fully utilized in the structure. 

 Updating the model can be applied to the structural damage assessment problem, 

localizing some damage when the structure has issues by taking the damaged area’s 

parameters into variables for calculation. Finding these parameters will lead to 

accurate predictions about the deterioration of the structure, thereby suggesting 

measures to strengthen and repair or take measures to continue to serve the structure 

accordingly. 

 Although good results are obtained, experiments to determine the input (target) 

parameters of the structure need to be carefully defined. With large structures, field 

experiments will be a challenge. Uncertainty depends on the experience and opinion 

of the authors.  

 Regarding future work of this study, combining different optimization algorithms 

will be considered to improve the efficiency of model updating. On the other hand, 

new techniques will be developed to generate the data flow of the FE model, updated 

against the actual model’s real-time data to deal with unexpected events. 
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