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Abstract. This paper describes an implementation of the Cross-Industry
Standard Process for Data Mining (CRISP-DM) methodology for a demon-
strative case of human queue waiting time prediction. We collaborated
with a multiple domain (e.g., bank, pharmacies) ticket management ser-
vice software development company, aiming to study a Machine Learning
(ML) approach to estimate queue waiting time. A large multiple domain
database was analyzed, which included millions of records related with
two time periods (one year, for the modeling experiments; and two year,
for a deployment simulation). The data was first preprocessed (includ-
ing data cleaning and feature engineering tasks) and then modeled by
exploring five state-of-the-art ML regression algorithms and four input
attribute selections (including newly engineered features). Furthermore,
the ML approaches were compared with the estimation method currently
adopted by the analyzed company. The computational experiments as-
sumed two main validation procedures, a standard cross-validation and
a Rolling Window scheme. Overall, competitive and quality results were
obtained by an Automated ML (AutoML) algorithm fed with newly en-
gineered features. Indeed, the proposed AutoML model produces a small
error (from 5 to 7 minutes), while requiring a reasonable computational
effort. Finally, an eXplainable Artificial Intelligence (XAI) approach was
applied to a trained AutoML model, demonstrating the extraction of
useful explanatory knowledge for this domain.

Keywords: CRISP-DM · Automated Machine Learning · Regression.

1 Introduction

Nowadays, human queues are still required in several service sectors (e.g., health,
banks). Waiting in these queues is often stressful and exhausting, leading to
unsatisfied and frustrated citizens. Therefore, providing a beforehand accurate
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estimation of citizens waiting time in queues would reduce such frustration, since
it allows them to optimize their schedule, avoiding spending an excessive time
waiting. Furthermore, this estimation enhances a better resource management
by the responsible entities, allowing to avoid excessively long queues. However,
an imprecise estimation could produce the opposite effect. If the queue waiting
time is overestimated, citizens could loose their turn in the queue, while an
underestimation would still force them to wait in the physical queue.

This paper addresses a multiple domain queue waiting time estimation task
by adopting a Machine Learning (ML) approach. This research work was de-
veloped in collaboration with a Portuguese software development company that
operates in the ticket management sector and has several customer companies
from multiple domains (e.g., banking). Over the past years, the company col-
lected and stored a large amount of data that holds valuable knowledge related
with human queues. Hence, there is a potential in using Data Mining (DM)
and ML [21] to extract valuable predictive knowledge that improves the queue
waiting time estimation task. Currently, the analyzed company addresses this
estimation by using a rather rigid formula that was based on their business ex-
pertise. In this work, adopted the popular Cross-Industry Standard Process for
Data Mining (CRISP-DM) methodology [20], which provides a framework for
developing successful DM projects. In effect, CRISP-DM has been widely used
on multiple DM research studies (e.g., [4,16]).

The CRISP-DM methodology is composed by a total of six phases, namely
business understanding, data understanding, data preparation, modeling, eval-
uation and deployment. In this paper, we describe the adopted CRISP-DM ex-
ecution regarding all these phases. The company business goal is to accurately
predict the queue waiting time of a specific ticket, which we addressed as a ML
supervised regression task. The sample of data used in this study was collected
from the company database server and it is corresponds to millions of tickets
withdrawn from 58 stores related with five distinct domains (i.e., banking, in-
surance companies, pharmacies, public and private services). An initial one-year
dataset (from January to December of 2022) was first analyzed and preprocessed,
which included data cleaning (e.g., outlier removal), feature engineering and
data scaling processes. Then, concerning the modeling stage, five state-of-the-
art ML algorithms were adapted and compared: Decision Trees (DT), Random
Forest (RF), Gradient Boosted Trees (GBT), deep Artificial Neural Networks
(ANN) and an Automated Machine Learning (AutoML). Furthermore, in this
phase we defined four input set scenarios (A, B, C and D), which include dis-
tinct input feature selections and new engineered attributes that feed the ML
models. The ML algorithms and input set scenarios were evaluated under two
modes of a robust cross-validation procedure, using both predictive performance
and computational effort measures. The performance was evaluated in terms of
four popular regression metrics: Mean Absolute Error (MAE), Normalized MAE
(NMAE), Root Mean Squared Error (RMSE) and the Area under the Regres-
sion Error Characteristic (AREC) curve [4,6]. As for the computational effort,
it was measured in terms of training and prediction times. After analyzing the
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cross-validation results, we selected the best ML model (AutoML method and
scenario C, which includes newly engineered attributes). Then, an additional
Rolling Window (RW) robust validation procedure [19] was executed, using a
larger two-year time period dataset, collected from January 2021 and December
2022. The goal was to realistically simulate the ML model deployment phase
performance, further comparing it with the company currently adopted queue
time estimation method. Finally, we applied the SHapley Additive exPlanations
(SHAP) method [13] to a trained RW model, aiming to demonstrate the extrac-
tion of eXplainable Artificial Intelligence (XAI) knowledge.

This paper is organized as follows. The related work is presented in Sec-
tion 2. Next, Section 3 details the adopted DM approach in terms of the CRISP-
DM methodology phases. Finally, Section 4 discusses the main conclusions and
presents future steps.

2 Related Work

Accurately estimating beforehand human waiting time in a queue is crucial tool
for ticket management systems, providing benefits for both citizens and organi-
zations. Waiting time estimation is a challenging task, since it can be affected
by a wide range of phenomena (e.g., sudden increase of customers, employee at-
tendance slowness) that often are not directly measured by ticket management
systems. Recently, several research studies have addressed this task, assuming
traditional approaches, such as: Average Predictions (AP) [18]; Queuing The-
ory [17]; and DM/ML approaches [7]. In this work, we detail the ML based
approaches, since they are more related with our CRISP-DM approach.

In 2018, a study was carried out in Portugal regarding the use ML algorithms
to predict waiting times in queues, assuming a categorical format, thus a multi-
class classification task (e.g., “very high”, “low”) [7]. To validate the results, the
authors used a dataset from an emergency department of a Portuguese hospital,
containing 4 years of data and around 673.000 records. Only one ML algorithm
was used (RF). Interesting results were obtained for the most frequent time
interval categories (e.g., “low”), although poor quality results were achieved for
the infrequent classes.

In 2019, Sanit-in et al. [18] compared 3 different approaches to estimate
queue waiting times: Queuing Theory [17], AP and ML. However, similarly to [7],
instead of estimating the exact waiting time, the authors grouped the values into
multi-class intervals (e.g., “very short”, “short”, “medium”, “long” and “very
long”). In order to validate their results, two datasets related to the queuing
sector in Thailand were used. The first (1,348 records) was related with a medical
care service, while the second (3,480 rows) was related to a post office store. In
terms of used input features, the authors selected (among others): the queue
identification number; the day of the week, hour and corresponding period of
the day when the ticket was withdrawn; and the number of tickets taken and
served per minute. For both datasets, the ML best results were achieve by the
RF algorithm, with an overall accuracy of 86% and 82%, respectively.



4 C. Loureiro et al.

In a different context, in 2019, Kyritsis et al. [11] performed a study that
aimed to present the benefits of using ML for predicting queue waiting times in
banks, assuming a regression approach. The ML algorithm used was an ANN
and it was tested using a four week dataset with around 52,000 records related
to 3 banks in Nigeria. The ANN outperformed both AP and Queuing Theory
estimation systems.

More recently, in 2020, Kuo et al. [10] studied a real-time prediction of queue
waiting time in an hospital emergency department in Hong Kong. In terms of
ML, 4 regression algorithms were compared: Linear Regression (LR), used as
baseline; ANN; Support Vector Machines (SVM) and Gradient Boost Machines
(GBM). The used dataset had nearly 13,000 records and two combinations of
attributes were used: using attributes including patient triage category (non-
urgent, semi-urgent and urgent), arrival time and number of doctors in the
emergency room; and using the same attributes but complemented with infor-
mation about the patients in the queue. Additionally, the authors applied outlier
detection and removal techniques and feature selection, using a LR feature im-
portance measure. In terms of results, the GBM achieved the better predictive
metrics for both attribute combinations.

Finally, in 2023, Benevento et al. [3] analyzed the use of ML to predict, in real
time, the waiting time in emergency department queues, aiming to improve the
department resource management. The datasets used refer to two hospitals in
Italy and each contained approximately 500,000 records. The ML regression al-
gorithms used were: Lasso, RF, SVM, ANN and an Ensemble Method (EM). The
attributes used include information regarding the patient age, mode of arrival
at the emergency room, wristband color after triage, an average estimation of
patient arrivals by wristband color, the number of patients in the queue, grouped
by wristband color, among others. The results revealed that the ensemble (EM)
provided the best predictive performance, achieving a MAE of approximately 30
minutes.

When compared with our study, the related works are focused in different
and single queuing domains, mostly related with health institutions. In partic-
ular, emergency services were targeted in [7,18,10,3], while bank queues were
considered in [11] and a post office store data was modeled in [18]. In contrast,
our research targets a single global ML model for several stores from multiple
domains (e.g., banks, pharmacies). This is a more complex task, since it can only
use more general queuing attributes that are common to all analyzed domains.
Thus, it is not feasible to employ very specific features, such as the wristband
color from the emergency services. Aiming to improve the waiting time estima-
tion performance, in this work we use both the company ticket management
attributes and newly proposed engineered attributes, computed using the com-
pany queuing data. Additionally, in our study we explore much larger dataset,
with more than 2 million records, when compared with the ones used by the
related works (e.g., 673,000 in [7] and 500,000 in [3]). Furthermore, similarly to
[11,10,3], we addressed the queue waiting time predictions as a pure regression
task, instead of a classification of time intervals, which is less informative and
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that was performed in [7,18]. Moreover, we explore a recently proposed AutoML
tool, which automatically selects the best predictive model among seven dis-
tinct ML algorithms. None of the related ML works have employed an AutoML.
Finally, we employ two robust validation schemes to measure the predictive per-
formance of the ML models, a standard cross-validation (under two modes) and
a RW, comparing the ML results with the method currently adopted by the
analyzed company. In particular, we note that the RW performs a realistic simu-
lation of usage of the predictive models in a real environment, since it simulates
several training and test iterations over time [19].

3 CRISP-DM Methodology

This section details the developed work in each of the CRISP-DM methodology
phases for the multiple domain queue waiting time prediction task.

3.1 Business Understanding

Currently, the company under study uses their own solution to estimate multiple
domain queue waiting time, which is quite complex and involves multiple steps.
First, they remove outliers from the data and compute the average service time
for each costumer, store and counter for the next day, using only data from
homologous days. This step is performed daily, during the night, in order to
avoid a computational system overload. Next, when there is a ticket withdrawing
request, their solution queries the database to get the number of counters open
to a specific service, the open counters status (e.g., servicing, paused) and the
number of citizens in the queue and being serviced. Then, they simulate the
allocation of all citizens to counters, order by their priority, resulting in multiple
queues (one by counter). Lastly, it sums the average service times relative to the
ticket being printed queue, returning it as their waiting time estimation.

The goal of this project was set in terms of predicting the queue waiting
time by using supervised ML regression algorithms. Moreover, we considered the
improvement of the current estimation method (termed here as “Company”) as a
success criteria, measured in terms of the Mean Absolute Error (MAE) computed
over a test set. This criteria was was validated by the company. Additionally, the
ML model inference time (when producing a prediction) must be equal or less
than 10 milliseconds, in order to ensure an acceptable ticket withdrawing time.
Concerning the software, we adopted the Python programming language. In
particular, due to the vast volume of data, we adopted the Spark computational
environment for data preprocessing operations and MLlib, which is the Spark ML
library, for the modeling phase, as well as H2O (for AutoML) and TensorFlow
(for the deep ANN).

3.2 Data Understanding and Preparation

Two datasets were collected from the company database server using a Struc-
tured Query Language (SQL). At an initial CRISP-DM execution stage, the com-
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pany provided us a sample that included 1,238,748 records and 52 attributes. The
raw data was related with tickets withdrawn from a set of 58 stores, associated
with five different ticket management sectors (banking, insurance companies,
pharmacies, public and private services), from January 2022 to December 2022.
We used this one-year dataset when executing the first five CRISP-DM stages,
which includes the cross-validation ML comparison experiments that were held
during the CRISP-DM modeling stage. Then, in a later research stage, we had
access to a larger two-year company sample, with a total of 2,087,771 records
from January 2021 to December 2022 and related with the same 58 stores. This
second dataset was used only for the CRISP-DM deployment simulation exper-
iments.

Using the one-year raw data, we first executed the CRISP-DM data under-
standing and preparation stages. The latter stage was performed in collaboration
with the business experts. The preprocessing aimed to enhance the quality of
the data used to feed the ML models and it included several operations: data
cleaning, outlier removal, creation of new data attributes (feature engineering)
and data transformations.

First, we discarded all null valued attributes (e.g., with no citizen informa-
tion). We also ignored data variables that could only be computed after the
ticket being printed (e.g., service duration, counter and user that served the
citizen), thus unfeasible to be used in a real-time prediction. The remaining 23
data attributes are presented in Table 1 and were considered for the CRISP-
DM modeling phase, under distinct input set combinations, as shown in Column
Scenarios and detailed in Section 3.3.

In terms of outlier removal, several records presented queue waited times
above 20 hours, which reflects errors in the costumers data gathering process.
Together with the company experts, a maximum threshold value of 8 hours was
set for the waited time, allowing to remove all records that did not fulfill this
time limit. Additionally, the priority attribute (isPriority from Table 1), which is
computed when the counter user calls the citizen, revealed several inconsistencies
and led to the removal of several records. Then, we detected around 57% of null
values in the company estimation of queue waited time (CompanyEstimation
attribute). Since these null values do not affect the ML models, we decided to
maintain them and adopt two evaluation modes. In the first mode (”All”), we
compute the regression metrics using all the test records. In the second (”Sam-
pled”), we compute the same performance metrics using only the records that
have the company estimation, in order to ensure a fair comparison with the com-
pany solution (see Section 3.4). Finally, 1.5% of waited time values were null and
we have calculated them by subtracting the printing hour to the calling hour
attribute.

Aiming to further improve the ML results, the next step of the data prepa-
ration stage included the creation of 9 new attributes, as presented in Table 2.
The first 8 new attributes concern with the average and standard deviation val-
ues of waiting times and service duration, in seconds, for both the previous and
current days, for a given store, service and priority. Finally, the 9th attribute is
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Table 1: List of analyzed data attributes.
Context Name Description Scenarios

Location

storeId Identifier of the store where the ticket was withdrawn.

A,B,C,D

entityId Identifier of the store entity.
peopleInFront Number of people in front for a given store and service.
serviceId Identifier of the service.
storeProfileStoreId Identifier of the in-store profile set up.
entityQueueId Identifier of the entity queue.

partnerId Identifier of the partner. A, C

Printing device
inputChannelId Identifier of where the ticket request was made.

A,B,C,D
outputChannelId Identifier of the channel where the ticket will be printed.

deviceId Identifier of the device where the ticket was withdrawn. A, C

Ticket info

printingHour Time of ticket request.
A,B,C,DisPriority If the ticker has priority.

isFastLane If the ticket has a fast lane priority.

isForward If the ticket is forwarded from other service/store.

A, C

ticketLanguageId Ticket language identifier.
ticketOutputId Ticket format identifier.
ticketTypeId Ticket type identifier.
ticketNumber Ticket number.
originalServiceId If forward, the initial service ID.
originalStoreId If forward, the initial store ID.
subId Number of times that a ticket was forward.

Target
CompanyEstimation Company waiting time estimation (in seconds). –
waitedTime Queue waiting time (in seconds). –

the waiting time of the last similar ticket withdrawn, with this similarity being
defined as the same store, service and priority.

Table 2: List of newly computed attributes.

Name Description

AvgPrev waitedTime Average waiting time for previous day.
AvgCurr waitedTime Average waiting time for current day.
AvgPrev duration Average service duration for previous day.
AvgCurr duration Average service duration for current day.
StdPrev waitedTime Standard deviation of waiting times for previous day.
StdDevCurr waitedTime Standard deviation of waiting times for current day.
StdPrev duration Standard deviation of service duration for previous day.
StdDevCurr duration Standard deviation of service duration for current day.
LastSimilarWaitedTime Waited time of the last similar ticket.

All input data attributes are numeric and have different scales (e.g., week
day ranges from 0 to 6; store ID ranges from 8 to 537), which often results in
different ML algorithms impacts due only to scale differences [15]. Therefore, in
the last data preparation step, we performed the scale normalization to all input
attributes by applying a standard scaling (also known as z-scores) [8], which
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transforms each attribute to have a mean of zero and standard deviation equal
to 1.

3.3 Modeling

The first task of CRISP-DM modeling stage concerns with the selection of mod-
eling techniques. After analyzing the related studies, in terms of ML algorithm,
the most popular choice were RF [7,18,3] and ANN [11,10,3] and therefore we
tested them. Furthermore, we tested two other tree-based algorithms, Decision
Trees (DT) and Gradient-Boosted Trees (GBT), and an Automated ML (Au-
toML) algorithm, as provide by the H2O tool [12].

All ML algorithms were implemented by using the Python programming
language. In particular, we used the pyspark package for all tree-based methods,
with all the default hyperparameters. In terms of defaults: RF uses a total of
20 trees, each one with a maximum depth of 5, and one third as feature subset
strategy, i.e., each tree node considers one third of the total of features for split;
DT uses maximum depth of 5; and GBT uses a maximum of 20 iterations,
maximum depth of 5, all features for subset strategy and squared error as loss
function.

As for the ANN implementation, since pyspark does not have an ANN im-
plementation for regression tasks, we used the popular TensorFlow package [1].
The implemented ANN architecture, similarly to the ones used in [14,2], uses a
triangular shape deep Multilayer Perceptron (MLP). Assuming the input layer
size I, the H hidden layers with size L, and a single output neuron, each sub-
sequent layer size is smaller in a way that I > L1 > L2 > ... > LH > 1. After
some preliminary experiments, assuming only the first iteration of the 10-fold
cross-validation procedure (as detailed in the last paragraph of this section), we
defined the following ANN setup. The ANN model includes a total of H = 5
hidden layers, with the following layer structure: (I, 25, 20, 15, 10, 5, 1). In each
layer, the ReLu activation function was used. Furthermore, in order to avoid
overfitting, we added: a dropout applied on the 2nd and 4th hidden layers, with
a dropout ratio of 0.2 and 0.1, respectively, as in [14]; an inverse time decay to
Adam optimizer, with an initial learning rate of 0.0001, a decay rate of 1 and
a decay step of 30 epochs, similarly to [5]; and an early stopping monitoring of
the Mean Squared Error (MSE) on the validation data, with a patience of 20
epochs, similar to [14]. Lastly, we trained our ANN with a batch size of 1000,
for a maximum of 100 epochs, using the MSE as loss function.

Finally, concerning the AutoML algorithm, we selected the H2O tool based
on recent AutoML benchmarking studies [6,15]. In terms of implementation,
we used the h2o python package, assuming the default parameters in terms of
the searched ML algorithms, which were: Generalized Linear Model (GLM),
RF, Extremely Randomized Trees (XRT), Gradient Boosting Machine (GBM),
XGBoost, a Deep Learning Neural Network (DLNN) and two Stacked Ensembles.
Regarding the stopping metric, we selected MSE, which is also used to sort the
learderboard on the validation data. Additionally, we set a maximum runtime
limitation of 30 minutes for the model and hyperparameter selection process.
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During the CRISP-DM modeling phase, we also designed multiple input se-
lection scenarios, allowing us to test different hypotheses regarding the influence
of attributes on the queue waiting time prediction. In particular, we compared
4 attribute combination scenarios: A) use of all 21 input attributes presented in
Table 1 (from storeID to subId); B) use of domain knowledge selected attributes
(as advised in [21]), which corresponds to the 11 input variables listed in in Ta-
ble 1 and that were signaled as relevant by the domain experts; C) combination
of scenario A) with the 9 new engineered attributes shown in Table 2 (e.g., mean
and standard deviation values of waiting times), thus resulting in a set with 30
input features; and D) combination of scenario B) with the 9 created attributes,
leading to 20 numeric inputs.

In order to evaluate the performance of the distinct input scenario and ML
algorithm combinations, we executed the standard 10-fold cross-validation [8]
using the whole one-year data (from 2022). The 10-fold procedure randomly
divides the dataset into 10 equal sized data partitions. In the first iteration,
the data included in 9 of the folds is used to train a ML model, which is then
tested using the remaining data. This procedure is repeated up to 10 times,
with each 10-fold iteration assuming a distinct fold as the external (unseen) test
data. Regarding the two ML algorithms that require validation data (ANN and
AutoML), the training data is further randomly split into fit (with 90%) and
validation (with the remaining 10%) sets.

3.4 Evaluation

During this step, we performed the evaluation of all ML algorithms and input
selection scenarios using two different modes. The first mode, termed here as
“All”, computes the performance metrics for each of the 10-fold test set partitions
by using the entire test data. The second “Sampled” mode filters first the records
with null values for the company queue waiting time estimation from the 10-
fold test sets, keeping only the test examples for which there is a company
method estimation value. Thus, the “Sampled” mode ensures a fair performance
comparison between the ML algorithms and the estimation system currently
used by the company.

In this work, ML algorithms are evaluated in terms of two relevant problem
domain dimensions: the computational cost and predictive performance. For the
former, we compute both the algorithm training time, in seconds, and the predic-
tion time (i.e., the time to perform a single estimation), measured in microsec-
onds. Regarding the latter, we selected four popular regression metrics[4,6]: Mean
Absolute Error (MAE), Normalized NMAE (NMAE), Root Mean Squared Error
(RMSE) and Area under the Regression Error Characteristic curve (AREC). Al-
though multiple metrics are presented, the company agreed that a major focus
should be given to the MAE measure and to the prediction time.

Table 3 presents the median 10-fold cross-validation predictive and computa-
tional measures obtained for all ML algorithms and input set scenarios, assuming
the “All” evaluation mode. The predictive performance statistical significance
is measured by adopting the nonparametric Wilcoxon test [9] over the 10-fold
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results. Regarding the predictive metrics, the results clearly show that the H2O
is the best ML algorithm, regardless of the scenario, returning MAE values that
are inferior to 11 minutes for all scenarios. In particular, the best MAE value
(6.48 minutes) was achieved for H2O and scenario C. The second best ML per-
formance is provided by GBT, with a median MAE of nearly 1 minute more,
and then ANN, DT and RF, respectively. On the other hand, in terms of train-
ing time, H2O has the highest values in all scenarios, requiring the allowed 30
minute execution time for the model and hyperparameter selection. Although it
is the slowest ML model it terms of training, H2O is the fastest one in terms of
the predictive time, regardless the scenario, with the maximum inference time of
7.69 microseconds for scenario D. This time is much lower than the company 10
millisecond limit for a real-time ticket management time estimation. Regarding
the computational cost of the remaining algorithms, DT is the fastest during
the training process, followed by RF, GBT and ANN. In terms of time taken for
each prediction, H2O is the best option, followed by DT, RF, GBT and ANN,
which take almost 10 times more to perform predictions. As for the scenarios, all
models achieve a better predictive performance when using the new 9 attributes
calculated during the data preparation phase (scenarios C and D). In particular,
H2O, GBT and ANN achieve a better predictive performance on scenario C,
while DT and RF obtain their best predictive results on scenario D.

Table 4 displays a comparison of predictive metrics for all ML models across
each scenario, in terms of median 10-fold cross validation measures, for the “Sam-
pled” evaluation mode. Since the ML train and predictive time are the same as
in mode “All” and we do not have access to the estimation time of the company
solution, these values were not considered on this evaluation mode. In terms the
predictive performance, the obtained results are similar to the ones obtained for
the “All” mode. In effect, H2O also achieves the best predictive in all scenarios,
with the best MAE value of 5.20 minutes for scenario C. In terms of MAE, the
best performing ML algorithm is H2O, followed by GBT, DT, ANN and RF,
respectively. Concerning the scenarios, H2O, ANN and GBT achieve a better
predictive performance when using the features from scenario C, while the re-
maining ML models improved their performance when using the attributes from
scenario D. In this evaluation mode, all the predictive results improved, when
compared with the “All” mode, with the highest MAE value (10.52 minutes)
being obtained by RF when using the attributes from scenario B.

A summary of the best ML algorithm predictive results (H2O), obtained for
all scenario and evaluation modes, is presented in Table 5. In particular, we
highlight the scenario C results, for which H2O obtained MAE values below 7
minutes for the “All” and “Sampled” modes. In case of the latter mode, we com-
pare all explored scenarios with the company current estimation system. Clearly,
the best results are provided by H20 regardless of the input set scenario. In ef-
fect, for scenario C, the company system achieves a median MAE value of 9.86
minutes, while the H2O method only required 5.20 minutes. Thus, an impres-
sive 53% MAE improvement was obtained by the H2O algorithm. Following this
results, we selected for the next CRISP-DM stage the H2O algorithm and the
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Table 3: Comparative results for evaluation mode “All” (median cross-validation
values; best values in bold).

Scenario
ML MAE RMSE AREC Train Prediction
Model (min.) (min.) (%) Time (s) Time (µs)

A

DT 12.20 23.54 67.58 9.09 10.04
RF 12.07 23.29 67.47 12.46 11.23
GBT 10.94 21.82 70.50 30.32 10.18
H2O 10.22⋆ 20.48⋆ 72.24⋆ 1798.15 5.56
ANN 11.01 22.80 70.64 624.58 106.86

B

DT 12.02 23.75 68.08 6.61 9.23
RF 12.05 23.43 67.58 9.48 9.01
GBT 11.16 22.46 69.96 26.57 9.50
H2O 10.76⋆ 21.41⋆ 70.94⋆ 1796.78 6.33
ANN 11.26 23.38 70.01 570.77 89.00

C

DT 8.90 18.40 75.08 11.06 10.37
RF 9.12 17.67 73.91 14.67 10.53
GBT 7.71 16.87 78.34 33.53 11.47
H2O 6.48⋆ 14.20⋆ 81.06⋆ 1799.54 7.37
ANN 7.74 16.58 77.97 586.48 110.11

D

DT 8.86 18.41 75.44 8.41 9.22
RF 8.93 17.67 74.57 11.28 9.46
GBT 7.84 17.25 78.14 29.58 9.79
H2O 6.84⋆ 14.96⋆ 80.20⋆ 1798.87 7.69
ANN 8.56 17.84 76.31 645.73 90.81

⋆ – Statistically significant under a paired comparison with all other methods.

input set scenario C as the best predictive ML approach to be further compared
with the company based method.

3.5 Deployment

In terms of deployment, we did not implement the DM approach on the com-
pany environment yet. Nevertheless, we performed a realistic simulation of its
implementation potential performance by employing a RW validation scheme
[19]. During this stage execution, we had access to a larger sample of two-year
data, relative to the same 58 stores. The two-year dataset includes around 2
millions of records collected from January 2021 and December 2022. Using this
larger sample, we first executed the same data preprocessing that was previously
applied to the one-year data (described in Section 3.2), selecting then the input
variables associated with scenario C, which led to best predictive results shown
in Section 3.4.

Next, the RW simulation was executed over the two-year preprocessed data.
The RW approach mimics what would occur in a real-world environment, since
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Table 4: Comparative results for evaluation mode “Sampled” (median cross-
validation values; best values in bold).

Scenario
ML MAE RMSE AREC
Model (min.) (min.) (%)

A

DT 9.23 15.98 72.67
RF 9.94 15.73 69.64
GBT 9.03 14.93 72.59
H2O 7.97⋆ 14.38⋆ 75.90⋆

NN 9.18 15.53 73.19

B

DT 9.83 15.99 70.55
RF 10.52 15.86 68.23
GBT 9.27 15.23 71.86
H2O 8.45⋆ 14.51⋆ 73.90⋆

NN 10.11 16.27 69.99

C

DT 7.56 12.41 76.60
RF 7.83 11.55 75.34
GBT 6.15 10.55 80.82
H2O 5.20⋆ 9.30⋆ 83.66⋆

NN 6.21 11.16 80.80

D

DT 7.36 11.74 77.08
RF 7.78 11.63 75.38
GBT 6.39 10.79 79.93
H2O 5.52⋆ 9.48⋆ 82.62⋆

NN 7.26 12.63 77.79

⋆ – Statistically significant under a paired comparison with all other methods.

it assumes that data is time-ordered, thus the ML model is always trained using
historical data and produces predictions for more recent unseen data. Moreover,
it performs several training and testing iterations over time.

The RW training time window was set to one year and the testing and sliding
windows were set to two weeks. In the first RW iteration, one year of the oldest
records were used to train the ML algorithm, except for the last week data
that was used as a validation subset for H2O model selection purposes. Then,
the subsequent two weeks of data were used as the external (unseen) data, for
predictive testing purposes. In the second RW iteration, we update the training
data by advancing the testing period 2 weeks in time, thus discarding the oldest
two weeks of data. The next two subsequent weeks of data are now used for
test purposes. And so on. In total, this procedure produces in 26 iterations,
advancing 2 weeks of data in each iteration, resulting in a total of 1 year of
predictions. In order to reduce the computational effort, the H2O algorithm
selection is only executed during the first RW iteration, assuming the last week
of the available training data as the validation subset, allowing to select the
best ML algorithm and its hyperparameters. Once this model is selected, in the
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Table 5: Overall H2O and company method predictive results (median cross-
validation values; best values in bold).

Mode Scenario
MAE NMAE RMSE AREC
(min.) (%) (min.) (%)

“All”

A 10.22 2.15 20.48 72.24
B 10.76 2.26 21.41 70.94
C 6.48 1.37 14.20 81.06
D 6.84 1.44 14.96 80.202

“Sampled”

A 7.97 3.14 14.38 75.90
B 8.46 3.32 14.51 73.90
C 5.20⋆ 2.00⋆ 9.30⋆ 83.66⋆

D 5.53 2.11 9.48 82.62
Company 9.86 3.96 19.88 72.34

⋆ – Statistically significant under a paired comparison with the Company method.

remaining RW iterations (from 2 to 26), we just retrain the selected ML using
the newer training data. In terms of the H2O setup, we used the same as in the
previous experimentation (Section 3.3).

Table 6 presents the obtained RW results. In terms of mode “All”, H2O ob-
tained only a slight increase on the median MAE value (0.40 minutes) when
compared with the previous experiments, which demonstrates a consistency of
the H2O Scenario C model performance. Moreover, the H2O algorithm outper-
formed the current company estimation system by 4.7 minutes (improvement
of 53%) in the “Sampled” evaluation mode, which suggests a strong potential
predictive value for the company ticket management system.

Table 6: Overall results for the simulation system (median RW values; best values
in bold).

Mode Estimator
MAE NMAE RMSE AREC
(min.) (%) (min.) (%)

“All” H2O 6.88 1.49 14.81 80.06

“Sampled”
H2O 5.37⋆ 2.48⋆ 9.76⋆ 83.15⋆

Company 10.07 4.60 19.11 72.53

⋆ – Statistically significant under a paired comparison with the Company method.

A further predictive analysis is provided in Fig. 1, which shows the median
REC curves for all RW iterations (colored curve), associated with the respective
Wilcoxon 95% confidence intervals (colored area), for both the systems tested.
Particularly, the REC curve shows the model accuracy (y − axis), measured in
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terms of correct predictions for a given absolute error tolerance (x− axis). For
instance, for a 5 minute tolerance, H2O has an accuracy of nearly 70%. In this
graph, we limited the absolute deviation to 30 minutes, after which we consider
that the predictions have low value for the company. When comparing both
algorithms results, the company estimation system has a better accuracy (40%)
for a very small error tolerance (less than 2 minutes), which is quite low. As
for the ML approach, it achieves a better accuracy for the remaining absolute
error values of the curve. Moreover, in the H2O (blue) curve, the Wilcoxon
confidence intervals are practically unnoticed in Fig. 1 (cyan shadowed area),
denoting a small variation of model accuracy for all absolute errors over the
26 RW iterations, which increases the confidence and reliability of the model.
On the other hand, the company system presents a greater variation of results,
denoted by the gray shadowed area, particularly for absolute deviations between
5 and 20 minutes. These results reflect a higher level of uncertainty associated
to the model in the mentioned tolerance interval.

Fig. 1: Median REC curves with Wilcoxon 95% confidence intervals for RW.

For demonstration purposes, we analyzed the ML model selected by the H2O
algorithm in the first RW iteration, which was XGBoost, with a total of 50
trees. Although it had a training time of 30 minutes in the first iteration, which
corresponds to the established limit, its retraining on the remaining iterations
was very fast. Specifically, the median training time for those iterations was
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around 25 seconds. The H2O tool includes an XAI module based on the SHAP
method [13]. Using such XAI, the top of Fig. 2 presents the 5 most relevant inputs
extracted from the XGBoost model on the last RW iteration. The waiting time
of the last similar ticket is the predominant attribute, with a relative importance
superior to 70%. In second place appears the number of people in front in the
queue, with less than 10%, followed by the averaged waited time in the current
day (4%), the number of times that a ticket was forwarded (subID, 4%), hour
of the day (2%) and the ticket type ID (2%). Overall, these results demonstrate
the importance of data preparation stage, since 2 of the newly engineered input
variables are among the 4 top relevant inputs of the model. As for the bottom
XAI graph of Fig. 2, it shows the overall impact of an input in the predicted
responses. For instance, any decrease of the top three inputs (e.g., waiting time)
produces also an average decrease on the estimated time (as shown by the blue
colored dots).

4 Conclusions

In this paper, we demonstrate the execution of the CRISP-DM methodology
to predict a challenging task: multiple domain queue waiting times for printed
tickets of physical stores. Working in collaboration with a ticket management
software company, we have analyzed millions of records, aiming to compare a
ML approach with the current estimation method adopted by the company.
Using a one-year dataset (related with the year of 2022), the data was first
analyzed and preprocessed. Then, five ML regression algorithms and four input
selection scenarios were compared, using a robust cross-validation procedure and
several predictive and computational measures. The best modeling results were
obtained by an AutoML algorithm fed with newly engineered attributes (scenario
C). In the deployment phase, we applied a RW procedure to realistically simulate
the predictive performance of the selected ML approach. The RW experiments
were executed over a larger two-year dataset (collected from January 2021 to
December 2022), assuming a total of 26 training and testing iterations over time
(one year of predictions). Overall results, competitive results were obtained by
the AutoML method, both in the evaluation and deployment phases, show a high
level of consistency and outperforming the current company estimation system.
Furthermore, the selected AutoML tool requires a reasonable computational
effort and very fast inference times, thus being feasible for real-time responses.
Finally, we used a XAI approach to demonstrate the extraction of explanatory
knowledge from a trained predictive model.

The obtained results were shown to the ticket management software com-
pany, which provided a positive feedback. Indeed, in future work, we intend to
implement our approach in the company real-world environment and further
assess the quality of its predictions. Furthermore, we plan to create additional
engineered features (e.g., average waiting time for specific time periods) and
also include external features (e.g., meteorology data) in the next CRISP-DM
iterations.
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Fig. 2: Input importance for H2O best model on the last iteration of RW (top)
and overall impact of an input in the predicted responses (bottom).
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