
AutoOC: Automated Multi-objective Design of

Deep Autoencoders and One-Class Classifiers

using Grammatical Evolution

Lúıs Ferreiraa,∗, Paulo Corteza

aALGORITMI/LASI, Department of Information Systems,
University of Minho, Guimaraes, Portugal

Abstract

One-Class Classification (OCC) corresponds to a subclass of unsupervised
Machine Learning (ML) that is valuable when labeled data is non-existent.
In this paper, we present AutoOC, a computationally efficient Grammatical
Evolution (GE) approach that automatically searches for OCC models. Au-
toOC assumes a multi-objective optimization, aiming to increase the OCC
predictive performance while reducing the ML training time. AutoOC also
includes two execution speedup mechanisms, a periodic training sampling,
and a multi-core fitness evaluation. In particular, we study two AutoOC
variants: a pure Neuroevolution (NE) setup that optimizes two types of deep
learning models, namely dense Autoencoder (AE) and Variational Autoen-
coder (VAE); and a general Automated Machine Learning (AutoML) ALL
setup that considers five distinct OCC base learners, specifically Isolation
Forest (IF), Local Outlier Factor (LOF), One-Class SVM (OC-SVM), AE
and VAE. Several experiments were conducted, using eight public OpenML
datasets and two validation scenarios (unsupervised and supervised). The
results show that AutoOC requires a reasonable amount of execution time
and tends to obtain lightweight OCC models. Moreover, AutoOC pro-
vides quality predictive results, outperforming a baseline IF for all analyzed
datasets and surpassing the best supervised OpenML human modeling for
two datasets.

∗Corresponding Author
Email addresses: luis.ferreira@dsi.uminho.pt (Lúıs Ferreira),

pcortez@dsi.uminho.pt (Paulo Cortez)

Preprint submitted to Applied Soft Computing April 19, 2023



Keywords: Automated Machine Learning, Deep Autoencoders,
Grammatical Evolution, Multi-objective Optimization, One-Class
Classification.

1. Introduction

In recent years, NE has gained increasing attention as an interesting ap-
proach to optimize Artificial Neural Network (ANN) models [1]. By adopting
an Evolutionary Computation (EC) method as the main search engine, NE
automates the design of ANNs (e.g., hyperparameters, structure, weights),
often finding good solutions in complex and high-dimensional neural mod-
eling spaces while using a reasonable amount of computational resources.
Indeed, NE has been successfully applied to a variety of tasks, including
[2, 3, 4]: reinforcement learning, unsupervised learning, optimization, time
series forecasting, supervised learning, and deep learning Neural Architecture
Search (NAS).

With the worldwide growth of Machine Learning (ML) applications, there
has been a growing interest in the usage of Automated Machine Learning
(AutoML) tools [5]. AutoML alleviates the modeling effort of non-ML ex-
perts by automating the search for the best ML algorithm and its hyper-
parameters. Several recently proposed AutoML tools are based on NE ap-
proaches (e.g., [6, 7]). However, the vast majority of AutoML tools target
a supervised learning (e.g., classification, regression) and do not handle an
OCC.

Also known as unary classification, OCC can be viewed as a subclass of
unsupervised learning, where the Machine Learning (ML) model only learns
using training examples from a single class [8, 9]. This type of learning is
valuable in diverse real-world scenarios where labeled data is non-existent,
infeasible, or difficult (e.g., requiring a costly and slow manual class assign-
ment), such as fraud detection [10], cybersecurity [11], predictive mainte-
nance [12] or industrial quality assessment [13].

This work presents a novel application of NE to the field of OCC (as
shown in Section 2) and contributes to the growing body of research on the
use of GE for optimizing ML models. In particular, we present AutoOC, an
AutoML method for OCC that is based on a Grammatical Evolution (GE).
GE has been shown to be effective at optimizing the hyperparameters of
ML models [14]. AutoOC performs a multi-objective optimization, using the

2



Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm to maxi-
mize the predictive performance of the OCC learners while minimizing their
training time. The goal is to generate lightweight ML models, an important
aspect when working with real-world Big Data that are common in OCC
tasks. Furthermore, AutoOC adopts two computationally efficient mecha-
nisms to speed up the overall execution time [15]: a continuous sampling of
training data and a parallel fitness evaluation by adopting multi-core proces-
sors. Moreover, the adopted grammar allows a flexible definition of which
OCC learners are optimized. In this work, we particularly explore two Au-
toML grammar variants:

• NE - a pure evolutionary Neural Architecture Search (NAS) approach
that searches for the best model using two types of deep AEs, standard
dense AE and VAE; and

• ALL - a more general AutoML that selects the best of five OCC learn-
ers, namely IF, LOF, OC-SVM, AE, and VAE.

Several computational experiments are held to evaluate the effectiveness of
the two AutoOC variants, using eight public datasets and two distinct vali-
dation modes (unsupervised and supervised). The results are compared with
a baseline IF and also with the best public supervised learning results from
the OpenML platform [16].

The paper is organized as follows. Section 2 presents the related work.
Then, Section 3 describes the problem formulation of the OCC optimiza-
tion task. Next, Section 4 describes the proposed AutoOC method. Then,
Section 5 presents the experimental results, including the datasets used, the
experimental setup and the obtained results. Finally, Section 6 presents the
main conclusions and discusses future work directions.

2. Related work

The related work can be grouped into three categories: 1 – the application
of EC methods to perform an AutoML optimization; 2 – research works
that assume a multi-objective AutoML; and 3 studies that specifically target
multi-objective OCC. Table 1 summarizes the state-of-the-art works by using
these columns: Year – the publication year; Ref. – the publication reference;
Cat. – the study category (1, 2 or 3); BL – the number of distinct Base
Learners (BL) or ML algorithms; Dat. – the number of analyzed datasets;

3



AutoML – if the study performs an AutoML; NAS – if the study targets
a NAS; OCC – if the study performs OCC; EC – the type of EC algorithm
used to search for the best ML design; and MO – if the study considers a
Multi-Objective (MO) optimization (more than one objective). The related
works are quite recent, with 19 studies published since 2016, including 4
works published in 2021 and 5 in 2022. In this section, the related work
analysis is split into two parts. First, we analyze the first 18 rows of Table 1,
which are related to research works performed by other authors. Then, we
detail the differences between our previous work [12] and this paper, since
they share some similarities (as shown by the last two rows of Table 1).

Table 1: Summary of the related work.

Year Ref. Cat. BL Dat. AutoML NAS OCC EC MO

2016 [17] 2 5 1 � �

2017 [18] 1 20 10 � GE

2018 [19] 3 1 1 � Genetic Algorithms (GA) �

2018 [20] 3 5 4 � �

2019 [21] 1 5 1 � GE

2019 [22] 1 11 10 � GA

2019 [6] 1 1 2 � � GE �

2019 [23] 2 4 2 � GA �

2020 [24] 1 22 10 � GE

2020 [25] 3 1 1 � GA �

2021 [26] 1 3 1 � GE

2021 [27] 1 8 50 � GE

2021 [28] 2 1 3 � �

2021 [29] 2 1 2 � �

2022 [30] 1 11 20 � GE

2022 [7] 1 1 1 � � GE

2022 [31] 2 1 1 � �

2022 [32] 2 20 - � �

2022 [12] 1,2,3 3 1 � � � GE ∗
2023 This Work 1,2,3 5 8 � � � GE �

∗ – only partially studied.

In terms of study categories, from the analyzed first 18 works of Table 1,
nine are related to the first category (EC to guide the optimization of the
AutoML), six belong to the second category (multi-objective AutoML), and
three works are from the third category (multi-objective OCC). From the

4



first category, most works use EC to perform an hyperparameter tuning of
the base learners or to build ML pipelines. Apart from this work, only two
other studies apply a NAS optimization, thus approaching a pure NE. All the
works from category 1 only target supervised learning algorithms and do not
consider an OCC. From category 2, most works consider two optimization
objectives, with two exceptions ([17, 28]). Regarding the third category,
three works use OCC in a multi-objective manner, with two of them using
GA to perform a multi-objective optimization.

In contrast with our research, the majority of the analyzed 18 related
works approach supervised learning ML tasks. Only two studies employ an
EC to optimize OCC models [19, 25]. Thus, this paper is the only work that
assumes a NE to evolve ANNs (performing a NAS). It also optimizes up to
five base One-Class (OC) classifiers, while [19] and [25] only optimize one ML
algorithm. Moreover, we adopt a GE as the search engine, which is adopted
by most of the related works but not by the two OCC optimization studies
[19, 25], which use a GA. Finally, the two OCC related works only adopt one
dataset, while our work explores eight datasets.

Our previous work [12] was exclusively focused on the predictive mainte-
nance application domain and it only analyzed one dataset. Moreover, the
proposed grammar in [12] included just three base learners (IF, OC-SVM and
AE), while we also test in this work LOF and VAE. Furthermore, in [12] the
experimental results were mostly focused on a single objective. Finally, the
proposed AutoOC method is more computationally efficient than our previ-
ous work, since it makes use of two acceleration mechanisms (Section 4.1).

3. Problem formulation

In this work, we address the Combined Algorithm Selection and Hyper-
parameter (CASH) problem for OCC ML tasks. The CASH problem was
first proposed in [33] and defines the problem of, given a search space of ML
algorithms and its associated hyperparameters, selecting the best algorithm
and fine-tuning its hyperparameters by using an optimization method (e.g.,
Bayesian optimization). The original proposal of the CASH focused on a
supervised learning task, in particular classification algorithms. Similarly,
most of the recent research works that approach the CASH problem are
focused on a supervised learning (as described in Section 2).

Let Dtrain = {x1, ...,xn} denote a training dataset with n unlabeled (the
normal) examples, where xi denotes a vector with several input attribute val-

5



ues. There is also a disjoint validation set Dvalid with a length of m examples
and that can assume two variants: unsupervised, DvalidU = {xn+1, ...,xn+m};
or supervised, DvalidS = {(xn+1, yn+1), ..., (xn+m, yn+m)}, where yi denotes a
binary labeled output class (e.g., yi ∈ {0, 1}). Let A = {A1, ..., Ak} define
a finite set of k OCC algorithms and Λ = {Λ1, ...,Λk} the respective hyper-
parameter search spaces. The CASH search space is defined by S = Ai

λ,
where Ai

λ denotes the usage of algorithm Ai with the hyperparameter values
λ ∈ Λi and i ∈ {1, ..., k}. A particular Ai

λ OCC algorithm is trained using
the unlabeled training examples, namely the Dtrain dataset, generating the
learning model Mi

λ.
In this work, we assume multi-objective OCC CASH task, where an O

optimization algorithm searches for the best A∗
λ combination that satisfies:

A∗
λ ∈ argmin

Aj∈A,λ∈Λj

(L1(A
i
λ,Dvalid),L2(A

i
λ,Dtrain)) (1)

where L1 denotes a generalization error measured using the validation set
and L2 represents the computational effort required to train the learning
model (Mi

λ).

4. Proposed method: AutoOC

In this paper, we propose the AutoOC method to solve the multi-objective
CASH problem for OCC ML tasks. The algorithm search space A is com-
posed of a maximum of five (k = 5) OCC learners, namely A = {IF,LOF,OC-
SVM,AE,VAE} (see Section 4.3). The search for the best OCC algorithm
and hyperparameters (O) is performed by a computationally efficient multi-
objective that uses a GE and the NSGA-II algorithm that returns a set of
best Pareto solutions B = {A1

λ, ..., A
p
λ}, where each Ai

λ combination is a non-
dominated solution in terms of the L1 and L2 minimization objectives. As
for the hyperparameter search spaces (Λ), they are defined by the adopted
GE grammar (as detailed in Section 4.4).

GE is a biologically inspired evolutionary algorithm for generating com-
puter programs. The algorithm was proposed by O’Neill and Ryan in 2001
[34] and has been widely used in both optimization and ML tasks. GE can
handle complex optimization problems with a large number of objectives and
constraints. It can also handle continuous and discrete optimization prob-
lems, as well as problems with mixed variables. Indeed, GE has been shown
to be effective in finding high-quality solutions in a relatively short time,

6



compared to other optimization methods [35]. In GE, a set of programs is
represented as strings of characters, known as chromosomes. The chromo-
somes are encoded using a formal grammar, which defines the syntax and
structure of the programs. The grammar is used to parse the chromosomes
and generate the corresponding programs, which are then evaluated using a
fitness function. The fitness function measures the quality of the programs
and is used to guide the evolution process toward better solutions.

There are two main reasons that make GE a suitable choice for our Au-
toML OCC search. Firstly, it can handle variable-length solution represen-
tations, which is useful when handling different types of OCC algorithms,
where each algorithm contains its own hyperparameters. Secondly, and in
contrast with other variable-length EC methods, such as Genetic Program-
ming or Gene Expression Programming, it allows an easy customization of
the OCC search space, since it is defined by a human-readable grammar.
The AutoOC grammar employs up to k = 5 OCC methods and directly gen-
erates Python code. If needed, the grammar can be adapted to include any
combination of the five base learners, additional hyperparameters, or even
new OCC algorithms.

AutoOC assumes a multi-objective optimization by adopting the popular
NSGA-II algorithm that was proposed in 2002 [36]. The algorithm is based
on the concept of non-dominance, which means that a solution is considered
superior to another solution if it is not worse than the other solution in any
objective and strictly better in at least one objective. The goal of NSGA-II
is to find a set of non-dominated solutions, known as the Pareto front, which
represents the trade-off between the different objectives. NSGA-II includes
a crowding distance measure, which is used to preserve diversity among the
solutions and avoid premature convergence. The algorithm has been widely
used in various fields, including engineering, economics, and biology, and has
shown promising results in a variety of multi-objective optimization problems
[37].

In this study, we implemented a Pareto optimization approach to simul-
taneously minimize two objectives: generalization discrimination error (L1)
and training time (L2). The resulting Pareto front contains a set of non-
dominated solutions, each representing a trade-off between the two objec-
tives. The rationale of this multi-objective approach is to allow for the selec-
tion of lightweight OCC models, even if they are associated with a slightly
lower performance. Indeed, reducing the computational training time is
particularly valuable within the OCC domain, since most of the analyzed

7



datasets are unlabeled and thus often rather large.

4.1. Acceleration mechanisms and objective functions

As explained in Section 3, the training data Dtrain is composed only of
data from one class (“normal” data). OCC typically involves a large set of
unlabeled data, thus performing an evolutionary optimization in this domain
is a computationally demanding task. In order to speed up the GE execu-
tion time, AutoOC adopts two recently proposed computationally efficient
mechanisms [15].

Firstly, AutoOC uses a periodic sampling mechanism, where each g gen-
eration of the GE optimization uses the random sample Dg

train that includes
s < n examples from the entire training dataset. For an example dataset
with n =10,000 records and a sample size of s=2,500, each generation of
the GE optimization will use s=2,500 randomly sampled records to train
the OCC models. The sampling is applied to the entire dataset at the be-
ginning of each generation and it is performed with replacement (similarly
to the bagging ML ensemble method), meaning that a specific record can
be chosen more than once. The reason for this approach is related to an
acceleration of the total optimization time, since training the models on a
small sample of a dataset will be faster than training all the individuals on
an entire dataset, especially if the dataset has a huge number of records (e.g.,
millions of records). On the other hand, the fact that each generation uses
a different set of examples will allow the optimization to avoid overfitting
the training set since the training data is always different. Secondly, each
Ai

λ solution is trained in a parallel manner, where a Mi
λ model is obtained

by applying the Ai
λ algorithm to the Dg

train dataset. This means that, for
each generation, more than one individual can be trained at the same time
using different cores (processors). In practice, when the used machine has
more cores than the population size, it is possible to train all the individuals
at the same time. For each trained Mi

λ model, AutoOC stores the value of
L2(A

i
λ,Dg

train), which corresponds to the time elapsed to obtain Mi
λ when

using a single core, in seconds. This L2 value corresponds to the second ob-
jective function, which guides the O search in terms of minimizing the OCC
training computational effort.

AutoOC is primarily designed for anomaly detection tasks, where most
examples are “normal” records. While the training only uses normal exam-
ples, the OCC predictive performance validation can be performed using two
distinct setups [12]: unsupervised validation, where the model performance is

8



evaluated using only DvalidU unlabeled data (e.g., through an anomaly score),
or supervised validation, where there is access to a (often smaller) DvalidS la-
beled validation set to assess the model performance by using supervised
learning metrics, such as the popular Area Under the Curve (AUC) of the
Receiver Operating Characteristic (ROC) curve classification measure [38].

All OCC models produce an anomaly score (Sj) for a particular xj data
example. The Mi

λ validation or test anomaly scores are first normalized
within the Si ∈ [0, 1] range by applying a min-max normalization using the
training data. Two relevant performance measures adopted in this work are
the average anomaly score (S) and AUC:

S = 1
l

∑l
j=1 Sj

AUC =
∫ 1

0
ROC dTh

(2)

where l denotes the length of the predicted data (e.g., l = m for a valida-
tion set) and Th ∈ [0, 1] is a threshold decision value, allowing to interpret
the predicted anomaly class as positive if Si > Th. The ROC curve plots
the False Positive Rate (FPR) versus the True Positive Rate (TPR) for all
threshold values. AUC is a popular binary classification measure of perfor-
mance, providing two main advantages [39]. Firstly, quality values are not
influenced by the presence of unbalanced data, which occurs in OCC tasks.
Secondly, the AUC values can be easily interpreted as follows: 50% – per-
formance of a random classifier; 60% - reasonable; 70% - good; 80% - very
good; 90% - excellent; and 100% - perfect.

In this work, we explore the two OCC validation modes (supervised and
unsupervised), which lead to two distinct fitness functions that measure OCC
generalization error performance (L1, the first objective function). For the su-
pervised validation, the generalization error performance (to be minimized),
is defined as L1(A

i
λ,DvalidS) = 1−AUC. The lower the L1 value, the better

will be the OCC AUC predictive performance. Under the unsupervised val-
idation mode, labeled data (i.e., abnormal examples) is not available, mak-
ing the computation of the AUC infeasible. Therefore, to select the best
ML models, the average anomaly score (S) is used as a proxy for the 1-AUC
computation: L1(A

i
λ,DvalidU ) = S. The idea is that if a model produces a

low anomaly score when trained on a large set of normal data, it should be
capable of generating high anomaly scores for abnormal data, resulting in a
satisfactory ROC curve. Nevertheless, it is important to note that to accu-
rately benchmark the unsupervised validation scenario, labeled data was used

9



in the test set, allowing the computation of ROC curves and AUC measures,
which were then compared to those obtained using the supervised validation
scenario. Table 2 summarizes the type of data used for each validation setup.

Table 2: Validation modes for AutoOC.

Validation Mode Training Set Validation Set Test Set

Supervised Unlabeled Data Labeled Data Labeled Data
Unsupervised Unlabeled Data Unlabeled Data Labeled Data

4.2. Pseudo-code

The pseudo-code for our proposed AutoOC is illustrated in Algorithm 1.
There are four main inputs, the training and validation sets (Dtrain and Dvalid,
the sampling size (s), the maximum number of generations (G) and the pop-
ulation size (NP ). The search algorithm (O) combines a GE with a multi-
objective NSGA-II optimization. The GE elements are used to generate the
initial population and breed new individuals (through crossover and muta-
tion operators). As for the NSGA-II procedures, they enforce a simultaneous
multi-objective search in terms of selecting interesting new population in-
dividuals and the best set of Pareto solutions. Moreover, the two AutoOC
acceleration mechanisms are implemented in lines 6 (periodic random sam-
pling) and 7 (parallel execution of the training algorithm and computation
of its validation measures). After G generations (the termination criteria),
the search returns the best searched Pareto front of solutions (B).

4.3. Base learners

AutoOC uses up to five popular OCC Learning algorithms: AEs, IF, LOF,
OC-SVM, and VAEs. The AEs and VAEs were implemented through the
Keras module of TensorFlow library [40], while IF, LOF, and OC-SVM used
the Scikit-Learn framework [41]. Table 3 summarizes the five adopted base
learners in terms of: the name of the (Algorithm), the base (Framework),
used (Version), and (API) documentation reference.

LOF is a density-based anomaly detection algorithm that is used to iden-
tify instances in a dataset that are significantly different from the majority
of the instances. It works by calculating an anomaly score Si for each in-
stance i, which reflects the degree to which it is isolated from the rest of the

10



Algorithm 1 AutoOC pseudo-code.

1: Inputs: Dtrain,Dvalid,S, s, G,NP � Training and validation sets,
search space, training sample size, maximum number of generations and
population size

2: B ← ∅ � Initialize B
3: P0 ← create(S, NP ) � Initial GE population with {A1

λ, ..., A
NP
λ }

solutions
4: g ← 0
5: while g < G do � Cycle up to G generations
6: Dg

train ← sample(Dtrain, s) � Random sample of size s
7: F g ← evaluate(Pg,Dg

train,Dvalid) � Fitness values (L1 and L2) for Pg

8: Pg ← Pg ∪ B � Add B to current population
9: B ← ∅ � Reinitialize B

10: if Ai
λ ∈ Pg is a NSGA-II interesting (e.g., non-dominated) solution

then � Apply NSGA-II
11: B ← B ∪ Ai

λ � Add Ai
λ to the set of best Pareto solutions

12: end if
13: Pg+1 ← evolve(Pg) � Apply GE crossover and mutation operators

and NSGA-II selection
14: g ← g + 1 � Increment g
15: end while
16:

17: return B � Return best solutions (Pareto front of OCC models)

Table 3: Characteristics of the base learners used by AutoOC.

Algorithm Framework Version API

Local Outlier Factor (LOF) Scikit-Learn 1.2.0 [42]
Isolation Forest (IF) Scikit-Learn 1.2.0 [43]
One-Class SVM (OC-SVM) Scikit-Learn 1.2.0 [44]
Autoencoder (AE) TensorFlow 2.6.0 [45]
Variational Autoencoder (VAE) TensorFlow 2.6.0 [46]

11



examples in the dataset. LOF is particularly useful for detecting anomalies
in high-dimensional datasets, as it is able to capture complex patterns in the
data [47]. High LOF scores are considered to be outliers, as they are located
in areas of the feature space that are less densely populated. Thus, in this
work, we use the LOF Si score as the anomaly degree measure.

IF is an OCC algorithm that is used for detecting anomalous data points
in a dataset [48]. IF is particularly useful for identifying outliers in large,
high-dimensional datasets. The algorithm works by creating a forest of de-
cision trees, where each tree is trained to isolate a single instance in the
dataset. IF is based on the idea that anomalous data points are more dif-
ficult to isolate and will therefore have shorter paths in the decision tree.
The algorithm calculates an anomaly score for each data point (Si), which
is based on the length of the path to the isolated data point in the decision
tree. Data points with higher Si values are more likely to be anomalous and
thus this measure is used as the anomaly score.

OC-SVM is a ML algorithm that is used to identify anomalies in a dataset.
It is an extension of the Support Vector Machine algorithm that is designed
to work with unlabeled data [49]. OC-SVM is particularly useful for detect-
ing rare or unusual events and is often used in fraud detection, intrusion
detection, and other applications where the goal is to identify instances that
are significantly different from the norm. OC-SVM works by finding a hy-
perplane in the feature space that maximally separates the normal instances
from the origin, and then classify any new instances as normal or anoma-
lous based on which side of the hyperplane they fall on. In this work, the
anomalous class probability of OC-SVM is directly used as the anomaly score
(Si).

AEs are a type of ANN that are trained to reconstruct their input data
by learning a compressed representation (or encoding) of the input data and
then using this encoding to reconstruct the original data. AEs can be used in
a variety of tasks, including dimensionality reduction, anomaly detection, and
data generation [50]. Following the success of Deep Learning, there has been
a growing usage of AEs to perform OCC [39]. Within this context, AEs can
be trained on normal data and attempt to produce outputs that are similar
to the inputs. For each input instance, there is a reconstruction error, and
higher reconstruction errors are associated with a higher probability of being
an anomaly [51]. In this work, the popular Mean Absolute Error (MAE)
measure [52] is used to compute the reconstruction error for an instance i,
which corresponds to the adopted anomaly score (Si).

12



VAEs differ from traditional AEs in that they are trained to learn a dis-
tribution over the input data, rather than simply reconstructing the input
data [53]. VAEs are composed of two parts: an encoder that maps the input
data to a latent representation, and a decoder that maps the latent represen-
tation back to the original data space. The encoder and decoder are trained
to optimize an objective function that encourages the generated data to be
similar to the original data, while also encouraging the latent representation
to be smooth and continuous. This allows VAEs to generate new data points
that are similar to the original data, whereas traditional AEs are only able
to reconstruct the input data. VAEs can be used for anomaly detection since
anomalies are expected to have different distributions when compared with
the normal training examples [54]. To compute the anomaly score (Si) for
an instance i, the same MAE measure is computed by comparing the VAE
prediction with the input data.

4.4. AutoOC grammar

GE uses a mapping process to generate programs from a genome encoded
using a formal grammar, typically in Backus-Naur Form (BNF) notation.
This notation consists of terminals, which represent items that can appear
in the language, and non-terminals, which are variables that include one or
more terminals. In this study, we used an open-source implementation of GE
in Python (PonyGE2 [55]) to develop AutoOC. PonyGE2 allows for the use
of Python BNF (PyBNF), which enables the inclusion of Python code in the
production rules. To build AutoOC, a PyBNF grammar was developed to
tune the hyperparameters of the OCC algorithms described in Section 4.3.

The use of PyBNF allowed for the generation of Python code snippets
that enabled GE to produce various types of ML models. For example, the
IF, LOF, and OC-SVM grammars were implemented by creating the cor-
responding Scikit-Learn class and adding the hyperparameters as terminals
and non-terminals. We note that the proposed grammar includes all IF,
LOF, and OC-SVM hyperparameters that were available in the consulted
Scikit-Learn documentation (see Table 3). The process was different for the
AEs and VAEs, as the TensorFlow API requires the definition of a variable
number of layers. To address this, the grammar was designed to generate
only the encoder: first, an input layer with the same number of nodes as
the number of attributes in the dataset is generated, followed by a variable
number of hidden layers. Given that in a typical AE or VAE the subsequent
encoder layers have fewer nodes than the previous layer, the layer nodes were

13



defined as a percentage (between 0% and 100%) of nodes in the previous layer
rather than a fixed number. Two auxiliary functions, (get ae from encoder

and get vae from encoder), were also defined to translate the generated
phenotype into functional TensorFlow AEs and VAEs. The decoder, which
is symmetrical to the encoder, was not included in the grammar. Besides the
ANN structure, deep learning architectures include a large number of addi-
tional hyperparameters. In order to reduce the search space, using modeling
knowledge from previous OCC works (e.g., [39, 13]) we fixed some choices,
such as the usage of the MAE measure as the loss function for both AE and
VAE and usage of Batch Normalization layers for AE. We also restricted the
search space for some hyperparameters. For instance, only two optimizers are
explored to adjust the AE weights (RMSprop and Adam). Moreover, while
the analyzed TensorFlow version provides up to 16 activation functions, the
proposed grammar only searches for the best of eight of these functions (e.g.,
ReLU). Nevertheless, in future works and if needed, the grammar can be
easily adapted to include other deep learning hyperparameter choices.

The proposed grammar of AutoOC defines the OCC search space (S)
and is flexible enough to allow the usage of any combination of the five base
learners (Section 4.3) or even include other OCC algorithms. In this work,
we empirically study the effect of two AutoOC variants: NE – assuming
only the deep AE and VAE base learners (thus k = 2), working as a pure
NAS optimization; ALL – where all k = 5 base learners are used during
the optimization, working as a more general AutoML OCC search. The
developed PyBNF grammar for the “ALL” mode is shown in Fig. 1. The
grammar for the “NE” mode follows a similar logic, using only the AEs and
VAEs entries.

5. Experimental results

5.1. Datasets

A total of eight public domain datasets (Table 4) were retrieved from
OpenML [16], an open platform for sharing datasets and ML experiments.
As selection criteria, we opted to select binary classification tasks from dis-
tinct application domains (e.g., banking, telecommunications) and reflecting
different numbers of instances (Rows), categorical (Categorical Columns)
and numerical attributes (Numerical Columns), and output target class
balancing (Class Balancing). We particularly selected datasets with a clear

14



Figure 1: The adopted PyBNF grammar (for the full “ALL” search space representation
mode).

15



distinction between the two classes, where the majority class could be consid-
ered as “normal” and the minority class as an “anomaly” state. Table 4 also
details the name of the dateset (Dataset) and the unique OpenML identifier
(OpenML ID).

Table 4: Description of the selected OpenML datasets.

Dataset
OpenML

ID∗ Rows
Categorical

Columns
Numerical
Columns

Class Balancing
(“normal”/“anomaly”)

Bank Marketing 1461 45,211 16 9 88%/12%
Churn 40701 5,000 4 16 86%/14%
Credit Card 44235 284,807 0 30 99%/1%
EEG 1471 14,980 0 14 55%/45%
Mushroom 24 8,124 23 0 52%/48%
Nomao 1486 34,465 30 89 71%/29%
Phoneme 1489 5,404 0 5 70%/30%
Spambase 44 4,601 0 57 60%/40%

∗The datasets can be retrieved by entering their OpenML unique identifier (ID) at the
following URL: http://www.openml.org/search?type=data&id=ID.

Since AutoOC focuses on algorithm selection and hyperparameters, the
datasets need to be preprocessed before feeding them into the OCC base
learners. In order to achieve a fair comparison, the same fixed data prepro-
cessing is applied to all datasets.

Since none of the base learners deals with data attributes of type String,
we encoded all String attributes into numerical types. For categorical at-
tributes with low cardinality (ten levels or fewer), we applied the popular
one-hot encoding. For categorical columns with missing values, we replaced
the missing values with zero, which is treated as a numeric code value for the
“unknown” level. As for high cardinality categorical attributes, the one-hot
transform produces a large number of binary inputs, which highly affects
the computational performance (in terms of both memory and processing
time). Thus, for these attributes, we employed instead the Inverse Docu-
ment Frequency (IDF) technique, available in the Python CANE module
[56], which converts a categorical column into a numerical column of positive
values based on the frequency of each attribute level. IDF uses the function
f(x) = log(n/fx), where n is the length of x and f(x) is the frequency of x.
This technique has the advantage of generating just one numeric column for
each attribute, thus reducing the ML computational effort. For the remaining

16



attributes of Integer and Float types, we applied a z-score standardization
[52], which results in a new scale with a mean of zero and standard deviation
of one. The missing values in numerical columns were also replaced with the
mean value for that column (mean imputation).

5.2. Experimental setup

All experiments were run on an Intel Xeon 1.70 GHz server with 56 cores
and 64 GB of RAM, without a GPU. When running AutoOC, we stored two
types of time elapsed times (in seconds), the overall GE execution time and
the training time required by the OCC algorithms. To assess the perfor-
mance of AutoOC, we followed an approach based on the benchmark in [5].
We divided the datasets into 10 folds to obtain an external cross-validation,
which is used to get test (unseen) data that allows measuring the predictive
generalization performance of the selected OCC model. As for the training
data, it is further split by applying an internal and random holdout split,
where 75% of the data is used for fitting purposes (Dg

train) and the remaining
25% is used for validation purposes (Dvalid).

To evaluate the predictions on the test set from the external 10-fold val-
idation, we employed the AUC analysis of the ROC curve. The obtained
results are aggregated by computing the median of the evaluation measures
across the 10 external folds and their respective 95% confidence intervals
based on the nonparametric Wilcoxon test [57], to determine the statistical
significance of the experiments.

5.3. AutoOC results

For each dataset, we executed four AutoOC experiments, with two base
learner configurations (NE and ALL) and both validation modes (supervised
and unsupervised). Since it is unfeasible to evaluate every possible combi-
nation of the GE optimization parameters, we fixed some of these values
using reasonable assumptions and some preliminary experiments performed
using other OCC datasets. The summary of the different parameters used
in the experimental evaluation is shown in Table 5. All experiments were
executed with an initial random generated population of NP =20 individuals
and G =100 generations. Also, for the GE parameters of crossover and muta-
tion, we adopted the default PonyGE2 values: Variable One-point crossover
(selection of a different point on each parent genome for crossover to occur)
with a crossover probability of 75%; and Int Flip Per Codon mutation (ran-
dom mutation of every individual codon in the genome) with a mutation

17



Table 5: GE parameters used for the experiments.

Parameter Used Values

Population Size (NP ) 20
Number of Generations (G) 100
Crossover Variable One-point with 75% crossover probability (PonyGE2 default)
Mutation Int Flip Per Codon with 100% mutation probability (PonyGE2 default)

Base Learners Setup
ALL (used algorithms: AE, IF, LOF, OC-SVM, VAE)
NE (used algorithms: AE, VAE)

Optimization Type Multi-objective (NSGA-II)

Predictive Objective
Minimize validation 1-AUC (L1 for supervised validation)
Minimize validation average anomaly score S (L1 for unsupervised validation)

Efficiency Objective Minimize training time (L2)

Validation Type
Supervised
Unsupervised

Sampling size s=2,500
Parallel Training True

probability of 100%. Additionally, we applied both acceleration mechanisms
described in Section 4.1, using a periodic random sampling, performed in
each generation and applied to all the population individuals, of s=2,500
records and parallel training.

Table 6 presents the results obtained by AutoOC on the eight open-
source datasets described in Section 5.1. The table shows the median test
set results of the external 10 folds and the respective confidence intervals
for the predictions (Median AUC) and the efficiency (Median Training
Time, in seconds). It is worth noting that, since these experiments apply a
multi-objective approach, each external fold generates more than one opti-
mal model per fold (all that belong to the Pareto front). Thus, we divided
the AUC and training time median results into three columns each. The
predictions (Pred.) column only considers the individuals from the Pareto
front with the best predictive objective score; the Speed column considers
the Pareto front individuals with the least training time (efficiency objective,
in seconds); the column Pareto considers all the individuals belonging to
the Pareto front. Table 6 also shows the median time needed for the GE
optimization (Median GE Time) with confidence intervals, the type of
validation (V) that was used, and which base learner setup was considered
(BL). For the best results of each dataset (AUC, training time, and GE
time; values highlighted using a boldface font), we apply the nonparametric
Wilcoxon test for measuring statistical significance.

Regarding the predictive performance, the ALL mode with supervised
validation achieved the best median AUC on the test set for: seven of the

18



Table 6: AutoOC experimental results (best values for each measure in bold).

Dataset BL V∗ Median AUC Median Training Time Median
GE TimePred. Speed Pareto Pred. Speed Pareto

Bank ALL S 0.72a±0.01 0.52±0.02 0.63a±0.01 0.29c±0.20 0.01c±0.00 0.05a±0.03 740c±57
Bank ALL U 0.62±0.03 0.55±0.04 0.58±0.01 0.41±0.02 0.01±0.00 0.11±0.03 758±34
Bank NE S 0.62±0.01 0.56±0.00 0.59±0.00 8.48±1.59 1.55±0.09 3.98±0.74 2,002±102
Bank NE U 0.65±0.02 0.58b±0.03 0.60±0.02 9.46±0.86 3.27±0.65 6.14±0.43 1,505±44
Churn ALL S 0.75a±0.01 0.56b±0.02 0.65a±0.01 0.01a±0.02 0.01c±0.00 0.01a±0.00 691±81
Churn ALL U 0.62±0.03 0.55±0.01 0.59±0.01 0.27±0.02 0.01±0.00 0.08±0.01 645c±38
Churn NE S 0.63±0.01 0.55±0.00 0.60±0.01 7.13±1.24 1.33±0.10 3.47±0.25 1,657±29
Churn NE U 0.53±0.01 0.52±0.02 0.53±0.00 7.50±0.82 2.12±0.39 3.92±0.22 1,389±24
Credit ALL S 0.92±0.00 0.80±0.08 0.88±0.01 0.13a±0.04 0.01c±0.00 0.04a±0.02 949c±125
Credit ALL U 0.97±0.09 0.84±0.01 0.89±0.04 0.48±0.04 0.01±0.00 0.15±0.02 1,191±448
Credit NE S 0.98e±0.00 0.93a±0.00 0.95a±0.00 7.25±0.81 1.19±0.08 3.56±0.54 2,211±202
Credit NE U 0.91±0.10 0.89±0.01 0.90±0.02 10.79±1.28 2.54±0.58 5.31±0.47 4,208±1430
EEG ALL S 0.68a±0.03 0.51±0.01 0.59a±0.02 0.22c±0.43 0.01±0.00 0.05c±0.15 617c±230
EEG ALL U 0.56±0.01 0.52b±0.02 0.53±0.03 0.27±0.12 0.01c±0.00 0.06±0.02 645±41
EEG NE S 0.52±0.02 0.49±0.02 0.51±0.01 5.53±2.45 1.36±0.12 2.82±0.81 3,798±965
EEG NE U 0.51±0.00 0.51±0.00 0.51±0.01 7.99±1.32 1.88±0.13 3.95±0.21 1,985±56
Mushroom ALL S 1.00d±0.00 0.62±0.13 0.81±0.05 0.27±0.06 0.01c±0.00 0.06±0.02 1,057±113
Mushroom ALL U 0.58±0.06 0.50±0.10 0.58±0.02 0.24c±0.04 0.01±0.00 0.03a±0.01 998c±90
Mushroom NE S 0.99±0.04 0.82±0.20 0.87±0.02 9.22±1.46 2.08±0.15 3.99±0.23 2,016±1508
Mushroom NE U 0.99±0.04 0.83f±0.02 0.91a±0.02 9.46±1.35 2.62±0.19 5.31±0.49 2,041±31
Nomao ALL S 0.83a±0.02 0.62±0.06 0.73a±0.02 0.01a±0.00 0.01c±0.00 0.01a±0.00 885c±115
Nomao ALL U 0.63±0.05 0.59±0.02 0.62±0.09 0.46±0.09 0.01±0.00 0.07±0.02 905±58
Nomao NE S 0.70±0.01 0.50±0.01 0.63±0.01 5.62±1.58 1.89±0.14 3.08±0.63 1,901±67
Nomao NE U 0.68±0.02 0.67a±0.02 0.68±0.03 7.48±0.48 3.07±0.37 5.29±0.27 2,370±266
Phoneme ALL S 0.74a±0.01 0.57b±0.06 0.68a±0.01 0.01a±0.01 0.01c±0.00 0.01a±0.00 654±84
Phoneme ALL U 0.63±0.02 0.53±0.03 0.60±0.02 0.22±0.05 0.01±0.00 0.07±0.02 634c±81
Phoneme NE S 0.62±0.01 0.52±0.01 0.58±0.01 13.98±5.47 1.27±0.02 4.24±0.78 2212±88
Phoneme NE U 0.56±0.01 0.51±0.02 0.53±0.02 6.73±1.63 1.38±0.11 3.26±0.39 2192±134
Spambase ALL S 0.81a±0.01 0.62b±0.07 0.73a±0.01 0.12a±0.13 0.01±0.00 0.03a±0.03 608c±111
Spambase ALL U 0.68±0.04 0.59±0.00 0.63±0.04 0.29±0.02 0.01c±0.00 0.07±0.01 618±51
Spambase NE S 0.62±0.01 0.50±0.01 0.57±0.00 9.76±0.92 1.49±0.06 4.47±0.28 1,979±40
Spambase NE U 0.73±0.01 0.60±0.04 0.65±0.01 13.15±1.43 3.29±0.57 7.28±0.55 2,009±51

∗ Validation mode: S - Supervised; U - Unsupervised.
aStatistically significant (p-value < 0.05) under a pairwise comparison when compared with all the
other setups.
bStatistically significant (p-value < 0.05) under a pairwise comparison when compared with none of the
other setups.
cStatistically significant (p-value < 0.05) under a pairwise comparison when compared with the setups:
Supervised NE and Unsupervised NE.
dStatistically significant (p-value < 0.05) under a pairwise comparison when compared with the setups:
Unsupervised ALL.
eStatistically significant (p-value < 0.05) under a pairwise comparison when compared with the setups:
Supervised ALL.
fStatistically significant (p-value < 0.05) under a pairwise comparison when compared with the setups:
Supervised ALL and Unsupervised ALL.

19



eight datasets when considering predictive power; three datasets when con-
sidering the training speed; and six datasets when considering the entire
Pareto front. In these scenarios, the supervised ALL achieved a median
of 11.0 AUC percentage points (pp) higher than the respective second-best
configuration for predictive mode, 2.0 pp for speed mode, and 5.5 pp for the
Pareto mode. An interesting result was obtained by the Credit Card dataset,
achieving the best predictive results exclusively with NE approaches, namely
with the supervised validation mode. This setup obtained, on median, 1.0
AUC pp higher than the second-best setup for predictive mode, 9.0 pp for
speed mode, and 6.0 pp for the Pareto mode.

When considering the total GE execution time, the unsupervised ALL ap-
proach required a median value of 702 s across all datasets, followed by super-
vised ALL (716 s), supervised NE (2,009 s), and unsupervised NE (2,025 s).
These results can be explained by the training time required by the deep
ANNs (either a traditional AE or a VAE), which is higher when compared
with the other base learners. In effect, both ALL setups (supervised and
unsupervised) tend to produce lightweight OCC models, presenting median
training time values always lower than one second, and most of the times
being only 0.01 s. In contrast, the setups with the NE variant present me-
dian training times ranging from 1.19 s and 13.98 s, with a median value of
3.99 s. Nevertheless, the total GE execution time results back the proposed
AutoOC as a computationally efficient tool to model large OCC datasets.
For instance, for the largest dataset (Credit Card, with around 285,000 ex-
amples), and when adopting the supervised validation mode, the ALL and
NE variants only require a median GE optimization time of 949 s (around 16
minutes) and 2,211 s (around 37 minutes). In Section 5.4, we further compare
these Credit execution time results (using the sampling mechanism) with a
GE that uses all training data (no sampling).

To further compare the obtained AutoOC results, we analyzed the Pareto
fronts from the test set results. Given that each experiment is composed of
ten test sets (one for each external fold), we aggregate the distinct Pareto
fronts from each experiment. Inspired by the ROC curve vertical aggregation
[38], we aggregate the results vertically. To facilitate the visual analysis, in all
Pareto front graphs shown in this paper, we assume the -AUC minimization
objective on the x-axis and the training time minimization objective on the y-
axis. Thus, the ideal point corresponds to the bottom left corner of the Pareto
graphs. For different values of -AUC, we estimate the Wilcoxon median
training time and the respective 95% confidence intervals. The obtained

20



median curves are presented in Fig. 2. The figure shows that for the ALL

Figure 2: AutoOC experimental results (points denote the Wilcoxon median values and
whiskers represent the respective 95% confidence intervals).

21



setups, the results are usually close in terms of training time, presenting
differences that depend on the dataset but that tend to be small. As for the
predictive performance, the supervised ALL tends to produce better AUC
scores (e.g., Churn, EEG, Mushroom, Nomao, Phoneme, Spambase). As for
the NE setups, the results usually present higher training times than the
ALL setups. Moreover, the 95% confidence intervals usually do not overlap
with the ALL setups, showing statistically significant differences.

5.4. Credit card dataset results

For more detailed results, we present in this section additional analyses
of one of the datasets used in the experiments. We chose the Credit Card
dataset to perform these analyses for two main reasons. Firstly, this dataset
is a very accurate representation of a typical OCC learning scenario, since
it has a large number of examples (284,807) and presents a huge unbalance
between classes (with more than 99% of examples belonging to the “normal”
class). Second, it is among the datasets that obtained the best experimental
predictive results in Table 6.

The first Credit Card analysis is related to the hypervolume, assuming a
reference point of (AUC=0; maximum training time = 15 s). As a demon-
stration, we selected the first fold for each of the four experiments performed
on the Credit Card dataset to evaluate the hypervolume evolution across the
GE generations. For each generation, we computed the median hypervolume
value of the current Pareto-optimal front. Fig. 3 presents the evolution of the
hypervolume measure (in percentage, y-axis) through the 100 generations of
the GE optimization (x-axis). The figure includes two plots, one for each
validation mode, for a better comparison since different predictive objectives
are being considered in each validation mode (AUC for supervised mode and
anomaly score for unsupervised mode). The figure shows a fast hypervolume
growth in the first 10 generations, even though it continues to increase until
the end of the optimization, but at a lower rate. Three of the four curves
present a period without significant improvements in the hypervolume in the
first half of the optimization process (until generation 50). It is also worth
noting that the experiments that used the ALL mode achieved a better final
hypervolume percentage than the respective NE experiment. This can be
explained by the fact that, even though the ALL mode presented a lower
predictive performance than NE, it was able to generate individuals with
much lower training time.

22



Figure 3: Hypervolume (y-axis, in %) generation evolution (x-axis) for one fold of the
Credit Card experiments.

Table 7 provides an additional analysis of the Credit Card dataset exper-
iments regarding the composition of the Pareto front. For each of the four
setups (two base learner setups and validation modes), the table details the
median number of individuals on the Pareto front by each type of base learner
and in total. The table shows that the ALL setups presented a median num-

Table 7: Median number of individuals per base learner on the Pareto Front of the Credit
Card dataset experiments.

Dataset Base Learner
Setup

Validation
Mode

Median Number of Individuals

Pareto
Front

IF LOF OC-SVM AE VAE

Credit
Card

ALL Supervised 6 4 3 1 1 0.5
ALL Unsupervised 6.5 3.5 1 1.5 1 1
NE Supervised 9 - - - 6 4.5
NE Unsupervised 12.5 - - - 6 7

ber of Pareto front individuals lower than the NE setup. For the ALL setup,
the most common base learner was IF, followed by LOF, and OC-SVM. Both
AEs and VAEs are represented in the Pareto curve with a median number of
one or fewer individuals. Both NE setups present a larger median number of
individuals on the Pareto front (9 and 12.5). Regarding the presence of the
base learners, the division between AE and VAE is relatively balanced. As
an example, Fig. 4 shows the Pareto front of one of the folds of each of the
four Credit Card experiments, detailing the type of base learner from each

23



point, represented by the initials of the respective base learner.

Figure 4: Pareto curves for one fold of the Credit Card experiments. Each Pareto front
point is denoted by the initial of the respective base learner.

To study the effect of the periodic sampling mechanism, we replicated
the AutoOC experiments for the Credit Card dataset using the full dataset
(284,807 rows). Table 8 shows the results obtained on the Credit Card
dataset using sampling with s=2,500 (also shown in Table 6) and using
the full dataset (without sampling). Regarding the optimization time, the
results clearly show that without sampling a substantially higher computa-
tional effort is required (the increase is between ×8 and ×18). Similarly,
the OCC training time of the individuals was also much higher when using
the full dataset. In some cases, it was 200 times higher than the respec-
tive experiment with sampling. As for the predictive results, there is only a
rather small improvement when adopting the full dataset (e.g., around 3 pp
for the Pareto individuals). Given that OCC tasks are often associated with
Big Data and several real-world applications tend to require lightweight ML

24



Table 8: Comparison of AutoOC results for the Credit Card dataset using the sampling
mechanism and the full dataset (best values for each measure in bold).
Sampling
Mode

BL V∗ Median AUC Median Training Time Median
GE TimePred. Speed Pareto Pred. Speed Pareto

Sampling All S 0.92±0.00 0.80±0.08 0.88±0.01 0.13±0.04 0.01±0.00 0.04±0.02 949±125
Sampling All U 0.97±0.09 0.84±0.01 0.89±0.04 0.48±0.04 0.01±0.00 0.15±0.02 1,191±448
Sampling NE S 0.98±0.00 0.93±0.00 0.95±0.00 7.25±0.81 1.19±0.08 3.56±0.54 2,211±202
Sampling NE U 0.91±0.10 0.89±0.01 0.90±0.02 10.79±1.28 2.54±0.58 5.31±0.47 4,208±1430

No Sampling All S 0.95±0.01 0.87±0.02 0.89±0.02 38.88±3.12 2.04±0.41 23.75±1.50 17,274±1,026
No Sampling All U 0.98±0.01 0.89±0.03 0.91±0.01 45.41±5.95 1.97±0.35 27.28±3.78 16,756±970
No Sampling NE S 0.99±0.00 0.94±0.01 0.96±0.00 421.57±62.24 240.98±22.37 335.81±39.81 38,391±2,489
No Sampling NE U 0.98±0.01 0.95±0.00 0.96±0.01 393.70±44.92 256.01±15.70 355.65±35.43 36,431±980

∗ Validation mode: S - Supervised; U - Unsupervised.

models, the results from Table 8 do value the proposed sampling mechanism.

5.5. Comparison with a baseline method and a supervised gold standard

In a last empirical comparison, we contrast the best AutoOC results with
a default (not tuned) IF (also trained as AutoOC with s=2,500 random sam-
ples) and the best public OpenML results. For each dataset, we show the
best median AutoOC AUC score (column Pred. from Table 6), the median
score obtained by the baseline IF, and the best result published in OpenML
(including the AUC score, the used algorithm name, and the number of hu-
man ML attempts, described as “runs” in OpenML). It is worth mentioning
that this comparison should be viewed with some caution. Firstly, we only
compare the predictive performance AUC results and not other measures
targeted by AutoOC, such as the total execution time or training time of the
ML models. Secondly, AutoOC is fully automated and the best OpenML
results were obtained after a large number of ML human expert modeling
trials (ranging from 5,463 to 416,606). Thirdly, the OpenML results adopt
a particular data preprocessing method and a supervised learning using the
complete training datasets. Fourthly, we do not know the exact validation
and testing procedures adopted by the OpenML modeling attempts. Thus,
rather than assuming an ideal ML comparison, we use the best OpenML
results as a “gold standard”, denoting a proxy to the upper limit of the best
empirical predictive results that can be achieved when using a human expert
supervised learning modeling. The results are shown in Table 9.

When comparing the AutoOC results with the baseline IF, it is possi-
ble to verify that the best AutoOC results always achieved a median AUC

25



Table 9: Comparison of the best AutoOC results with a baseline IF and best OpenML
public results.

Dataset
Best Results

AutoOC IF OpenML

Score Score Score Algorithm Runs

Bank Marketing 0.723 0.546 0.938 XGBoost 40,465
Churn 0.746 0.603 0.932 GBM* 5,463
Credit Card 0.976 0.883 0.942 GBM* 416,606
EEG 0.675 0.505 0.998 SVM* 97,277
Mushroom 1.000 0.782 0.998 SVM 12,556
Nomao 0.830 0.668 0.953 Decision Tree 32,749
Phoneme 0.743 0.510 0.971 AdaBoost* 113,799
Spambase 0.806 0.524 0.989 XGBoost 58,350

*Algorithm used in a pipeline (with one or more preprocessing steps). Algorithm
acronyms: GBM – Gradient Boosting Machine; SVM – Support Vector Machine.

higher than the IF. The differences between the best AutoOC and IF re-
sults ranged from 9 pp and 28 pp, with a median difference of 17 pp. As
for the comparison with the best public OpenML results, the supervised hu-
man modeling obtains a median overall AUC of 0.96, which is around 0.18
pp higher when compared with the AutoOC (median AUC of 0.78). While
these results were expected, it should be highlighted that most best Au-
toOC results are of quality, obtaining a good discrimination (AUC>70%) for
three datasets (Bank Marketing, Churn, and Phoneme), a very good pre-
dictive performance (AUC>80%) in two cases (Nomao and Spambase), and
an excellent discrimination (AUC>90%) in two datasets (Credit Card and
Mushroom). We particularly highlight the two excellent AUC results that
even outperformed the best OpenML public results. Indeed, this corresponds
to a high-quality AutoOC performance behavior, since the best OpenML su-
pervised results were obtained after 12,556 (Mushroom) and 416,606 (Credit
Card) human attempts.

26



6. Conclusions

In this work, we presented AutoOC, which consists of a computationally
efficient Grammatical Evolution (GE) to automate the design of lightweight
One-Class Classification (OCC) Machine Learning (ML) models. We particu-
larly explore two AutoOC variants: a pure Neuroevolution (NE) that evolves
two types of deep learning Autoencoders (AEs), standard dense AE and
Variational Autoencoder (VAE); and a general Automated Machine Learn-
ing (AutoML) version termed ALL and that searches for the best of five OCC
algorithms, namely Isolation Forest (IF), Local Outlier Factor (LOF), One-
Class SVM (OC-SVM), AE and VAE. The proposed GE adopts an evolution-
ary multi-objective optimization approach, aiming to maximize the predic-
tive performance of the OCC learners while minimizing their training time.
Moreover, it includes two mechanisms to speed up the execution time, a pe-
riodic sampling of the training data and a fitness evaluation parallelization
by using a multi-core processing. To the best of our knowledge, this is the
first time that GE has been applied as a NE and AutoML for OCC tasks.

A large set of empirical experiments was held, considering eight pub-
lic domain datasets retrieved from the OpenML platform, two GE variants
(NE and ALL) and two validation scenarios (unsupervised and supervised).
Overall, competitive results were achieved by the proposed AutoOC, which
is capable of modeling large datasets using a reasonable amount of computa-
tional resources. For instance, for the largest analyzed dataset (Credit Card,
which contains around 285 thousand examples) and supervised validation
mode, the median execution time of AutoOC was around 16 minutes for the
general ALL AutoML and around 37 minutes for the NE. Moreover, the op-
timized One-Class Classification (OCC) models require a reduced training
time. For example, when assuming the sampled s=2,500 training examples
and the best Pareto predictive performance results, the ALL setup requires a
median training time that is lower than 1 s, while the NE variant optimizes
AEs that need a median training time of 8.2 s. As for the predictive perfor-
mance AutoOC results, quality Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) curve values (e.g., >70%) were obtained for
seven of the eight analyzed datasets. The AutoOC tool clearly outperformed
a baseline IF and even managed to surpass the best public OpenML human
modeling approach for two datasets (Credit and Mushroom).

In future work, we intend to explore the use of other NE algorithms, such
as Genetic Programming, in the context of OCC. Additionally, we intend to

27



test our method on a wider range of datasets and add more OCC algorithms
to the grammar to further validate its effectiveness.

Acknowledgments

We wish to thank the anonymous reviewers for their helpful comments.

References

[1] K. O. Stanley, D. B. D’Ambrosio, J. Gauci, A Hypercube-Based En-
coding for Evolving Large-Scale Neural Networks, Artificial Life 15 (2)
(2009) 185–212. doi:10.1162/artl.2009.15.2.15202.

[2] D. Floreano, P. Dürr, C. Mattiussi, Neuroevolution: From Architectures
to Learning, Evolutionary Intelligence 1 (1) (2008) 47–62. doi:10.100
7/s12065-007-0002-4.

[3] P. Cortez, P. J. Pereira, R. Mendes, Multi-step Time Series Predic-
tion Intervals Using Neuroevolution, Neural Computing and Applica-
tions 32 (13) (2020) 8939–8953. doi:10.1007/s00521-019-04387-3.

[4] D. Baymurzina, E. A. Golikov, M. S. Burtsev, A Review of Neu-
ral Architecture Search, Neurocomputing 474 (2022) 82–93. doi:

10.1016/j.neucom.2021.12.014.

[5] L. Ferreira, A. L. Pilastri, C. M. Martins, P. M. Pires, P. Cortez, A
Comparison of AutoML Tools for Machine Learning, Deep Learning
and XGBoost, in: International Joint Conference on Neural Networks,
IJCNN 2021, Shenzhen, China, July 18-22, 2021, IEEE, 2021, pp. 1–8.
doi:10.1109/IJCNN52387.2021.9534091.

[6] T. Cetto, J. Byrne, X. Xu, D. Moloney, Size/Accuracy Trade-Off
in Convolutional Neural Networks: An Evolutionary Approach, in:
L. Oneto, N. Navarin, A. Sperduti, D. Anguita (Eds.), Recent Ad-
vances in Big Data and Deep Learning, Proceedings of the INNS Big
Data and Deep Learning Conference INNSBDDL 2019, held at Sestri
Levante, Genova, Italy 16-18 April 2019, Springer, 2019, pp. 17–26.
doi:10.1007/978-3-030-16841-4\ 3.

28



[7] T. Z. Miranda, D. B. Sardinha, M. P. Basgalupp, R. Cerri, A New Gram-
matical Evolution Method for Generating Deep Convolutional Neural
Networks with Novel Topologies, in: J. E. Fieldsend, M. Wagner (Eds.),
GECCO ’22: Genetic and Evolutionary Computation Conference, Com-
panion Volume, Boston, Massachusetts, USA, July 9 - 13, 2022, ACM,
2022, pp. 663–666. doi:10.1145/3520304.3529025.

[8] M. M. Moya, D. R. Hush, Network Constraints and Multi-objective
Optimization for One-Class Classification, Neural Networks 9 (3) (1996)
463–474. doi:10.1016/0893-6080(95)00120-4.

[9] P. Zola, P. Cortez, E. Brentari, Twitter Alloy Steel Disambiguation and
User Relevance via One-Class and Two-Class News Titles Classifiers,
Neural Computing and Applications 33 (4) (2021) 1245–1260. doi:

10.1007/s00521-020-04991-8.

[10] N. Seliya, A. A. Zadeh, T. M. Khoshgoftaar, A Literature Review on
One-Class Classification and its Potential Applications in Big Data,
Journal of Big Data 8 (1) (2021) 122. doi:10.1186/s40537-021-0

0514-x.

[11] P. Arregoces, J. Vergara, S. A. Gutierrez, J. F. Botero, Network-based
Intrusion Detection: A One-class Classification Approach, in: 2022
IEEE/IFIP Network Operations and Management Symposium, NOMS
2022, Budapest, Hungary, April 25-29, 2022, IEEE, 2022, pp. 1–6.
doi:10.1109/NOMS54207.2022.9789927.

[12] L. Ferreira, A. Pilastri, F. Romano, P. Cortez, Using Supervised and
One-Class Automated Machine Learning for Predictive Maintenance,
Applied Soft Computing 131 (2022) 109820. doi:10.1016/j.asoc.202
2.109820.

[13] D. Ribeiro, L. M. Matos, G. Moreira, A. L. Pilastri, P. Cortez, Iso-
lation Forests and Deep Autoencoders for Industrial Screw Tightening
Anomaly Detection, Computers 11 (4) (2022) 54. doi:10.3390/comp

uters11040054.

[14] C. Ryan, M. O’Neill, J. Collins, Handbook of Grammatical Evolution,
Vol. 1, Springer, 2018.

29



[15] P. J. Pereira, P. Cortez, R. Mendes, Multi-objective Grammatical Evo-
lution of Decision Trees for Mobile Marketing User Conversion Pre-
diction, Expert Systems with Applications 168 (2021) 114287. doi:

10.1016/j.eswa.2020.114287.

[16] J. Vanschoren, J. N. van Rijn, B. Bischl, L. Torgo, OpenML: Networked
Science in Machine Learning, ACM SIGKDD Explorations Newsletter
15 (2) (2013) 49–60. doi:10.1145/2641190.2641198.

[17] P. Balaprakash, A. Tiwari, S. M. Wild, L. Carrington, P. D. Hov-
land, AutoMOMML: Automatic Multi-objective Modeling with Machine
Learning, in: J. M. Kunkel, P. Balaji, J. J. Dongarra (Eds.), High Per-
formance Computing - 31st International Conference, ISC High Perfor-
mance 2016, Frankfurt, Germany, June 19-23, 2016, Proceedings, Vol.
9697 of Lecture Notes in Computer Science, Springer, 2016, pp. 219–239.
doi:10.1007/978-3-319-41321-1\ 12.

[18] A. G. C. de Sá, W. J. G. S. Pinto, L. O. V. B. Oliveira, G. L. Pappa,
RECIPE: A Grammar-Based Framework for Automatically Evolving
Classification Pipelines, in: J. McDermott, M. Castelli, L. Sekanina,
E. Haasdijk, P. Garćıa-Sánchez (Eds.), Genetic Programming - 20th Eu-
ropean Conference, EuroGP 2017, Amsterdam, The Netherlands, April
19-21, 2017, Proceedings, Vol. 10196 of Lecture Notes in Computer Sci-
ence, 2017, pp. 246–261. doi:10.1007/978-3-319-55696-3\ 16.

[19] R. de Lima Thomaz, P. C. Carneiro, J. E. Bonin, T. A. A. Macedo, A. C.
Patrocinio, A. B. Soares, Novel Mahalanobis-based Feature Selection
Improves One-Class Classification of Early Hepatocellular Carcinoma,
Medical & Biological Engineering & Computing 56 (5) (2018) 817–832.
doi:10.1007/s11517-017-1736-5.

[20] Z. Chen, C. K. Yeo, B. Lee, C. T. Lau, Y. Jin, Evolutionary Multi-
objective Optimization Based Ensemble Autoencoders for Image Outlier
Detection, Neurocomputing 309 (2018) 192–200. doi:10.1016/j.neuc
om.2018.05.012.

[21] S. Estevez-Velarde, Y. Gutiérrez, A. Montoyo, Y. Almeida-Cruz, Au-
toML Strategy Based on Grammatical Evolution: A Case Study about
Knowledge Discovery from Text, in: A. Korhonen, D. R. Traum,

30



L. Màrquez (Eds.), Proceedings of the 57th Conference of the Associa-
tion for Computational Linguistics, ACL 2019, Florence, Italy, July 28-
August 2, 2019, Volume 1: Long Papers, Association for Computational
Linguistics, 2019, pp. 4356–4365. doi:10.18653/v1/p19-1428.

[22] C. H. N. L. Jr., H. J. C. Barbosa, Auto-CVE: a Coevolutionary
Approach to Evolve Ensembles in Automated Machine Learning, in:
A. Auger, T. Stützle (Eds.), Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO 2019, Prague, Czech Republic,
July 13-17, 2019, ACM, 2019, pp. 392–400. doi:10.1145/3321707.33
21844.

[23] S. Gardner, O. Golovidov, J. Griffin, P. Koch, W. Thompson, B. Wu-
jek, Y. Xu, Constrained Multi-Objective Optimization for Automated
Machine Learning, in: L. Singh, R. D. D. Veaux, G. Karypis, F. Bonchi,
J. Hill (Eds.), 2019 IEEE International Conference on Data Science and
Advanced Analytics, DSAA 2019, Washington, DC, USA, October 5-8,
2019, IEEE, 2019, pp. 364–373. doi:10.1109/DSAA.2019.00051.

[24] F. Assunção, N. Lourenço, B. Ribeiro, P. Machado, Evolution of Scikit-
Learn Pipelines with Dynamic Structured Grammatical Evolution, in:
P. A. Castillo, J. L. J. Laredo, F. F. de Vega (Eds.), Applications of
Evolutionary Computation - 23rd European Conference, EvoApplica-
tions 2020, Held as Part of EvoStar 2020, Seville, Spain, April 15-17,
2020, Proceedings, Vol. 12104 of Lecture Notes in Computer Science,
Springer, 2020, pp. 530–545. doi:10.1007/978-3-030-43722-0\ 34.

[25] L. A. Moctezuma, M. Molinas, Multi-objective Optimization for EEG
Channel Selection and Accurate Intruder Detection in an EEG-based
Subject Identification System, Scientific Reports 10 (1) (2020) 1–12.
doi:10.1038/s41598-020-62712-6.

[26] S. Estevez-Velarde, Y. Gutiérrez, Y. Almeida-Cruz, A. Mon-
toyo, General-purpose Hierarchical Optimisation of Machine Learning
Pipelines with Grammatical Evolution, Information Sciences 543 (2021)
58–71. doi:10.1016/j.ins.2020.07.035.

[27] R. Marinescu, A. Kishimoto, P. Ram, A. Rawat, M. Wistuba, P. P.
Palmes, A. Botea, Searching for Machine Learning Pipelines Using a

31



Context-Free Grammar, in: Thirty-Fifth AAAI Conference on Artifi-
cial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative
Applications of Artificial Intelligence, IAAI 2021, The Eleventh Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021, AAAI Press, 2021, pp. 8902–8911.
doi:10.1609/aaai.v35i10.17077.

[28] S. Mahjoubi, R. Barhemat, P. Guo, W. Meng, Y. Bao, Prediction
and Multi-objective Optimization of Mechanical, Economical, and En-
vironmental Properties for Strain-hardening Cementitious Composites
(SHCC) Based on Automated Machine Learning and Metaheuristic Al-
gorithms, Journal of Cleaner Production 329 (2021) 129665. doi:

10.1016/j.jclepro.2021.129665.

[29] S. Gardner, O. Golovidov, J. Griffin, P. Koch, R. Shi, B. Wujek, Y. Xu,
Fair AutoML Through Multi-objective Optimization (2021).

[30] J. M. Moyano, S. Ventura, Auto-adaptive Grammar-Guided Genetic
Programming Algorithm to Build Ensembles of Multi-Label Classifiers,
Information Fusion 78 (2022) 1–19. doi:10.1016/j.inffus.2021.07

.005.

[31] F. Pfisterer, Democratizing Machine Learning (2022). doi:10.5282/ed
oc.30947.

[32] M. Hirzel, K. Kate, P. Ram, A. Shinnar, J. Tsay, Gradual AutoML
using Lale, in: A. Zhang, H. Rangwala (Eds.), KDD ’22: The 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, August 14 - 18, 2022, ACM, 2022, pp. 4794–
4795. doi:10.1145/3534678.3542630.

[33] Chris Thornton and Frank Hutter and Holger H. Hoos and Kevin
Leyton-Brown, Auto-WEKA: combined selection and hyperparameter
optimization of classification algorithms, in: The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD 2013, Chicago, IL, USA, August 11-14, 2013, ACM, 2013, pp.
847–855. doi:10.1145/2487575.2487629.

[34] M. O’Neill, C. Ryan, Grammatical evolution, IEEE Transactions on
Evolutionary Computation 5 (4) (2001) 349–358. doi:10.1109/4235.9
42529.

32



[35] T. Nyathi, N. Pillay, Comparison of a Genetic Algorithm to Grammati-
cal Evolution for Automated Design of Genetic Programming Classifica-
tion Algorithms, Expert Systems with Applications 104 (2018) 213–234.
doi:10.1016/j.eswa.2018.03.030.

[36] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A Fast and Elitist Mul-
tiobjective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolu-
tionary Computation 6 (2) (2002) 182–197. doi:10.1109/4235.996017.

[37] C. A. C. Coello, G. B. Lamont, D. A. van Veldhuizen, Evolutionary Al-
gorithms for Solving Multi-objective Problems, Second Edition, Genetic
and Evolutionary Computation Series, Springer, 2007.

[38] T. Fawcett, An introduction to ROC analysis, Pattern Recognition Let-
ters 27 (8) (2006) 861–874. doi:10.1016/j.patrec.2005.10.010.

[39] G. Coelho, L. M. Matos, P. J. Pereira, A. L. Ferreira, A. L. Pilastri,
P. Cortez, Deep Autoencoders for Acoustic Anomaly Detection: Exper-
iments with Working Machine and In-vehicle Audio, Neural Computing
and Applications 34 (22) (2022) 19485–19499. doi:10.1007/s00521-0
22-07375-2.

[40] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Systems, software available from ten-
sorflow.org (2015).
URL https://www.tensorflow.org/

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
Plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: Machine Learning in Python, Journal of Machine Learning
Research 12 (2011) 2825–2830. doi:10.5555/1953048.2078195.

33



[42] Scikit-Learn, Local Outlier Factor (2022).
URL https://scikit-learn.org/stable/modules/generated/skle

arn.neighbors.LocalOutlierFactor.html

[43] Scikit-Learn, Isolation Forest (2022).
URL https://scikit-learn.org/stable/modules/generated/skle

arn.ensemble.IsolationForest.html

[44] Scikit-Learn, One-Class SVM (2022).
URL https://scikit-learn.org/stable/modules/generated/skle

arn.svm.OneClassSVM.html

[45] TensorFlow, Convolutional Variational Autoencoder (2022).
URL https://www.tensorflow.org/tutorials/generative/cvae

[46] TensorFlow, Intro to Autoencoders (2022).
URL https://www.tensorflow.org/tutorials/generative/autoen

coder

[47] M. M. Breunig, H. Kriegel, R. T. Ng, J. Sander, LOF: Identifying
Density-Based Local Outliers, in: W. Chen, J. F. Naughton, P. A. Bern-
stein (Eds.), Proceedings of the 2000 ACM SIGMOD International Con-
ference on Management of Data, May 16-18, 2000, Dallas, Texas, USA,
ACM, 2000, pp. 93–104. doi:10.1145/342009.335388.

[48] F. T. Liu, K. M. Ting, Z. Zhou, Isolation Forest, in: Proceedings of
the 8th IEEE International Conference on Data Mining (ICDM 2008),
December 15-19, 2008, Pisa, Italy, IEEE Computer Society, 2008, pp.
413–422. doi:10.1109/ICDM.2008.17.

[49] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, R. C.
Williamson, Estimating the Support of a High-Dimensional Distribu-
tion, Neural Computation 13 (7) (2001) 1443–1471. doi:10.1162/0899
76601750264965.

[50] K. Patra, R. N. Sethi, D. K. Behera, Anomaly Detection in Rotating
Machinery using Autoencoders Based Onbidirectional LSTM and GRU
Neural Networks, Turkish Journal of Electrical Engineering and Com-
puter Sciences 30 (4) (2022) 1637–1653. doi:10.55730/1300-0632.3

870.

34



[51] H. Gao, B. Qiu, R. J. Duran Barroso, W. Hussain, Y. Xu, X. Wang,
TSMAE: A Novel Anomaly Detection Approach for Internet of Things
Time Series Data Using Memory-Augmented Autoencoder, IEEE Trans-
actions on Network Science and Engineering (2022) 1–1doi:10.1109/
TNSE.2022.3163144.

[52] T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd Edition, Springer
Series in Statistics, Springer, 2009. doi:10.1007/978-0-387-84858-7.

[53] D. P. Kingma, M. Welling, An Introduction to Variational Autoen-
coders, Foundations and Trends in Machine Learning 12 (4) (2019) 307–
392. doi:10.1561/2200000056.

[54] A. S. Edun, C. LaFlamme, S. R. Kingston, C. M. Furse, M. A. Scarpulla,
J. B. Harley, Anomaly Detection of Disconnects Using SSTDR and Vari-
ational Autoencoders, IEEE Sensors Journal 22 (4) (2022) 3484–3492.
doi:10.1109/JSEN.2022.3140922.

[55] M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, E. Hemberg,
M. O’Neill, PonyGE2: Grammatical Evolution in Python, in: P. A. N.
Bosman (Ed.), Genetic and Evolutionary Computation Conference,
Berlin, Germany, July 15-19, 2017, Companion Material Proceedings,
ACM, 2017, pp. 1194–1201. doi:10.1145/3067695.3082469.

[56] L. M. Matos, J. Azevedo, A. Matta, A. L. Pilastri, P. Cortez, R. Mendes,
Categorical Attribute traNsformation Environment (CANE): A python
module for categorical to numeric data preprocessing, Software Impacts
13 (2022) 100359. doi:10.1016/j.simpa.2022.100359.

[57] M. Hollander, D. A. Wolfe, E. Chicken, Nonparametric Statistical Meth-
ods, John Wiley & Sons, 2013.

35


