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Abstract—Indoor positioning performed directly at the end-user device ensures reliability in case the network connection fails but is
limited by the size of the RSS radio map necessary to match the measured array to the device’s location. Reducing the size of the RSS
database enables faster processing, and saves storage space and radio resources necessary for the database transfer, thus cutting
implementation and operation costs, and increasing the quality of service. In this work, we propose EWOk, an Element-Wise
cOmpression using k-means, which reduces the size of the individual radio measurements within the fingerprinting radio map while
sustaining or boosting the dataset’s positioning capabilities. We show that the 7-bit representation of measurements is sufficient in
positioning scenarios, and reducing the data size further using EWOk results in higher compression and faster data transfer and
processing. To eliminate the inherent uncertainty of k-means we propose a data-dependent, non-random initiation scheme to ensure
stability and limit variance. We further combine EWOk with principal component analysis to show its applicability in combination with
other methods, and to demonstrate the efficiency of the resulting multidimensional compression. We evaluate EWOk on 25 RSS
fingerprinting datasets and show that it positively impacts compression efficiency, and positioning performance.
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1 INTRODUCTION

P ERFORMING localization and positioning in indoor en-
vironments on end-user devices is a crucial requirement

for various mobile-centric applications in public and in-
dustrial sectors, extending beyond location-based services
to mobility management, resource management, and user-
centric applications. The arrival of Fifth Generation Mobile
Networks (5G) technologies enables sub-meter positioning
accuracy in outdoor scenarios, but a global and unified so-
lution is still missing in Global Navigation Satellite System
(GNSS)-restricted situations. Cloud, fog, or network-based
localization methods proposed in recent studies, such as [1],
require a continuous network connection, and therefore
any connectivity loss results in simultaneous localization
failure. End-user devices or User Equipment (UE)s, such
as mobile phones, wearables, or Internet of Things (IoT)
devices are often limited in their performance by battery
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limitations, network accessibility, or other computational
constraints. Therefore, reducing the computational, storage,
and network requirements is essential to run efficient po-
sitioning algorithms on such devices [2]. Whether applied
in an industrial complex, hospital, entertainment center, or
shopping mall, finding fast and lightweight techniques for
reliable localization is essential for asset security, user safety,
Quality of Experience (QoE) and Quality of Service (QoS).

Utilizing radio signal measurements for indoor localiza-
tion is widely applied across technologies, including IEEE
802.11 Wireless LAN (Wi-Fi), Bluetooth Low Energy (BLE),
Ultra Wide-Band (UWB) or cellular network signals, while
utilizing various techniques, such as propagation-based
models, fingerprinting, or dead-reckoning [3, 4]. The sig-
nals used for localization range across signal strength mea-
surements (RSS, Reference Signal Received Power (RSRP)),
directional measurements (Angle of Arrival (AoA)) and
temporal information (Time Difference of Arrival (TDoA)).

In a typical indoor environment, such as a factory,
office complex, or university, the signal propagation is
characterized by sparse Line of Sight (LoS) and strong
multipath propagation, making the model-based localiza-
tion techniques unreliable, just like directional or temporal
signal measurements, which is why RSS measurements
and non-parametric methods are utilized. In the scope
of this work, we focus on RSS-based indoor positioning
called fingerprinting as one of the most relevant indoor
positioning methods [5, 6], which typically utilizes a K-
Nearest Neighbors (K-NN) [7] model to estimate the UE
position by finding the closest samples from the labeled
training database (radio map). The volume and quality of
the radio map determine the achievable performance, but
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Fig. 1: Simplified block diagram of the proposed system,
where EWOk is used to create the reduced radio map and
K-NN estimates the user’s position.

the more samples the radio map consists of, the slower
and more computationally complex the positioning task is.
Consequently, K-NN-based fingerprinting creates a trade-
off between maximizing and minimizing the size of the
radio map and its efficient utilization becomes challenging
in large-scale deployments, as well as on performance-
restricted devices [8].

To reduce the strain on the positioning device we pro-
pose and evaluate EWOk, an Element-Wise cOmpression
using k-means, which reduces the size of the individual
elements of the RSS radio map on the bit level while
sustaining the database’s positioning capabilities. The sim-
plified implementation of EWOk to a K-NN-based posi-
tioning scheme is introduced in Fig. 1. EWOk, as a com-
pression scheme, achieves a substantial reduction of the
radio map data size, while leaving the number of samples
and Access Point (AP)s in the dataset unchanged. Multi-
dimensional compression can be achieved by combining
EWOk with additional sample-wise compression schemes.
EWOK performs initial compression and offline evaluation
of the dataset positioning performance on the network side,
while the end-user devices only perform localization on the
reduced database in real-time. The proposed implementa-
tion of EWOk with K-NN positioning has the following
advantages over the plain K-NN deployment:

• Due to the reduced radio map, the system effectively
saves network data, as well as on-device storage.

• Adjustable trade-off between Compression Ratio
(CR) and positioning error, which enables EWOk to
adapt smoothly to deployment requirements.

• A faster operation of the fingerprinting models while
using K-NN, especially on voluminous datasets.

The main contributions of this paper are as follows:

• We implement EWOk, an Element-Wise cOmpres-
sion using k-means, as an effective RSS radio map
compression technique applicable on fingerprinting
datasets. We show that all RSS data points can be
stored using a 7-bit representation with negligible
compression error, and that they can be further com-
pressed into lower-bit representations using EWOk.
Consequently, we propose an RSS-based Indoor Po-
sitioning System (IPS) with an offline training phase
performed on the network, and prediction phase at
the UE, while minimizing computational, memory,
and data transfer loads.

• We propose 6 different initialization methods for k-
means clustering based on the input data distribu-
tion, removing the effect of randomness from the
resulting positioning performance. The initialization
methods work on arbitrary data and are not limited
to the proposed system.

• We apply and analyse EWOk with K-NN position-
ing on 25 different RSS positioning datasets (Wi-Fi,
BLE, and simulated), and compare the localization
performance before and after the compression, when
utilizing both the simple configuration and the best-
performing positioning algorithm settings of the
K-NN, according to the known literature. We then
further improve the compressed-datasets positioning
performance by finding the optimum parameters
for our implementation, resulting in improved posi-
tioning compared to the best-performing parameter
results across all datasets.

• We demonstrate the multi-dimensional compression
capabilities of EWOk by combining it with Principal
Component Analysis (PCA) to achieve the combined
compression of both feature-vector and individual
data elements. We show, that the combined approach
outperforms the standalone solution in terms of
trade-off between the positioning accuracy and CR
by a significant margin.

All the contributions mentioned above have a positive
impact on extending the capabilities of the current on-
device IPSs by enabling UEs to operate with larger, and
therefore more robust and accurate positioning databases.
The solution can be implemented across the spectrum of
technologies and deployments, and ensures the efficient
and uninterrupted localization regardless the connectivity
status. Additionally, stand-alone EWOk might be applied
on other (including non-positioning) kinds of data.

The rest of this paper is structured as follows: Section 2
presents the overview of the current State-of-the-Art and
pinpoints the knowledge gaps, which are filled by this
paper. Section 3 describes the methods and materials used in
this paper. These are further utilized in Section 4, where the
proposed method is explained in detail. Section 5 introduces
the metrics used for the evaluation of the proposed system
and presents the numerical results, followed by the Discus-
sion subsection. Section 6 summarizes the main findings.

2 RELATED LITERATURE

2.1 Fingerprinting-based Indoor Positioning

Fingerprinting localization is one of the most popular solu-
tions of IPS, mostly as it does not require previous knowl-
edge of the environment or location of APs on the side of
the model. As a trade-off, its performance is strongly de-
termined by the database of available fingerprints, namely
the database’s quality, granularity, and up-to-dateness. The
State-of-the-art (SOTA) on indoor positioning is surveyed
in [3, 4, 9, 10], discussing available solutions, algorithms,
and technologies for IPS. These surveys list and evaluate
localization techniques, used technologies, and/or applica-
tions of indoor localization in health, security, or tracking
services.
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The key challenge of fingerprinting is to ensure a stable
environment with a high-quality radio map. The authors
of [11] proposed a secondary BLE beacon deployment in
areas poorly covered by Wi-Fi signal and proposed a hierar-
chical system to perform localization. The authors achieved
good positioning accuracy, but the additionally needed in-
frastructure could prove unfeasible in certain cases (cost,
restrictions, etc.). To cope with the rapid changes within
the localization environment, such as AP movement or
power adjustment, the authors of [1] proposed an automatic
fingerprint update algorithm to filter out any outdated APs
in the environment by using Gaussian process regression.
The work proposed that the UE localization and database
update are performed at the server side, which, on one
hand, reduces the computational load for the UE, but, on
the other hand, disables the localization if the connection
link is lost. In contrast, our proposed scheme does not
reduce the number of APs, nor the number of measure-
ments. The authors of [12] built an IPS without performing
a site survey from the Full Model (FM) signal distributions.
They proposed a model based on public data about base
stations’ locations to obtain the radio map by using a
path-loss model. The localization is then performed using
K-NN method and path-matching with promising results.
Another Wi-Fi localization system without the requirement
of prior site survey was designed in [13]. Tilejunction model
proposed in [14] utilizes a linear programming approach to
mitigate the noise contained within Wi-Fi fingerprints for
accurate localization by matching the results to created tiles,
rather than the training fingerprints. The presented results
showed an improved positioning performance over the
benchmark methods, such as Kullback-Leibler divergence-
based method or RADAR [15]. The low-overhead finger-
printing system proposed in [16] reduces the implementa-
tion overheads by region-partitioning the APs in the de-
ployment. The evaluation performed with heterogeneous
devices over a long period showed the method’s robustness.
Similar conclusions were found in [17], implementing a self-
updating algorithm for RSS samples. The authors of [18]
propose a novel matching algorithm for localization that
considers spatial relations between the samples on top of
their similarity in feature space.

2.2 Boosting the Performance of K-NN Fingerprinting

Much research has focused on improving the K-NN’s
performance by utilizing additional algorithms or physi-
cal quantities [5]. For instance, combining RSS, magnetic,
and motion data can highly increase the quality of the
crowdsourced fingerprinting database, as well as that of
the prediction itself. The UbiF in system proposed in [19]
mitigates signal bias and path error while mapping both
Radio Frequency (RF) and magnetic data into the training
database. The presented results outperform the stand-alone
RSS solution by a significant margin. When performing
prior clustering, as proposed by [20], their algorithm is able
to boost the fingerprinting prediction speed. Specifically, it
narrows the K-NN search space to the fingerprints with
the same strongest AP as a reference measurement. Conse-
quently, the improvement in the prediction speed leads to a
decrease in positioning accuracy.

Numerous works aim to improve the performance of
K-NN by optimizing the algorithm itself by e.g. weighting
samples or features. A two-fold, Weighted K-NN algorithm
is proposed in [21], where in the first iteration the algorithm
selects the closest cluster of fingerprints, and it finds in the
second iteration the positioning estimates from searching in
the selected cluster’s samples. The method boosts prediction
time at the cost of positioning accuracy.

In this work, we focus on improving the performance of
K-NN by combining it with additional methods (clustering
and PCA). As a side note, the utilized code performs matrix-
based distance search and task parallelization, which boost
the prediction speed compared to the plain algorithm but
are not the main research objectives of this work.

2.3 RSS Radio Map Compression

The initial idea of utilizing k-means clustering as a compres-
sion method was previously presented by the authors in [6].
The work introduced an offline compression scheme with an
online adaptive loop, which allows datasets to update over
time and therefore is able to adjust to a slowly changing
environment. Although the resulting adaptive algorithm
does not decrease positioning performance, it assumes all
online fingerprints as trustworthy and indirectly incorpo-
rates them into the training dataset. The work simplifies the
setting of parameter k depending on the number of unique
values in the training data only, leading to sub-optimal
settings for certain datasets, resulting in higher errors at
the same compression level. The uncertainty of the random
initialization is not considered as well.

The authors of [22] combine the floor-wise k-means
clustering with K-NN algorithm to significantly reduce the
radio map and the floor prediction time, compared to the
standard K-NN approach. The proposed model extracts
several representative centroid heads per floor, which are
later used to estimate the floor. The resulting floor hit rate is
comparable with the benchmark method.

The topic of radio map compression while boosting
the performance capabilities was also broadly covered by
[23]. The fingerprinting dataset is transformed into a radio
map image, which is compressed using Discrete Cosine
Transform (DCT). This method allows significant size re-
duction while its positioning capabilities are comparable to
the traditional fingerprinting approach. The disadvantage
of utilizing DCT to compress the radio map is the necessity
to perform inverse DCT to recover all fingerprints before
utilizing the data further.

In contrast to the literature presented above, we propose
a lightweight compression method that can be implemented
into any existing mobile system that boosts the desired sys-
tem’s data storage and transfer capabilities. Additionally, we
consider 25 different indoor positioning datasets previously
used in the literature for evaluation, rather than considering
only a single, convenient deployment, in order to show the
wide and unrestricted applicability.

3 MATERIALS AND METHODS

In this section, we introduce the algorithms, parameters
and datasets that contribute to the proposed solution. The
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symbols and notations used in the paper are summarized
in Table 1. For the sake of clarity, we denote the number of
clusters of k-means as k, while the number of considered
neighbors of K-NN is represented by capital K .

TABLE 1: Symbols and notation used in this paper

AP Number of APs [-]
CR Compression ratio [-]
CREWOk Compression ratio of EWOk [-]
CRpca Compression ratio of PCA [-]
CRtot Compression ratio of combined compression methods [-]
∆ϵ3D ∆ζ Dissimilarity parameter [-]
ϵ3D 3D positioning error [m]
ϵ̃3Dα ϵ̃3Dβ Normalized 3D positioning error to baseline α, β resp. [-]
K Number of neighbors in K-NN [-]
k Number of clusters in k-means [-]
O Complexity [-]
S Number of samples in the whole dataset [-]
Stest Number of samples in the testing dataset [-]
Strain Number of samples in the training dataset [-]
Thr Threshold for total variance of PCA [%]
ζ Floor hit rate [%]
ζ̃α ζ̃β Normalized floor hit rate to baseline α, β resp. [-]

3.1 K-Nearest Neighbors algorithm
The K-NN algorithm is one of the most commonly used
indoor positioning methods, especially in the context of
fingerprinting approaches [3, 7, 12]. The algorithm requires
the existing (training) database of fingerprints consisting of
features (RSS measurement array) and the corresponding
labels (positioning coordinates, building, and floor indexes).
To estimate the labels of a new sample, it calculates its dis-
tance to each sample’s features from the training database
based on the specified distance metric. For K-NN algo-
rithm, the training dataset is not used to train the specific
weights or parameters of the model, as is the case with
Neural Network (NN), Support Vector Machine (SVM) or
other Machine Learning (ML) algorithms. Here, the training
database serves directly as a source of samples that are
used to predict the currently considered labels. As such,
the plain version of K-NN does require no training, but
as a trade-off, prediction is usually more resource-expensive
than in the other methods, especially if the training dataset
is voluminous. The lack of training phase for K-NN is
often considered an advantage since there is no risk of
poorly training the model, which can occur when using ML
methods. Despite K-NN’s drawbacks and limitations, it is
still one of the most efficient, accurate and well-performing
algorithms used for indoor positioning purposes [24, 25].

In terms of complexity, the training phase of K-NN is
described as O(1) as no prior training is required, while the
complexity of prediction is generally defined as

O(Stest ·K ·AP ) (1)

depending on the size of the vocabulary (num. of training
samples), the number of considered neighbors, and the
dimensionality of the input. Moreover, the complexity of
K-NN is dependent on the selected distance metric.

Much research in the related literature has resulted in nu-
merous extensions and alterations of the K-NN. Weighted
K-NN (WKNN) and its alternatives [26], authors in [27]
additionally consider the importance of chosen nearest

neighbors by the inverse of their distance, which in certain
cases leads to improved performance. The optimization of
K-NN’s prediction time by applying clustering is widely
described in Section 2. The authors of [28] propose the
kTree method to choose the optimal number of neighbors K
without the costly cross-validation. In this work, we utilize
the plain version of K-NN.

3.2 k-means Algorithm

One of the fundamental building blocks of the proposed
compression algorithm is the utilization of k-means cluster-
ing algorithm [7] to reduce the number of possible values in
the RSS data. Consequently, the allowed values are based on
the data distribution of the specific dataset, minimizing the
resulting reconstruction error caused by the compression.
As a result, we are able to represent each value from the
whole RSS dataset using a smaller number of bits, as we
described below.

Despite the k-means clustering algorithm being one of
the basic clustering approaches, careful choice of its hyper-
parameters and behavior is crucial in order to maximize per-
formance. The first and foremost parameter of the method
is the selection of the number of clusters, denoted as k.
In k-means, each cluster is specified solely by its centroid
coordinates, and the final k is selected most commonly by
parameter sweeping. The proposed k-means compression in
EWOk is based on substituting the values of the RSS data
in the dataset with the coordinate of their closest centroid (a
single number).

The second parameter, the distance metric, defines how
the similarity between each sample and the centroids is
calculated. In addition, other parameters and configurable
functions included in the algorithm are defining the iterative
behavior, the means of centroid initialization before the
first iteration, the action after finding the empty centroid,
the maximum number of iterations, convergence definition,
number of replicates, and more.

The k-means is initialized by selecting k initial clusters
according to the pre-defined initialization method. Next, the
algorithm repeats the following two steps until convergence.
First, each input sample is assigned to its closest centroid
based on the distance metric. Second, the centroid coordi-
nate is adjusted to minimize the distance to all its assigned
samples. The algorithm finishes after the centroid coordi-
nates do not change between two iterations (convergence)
or the maximum number of iterations is reached.

We utilize k-means, rather than other, more complex
clustering algorithms since our goal is to define each cluster
by a singular value in order to perform efficient com-
pression. Compared to Gaussian mixture model clustering,
which defines each cluster centroid by its center coordinate
and its covariance, k-means is much faster to train since it
does not have to fit the distributions in each iteration. One
of k-means’ advantages is its linear complexity of training
defined as

O(n · k · d · i) (2)

where n determines the number of d-dimensional samples,
k represents the number of clusters and i the number of re-
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quired iterations to converge [7]. For EWOk, the complexity
is defined as

O(Strain ·AP · k · i) (3)

as the inputs are one-dimensional and the number of input
samples equals Strain ·AP . The k-means’ downside of being
able to represent only symmetric shapes is diminished by
the fact that we consider single numbers as inputs. Other
methods, e.g. density-based clustering methods, are unsuit-
able for the task.

3.3 Data Representations and Distance Metrics
As described above, both k-means and K-NN algorithms
measure the similarity between samples based on their
calculated distance. As a result, two separate parameters
are implemented and applied on the data within the system,
namely data representation and distance metrics.

Signal strengths are traditionally measured in decibel-
milliwatts (dBm), and the difference of 3 dBm means a
double increase or decrease of the signal strength measured
in Watts. This example clearly shows that the choice of the
units in which we represent the data has a large impact on
the resulting differences between two samples. The ”units”
in which we represent the data are specified by the data
representation parameter. We consider 3 data representation
options: positive, powed with β = e, and exponential with
α = 24, as defined in [29]. Positive data representation is a
linear transformation, which subtracts the minimum value
from the database from all samples and represents the un-
measured APs by 0. Powed and exponential representations
introduce non-linearity to the measurements, which im-
prove later positioning performance of certain datasets [5].

After turning the data into the desired format by chang-
ing their data representation, it is necessary for both k-
means and K-NN algorithms to calculate the distances
between the samples. In this work, we utilize 9 different
distance metrics for K-NN, namely Manhattan, Euclidean,
Squared Euclidean, Hamming, Logarithmic Gaussian Dis-
tance (LGD), Neyman, Penalized Logarithmic Gaussian Dis-
tance with penalty 10 (PLGD10) and 40 (PLGD40), and
Sørensen [29], [30],to optimize the performance of K-NN
positioning. The selected distances were chosen from nu-
merous alternatives based on their performance and appli-
cability in the related literature.

For k-means clustering, only Manhattan and Squared
Euclidean distance metrics were considered. When utilizing
Manhattan distance, compared to the Squared Euclidean,
the samples further from the centroid have lesser impact
on the result, while samples closer to it have a stronger
impact on the coordinates of the centroid. Consequently, the
centroid selection is more affected by the “close samples’
majority vote”. The remaining distances are found unsuit-
able for the task due to e.g. their regularization parameters.

3.4 PCA
PCA is an algorithm, which extracts the principal eigen-
vectors from the multi-dimensional data and uses them
to transfer the data into their orthogonal basis [31]. It
is usually calculated using Singular Value Decomposition
(SVD) algorithm and is often utilized for data compression,

dimensionality reduction [32], or feature extraction [33] as
stand-alone solution or combined with other methods.

We utilize PCA as the compression scheme with the
adjustable CR mechanism based on the desired total vari-
ance (denoted as threshold or Thr) that is meant to be
preserved within the data. After calculating all principal
component coefficients, we only choose the N strongest
eigenvectors, within which the desired total variance is
included. The principle of PCA is widely covered in the
referenced literature, therefore we omit the detailed mathe-
matical description.

3.5 Available Datasets

In this work, we utilize 25 fingerprinting datasets in order to
evaluate our proposed methods, and compare them to other
previously published works. These datasets were created by
University of Minho, Portugal (DSI 1&2 [34], MINT 1 [35]),
Universitat Jaume I, Spain (SIM 1 [5], UJI 1&2 [36], UJIB 1&2
[37], and LIB 1&2 [38]), University of Extremadura, Spain
(UEXB 1&2&3 [39]), University of Mannheim, Germany
(MAN 1&2 [40], [41]), University of Sydney, Australia
(UTS 1 [42]) and Tampere University, Finland (TUT 1&2
[22, 30], TUT 3&4 [43], TUT 5 [44], TUT 6&7 [45], SAH 1
and TIE 1 [46]). Additional and detailed information about
the majority of the datasets may be found in [5], including
the SIM 1 dataset. Moreover, we choose the fingerprinting
datasets gathered using multiple technologies, namely Wi-Fi
(DSI 1&2, LIB 1&2, MAN 1&2, MINT 1, TUT 1-7, UJI 1&2,
UTS 1), BLE (UJIB 1&2, UEXB 1&2&3) and simulated envi-
ronment (SIM 1), to demonstrate the universal applicability
of the proposed solution. Some or all of these datasets were
previously used in many other publications including (but
not limited to) [26, 47].

4 PROPOSED SYSTEM MODEL

4.1 General System Model

Below we specify the individual components of the con-
sidered indoor positioning scheme, visualized in Fig. 2.
The proposed Element-Wise cOmpression using k-means, or
EWOk, includes the k-means clustering of the training fea-
tures, the creation of the reduced training database, and the
compression of new samples. The considered positioning
prediction (with the K-NN algorithm) is performed after
EWOk. We denote, that K-NN can be interchanged for an
arbitrary positioning algorithm as it works independently
with the EWOk scheme.

In order to off-load the majority of the computational
load to train and evaluate the model from the UE to the
network side, the proposed system model is divided into
offline and online stages. The offline training is realized
on the network side, and its main objectives are to find
the representative centroid coordinates from the training
data, compress the original radio map and evaluate the
performance of the system while tuning the system pa-
rameters such as k, initialization method, K in K-NN or
the distance metrics. Online prediction is realized on the
UE’s side and its only objective is to accurately estimate the
device’s location. In practice, to enable the online prediction,
the UE requires the reduced radio map and the centroids.
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of a single fingerprint compression.

Fig. 2 depicts the overall system model along with the
most impactful parameters of each building block. The
offline training is initiated by applying the chosen data
representation on the training features (of the training
dataset). Then, the EWOk algorithm is initiated. As shown
in Fig. 2, the main parameters defining the EWOk’s behavior
are the chosen number of clusters k, which directly sets
the achieved CR, initialization method, which is further
discussed below, and the distance metric. The data fed to the
k-means is the matrix of all training features, reshaped into
a single, 1-dimensional vector. The algorithm returns the
coordinates of the centroids and the clustered feature vector.
The matrix of reduced training features is then created by
reshaping the clustered vector to the original matrix shape.
In order to create the reconstructed radio map, the centroid
indexes are substituted with the corresponding centroid
coordinates. The reduced training database is created by
pairing the reduced training features with the correspond-
ing labels (positioning coordinates). The simplified example
of k-means training and later compression of a single fin-
gerprint (AP=8) is depicted in Fig. 3 with k = 4 clusters and
without applying data representation on RSS data for better
visualization.

The online prediction is performed sample-wise on the
side of the UE. First, the data representation is applied onto
the sample, after which EWOk algorithm substitutes all
values in the measurement array with the closest centroid
coordinate. Afterward, the K-NN algorithm estimates the
corresponding location by matching the reduced measure-

ment array with the reduced training database. The behav-
ior of K-NN regressor is defined by the chosen number of
considered neighbors K and the selected distance metric [5].
Apart from that, the algorithm averages the neighbors’
labels in case of equal distance from the sample when
exceeding the chosen K , along with additional supporting
functions ensuring the seamless flow of data.

4.2 Compression Efficiency of RSS Data

In this work, we consider the CR metric as the ratio between
the original and compressed size of the radio map as:

CR =
size(original radio map)

size(compressed radio map)
(4)

where size() denotes the size used to represent the consid-
ered radio map. Therefore, CR = 3 denotes the three-fold
decrease of the radio map size. Since the number of samples
is unchanged throughout the compression process, the in-
terpretation can be simplified to the ratio of sizes of a single
measured RSS sample before and after its compression.

In order to objectively evaluate the compression capabil-
ities of the algorithm, which compresses every individual
RSS value, we first define the appropriate benchmark for
the CR metric. According to the Institute of Electrical and
Electronics Engineers (IEEE) 802.11 wireless Local Area Net-
work (LAN) standard on radio resource measurements [48],
ETSI EN 300 328 [49] and ETSI EN 302 502 [50] speci-
fications, the maximum Wi-Fi antenna transmit power is
20 dBm for 2.4 GHz bands and up to 30 dBm in 5 GHz
bands. The highest possible detectable Wi-Fi RSS values are
approx. 10 dBm. Furthermore, the noise floor of the Wi-Fi
signal is approx. −100 dBm, depending on the device, there-
fore lower RSS does not have to be considered. Moreover,
the network reports of RSRP within Long Term Evolution
(LTE) system map the measured signal strength into 113
integer values, with the reporting range from −156 dBm to
−44 dBm with 1 dB resolution, as defined in 3rd Generation
Partnership Project (3GPP) standards [51], while the New
Radio (NR) standards consider 128 values [52] instead.
According to the current standards, the RSS values are
reported as the whole numbers Z, limiting their resolution.
Consequently, the whole range of possible RSS values may
be represented using 7 bits data format, since 7 bits are able
to represent up to 128 different values. As the result, the
benchmark and the CR value of 1 (no compression) refers to
the raw RSS values with 7-bit representation.

Nevertheless, the measured RSS values in datasets
MAN 2, TUT 1, TUT 2, TUT 5, MINT 1, UEX 1, UEX 2,
UEX 3, UJI B1, and UJI B2 were post-processed by means
such as averaging or interpolating the measurements over
a predefined area. As an outcome, the RSS values in these
datasets are stored in 64 bit (double) format (values belong
to a subset of real numbers R). In our previous work [6],
we considered 64 bit representation as the benchmark for
such data. We prove that the highly accurate data format of
the RSS values is redundant in Section 5 and that such data
can be equivalently represented using 7 bits only. As such,
all RSS values in all datasets are transformed into the 7-bit
representation and thus we are able to define the common
baseline for the CR. Nevertheless, the true CR of real-valued
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Fig. 4: Achievable CR using EWOk based on the number of
clusters (possible values) in the data.

datasets is considerably higher, as we reduce their bit-wise
representation from 64 bits, instead of just from 7.

As described above, EWOk performs the compression of
each element in the radio map. Consequently, the obtained
CR of EWOk towards the 7-bit baseline is calculated as:

CREWOk =
7

ceil(log2(k))
(5)

where ceil() denotes a function rounding up to the nearest
integer, and k is the number of clusters in k-means. We
generalize the EWOk CR to the full radio map compression
since the total number of elements during EWOk (number of
APs and measurements) compression remains unchanged.

It is also possible to show the dependency of the
CREWOk on the number of clusters k in the proposed
method, as the number of clusters directly states the amount
of possible RSS values across the whole compressed dataset.
Fig. 4 visualizes such dependency and shows that the higher
the compression ratio, the lower number of clusters, and
therefore fewer bits are required to distinguish different RSS
values.

Fig. 4 also shows that for the maximum CR and the
highest possible number of clusters, it is necessary to choose
the number of clusters k equal to the powers of 2, e.g. 2, 4,
8, or 16, since those refer to the maximum number of values
stored using 1, 2, 3, or 4 bits, respectively. The CR is then
calculated as stated above.

When the multidimensional compression involving PCA
is considered, the CR calculation has to be adjusted accord-
ingly. PCA reduces the number of APs in the dataset, this
is why the resulting CR (CRpca) is obtained as a ratio of
the number of APs in the original dataset to the number of
APs after the PCA compression. We then combine the two
compression schemes, as described later. The resulting CR
of the combined methods (CRtot) is calculated as:

CRtot = CRpca · CREWOk (6)

In addition, when calculating the CR we consider only
the ratio of the training and test feature sizes before and

Radio
Map -61 -62 -73 -97 -97-41-71 -97

-57 -59 -75 -97 -97-40-75 -97
run #1

-55 -64 -76 -97 -97-38-73 -97EWOk
(rand. init.)

run #2

run #3

Fig. 5: Simplified random initialization example

after compression. The size of both training and test labels
is omitted in the calculation, as the compression is not
applied there and its impact on the total size is different for
each dataset. Additionally, we omit the additional overhead
necessary to perform the positioning, namely the array of
cluster centroids and, in the case of utilizing PCA, the
coefficient matrix. Nevertheless, their size is insignificant
compared to the size of each dataset.

4.3 Random initialization effect of k-means algorithm

The main aspect affecting the performance of the K-NN
algorithm is the actual input data (given the same pa-
rameters), resulting in an identical outcome each time the
algorithm is repeated. In contrast, the k-means algorithm
in its default version randomly initiates the initial centroid
coordinates and consequently converges to different final
constellations. Fig. 5 demonstrates such behavior, depicting
three different runs of EWOk with the same settings and
training data while resulting in different centroid coordi-
nates. As a result, the reconstruction error of the RSS data, as
well as a resulting positioning performance while utilizing
the reduced dataset may vary after each run. The issue of
k-means random initialization effect was extensively stud-
ied in [53], where the authors highlight the importance of
proper initialization algorithm. Moreover, the survey states
that the most reliable way to find the true cluster centroids
is by repeating the algorithm, which creates additional
training overhead.

The initialization of the algorithm also determines the
number of iterations that the algorithm needs to perform
before convergence, as introduced in Eq. 2, effectively deter-
mining the algorithm’s complexity. In this work, we evalu-
ate two distinct random initialization algorithms combined
with EWOk, namely random sample initialization and k++
initialization. Random sample initialization, further denoted
as ”random”, initiates the centroid locations by drawing k
different samples at random from the input data. The k++
initialization, proposed by [54], is a randomized version of
”Furthest point heuristic” algorithm [55]. The k++ selects
the first centroid at random from the training samples’
population, and each subsequent centroid is chosen as a
random training sample with the probability proportional
to the sample’s distance from the currently chosen centroids.
The method increases both convergence speed and accuracy
of k-means. Nevertheless, due to the randomness of the
initialization method, the final result after each run may
significantly vary and numerous repetitions of the algorithm
have to be performed in order to find the desired solution.

In case the evaluation metric is the error between the
original feature vector (all training samples’ features re-
shaped into a single vector) and its reconstruction after
EWOk, the resulting performance after each iteration can
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be easily calculated, and the best-performing centroid selec-
tion can be selected directly. When applying the clustered
dataset’s 3-Dimensional (3D) positioning accuracy as the
primary evaluation metric, as is the case in this work,
the performance evaluation requires extra steps and effort.
According to our experiments, lower difference between
the original and reconstructed samples does not necessarily
mean better positioning performance. Consequently, to eval-
uate the centroid selection after each iteration, the system
has to perform K-NN positioning using the compressed
dataset to obtain the value of the 3D positioning error. As
such, the cost of evaluating and optimizing the solution
substantially increases.

In this work, we propose several approaches to select the
initial cluster coordinates for k-means algorithm in order
to completely remove the ”different run, different result”
methodology from the initialization. Those approaches are
derived from the training samples’ distribution. The pro-
posed initialization settings are based on the Empirical
Cumulative Distribution Function (ECDF) of the input data
and their goal is to always set a reasonable starting point for
the clustering algorithm. The general idea behind all pro-
posed settings is to divide the ECDF of the vector of training
features into segments, whose borders are selected as the
initial centroid coordinates. All initialization settings disre-
gard the unmeasured values from the input vector since the
majority of samples across all databases include more than
half of their measurements as unmeasured values, which
would consequently skew the ECDF. We propose ”max”,
”min”, ”xtr”, ”imax”, ”imin”, and ”ixtr” initialization set-
tings based solely on the input’s distribution, from which
the best performing one can be obtained while evaluating
the training database.

The ”max” and ”min” initializations equidistantly divide
the cumulative distribution function into N segments using
N − 1 horizontal lines, where N equals the number of
clusters k. Thus, each segment contains approximately the
same number of (measured) samples. The N − 1 values
at which the horizontal lines intersect the distribution are
selected as the initial centroid coordinates. Additionally,
”max” initialization sets the maximum measured value to
the N th cluster, whereas the ”min” method assigns the
minimum measured value - 1 to the N th cluster (the value
considered as the unmeasured in the dataset). The ”xtr”
setting equidistantly divides the distribution using N − 2
lines, and the two remaining clusters are assigned to the
minimum and the maximum, respectively.

The ”imax” and ”imin” settings (incremental max and
min) divide the ECDF similarly, only the distances between
the horizontal lines are linearly increasing. The ECDF is first
divided into

∑N−1
i=o (N − i) segments, and starting from the

top, the 1st horizontal line spans 1 segment, the 2nd line 2
segments, etc. The intersections of lines and the distribution
curve are then chosen as the first N − 1 centroid coordi-
nates, and the last centroid is assigned to the maximum
and minimum, respectively. The ”ixtr” setting performs the
division similarly into

∑N−2
i=o (N − i) segments and the first

N − 2 centroids are chosen accordingly. The two remaining
centroids are assigned to the maximum and minimum value
from the input vector. The individual initialization methods
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Fig. 6: Simplified system model with implemented PCA
compression scheme applied after data representation. The
threshold Thr defines the variance kept after compression.

are depicted in Section 5.

4.4 Multidimensional Compression

In order to boost the compression capabilities of the pre-
sented system, and to achieve a true multidimensional
compression, we additionally implement the PCA-based
compression into the scheme in order to reduce the number
of APs while minimizing the loss of information included
within the data. Applying PCA results in deeper com-
pression, improved prediction times, and in certain cases,
improved positioning performance, as we will show in
the following Section 5. The PCA compression is applied
after applying the data representation onto the data in the
scheme, as shown in Fig. 6 and before applying EWOk. The
coefficients and the eigenvectors are obtained by performing
the analysis on the training features only, and then they are
applied to the test features. The rest of the compression
scheme is left unchanged, and therefore EWOk is now
applied to the resulting principal components’ elements.

The only parameter we consider for PCA is the per-
centage of total variance left within the data, defined by
the threshold (Thr). The same selection of Thr results in
a varying number of principal components left per each
dataset, and therefore the CR is different per dataset as well.

Additionally, as PCA reduces the number of elements in
each feature vector, it reduces the complexity of the K-NN
algorithm at the same time to

O(Stest ·K · AP

CRpca
) (7)

as the number of APs is effectively reduced.
We implement the additional dimensionality reduction

scheme to demonstrate EWOk’s compatibility with other
methods and the PCA applied prior to the EWOk can
be freely changed to any other dimensionality reduction
method, such as autoencoder, spectral embedding [56], or
isomap embedding [57].

5 EVALUATION AND NUMERICAL RESULTS

In this section, we introduce the means of evaluation of the
proposed model, including the evaluation metrics and used
benchmarks. Further, we present the numerical results.

In order to ensure the repeatability, replicability, and
reproducibility of our work, we provide all information



9

required to reproduce the experiment. We also provide the
source code, which is available online on Zenodo 1.

5.1 Evaluation Metrics and Baselines

5.1.1 Evaluation Metrics
In order to objectively evaluate the proposed method along
with all utilized algorithms, we implemented the following
metrics.

Floor-hit, further denoted as ζ , evaluates the ability
of the positioning algorithm, such as K-NN, to correctly
establish the correct building and floor number for the given
dataset. Floor hit is calculated as the percentage of correctly
estimated samples (for both building and floor label) as:

ζ = (
1

n
)

n∑
i=1

(bldi == bldi&flri == flri) · 100% (8)

where n is the number of samples, bldi denotes the building
index of the ith sample, bldi denotes the estimated building
index of the ith sample, flri denotes the floor index of the
ith sample and finally flri denotes the estimated floor index
of the ith sample.

We evaluate the positioning accuracy of the positioning
algorithm using mean 3D positioning error ϵ3D . 3D posi-
tioning error is calculated as the Euclidean distance between
the coordinates of the original sample and the estimated
sample. ϵ3D is then the average error across all samples from
the test dataset, as:

ϵ3D =
1

n

n∑
i=1

√√√√ 3∑
j=1

(
yj,i − yj,i

)2 (9)

where j denotes the coordinate index, yj,i is the jth coordi-
nate of the ith original sample and yj,i is the jth coordinate
of the ith sample’s prediction.

Finally, we consider normalized values for all considered
positioning metrics to better reflect the difference in perfor-
mance between the baseline model and the proposed solu-
tion [58]. The considered metrics are normalized floor-hit ζ̃ ,
and normalized 3D positioning error ϵ̃3D . The normalized
metrics are obtained as Ã in:

Ã =
Atest

Abaseline
(10)

where Atest stands for any of the evaluated results, namely
ζtest or ϵ3D,test, and Abaseline stands for ζbaseline, or
ϵ3D,baseline, respectively, and refers to the benchmark re-
sults obtained using the corresponding positioning baseline
method α or β. Consequently, the 3D positioning error
normalized to the α benchmark is denoted as ϵ3D,α.

Normalized metrics directly compare the tested
method’s performance to the baseline. In case the resulting
ϵ̃3D is smaller than 1, the resulting positioning error is
smaller than that of the baseline, e.g. ϵ̃3D equal to 0.9 means
that the method’s 3D positioning error was decreased by
10%. As such, we aim to achieve ϵ̃3D lower than 1. On
contrary, we aim for ζ̃ larger than 1 (as we aim to decrease
the positioning errors and increase the floor hit).

1. The source code will be made publicly available on Zenodo after
the paper is accepted.

TABLE 2: 64-bit vs. 7-bit dataset representation comparison

64-bit representation 7-bit representation 64-bit vs 7-bit

Dataset ϵ3D ζ ϵ3D ζ ϵ̃3D ζ̃

MAN 2 2.47 100 2.40 100 0.97 1
TUT 1 9.59 90.00 9.59 90.00 1 1
TUT 2 14.37 72.73 14.37 72.73 1 1
TUT 5 6.92 88.39 6.96 88.29 1.01 1
MINT 1 2.67 100 2.70 100 1.01 1
UEX B1 3.71 90.20 3.66 90.20 0.99 1
UEX B2 4.65 94.20 4.65 94.20 1 1
UEX B3 7.14 76.67 7.30 78.33 1.02 1.02
UJI B1 3.05 100 3.03 100 0.99 1
UJI B2 4.33 100 4.28 100 0.99 1

Average 1 1

Additionally, we introduce a parameter ∆ when evalu-
ating the dissimilarity of two methods’ normalized metrics,
namely the dissimilarity of the normalized 3D positioning
error as ∆ϵ3D or normalized floor-hit as ∆ζ . Given the
normalized 3D positioning error of method A as ϵ̃3D(A)
and the normalized 3D positioning error of method B as
ϵ̃3D(B), their ∆ϵ3D parameter is calculated as:

∆ϵ3D = 1− ϵ̃3D(A)

ϵ̃3D(B)
(11)

Consequently, ∆ϵ3D > 0 denotes the decrease of the nor-
malized 3D positioning error of the method A, compared to
method B by ∆ϵ3D ·100%. The ∆ζ evaluating the normalized
floor-hits is calculated similarly, and ∆ζ > 0 denotes a lower
floor-hit of the method A than that of the method B.

5.1.2 7-bit Benchmark

In this paper, we consider 7-bit representation as a bench-
mark for compression as described in Section 4. The stated
CRs are calculated as if all datasets were represented by
7-bit formats, although some were originally represented
by higher-bit representations (up to 64-bit), and therefore
their actual CRs are up to 64/7 times higher. These include
datasets MAN 2, TUT 1, TUT 2, TUT 5, MINT 1, UEX 1,
UEX 2, UEX 3, UJI B1 and UJI B2. The rest of the datasets
are originally in integer format which can be transformed to
7-bit without the loss of data resolution.

To demonstrate the RSS dataset’s positioning capabilities
are not degraded by transforming the data from 64-bit to
7-bit representation, we first evaluate the positioning per-
formance of the 64-bit datasets in their original data format.
Next, we transform the RSS values in the above datasets
into the 7-bit data format (represented by integer values
obtained from rounding the original data) and evaluate the
positioning accuracy of the transformed dataset. For both
cases, we utilize a plain K-NN algorithm with K equal to 1,
Manhattan distance metric and positive data representation.
The precise results of the evaluation show close-to-equal
positioning performance in both cases (Table 2).

Table 2 also proves that the performance of the 64-bit
dataset is almost identical to that of the 7-bit dataset in terms
of both the 3D positioning error and the floor-hit ratio. As
such, we concluded that all RSS values in the datasets using
64-bit format can be reduced to 7-bits without any loss in
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positioning accuracy. Moreover, the smaller data size allows
for faster data processing and more efficient storage.

5.1.3 Benchmark results and database parameters
To fairly and unambiguously evaluate the impact of EWOk
on the positioning performance, we utilize two positioning
benchmarks for the evaluation. The first baseline, ”Sim-
ple Configuration” or α, refers to results obtained while
evaluating each dataset with the K-NN set to K = 1,
Manhattan distance metric and positive data representation.
The second baseline, ”Best Coefficient” or β, follows the best
parameter settings for each dataset from [5], using which
the plain K-NN achieved the lowest positioning error. As
9 of the considered datasets were not included in [5], their
”Best Coefficient” benchmark performance was obtained by
performing the full parameter sweep, as described in the
aforementioned work.

Table 3 includes the overview and the performance of
all 25 considered databases, and lists the total number of
samples in each database S, the number of training samples
Strain, the number of test samples Stest, the number of APs
and the type of wireless technology on which the databases
were measured. The table then lists the 3D positioning error
ϵ3D , and floor-hit ζ of each dataset when evaluating the
positioning performance using both baseline configurations
(α and β). We selected a wide range of indoor positioning
datasets, using different base technologies, different granu-
larity of measurements and different density of APs in order
to perform the analysis in different deployments.

5.2 Random vs. Non-Random Initialization

We evaluate the impact of random initialization (as ex-
plained in Section 4) on the resulting positioning accuracy
across datasets and compare its performance across multiple
repetitions with the proposed initialization methods, which
require only a single run of EWOk.

Fig. 7 depicts the comparison of the positioning accuracy
results between two random initialization methods, namely
random sample initialization and k++ [54], along with the
result of max initialization as the example non-random
initialization defined later in the text. The figure presents
the results for the number of clusters k from 2 to 25 and
shows, that from the two random initializations, k++ is able
to achieve better positioning accuracy despite the higher
variance of the result. Fig. 7 additionally shows, that the
variance of the results strongly differs across the individ-
ual runs of the algorithm and that in order to obtain the
favorable result it is necessary to repeat the algorithm mul-
tiple times. On top of that, we show that the non-random
initialization is able to achieve comparable results to the
expected result of k++ without introducing uncertainty, and
outperforms random sample initialization across the sweep
with only a single repetition of the algorithm.

The results in Fig. 7 were obtained by running the
proposed system with Manhattan distance for k-means, and
K-NN with K = 1 and Manhattan distance metric. Each
algorithm setting was repeated 100 times for each dataset,
and the resulting positioning accuracy was normalized with
the corresponding Simple Configuration (α) baseline. Each
box in the resulting boxplot shows the median, 50% and

95% confidence interval of the sorted positioning results
averaged across all databases.

Additionally, we show in Table 4 the mean number of
iterations of the k-means algorithm performed before con-
vergence for randomly initialzied algorithm, k++ initializa-
tion and the proposed max initialization. The results are ag-
gregated across all 25 datasets and show that the proposed
initialization method requires a significantly lower number
of iterations than the randomly initialized algorithm, effec-
tively reducing the complexity of k-means by minimizing
the number of required iterations i, as introduced in Eq. 2.

As described in Section 4, we propose 6 non-random
initialization methods that offer reasonable starting points
for k-means. Fig. 8 depicts the initial centroid settings, as
well as the centroid coordinates after clustering for the
proposed initialization schemes on the dataset DSI 1 with
k = 4. The lines mark the distribution points according to
the initialization setting, and the selected centroid values are
the RSS values at the intersections of lines with the dataset’s
ECDF. The figure shows that all 6 different initializations
result in 6 different, although similar final centroid settings.

In Fig. 9 we present the performance of the individual
proposed initialization schemes. The figure visualizes the
normalized 3D positioning error ϵ̃3Dα

of the compression
towards the α benchmark (both with the same K-NN pa-
rameters) with the most compression-efficient number of
clusters (k = 8, 16, 32). The results on the horizontal axis
present the performance of each initialization and k setting
per dataset, and clearly show that the compression scheme
improves the positioning performance of certain datasets
(UJI 1, TUT 7), and worsens the performance of others
(MAN 1, UE B3). In some cases, the initialization setting
defines, whether ϵ̃3Dα

is improved or not (SAH 1, UTS 1).
The last row of results presents the aggregated ϵ̃3Dα

across
all datasets as the representative metric, proposed in [58].

Fig. 9 shows that there is no single, best-performing
initialization method. As a result, we propose to repeat
the algorithm once with each setting during offline training
and choose the best-performing one as a part of the system
validation. Despite the proposed approach forcing the algo-
rithm to repeat up to 6 times, it still drastically decreases
the number of required repetitions and the variance of ϵ̃3Dα

compared to the random initialization approach.
The rest of this work presents the results obtained using

the proposed, non-random initialization schemes while con-
sidering either all of them or only max initialization as the
representative method in cases where the evaluation does
not consider parameter sweeping.

5.3 Numerical results of EWOk
In this section, we evaluate the performance of the proposed
method with the best-performing models on each of the
considered datasets. As the baseline for the comparison, we
consider the β (Best Coefficient) K-NN setting, as found
in [5], which obtained the best positioning performance
across the performed in-depth parameter sweep. In order
to impartially evaluate the impact of the k-means compres-
sion on the resulting positioning performance, we first per-
formed a single repetition of the clustering with Manhattan
distance metric and max initialization, while applying the
K-NN with β parameters for positioning.
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TABLE 3: Dataset Information and Baselines

Dataset Information α - Simple Config. β - Best Coef. K-NN [5]

Dataset S Strain Stest APs technology ϵ2D ϵ3D ζ data rep. distance K ϵ2D ϵ3D ζ

DSI 1 1717 1369 348 157 Wi-Fi 4.95 4.95 100 pow Sørensen 11 3.79 3.79 100
DSI 2 924 576 348 157 Wi-Fi 4.95 4.95 100 pos PLGD10 9 3.80 3.80 100
LIB 1 3696 576 3120 174 Wi-Fi 3.01 3.02 99.84 pos Euclidean2 11 2.46 2.48 99.94
LIB 2 3696 576 3120 197 Wi-Fi 4.02 4.19 97.72 pos PLGD10 9 2.27 2.27 99.97
MAN 1 14760 14300 460 28 Wi-Fi 2.82 2.82 100 exp Manhattan 11 2.06 2.06 100
MAN 2 1760 1300 460 28 Wi-Fi 2.40 2.40 100 exp Neyman 11 1.86 1.86 100
SIM 1 11710 10710 1000 8 simulated 3.16 3.16 100 exp Euclidean2 11 2.41 2.41 100
TUT 1 1966 1476 490 309 Wi-Fi 8.61 9.59 90.00 pos PLGD40 3 4.23 4.45 95.51
TUT 2 760 584 176 354 Wi-Fi 12.66 14.37 72.73 pow Sørensen 1 7.80 8.10 92.05
TUT 3 4648 697 3951 992 Wi-Fi 8.92 9.59 91.60 pos Sørensen 3 8.17 8.55 91.42
TUT 4 4648 3951 697 992 Wi-Fi 6.11 6.36 95.27 pos PLGD10 3 5.07 5.40 95.98
TUT 5 1428 446 982 489 Wi-Fi 6.41 6.96 88.29 pos PLGD40 3 5.25 5.26 99.59
TUT 6 10385 3116 7269 652 Wi-Fi 1.94 1.94 99.99 pos Sørensen 1 1.90 1.91 99.99
TUT 7 9291 2787 6504 801 Wi-Fi 2.13 2.69 99.02 pos Sørensen 1 2.06 2.24 99.31
UJI 1 20972 19861 1111 520 Wi-Fi 7.70 10.81 87.67 pow Sørensen 11 6.17 6.56 95.23
UJI 2 26151 20972 5179 520 Wi-Fi 7.73 8.05 85.35 exp Neyman 11 5.60 6.09 91.37

MINT 1 5783 4973 810 11 Wi-Fi 2.70 2.70 100 pow PLGD10 11 2.16 2.16 100
SAH 1 9447 9291 156 775 Wi-Fi 8.16 9.07 46.80 exp Neyman 11 6.03 7.20 44.23
TIE 1 10683 10633 50 613 Wi-Fi 4.25 7.16 60.00 pos PLGD40 11 2.22 4.95 90.00
UEX B1 519 417 102 30 BLE 3.46 3.66 90.20 exp Neyman 3 2.97 3.09 93.14
UEX B2 690 552 138 30 BLE 4.40 4.65 94.20 pos Euclidean2 3 4.19 4.31 97.10
UEX B3 300 240 60 30 BLE 6.59 7.30 78.33 pos Euclidean2 3 6.67 6.73 65.00
UJI B1 1632 732 900 24 BLE 3.03 3.03 100 exp Neyman 11 1.64 1.64 100
UJI B2 816 576 240 22 BLE 4.28 4.28 100 pos LGD 11 2.53 2.53 100
UTS 1 9496 9108 388 589 Wi-Fi 7.75 8.74 92.78 exp Neyman 11 6.48 7.01 91.24
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Fig. 7: Visualization of resulting 3D positioning error uncertainty after EWOk with k++ and random sample initializations,
along with the non-random initialization max. The corresponding CRs are indicated by the vertical lines.

TABLE 4: The mean number of iterations of k-means before
convergence for different initializations

Initialization random k ++ max

Mean num. of iterations 27.0 7.5 5.1

Table 5 presents the normalized 3D positioning error
ϵ̃3Dβ

, and the normalized floor-hit ζ̃β . Table 5 displays the
results for the number of clusters k equal to 8, 16, and 32, all
maximizing the number of clusters at their corresponding
CR. Similarly to Fig. 9, the positioning performance of cer-
tain datasets is improved (ϵ̃3D smaller than 1 and floor-hit
ζ̃ larger than 1; dataset TIE 1), or degraded (dataset TUT 2).
Table 5 additionally shows the aggregated ϵ̃3D and ζ̃ over all
datasets. On average, the 8-means setting increases the ϵ̃3D
by 5% while reducing the size of the radio map by 57.1%,
16-means by 2% with 42.9% reduction, and 32-means by
only 1% with 29.6% radio map reduction, compared to
the benchmark. The results show a negligible increase in
positioning error and a relevant decrease in requirements

for storage and energy savings.
Next, we performed a full parameter sweep across all 25

datasets, k-means distances and initializations, and K-NN
parameters in order to find the best-performing settings for
the compression scheme. The sweep was realized over 3
data representations, 6 k-means initialization methods, 2 k-
means distance metrics, 1 to 35 Ks for K-NN, and 9 K-NN
distance metrics (for details see Sections 3), resulting in
11 340 repetitions per dataset while considering only the
single number of clusters k.

The results of the full sweep are reported in Table 6,
including the best parameter settings, normalized 3D po-
sitioning error ϵ̃3Dβ

and normalized floor-hit ζ̃β with the
number of clusters k = 8 (CR = 7/3). We note that the
best-case performance was chosen based on the lowest 3D
positioning error ϵ3D parameter. If the objective was to find
the best floor-hit ζ , the chosen solution would differ in
certain cases. Table 6 shows, that the parameters are unique
for each individual dataset and that there is no universal
parameter that ensures optimum positioning performance
in every case. The aggregated results present the improve-
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Fig. 8: Initial centroid values for 6 proposed k-means ini-
tializations (solid lines), and the corresponding centroid
coordinates after clustering (dashed lines) performed on the
dataset DSI 1 with k = 4.
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Fig. 9: Performance evaluation of the initialization schemes
with k = 8, 16, and 32 across all datasets. The color of the
dot refers to the normalized 3D positioning error ϵ̃3Dα .

ment in positioning performance across both evaluation
metrics. When compared to the results from Table 5, the
parameter sweep found the parameters achieving 7% better
normalized 3D positioning error ϵ̃3Dβ

across all datasets
(0.98 in Table 6 and 1.05 in Table 5).

For many datasets, the best-performing parameters are
identical (TUT 6 or TUT 7) or very similar (DSI 1) to
the β (Best Coef.) benchmark (see Table 6 and Table 3),
if the k-means parameters are disregarded. Therefore, if

TABLE 5: Results based on β K-NN setting with max init.
and Manhattan distance metric of k-means

EWO8 EWO16 EWO32

Dataset ϵ̃3Dβ ζ̃β ϵ̃3Dβ ζ̃β ϵ̃3Dβ ζ̃β

DSI 1 1.03 1.00 0.99 1.00 0.97 1.00
DSI 2 1.03 1.00 1.04 1.00 1.00 1.00
LIB 1 0.98 1.00 1.00 1.00 1.00 1.00
LIB 2 1.03 1.00 1.01 1.00 1.00 1.00
MAN 1 1.11 1.00 1.06 1.00 1.01 1.00
MAN 2 1.12 1.00 1.02 1.00 1.04 1.00
MINT 1 1.02 1.00 0.98 1.00 0.99 1.00
SAH 1 0.97 1.03 1.03 0.99 0.99 0.99
SIM 1 1.10 1.00 1.06 1.00 1.01 1.00
TIE 1 0.90 1.04 0.91 1.07 0.91 1.07
TUT 1 1.03 1.00 1.01 1.01 0.99 1.00
TUT 2 1.17 0.99 1.07 1.01 1.07 1.01
TUT 3 1.00 1.00 1.00 1.00 1.00 1.00
TUT 4 1.03 0.99 1.01 1.00 1.00 1.00
TUT 5 1.05 1.00 1.02 1.00 1.01 1.00
TUT 6 1.10 1.00 1.06 1.00 1.02 1.00
TUT 7 1.13 1.00 1.08 1.00 1.02 1.00
UEX B1 1.11 0.97 1.01 0.98 0.99 1.01
UEX B2 1.03 0.98 1.11 0.99 1.01 0.99
UEX B3 1.11 1.03 1.07 1.13 1.02 1.00
UJI 1 1.05 1.00 1.03 1.00 1.02 1.00
UJI 2 1.05 0.98 1.01 0.99 1.01 0.99
UJI B1 1.07 1.00 1.02 1.00 1.01 1.00
UJI B2 0.98 1.00 0.98 1.00 1.00 1.00
UTS 1 1.03 1.02 1.03 1.01 1.02 1.00

Average 1.05 1.00 1.02 1.01 1.01 1.00

TABLE 6: Best-case results from the full parameter sweep

Config. k-means Config. K-NN EWO8

Dataset data rep. Init. distance K distance ϵ̃3Dβ ζ̃β

DSI 1 pow max Sq. Euclidean 8 Sørensen 0.93 1
DSI 2 pos xtr Sq. Euclidean 17 Sørensen 0.96 1
LIB 1 pos xtr Manhattan 14 Euclidean 0.97 1
LIB 2 pos ixtr Sq. Euclidean 10 Sørensen 1.01 1
MAN 1 exp imax Sq. Euclidean 23 Sørensen 1 1
MAN 2 pos max Manhattan 35 Euclidean 0.92 1
MINT 1 pow ixtr Manhattan 22 Euclidean 0.96 1
SAH 1 pow xtr Manhattan 35 Sørensen 0.84 1.12
SIM 1 exp imin Manhattan 31 Neyman 1.04 1
TIE 1 pos ixtr Manhattan 28 PLGD10 0.89 1.11
TUT 1 pos xtr Manhattan 3 PLGD40 1.02 1
TUT 2 pow imax Sq. Euclidean 2 Sørensen 1.04 1.04
TUT 3 pos imin Sq. Euclidean 2 Sørensen 0.99 0.98
TUT 4 pos imax Manhattan 3 PLGD10 1.02 0.99
TUT 5 pos min Manhattan 3 PLGD10 1.03 0.99
TUT 6 pos imin Sq. Euclidean 1 Sørensen 1.04 1
TUT 7 pos xtr Sq. Euclidean 1 Sørensen 1.05 1
UEX B1 pos max Manhattan 3 Euclidean 1.02 0.95
UEX B2 pos max Manhattan 4 Euclidean 0.98 0.98
UEX B3 exp min Sq. Euclidean 2 Neyman 0.99 1.13
UJI 1 pow min Sq. Euclidean 8 Sørensen 1.04 1
UJI 2 exp imin Manhattan 30 Neyman 0.96 1.01
UJI B1 exp xtr Sq. Euclidean 35 Euclidean 0.93 1
UJI B2 pos xtr Manhattan 34 LGD 0.89 1
UTS 1 exp max Sq. Euclidean 23 Neyman 0.98 1.01

Average 0.98 1.01

applying the proposed compression scheme to an existing
and evaluated dataset, it is likely that the previously found
best-case parameters will remain optimal after applying the
compression as well.

The results presented above show, that EWOk can sig-
nificantly reduce the size of the IPS’s radio map, without
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degrading the actual positioning performance of the dataset.
If the appropriate parameter sweep is performed, the com-
pression can further boost the positioning performance.
Consequently, we can conclude that applying EWOk and
optimizing the parameters of K-NN lead to improvements
in positioning performance on top of preserving energy and
resources within the positioning system achieved with the
compression.

5.4 Multidimensional Compression with PCA
To demonstrate the possible co-existence of EWOk with
other compression or clustering mechanisms from the ex-
isting literature [20], [22], we combine it with additional,
feature-space-wise compression scheme, namely PCA (al-
though any other dimensionality reduction technique can
be applied in practical system). PCA is incorporated into
the system as specified in Section 4.

We evaluate the positioning and compression perfor-
mance of the following schemes. First, we combine the PCA
with the α (Simple) configuration K-NN, further denoted
PCA. Second, we combine the PCA with EWOk (k =
8, Manhattan distance), followed by the α configuration
K-NN, denoted as PCA + EWO8. We normalize both so-
lutions towards the α baseline. We consider α baseline since
the regularized distance metrics included in the β baseline
are incompatible with the PCA method. The common pa-
rameter of the PCA compression is Thr = 90, specifying the
minimum total variance left in the training features.

Table 7 lists the results of the evaluation on all datasets.
We note, that the CR of the PCA method is calculated
as CRpca, and the CR of the PCA + EWO8 method is
calculated as CRtot (see Sec. 4). Additionally, the ∆ϵ3D

and ∆ζ parameters characterize the potential improvement
of the positioning. The aggregated result shows that the
average CR of the PCA method equals 10.95, the average
CR of the combination of PCA + EWO8 is equal to 25.54,
and that the PCA achieves 2% smaller positioning error
while evaluating with the same parameters at Thr = 90.
At the presented settings, we trade 2% higher positioning
error for more than 2.3 times larger CR when considering
PCA+ EWO8.

In the next part of the evaluation, we report only the
aggregated results [58] of the PCA and PCA + EWOk
schemes across all datasets. Now, we consider multiple
values of k as well, denoted in the abbreviation accordingly.
Table 8 lists the Thr, k, and aggregated normalized 3D
positioning errors ϵ̃3Dα

for the considered schemes, along
with their dissimilarities ∆ϵ3D and ∆ζ .

The aggregated results in Table 8 show the configurable
CR and the corresponding trade-off in terms of 3D posi-
tioning error. The table compares the performance of the
PCA + EWOk method at k = 8, 16, and 32 with the
PCA setting at different Thr levels. The results show the
increasing ϵ̃3Dα with the increasing CR as the general trend,
with several exceptions. When comparing PCA + EWOk
to the PCA methods at the same Thr levels, the normalized
3D positioning errors are comparable. If, on the other hand,
we compare their performance at the same CR levels, e.g.
PCA+EWO16 at 90 Thr (and k = 16) and PCA at 80 Thr,
both achieving approx. 20 CR, the difference in 3D position-
ing error is substantial. A similar occurrence is observed at

TABLE 7: Performance of PCA and PCA+ EWO8

PCA PCA + EWO8

Dataset ϵ̃3Dα ζ̃α CRpca ϵ̃3Dα ζ̃α CRtot ∆ϵ3D ∆ζ

DSI 1 1.09 1 4.36 1.21 1 10.18 −0.12 0
DSI 2 1.11 1 4.36 1.09 1 10.18 0.02 0
LIB 1 0.99 1 19.33 1.03 1 45.11 −0.04 0
LIB 2 0.99 1.02 13.13 0.99 1.02 30.64 0.00 0
MAN 1 1.13 1 3.11 1.21 1 7.26 −0.07 0
MAN 2 1.34 1 14.00 1.30 1 32.67 0.03 0
MINT 1 1.05 1 2.20 1.13 1 5.13 −0.07 0
SAH 1 1.31 1.16 22.79 1.28 1.22 53.19 0.02 −0.05
SIM 1 1.11 1 1.60 0.95 1 3.73 0.15 0
TIE 1 1.13 0.03 18.03 1.33 0.27 42.07 −0.17 −7
TUT 1 0.99 0.98 12.36 0.98 1 28.84 0.01 −0.02
TUT 2 0.90 1.17 13.62 0.92 1.12 31.77 −0.03 0.05
TUT 3 1.01 1 15.50 1.02 1 36.17 −0.01 0
TUT 4 1.01 1 13.97 1.06 1 32.60 −0.05 0
TUT 5 1.10 1.05 21.26 1.14 1.06 49.61 −0.03 −0.01
TUT 6 1.41 1 17.62 1.77 1 41.12 −0.26 0
TUT 7 1.22 1 22.25 1.36 1 51.92 −0.11 0
UEX B1 2.23 0.68 15.00 2.08 0.42 35.00 0.07 0.38
UEX B2 1.85 0.77 10.00 1.47 0.72 23.33 0.20 0.06
UEX B3 1.22 0.91 3.33 1.24 0.77 7.78 −0.02 0.16
UJI 1 0.85 1.03 8.13 0.84 1.02 18.96 0.02 0
UJI 2 1.03 1.01 7.76 1.03 1.01 18.11 0 0
UJI B1 0.99 1 1.50 1.04 1 3.50 −0.05 0
UJI B2 1.08 1 1.29 1.10 1 3.02 −0.02 0
UTS 1 1 1.01 7.10 1.07 1 16.56 −0.07 0.01

Average 1.17 0.95 10.94 1.19 0.94 25.54 −0.02 −0.26

TABLE 8: Aggregated results for different PCA threshold
Thr and varying number of clusters

PCA+EWOk PCA

Thr k CRtot ϵ̃3Dα ∆ϵ3D ϵ̃3Dα CRpca

99
8 5.97 1.10 −0.06

1.04 2.5616 4.48 1.06 −0.02
32 3.58 1.05 −0.01

95
8 14.50 1.09 −0.01

1.08 6.2116 10.87 1.08 0.00
32 8.70 1.10 −0.01

90
8 25.54 1.19 −0.02

1.17 10.9416 19.15 1.14 0.01
32 15.32 1.16 0.00

80
8 48.00 1.25 −0.01

1.23 20.5716 36.00 1.21 0.01
32 28.80 1.21 0.01

50
8 144.01 1.66 −0.06

1.59 61.7216 108.01 1.54 0.01
32 86.41 1.51 0.03

the CR = approx. 10. Table 8 shows, that when combining
EWOk and PCA compression, the achieved positioning
results are better than when using the PCA compression
only while considering the same CR.

In order to demonstrate the effectiveness of EWOk in
combination with PCA compression, we show the depen-
dency of CR on the normalized 3D positioning error ϵ̃3Dα in
Fig. 10. The figure plots the aggregated results for the stand-
alone PCA compression (denoted PCA), as well as the com-
bination of PCA with EWOk with k = 8, 16, and 32 (denoted
PCA+EWO8, PCA+EWO16, and PCA+EWO32) on
varying Thr levels. In case the maximum allowed position-
ing error increase due to the compression is set to 35%, PCA
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for the plain PCA and the proposed methods.

achieves 36.7 CR, while PCA+EWO8’s CR is 76.5 (see the
horizontal line in Fig. 10). Alternatively, if the required CR is
set to 20, ϵ̃3Dα

increases by 23% when considering the PCA
method, and 16% when considering either PCA + EWO8
or PCA + EWO16 solutions (see vertical line). The results
unambiguously show the favorable trade-off between the
compression efficiency and the positioning error of the pro-
posed compression scheme combined with PCA, compared
to the stand-alone PCA compression.

5.5 Discussion

In this section, we present the exhaustive evaluation of
EWOk’s impact on the positioning performance and its
compression capabilities when applying it in the IPS. In the
following lines, we summarize and discuss the most crucial
findings and observations.

From evaluating the positioning performance when re-
ducing the original 64-bit datasets to a common 7-bit data
benchmark, we observe almost identical positioning accu-
racy. Similarly, the proposed EWOk further reduces the
granularity of the individual values in the radio map and, in
certain cases, results in improved positioning. This observa-
tion can be explained by high uncertainty in the data, which
may be filtered out by reducing the data quality.

When utilizing EWOk on the indoor positioning dataset,
it is highly recommended to consider the number of cluster
k maximizing the compression efficiency, namely

k = 2n (12)

where n = 1, 2...6 to utilize the whole available alphabet of
symbols in the compressed radio map. Namely n = 3 (8-
means) offers a very good trade-off between the high CR
and the tolerable positioning error.

The proposed non-random initialization schemes not
only remove the uncertainties caused by the randomness
and ensure advantageous positioning performance but at
the same time reduce the number of iterations of the k-
means, effectively reducing the algorithm’s complexity.

In this work, we combine the proposed system with the
PCA compression to demonstrate its compatibility. Never-
theless, it is possible to combine the EWOk compression
scheme with numerous other methods proposed in the

literature that could further increase the storage and pro-
cessing speed efficiency, along with numerous other solu-
tions that can co-exist with the proposed scheme including
prior clustering to reduce the search-space of k-means [20],
additional feature-space-based compression schemes [59],
or any heuristic applied onto the dataset [60]. Similarly, the
positioning algorithm can be freely chosen, not limited to
K-NN or its alternatives.

6 CONCLUSION

This work proposes EWOk, an Element-Wise cOmpression
using k-means, which reduces the radio map to up to
1% of its original size when combined with additional
PCA feature-space dimensionality reduction. The proposed
solution enables flexible adjustment of the CR, to obtain
the desired storage and transfer savings while preserving
high positioning performance using K-NN algorithm. The
proposed positioning system is designed to be trained and
validated on the network or cloud, and it aims to reduce
the computational, memory, and data transfer load for the
online prediction at the UE. We proposed the 7-bit data
representation based on the current standardization as
the benchmark for evaluating all RSS-based datasets and
showed that using 7-bit representation does not degrade the
data. The reported CRs achieved by the proposed method
are substantially higher in case the benchmark is not based
on the 7-bit data representation, as many datasets are rep-
resented as rational (floating point) numbers. In order to
overcome the challenges related to the random initialization
of the k-means algorithm, we proposed 6 non-random ini-
tialization methods derived from the input data distribution
that ensure improved positioning performance and reduce
the iterative process. We evaluate the proposed method on
25 RSS indoor positioning datasets in order to obtain impar-
tial and unbiased results. The numerical results showed that
EWOk compression achieves 2.3 fold radio map CR with
only 5% positioning error increase on average, with a single
iteration of the EWOk algorithm. In certain deployments,
implementing the proposed compression scheme boosts the
positioning performance in terms of 3D positioning error, as
well as the floor-hit. Sweeping over the parameters can fur-
ther boost the positioning performance significantly while
preserving the valuable resources, as shown in Table 6.
When combining EWOk with PCA, it is possible to reduce
the complexity of K-NN and obtain many-fold higher CR
with only a slight increase in 3D positioning error. The
implementation is scalable (based on the dataset) to up to
a 100-fold compression rate with a higher positioning error
trade-off.
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