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A B S T R A C T

As the years go by, the interaction between humans andmachines seems to gain more andmore importance

for many different reasons, whether it's taken into consideration personal or commercial use. On a time

where technology is reaching many parts of our lives, it's important to keep thriving for a healthy progress

and help not only to improve but also to maintain the benefits that everyone gets from it. This relationship

can be tackled through many points, but here the focus will be on the mind.

Emotions are still a mystery. The concept itself brings up serious questions because of its complex nature.

Till the date, scientists still struggle to understand it, so it's crucial to pave the right path for the growth on

technology on the aid of such topic. There is some consensus on a few indicators that provide important

insights on mental state, like words used, facial expressions, voice.

The context of this work is on the use of voice and, based on the field of Automatic Speech Emotion

Recognition, it is proposed a full pipeline of work with a wide scope by resorting to sound capture and

signal processing software, to learning and classifying through algorithms belonging on the Semi Supervised

Learning paradigm and visualization techniques for interpretation of results. For the classification of the

samples,using a semi-supervised approach with Neural Networks represents an important setting to try

alleviating the dependency of human labelling of emotions, a task that has proven to be challenging and,

in many cases, highly subjective, not to mention expensive. It is intended to rely mostly on empiric results

more than theoretical concepts due to the complexity of the human emotions concept and its inherent

uncertainty, but never to disregard prior knowledge on the matter.

Keywords: Automatic Speech Emotion Recognition, Semi Supervised learning, Human emotion, Unlabeled

dataset
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R E S UM O

À medida que os anos passam, a interacção entre indivíduos e máquinas tem vindo a ganhar maior im-

portância por várias razões, quer seja para uso pessoal ou comercial. Numa altura onde a tecnologia está

a chegar a várias partes das nossas vidas, é importante continuar a perseguir um progresso saudável e

ajudar não só a melhorar mas também manter os benefícios que todos recebem. Esta relação pode ser

abordada por vários pontos, neste trabalho o foco está na mente.

Emoções são um mistério. O próprio conceito levanta questões sobre a sua natureza complexa. Até aos

dias de hoje, muitos cientistas debatem-se para a compreender, e é crucial que um caminho apropriado seja

criado para o crescimento de tecnologia na ajuda da compreensão deste assunto. Existe algum consenso

sobre indicadores que demonstram pistas importantes sobre o estado mental de um sujeito, como palavras,

expressões faciais, voz.

O conteúdo deste trabalho foca-se na voz e, com base no campo de Automatic Speech Emotion Recogni-

tion, é proposto uma sequência de procedimentos diversificados, ao optar por software de captura de som

e processamento de sinais, aprendizagem e classificação através de algoritmos de Aprendizagem Semi

Supervisionada e técnicas de visualização para interpretar resultados. Para a classificação de amostras, o

uso de uma abordagem Semi Supervisionada com redes neuronais representam um procedimentos impor-

tante para tentar combater a alta dependência da anotação de amostras de emoções humanas, uma tarefa

que se demonstra ser árdua e, em muitos casos, altamente subjectiva, para não dizer cara. A intenção é

estabelecer raciocínios baseados em factores experimentais, mais que teóricos, devido à complexidade do

conceito de emoções humanas e à sua incerteza associada, mas tendo sempre em conta conhecimento

já estabelecido no assunto.

Palavras-chave: Automatic Speech Emotion Recognition, Aprendizagem Semi Supervisionada, Emoção

Humana, Dados sem anotação
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1

I N T R O D U C T I O N

In this chapter, the main purpose and goals of this dissertation are described. It begins by referring the

motivation and context behind such project. It then proceeds to an expectation's measurement regarding

results, followed by the chosen methodologies to approach the subject. Finally both the planning for the

project and this document itself are explained. It is intended to give the reader important concepts regarding

two components to approach emotions: artificial intelligence and psychology concepts. It will help justifying

decisions made regarding methodologies adopted.

1.1 C o n t e x t a n d Mo t i v a t i o n

Emotions are a big part of the human essence. They have the potential to completely drive our actions and

portrait behaviors that model the human society. Its complex nature is somewhat uncertain as multiple

mental states can overlap, originating different perspectives regarding each individual (Frijda, 2004). For

a relatively long time, a lot of researchers built theories attempting to discretize these mental states. Paul

Ekman initially focused on six basic emotions: anger, disgust, fear, happiness, sadness and surprise. He

based his conclusions on empirically universally recognized emotions, independent of culture (Shiota and

null, 2016). Robert Plutchik proposed a psychoevolutionary classification approach for emotional responses

(Plutchik, 2000). He began from the point where he took into account a few basic, primary emotions, anger,

fear, sadness, disgust, surprise, anticipation, trust, and joy. From these, different combinations would arise,

giving origin to more complex sets of emotions, much like the basic colors and their derivatives. Note that it

was not possible to combine just any of the basic emotions as some were proposed to be mutually exclusive.

Even today, many experts might sometimes show difficulties when it comes to identifying what emotion

one might be expressing.

Right now, we are witnessing the revolution of deep learning (Sejnowski, 2018). Deep learning keeps

proving itself on solving problems of many sorts as long as it is supported by careful planning. With the

advancement of hardware (Pan et al., 2018), it's been possible to train bigger and more complex models

of deep learning as well as training simple ones much faster. This alone buys a great margin of empirical

nature to experiment with many different variants of the algorithm, potentially allowing to achieve more

1



2 I n t r o d u c t i o n

efficient and more accurate results. Note that the hardware was not the only improvement. Many different

architectures are used for many different problems in the most diverse areas: finances (Sezer et al., 2019),

computer vision (Lecun et al., 1998), medicine (Tilve et al., 2020), stocks (Nabipour et al., 2020), among

others.

1.2 Mo t i v a t i o n

There is still no solid ground when it comes to describing a concept as complex as an emotion (Landowska,

2019). Many times, we, as humans, find it hard to understand what are we feeling at a certain time during

a certain event. There are so many underlying signs on every gesture and action, voluntary or involuntary,

that gives up clues to what is going through our minds, even if we are not completely aware of it. It is not

the purpose of this dissertation to clear the fog completely of what this mystery is, but to provide us with

some concrete signals about our own mental state, as a race. The evolution of Artificial Intelligence (AI)

might just provide us that chance (Martins et al., 2018) (Teixeira et al., 2020). The abstraction capability of

machine learning algorithms might prove itself as a very important tool to understand specific constructs of

the mind, making one of the main features of this project to rely as little as possible on human intervention

and as much as possible on the math behind AI. This statement does not intend to diminish work done

throughout the years by emotion psychology experts, but to reassure their results and try to complement

the knowledge on such a complex field.

Many important applications can arise from this research (Rodrigues et al., 2020) (Gonçalves et al.,

2015), making the target viable or at least more affordable, as specialist expenses on this sort of task

usually come with high cost, especially if it is meant as an every day use on tasks like Medical diagnostics,

recommendation system management, social anomalies, fraud detection, human resources management

on emotionally high end tasks (Rodrigues et al., 2012) (Carneiro et al., 2019).

There can be many solutions, where a generic or custom approach can be taken, without any relevant

intrusion on a subject's life, but the purpose of this research is to develop a solid methodology towards any

of the solutions mentioned, and from there, allow many possible paths towards specific tasks that might

require small tweaks to the logistics of the project. The main goals can be summarized to a few points on

interest:

• Adoption of a benchmark audio speech dataset

• Development of an adaptive methodology, non specific to any field

• Construction of abstract representations of multiple instances of data

• Classification in relation to predefined different mental states



1.3. Problems and challenges 3

1.3 P r o b l ems a n d ch a l l e n g e s

On the full of pipeline of this work, several challenges can be identified. On the past years, multiple studies

have been pointing out primarily to the design of databases or limitations of existing ones (Douglas-Cowie

et al., 2003) (Ayadi et al., 2011), as there are several aspects to be taken into account, raising important

questions: what emotions will the database cover? Will the emotions be acted or taken out of natural

speech? Under what social context will the speech be recorded? Is the sampling quality good enough?

Are the emotions expressed clear enough? They are all common sense questions but somewhat crucial

decisions with high impact on the final outcome.

When it comes to training and algorithms, the list is much shorter for issues, but can be equally persistent,

as optimization, depending on what sort of learning is being taken into account, can be extremely sensitive

and hard to master. Exhaustive and systematic analysis can be needed in order to achieve relevant results

in a matter, which can be demanding on both theoretical and practical point of view. Combining this with

the need of capable hardware to process the data at high speed, a big resource management issue appears,

since time is not an unlimited luxury we can afford to have. It is important to tackle this issue as efficiently

as possible in order to be able to walk through many experimental cenarios, which is only a natural thing in

the field of ML.

Note that problems and limitations explained here do not apply only to the problem of Automatic Speech

Emotion Recognition (ASER), both these and the ones related to the methodology will be exposed further

on this document, withing a more specific context.

1.4 Re s e a r ch me t h o d s

The line of work where emotions become discrete values allowed for discriminative models to appear, and

the recognition of emotions by a machine found its base to grow (Rodrigues et al., 2021). The traditional

ASER framework divides itself in three components, data collection, feature extraction and classification

(Aeluri and Vijayarajan, 2017) (Pathak and Kolhe, 2016).

Data collection on speech has had multiple approaches as well as categories where they fit, regarding

the context and restrictions it has (Drakopoulos et al., 2019). But the issue focused here revolves around

the expensive task of labelling necessary large amounts of data to be fed into state of the art algorithms. It

does not scale to the required proportions of instances to make a reliable ASER system (Singh et al., 2008).

So something like SSL could have a big impact on the design of such collection, where costs are severely

reduced, making big scale projects viable, and so, more likely to perform ASER in a more naturalistic way.

With today's advances in deep learning, the feature extraction on ASER tasks require less and less human

intervention as the neural networks designed can build complex functions that identify important features

on data (Khalil et al., 2019). So the need for hand crafted features has been decreasing in favour of the
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automatically extracted ones. It opens up a bigger margin for training as the time wasted on feature crafting

and selection might grow quite large. With automatic feature extraction, it might be possible to try out the

most diverse scenarios (Shaheen et al., 2016).

The classification schemes have already been multiple. The more traditional ones consisted on Hid-

den Markov Model (HMM) (Rabiner and Juang, 1986), Gaussian Mixture Model (GMM) (Reynolds, 2008),

Bayesian Networks (Heckerman, 2008) and Support Vector Machine (SVM) (Ben-Hur and Weston, 2010).

However, neural networks have been the best choice for the past few years due to their discriminant ability

and efficiency.

In this dissertation, mainly Deep Neural Network theory will be exploited for the purpose of SSL (Ouali

et al., 2020) (Goodfellow et al., 2016). An explanation on important notions will be provided in order to

justify the choices on different crossroads throughout the project.

1.5 E x p e c t e d r e s u l t s

In the section dedicated to motivations and goals, there were numerated a few milestones crucial for the

success of this work, but these mentioned points represent long term objectives (Méndez-Villas, 2005).

When it comes to results actually expected from the research, the picture thickens and more abstract ideas

come into play. The experiment will revolve around existing structured speech data. It needs to present

certain characteristics regarding naturalness and diversity that are expected to provide important traces

to the research, leading to viability on real world applications on many different scenarios. In terms of

actual emotional content, it can be debated that, depending on the variety and quantity of samples, not all

emotions will be captured. In fact Ayadi et al. (2011) refers that something described as a neutral emotion

will compose most of the speech corpora around. Nevertheless, it is expected to find some sort of complex

structure extrapolated from features of the data. From such a structure, a SSL framework can follow in the

pipeline. With this project path, the purpose is to look to reduce the reliability on human labeling to the

least as possible, considering that one of the base points is that there is no ground-truth when it comes to

assemble classified instances on ASER. Ultimately, the purpose lies around providing clues to a subject's

mental state.

1.6 B i b l i o g r a p h i c R e v i ew P r o c e s s

The elaboration of the conceptual framework needs to follow certain review approaches in order to achieve

the overall quality and viability demanded. To do so, it is necessary to research the core topics of this

dissertation as well as the works related to its subject.

Some of the viability surging on this dissertations matter rests on the quality of the resources consulted.

This puts a lot of weight into the research part of the project, where a lot of information, concepts and
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hypothesis are formulated in order to actually move forward. It's crucial that correct and well founded

notations are acquired during the research phase as it will translate a major part of the the whole working

framework itself.

For a rising field such as ASER, relatively recent papers, meaning around five to seven years old, are

given higher importance, as over the more recent years, a lot of breakthroughs have been made in the area.

As the context of this work gets more specific, the number of citations is often not given that much weight

compared to somewhat standard circumstances.

Keywords like “Semi Supervised Learning", "Speech Emotion Recognition", “Convolutional Neural Net-

works", and "Audio Signal Features” were mostly use during the background acquiring phase, across mul-

tiple platforms:

• Google Scholar;

• IEEE Xplore;

• ResearchGate;

• RepositóriUM;

• Science Direct;

Between audio processing and neural networks, the range of papers is fairly big, until a more specific

task is developed.

1.7 D o c umen t S t r u c t u r e

To provide a better understanding of this dissertation’s subject and benchmarking approach , the document

was organised into six chapters:

• Chapter 1: Brief contextualization and description of base line for the research, as well as motivation

and expected results;

• Chapter 2: Description and explanation of important concepts and notions in the context of the

dissertation as well as some overall contextualization regarding the topic of ML. A view of possible

approaches, as well as a conceptual framework description and a literature review on the state of

the art results.

• Chapter 3: Review of the setup to be utilized to design the experiments, follow by its specifications.

The procedure is described and the results are exposed to understand the impact of the concepts

applied along the research.
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• Chapter 4: A final analysis of the results is done in order to reflect upon utilized measures and the

possible evolution/improvements to the current methodology and frameworks;

• Chapter 5: Identification of main problems and limitations to establish a concrete improvement

point for future reference. Description of the landscape on the technological framework utilized.
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S TAT E O F T H E A R T

For quite sometime, AI has been related to aspects regarding the function of the human mind. Since

the 1940s, names like McCulloch and Pitts (McCulloch and Pitts, 1988) and Turing (Turing, 1950) were

important on the design of theories on similarities between computers and the human brain. The term

"Artifical Intelligence" was coined at the Dartmouth meeting (Mccarthy et al., 2006). Since then, a lot of

different areas have surged from the field, merging from branches all around. Machine learning can be seen

as one of these branches. Beverly Park Woolf (Woolf, 2008) utters that Machine learning refers to a system's

ability to acquire and integrate knowledge through large-scale observations. and to improve and extend itself

by learning new knowledge rather than by being programmed with that knowledge. Most instances of any

type of information can convey patterns and features that can be hard for the human mind to perceive. Our

huge capacity of abstraction is put at use on our everyday routine, but for intrinsically complex problems

involving many numerical dimensions, the human mind generally falls short. Thus, there was a need to

develop ways to solve these kind of problems where non explicit features would be displayed on relatively

big amounts of data.

An important step came with the design of neural network theory (Rosenblatt, 1958), the perceptron,

capable of creating proper boundaries on a linearly separable dataset. The concept ended up being dropped

for some time due to its lack of capacity for solving relatively simple problems like the infamous XOR problem,

where non-linearity was imposed in a very straightforward way. Later on, at 1986, back propagation was

introduced by Rumelhart et al. (1988), but the at the time computational resources did not allow for too

many experiments or conclusions, so no systematic way of training was defined. But then, around 2006,

Hinton et al. (2006) showed that it was viable to train neural networks to learn certain patterns on non-linear

data.

Many algorithms were made on treatment and comparison of data features, based on what we can

describe as Paradigms of Learning, where four common ones will be distinguished: Supervised Learning,

Unsupervised Learning, Semi Supervised Learning and Reinforcement Learning.

7



8 S t a t e O f T h e A r t

2.0.1 Supervised Learning

A lot of ML algorithms are built around SL, as it looks for direct correlations between input and desired

label and builds a function on the network around it. Liu and Wu (2012) defines it as a machine learning

paradigm for acquiring the input-output relationship information of a system based on a given set of paired

input-output training samples. Thus, there is a discriminative component to it, that allows important tasks

such as classification between several discrete labels and multiple features. Note that regression is also

possible as continuous variables are supported for a lot of algorithms that follow such paradigm. However,

the necessity for predefined labels raise an important issue related to costs of labelling. It might not be

viable at all to classify thousands of data instances, especially as in many tasks, the aid of a paid specialist

might be required, as the precision of labelling is something that can have a huge impact on the reliability

of the model designed. Reckless labelling may lead to drop in performance. Other important issues go

around ambiguity in instances and/or labels, as the boundaries created can get affected depending on the

number of perturbed instances in a dataset.

2.0.2 Unsupervised Learning

On same cases, where labels might not be present or perhaps necessary, Unsupervised Learning (UL)

makes itself as a feature detector, completely intrinsic to the data in hand. Unsupervised learning algorithms

are used to group cases based on similar attributes, or naturally occurring trends, patterns, or relationships

in the data (Larose and Larose, 2015). It is interesting to note that these kind of algorithms are not building

mapping functions from input to output, at least not as directly as SL does. This can mean that when

humans can not identify similarities or dissimilarity on certain types of data, there is potential to give it

some discriminant structure with UL. However, the efficiency and actual practical applications regarding

this learning paradigm can be rather limited overall.

2.0.3 Semi Supervised Learning

SSL represents a special case, where it tries to combine the best out of the two previously described

paradigms. It is meant as a way of dealing with a context where there is a big amount of unlabelled data

available and labelled data presents itself as a costly, expensive and time consuming task (Ouali et al.,

2020). The idea is to use the unlabelled data to provide valuable information on training of models. This

can open up possibilities for large scale projects, where big amounts of data are collected and stored in

bulk. With an SSL approach, the purpose is to capitalize on the abundance of unlabelled data, as well as

dimming down the dependence on labelled instances. In recent years, many SSL approaches have been

showing up towards deep learning (Yang et al., 2021). This factor can however present itself as a two edge
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situation: its novelty brings up many issues on standardizing training techniques, meaning there are still a

lot of choices and steps that need further testing/development.

2.0.4 Reinforcement Learning

Reinforcement Learning (RL) represents a problem much more generalized than Supervised Learning. An

entity described as an agent interacts with an imposed environment where it need to find an optimal behav-

ioral strategy based on limited feedback from the environment itself. This feedback comes in the form of

a reward or a punishment which will affect on how the agent will try and adapt to the circumstances. The

way the adaptation is made is ruled and modelled by the RL algorithms, where the goal is to find a policy

that maximizes the long-term reward (Heidrich-Meisner et al., 2007). Functionality wise, the concepts of

agent and environment face limitations. Both employment of physical or virtual agent and space can be

expensive and it highly depends on the task in hand. The nature of RL can be linked to neuronal and behav-

ioral sciences on incorporating biological concepts on the learning. It is still an area in development and

there are very high expectations as researchers have been achieving considerable results on such paradigm

(Mousavi et al., 2018). The ability to learn on almost non-existent predefined data can open many doors on

behavioral adaptation research.

2.1 imp o r t a n t ML b a s e s a n d n o t i o n s

In this section, important definitions and mechanics on technical notions will be displayed and fit on the

context of this paper. It's important to note that not every aspect of a certain field or area of Machine

Learning will be explored deeply. The goal is to point out crucial knowledge on understanding and justifying

the choices made throughout the project.

2.1.1 Classification problems

Classification problems in the field of ML occupy a big portion of the utility of models designed on such

guidelines. There are several applications for ML algorithms but one of the most relevant ones is predictive

data mining (Kotsiantis et al., 2006). Datasets consisting of features, categorical, continuous or binary,

can make a supervised problem if there are known labels to those instances or an unsupervised one if

there aren't any. What's incredibly interesting is that classification problems can be formulated on the

most diverse situations, towards the most specific tasks. Its versatility is what brought it to the highlight on

many humanly intractable mathematical problems. Even more important is that many results obtained can

already surpass human performance (He et al., 2015).
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2.1.2 Neural Network theory

Many classifiers have been developed on very different contexts and tasks. Linear and logistic regression

(Gabriel, 2018) (Maalouf, 2011) are baselines ones to solve linearly separable data problems with efficiency.

SVM (Ben-Hur and Weston, 2010) introduce more complex operations on data, making them capable of

solving problems on non linearly separable data with mostly good results.

Today, the major highlight on ML is the Artificial Neural Network (ANN) theory (Grossi and Buscema,

2008). ANN are graph composed systems, inspired on processes of the human brain (McCulloch and

Pitts, 1988). They have a characteristic adaptive capacity to change their internal configuration to fit certain

aspects of data towards a label. When the data associated with a problem show great degrees of complexity,

ANN tend to dominate over any other algorithm (Çoban, 2016). This is due to many factors such as flexibility

of models and dimension scaling of data (LeCun et al., 2015).

The base unit of an ANN is a neuron, represented on the graph notation as a node. Each neuron

receives an input from the environment or other neurons affected by the strength or weakness of the

connection (weighted sum). It then performs an operation involving an activation function on the input

received. These specific functions exists mostly on each neuron. Their use confers a non linearity factor to

the network, creating non linear relationships between the weights and data (Olgac and Karlik, 2011), which

is very important given the complex high dimensional structure that data coming from every other scenario

presents.

Figure 1: Example on schematics of a simple shallow (one hidden layer only) neural network.

These components work on a feedforward manner where they learn to map some input reproduced on

some source to a certain output class, depending on context. The network can be divided on three different

areas: input layer, group of neurons that take the data directly without change; one or more hidden layers,

where each layer is composed by a group of neurons; output layer, where the final calculation of the function

learnt is done, the number of neurons will vary with the task in hand (like classification (Kotsiantis et al.,

2006), multitask learning (Caruana, 1997)). It's the changes on the weights of each neuron that will look

to make the network learn the structure on the data. These changes are managed through the algorithm of
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backpropagation (Rumelhart et al., 1988). Backpropagation looks to compute the gradients of a predefined

objective function (Wang et al., 2020) with respect to the weights.

The key insight is that the derivative (or gradient) of the objective with respect to the input of a module

can be computed by working backwards from the gradient with respect to the output of that module (or the

input of the subsequent module). The backpropagation equation can be applied repeatedly to propagate

gradients through all modules, starting from the output at the top (where the network produces its prediction)

all the way to the bottom (where the external input is fed). Once these gradients have been computed, it is

straightforward to compute the changes with respect to the weights of each module.

From this explanation on the concept of backpropagation cited from LeCun et al. (2015), it's important to

understand that this chain rule modifies each layer according to their error signal as a whole. So the process

can be seen as build up of properties, formed in a hierarchy, growing on complexity and abstraction, where

the association between raw data and a label is learned on the function expressed from the combination

of the neurons. Backpropagation is used in an iterative way for proper tuning of weights on the network.

This concept of training came in very importantly for the development of Neural Networks, as it launched

important concepts on forming what Deep Learning (DL) is today (LeCun et al., 2015).

2.1.3 Deep learning

Among the ML guidelines, there is something that goes by Representation Learning, where multiple pro-

cesses and computations fit each other in order to learn relevant representations of raw data, allowing for

detection and classification (LeCun et al., 2015). DL builds on this concept, involving the ANN theory by cre-

ating multiple representations on a characteristic hierarchy set up where the level of abstraction increases

gradually up to a defined goal. It can be seen as the stacking of multiple modules, composed of layers

containing non linear units (neurons), where, with enough density, complex functions can be learnt. On the

past years, it has been verified that deep learning based machines are able to find structure on high dimen-

sional data on many different contexts. Automatic feature selection/extraction combined with considerable

results provides valuable advantages over every other ML algorithm. Today, there are still many variants

over models, architectures and algorithms being developed so many improvements can be expected on a

near future.

2.1.4 Convolutional Neural Networks

Convolutional neural networks have been the primary choice for most tasks on computer vision (Shamsaldin

et al., 2019). They are an architecture derived directly from the cerebral visual system and look to emulate

some aspects of it. The inspiration source can be dated back till 1962, with the work of Hubel and Wiesel
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where they concluded on the sensitiveness of the cells in the cortex towards small sub-regions of the visual

field, called receptive fields. LeCun et al. (2015) attributes the roots on Convolutional Neural Network (CNN)

to the Neocognitron, a model proposed by Fukushima in the early 80's. Its first practical application came

with Cun et al. (1990) to recognize hand-written digits. In the past years, the use of Graphics Processing Unit

(GPU) on ML promoted CNNs as this hardware technology allowed for a relatively efficient way of training

this type of networks.

The CNN architecture is usually composed around convolutional layers, pooling layers, flattening layers

and finally fully connected units.

Convolutional layers are the core aspect of the network when it comes to feature extraction. Each of

these layers are made of groups of filters/kernels with a fixed area of effect that move through the input

data, creating one feature map per filter. Each of these filters have adaptable parameters that will be shared

across the whole space of an instance, providing efficiency to the computations done. This way, different

filters capture different properties of data, learning structure for complex datasets. One important advantage

relatively to Fully Connected layers is that CNNs have the ability to obtain shift invariance automatically (Lee

et al., 2020), providing some unique robustness to these systems. Fully Connected layers on the other

hand, on tasks like Automatic Speech Recognition (ASR), where a lot of parameters and calculations are

involved, tend to overfit somewhat easily. To the output of the filters, on each section of data, an activation

function is still employed to confer the non linearity factor to the net.

Pooling layers address some important issues regarding efficiency as well as performance in training.

They have the ability to down sample data in a more drastic way, where each section of an instance,

depending on the pooling kernel size, will be measured and contracted into one single value, depending on

type of pooling (for example Max Pooling or Average Pooling). This way, less parameters will be needed for

posterior processing.

The flattening layer complements the transition from Convolutional layers to Fully Connected layers. The

output of the CNN components are usually a three dimensional matrix, composed of multiple feature maps

produced by previous kernels. So there is a need to adapt the structure of these to fit the input shape

required by Fully Connected layers. This change of shape is conducted by the Flattening layer that prepares

the input to the final transformations leading to the output of the network.

As said previously, CNNs have been applied extensively on Computer Vision. Given the way it's birth

circumstances, it would only be a natural progression step. Lately though, their usage has expanded to

further areas like the immense Natural Language Processing (NLP) field, involving tasks like ASR, ASER,

sentiment analysis, text processing, among others. Given the context on which this dissertation paper

revolves around, the extension of such models towards ASER provides a platform of exploration on multiple

approaches.



2.1. Important ML Bases and Notions 13

2.1.5 Recurrent Neural Networks

Recurrent Neural Network (RNN) is a characteristic type of architecture capable of learning features on

long term dependencies, augmented by the inclusion of recurrent edges acting over consecutive time steps,

adding the time dimension to the model (Lipton, 2015). Properly tuned models following the RNN path are

capable of handling any dynamic system (Salehinejad et al., 2017).

RNN alike algorithms can be dated back till 1982 where Hopfield (Hopfield, 1988) introduced a family

of recurrent nets with some capacity of pattern recognition over time. However, they held no clear way of

being trained on a supervised manner. After some refinement and progress with backpropagation and ANN

theory during the early 90's, Bengio et al. (1994) introduced the notion on issues regarding training RNNs

when the complexity of data, namely degree of long term dependencies, increased and were described as

vanishing gradients. This phenom happened when the propagation of error signal among modules would

die out and produce very little change on the weights to the point where earlier modules would not be able to

learn any features on data causing a cascading decline effect throughout the network. Later, in 1997, with

the introduction of Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) it was possible to

successfully train RNNs in a more systematic way. The concept of memory along time steps is introduced

as a way of keeping track of important features in sequential data, helping to deal with the problem created

with the gradient training on long term dependencies. Today, LSTMs are widely used on many areas where

sequence translated or time dependent data is used. The main application revolves around NLP areas,

such as text translation, ASR, sentiment analysis, ASER, among others.

For quite some time now, a debate has surged on the usage of RNNs or CNNs on ASER tasks. The lack

of proper benchmarking makes it confusing when it comes to determine a valid conclusion, as multiple

different approaches on different set ups (datasets, features, network configuration) are being conducted

and obtaining different results. The use of LSTMs seems like the natural choice to process data in format

of audio, where time is implicit on such volatile concepts as emotions (Ayadi et al., 2011). But CNNs have

been picked up from the Computer Vision area because the frame level features created for this type of

network don't require as much preprocessing and the algorithm itself is computationally efficient, note to

mention that competitive results against previous RNN approaches are being obtained (Abdul Qayyum et al.,

2019). This creates room for further diversified approaches that will require proper documenting for future

researchers.

2.1.6 Autoencoders

A very interesting variation of the ANN theory is the concept of Autoencoder (AE): graph systems specifically

built to encode some input into a compressed relevant representation and the ability to decode it back

to a state as similar as possible as the original input. The way the system is designed allows fitting an
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unsupervised learning paradigm, conveying multiple advantages when it comes to usability of data (Bank

et al., 2020) (Hinton and Salakhutdinov, 2006).

Standard AEs can be decomposed on three parts, encoder, code and decoder (Maheshwari, 2020):

the encoder is responsible for receiving the input and conducting a series of operations depending on the

number of hidden layers, down to a lower dimension than the input itself (generally), where this dimension

is defined by the number of hidden units at the end of the encoder; the code corresponds to the compilation

of features comprised on the input, transformed by the encoder, where they can be described as a latent

space and are used as input to the decoder; the decoder will take the coded data and revert it back to the

initial dimensions, as similar as possible to the original input.

Mathematically, they are usually composed by activation functions to confer the non linear factor to the

system. Linear AEs are also a concept where they have the tendency to behave just like the dimensionality

reduction algorithm of Principal Component Analysis (PCA) (Bro and Smilde, 2014). Since the formation of

the concept of AE at Rumelhart and McClelland (1987), many different variations were developed. Denoising

Autoencoder (DAE) is a type of AE, designed to be able to reestablish an input from a corrupted version

of itself, by capturing statistical dependencies between input/output. This allows for the model to have

considerable resistance to perturbations on instances of data. Another example is the notion of Variational

Autoencoder (VAE), fitting the Generative Models category (Guzel Turhan and Bilge, 2018), where models

attempt to describe data generation through a probabilistic distribution, allowing for the use of adaptive

parameters representing some latent space to generate data. Another variation is the Sparse Autoencoder

(SAE) where the dimensionality of data is increased by using more hidden units per layer than input features,

where sparsity is introduced by constraints in the loss function, allowing the autoencoder to find distinctive

patterns within the dataset.

AEs unsupervised nature allow for many creative uses. They have a powerful ability to extract relevant

features on the most complex data structure.

2.1.7 Generative models

Recently, within the Deep Learning community, there has been a trend towards the notion of Generative

Model, mainly GAN (Goodfellow et al., 2014) (Salimans et al., 2016) (Ruthotto and Haber, 2021) . There

have been other generative models before but they came with a lot of issues regarding complexity and

computational cost, causing them to stay out of the spotlight (Guzel Turhan and Bilge, 2018). GANs offer

the ability to generate data realistic adversarial examples as well as a good ANN based classifier. The

potential on content creation out of many different data distributions, depending on context, presents itself

as a window for many high end tasks, like data augmentation, object generation, image manipulation,

among others.
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Usually, GANs are composed of two different networks, denominated as Generator and Discriminator,

trained separately but simultaneously. The Generator takes a randomized input and tries to map it to

data space, representing the training process on the generator's side. The Discriminator takes some input

and classifies it by outputting a probability close to 1 if it belongs to the real data distribution or close

o 0 if it belongs to the generator's distribution. This means that training on both networks will create a

Generator capable of understanding the data distribution and creating new instances, and a Discriminator

specialized on feature extraction/selection on the data. From this vanilla set up, many variations have been

designed. Radford et al. (2016) talks about the use of Convolutional layers in the GAN setup and leverages

the Discriminator to classify instances.

GANs show promising results and the margin of improvement is stretching far away into the horizon

(Odena, 2016) , but its complexity and computational cost might be a breaking factor when it comes to

choice of algorithm, as there are many factors about GAN that aren't quite standardized yet as well as other

intrinsic problems regarding its performance, training and design (Saxena and Cao, 2020). VAEs are also in

the category of Generative Models, as previously mentioned. Because of the way the model is constructed,

it is possible to sample from the latent space created by the encoder and delivering newly generated data

directly from the learnt distribution. The use of VAEs, compared to that of GANs, show a lower degree of

complexity as the amount of hyper parameters to test from is smaller and training itself can be more stable,

although mostly showing lower quality results (Munjal et al., 2019). This might be important on research

where the focus is not on the algorithm itself but on the pipeline designed for the task, although it would be

essential to keep this kind of trade off in mind.

2.2 S i g n a l P r o c e s s i n g

According to the Acoustic Society of America (ASA), sound is defined as (a) Oscillation in pressure, stress,

particle displacement, particle velocity, etc., propagated in a medium with internal forces (e.g., elastic or

viscous), or the superposition of such propagated oscillation. (b) Auditory sensation evoked by the oscillation

described in (a). Sound can be described by a waveform, which is characterized by factors such as frequency,

amplitude. Taking periodic sound as an example, frequency keeps track of the number of cycles a wave has

per second which translate to the height of the sound: higher frequency means higher sound. Amplitude

refers the magnitude of the wave, the measure of its change in a single period: larger amplitude means

louder sound.

Within the context of ML, the concern lies around the conversion of the analog signal to a digital one,

followed by some sort of preprocessing to get it ready to be used to train some algorithm on a determined

task. An analog signal has a continuous nature where amplitude and frequency values present themselves

as continuous values. This causes issues with digital oriented hardware, where discrete values are stored.

Theoretically, we would need an infinite amount of digital memory to save any continuous piece of data.
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In order to fit in the data, current technology resorts to the process of sampling. Sampling goes around

discretizing the values of a waveform, where two parameters are highlighted, the sampling rate and bit

depth. The sampling rate models itself around period (inverse of frequency), where given a period T, one

sample of the waveform will be saved every time T has passed. The higher the sampling rate, the lower

the error rate. For example, common CDs are sampled at a rate of 44100Hz. Why? The Nyquist-Shannon

theory (Weik, 2001) states that an analog signal waveformmay be uniquely and precisely reconstructed from

samples taken of the waveform at equal time intervals, provided the sampling rate is equal to, or greater

than, twice the highest significant frequency in the analog signal. Otherwise, the phenom of aliasing might

occur, where if the signal was to be reproduced from its digital conversion, artifacts would surge corrupting

the original data. Humans can capture sounds in the range of 20-20000 Hz based on the pressure applied

on eardrums (Darji, 2017). So half of the Sampling rate on CDs equals 22050 Hz, standing just above the

range of human ear range. Another important aspect of sampling is bit depth, where the number of bits

used for sampling the amplitude of a signal is defined. A predefined number of bits will be equally spaced

across the amplitude dimension, forming levels. At a sampling point, the amplitude value will be set on the

closest bit value. This implies that the bigger the bit depth, the more precise will be the value set on the

sampling process. For reference, CDs bit depth goes around 16 bits, resulting up to the value of 65536.

The aspects described previously can be important for this research as the quality of digital signal can

and will have an impact on any algorithm's performance. On the other hand, better signal quality will ask

for more competent hardware, imposing restrictions on affordable usage. It´s important to keep in mind

this quality trade off, where for higher portability (for common users with no task-specific hardware), lower

quality signal will most likely follow. This adds another issue where, on such stance, a more robust and

efficient model is required, potentially creating more challenges on the development of models. For the use

of high quality hardware, where portability usually falls short in terms of viability, the signal quality will be

higher. This raises extra questions, namely regarding the actual performance of the model: will the model

achieve the expected performance with high level quality of samples? The field of ASER is still evolving and

walking towards a point where it can be used reliably on social interactions but still rather far away from

high end/high risk scenarios.

2.3 C o n c e p t u a l Fr amewo r k

For this dissertation's focus, a generative model will be adapted to a classification task of emotion recognition

on audio speech data. More concretely, by consuming data from multiple sources, close to an end-to-end

approach, a GAN variant will be employed and trained from scratch, which can be more commonly known

as SGAN (Odena, 2016), on the attempt of achieving good levels of generalization based on the combination

of labelled and unlabelled data. The goal here is to investigate on an efficient an scalable approach to the
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problem of ASER, in order to push the paradigm forward and encourage further testing, since SSL does

show a lot of potential on the strength of being able to handle partially raw data.

In an era where information is everywhere, it can be seen as an absolute priority to learn to leverage data

that requires little to no human intervention on processing as it presents a huge fraction of the resources in

the world for almost any task at hand. Deep learning methods are being developed on that sense and the

author believes it presents itself as a unique opportunity to combine the power of Neural Networks with Big

Data.

2.4 L i t e r a t u r e Re v i ew

Emotion Recognition, as a concept, has been around for quite some time, which by itself implies many

different approaches of distinct nature. From a generalized perspective, it's relevant to make the distinction

between multi modal and single modal emotion recognition. Multi modal usually has more than one source

of information: voice, facial expression, body language, among other auxiliary types data. Single modal

refers to only one type of data, which applies on this dissertation. As speech data only is used, it should be

only fair to make a comparison with other single modal focused work, mainly speech.

As fully supervised approaches are still the most relevant, compared to SSL, a simplified overview of

supervised approaches is also necessary to understand the standards of classification. However, the com-

parison of actual results can be tricky, as different forms of sampling from the dataset, different types of

classification and different evaluation metrics arise from a purpose established by each researcher, which

leads to a variety of parameters, making a direct comparison not as a reliable as it normally should be.

In Xu, Zhang, Cui and Zhang (2021), a relatively small Convolutional neural network, parameter wise, is

employed with feature fusion and multiscale area attention, extending on Li et al. (2020), using Log Mel

Spectrograms, achieving an incredible 79.34% Weighed Accuracy (WA) and 77.54% UA on the IEMOCAP.

Only a specific portion of the IEMOCAP is used, meaning, four classes, sad, neutral, angry and happi-

ness+excitement. Posterior filtering is done to the data: the dataset is divided in two parts, an acted portion

and an improvised portion; only the improvised portion is used. An ablation test is also conducted to

verify the impact of each enhancing technique applied on the model, like the attention variation or Vocal

Tract Length Perturbation (VLTP) for data augmentation, allowing to verify the improvement made by the

implementation choices.

In Jalal et al. (2020), two groups of experiments are conducted, which can be mainly distinguished by

the neural network type, Bi Long Short Term Memory with attention (BLSTMATT), described by Milner et al.

(2019), and Convolutional Self-Attention (CSA), described by Jalal et al. (2019), both with higher complexity

that the previous work mentioned. On the standard benchmark IEMOCAP, with the BLSTMATT approach,

a value of 80.1% UA and 73.5% WA are obtained, while with the CSA approach, the best values go up

to 76.3% UA and 69.4% WA. Finally, by combining both approaches into one, where a manipulation over



18 S t a t e O f T h e A r t

the outputs of each network is conducted, a state of the art value of 80.5% UA combined with 74% WA

is obtained. Just like previously mentioned on other work, four classes are used, sad, neutral, angry and

happiness+excitement, but on this setup, both improvised and acted speech samples are used. The dataset

is separated into train/test in a speaker-independent manner, where the actors on one set are different from

the actors on the other, making it even more impressive than it already is.

Fully supervised approaches are hitting higher and higher degrees of performance and slowly evolving

towards what could be highly reliable systems. Of course that the reliability of such system depends on the

final goal of the task.

On some specific tasks, the gap between a fully supervised paradigm and semi supervised paradigm is

not black and white anymore (Andrade et al., 2022). So SSL is presenting itself as a more viable solution

to the future, as the amount of data collected is larger and larger, and its processing is more and more

expensive. To take advantage of the abundant unlabelled audio data, many researchers found original

approaches on the SSL paradigm. In Zhao et al. (2020), a GAN system is employed along a classifier to add

some meaningful information from unlabelled and generated data to the labelled set. To complement the

system, the researches chose to implement some techniques originated on Adversarial Training (Goodfellow

et al., 2015) and Virtual Adversarial Training (Miyato et al., 2018), implementing a Smooth Semi Supervised

Generative Adversarial Network (SSSGAN) and a Virtual Smooth Semi Supervised Generative Adversarial

Network (VSSSGAN), respectively. Note that the features used to represent speech are not all image-like,

whichmight drive the algorithm implementation away from stable architectures based on Deep Convolutional

Generative Adversarial Network (DCGAN) (Radford et al., 2016). However, considerably good results are

still achieved on the IEMOCAP (also four class set up, improvised and acted speech included), with 59.3%

and 58.7% UAR, at 2400 labelled data, on the proposed methods of SSSGAN and VSSSGAN, respectively,

claiming to outperform the state of the art under this context. This is most likely one of the few pieces of

work done on SGANs, on a single modal baseline with speech-like only data, which translates the lack of

actual practical resources for the task proposed in this dissertation.
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T E CH N O LO G I C A L F R A M EWO R K S

The development of any virtual system requires technical support from one or multiple frameworks. On this

section, the whole conceptual design of the pipeline will be described.

A very important part of the model development phase starts around the data preparation and processing.

In this pipeline, the python library Librosa (McFee et al., 2021), a comprehensive python library for audio

processing and analysis, is a perfect match to fit on the task. With the assistance of other important

core data processing packages like Pandas (pandas development team, 2020) (Wes McKinney, 2010) and

Numpy (Harris et al., 2020), the data is prepared from its raw state into features ready to be fed onto the

Neural Network system.

For the model development itself, Tensorflow (Abadi et al., 2015) will be selected. Tensorflow is a ma-

chine learning system that enables many different kinds of experiments and novel training procedures and

has been widely used on many Artificial Intelligence tasks. Its flexibility provides an ideal environment to

customize and control any experiment from end to end. With Keras back end included from Tensorflow 2.0

and up, a lot of simplicity is added to the whole framework, allowing for a somewhat straightforward build

of a system.

3.1 Da t a s e t

Nowadays, audio data is rather abundant in the digital world, whether it is music, conversational speech or

any other kind. Classification tasks on ML still need to get some processed, labelled data to make it reliable.

For ASER, a lot of different collections of datasets have been made throughout the years (Wani et al., 2021)

(Abbaschian et al., 2021). Three different types of collected datasets can be distinguished: Spontaneous

Speech, Acted Speech and Elicited Speech.

Spontaneous speech is characterized by its naturalness and expression of unbiased emotions towards

emotion caption. There is usually no direct intervention with the speaker, as the data is collected from

external platforms like interviews, podcasts and many other sources. This type of natural speech might

prove itself to be very important when it comes to real world scenarios due to its genuineness, as it might

approximate the abstract representation of emotions on neural networks better than any other type. As

19
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such, these characteristics can bring subtle, more complex, harder to learn features that hinder or refine

learning, depending on the system's capacity. There is also the issue of distribution and annotation of data,

where both of these factors show itself to be very volatile, meaning that, depending on the source, there is

a high chance that the amount of data collected from that source, under some predetermined set of labels,

is not going to be balanced. Even worse, the annotation process itself can be rather subjective and prone

to error, even though many efforts are made to preserve the viability of both discrete and continuous labels

on emotional data (Lotfian and Busso, 2019).

Acted speech has the big advantage that the experiment's factors can be fully controlled. Aspects like

the speaker, the emotion to be expressed, the wording, can all be predetermined beforehand, allowing to

create the perfect environment for restricted events. The distribution of instances per emotion can be fully

accounted for, which tackles a big issue on emotional databases. On the other hand, the nature of acted

speech can interfere with the expression of emotions itself. On many instances, professional actors are

employed to follow scripts in order to provide some degree of authenticity to the desired emotion. Also, the

annotation process is much simpler, as the conditions are all previously set up, leaving the issue to the

quality of the performance of the actor, instead of the quality of the annotation as in Spontaneous Speech.

Elicited speech is a particular strategy of speech data generation that aims to reunite a few advantages

from both spontaneous and acted speech. Certain situations are manufactured in order to induce an

emotional response from a subject. There are some formalities that present themselves as issues, like the

fact that if a subject knows that the reaction is being recorded, the authenticity of the emotional response

might be compromised. There is still a lot of control on the experiment, allowing for some variation on the

emotion pretended, but it still presents a big overhead of set up, which by itself, restricts the distribution of

the data.

There are other important aspects on the design of such databases. Language, for example, can dictate

the amount of data that can be obtainable from a certain source, i.e. if the criteria shows english language,

then there is a big chance that a scientist will be able to collect huge amounts of data on the internet

without many costs associated. If the language would be portuguese, then it could be more difficult to find

appropriate data for the task. Next, the annotation scheme combined with the label set. The labels on an

emotional dataset need extra attention. As stated before, there is no solid ground for emotions, especially

when it comes to describing it in a discriminating way. The boundaries between them are not clear and

should not be treated as such. The dimensional values of valence, arousal and dominance can counter

this issue, but it brings something else along: there is no precise way of measuring the values of these

dimensional labels, which might bias the whole dataset towards the annotators' point of view. The problem

that both of these approaches have in common is that they can both compromise the quality of a database

from the point of the absolute ground truth that labels represent (on general case, there are no ambiguities

on object recognition, for example), originating from the conveniences made. They have their value towards
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improving the machine-human interaction, but the knowledge available right now is not enough to employ

such models, trained on such datasets, to high end or high risk scenarios, like medical applications.

However, the work done on providing audio speech data has allowed for efforts to be made on improving

the conditioning of an ML problem, which by itself can allow scientists to establish proper frameworks that

will grow along the research on human emotions.

For the purpose of this dissertation, the IEMOCAP (Busso et al., 2008) will be the main source of data.

This dataset is characterized by its high quality, high amount of acted and elicited speech. From the per-

spective of real world applications, this can actually come up as an issue, due to the actual diversity on how

the audio data reaches the model.

3.1.1 Data exploration

The IEMOCAP, announced in 2008, is a standard benchmark for ASER tasks. It comprehends around 12

hours worth of speech, recorded at 16KHz (sampling rate), divided in five parts, where each part holds

two different actors, gathered at the Drama Department of University of Southern California. Along with

this, there is another division between scripted and improvised data. The dataset comprises nine different

types of emotions, anger, excitement, fear, frustration, happiness, neutral, sadness, surprise and other. The

labelling process is built on a set of annotators where it relies on the agreement of more than half of them

in order to decide on the emotion expressed. This type of annotation procedure led to an imbalance in the

number of labels per class, as the situations where a certain emotion would be expressed weren't designed

by label but annotated case by case. For this reason, researchers chose to proceed with four emotions out

of the set, neutral, anger, sad and happy, where due to the low number of "happy" labelled instances and

the similarity of it compared to "excitement", these two would get merged (Xu, Zhang and Zhang, 2021).

For the sake of proper comparison, both the scripted and improvised part of the dataset will be utilized.

In the end, the effectively used dataset is composed by 5531 utterances: 1103 angry labelled instances,

1636 happy labelled instances, 1708 neutral labelled instances and 1084 sad labelled instances, with the

percentages on the data illustrated at Figure 2.

This truncated dataset presents a fairly high variety of utterance length, ranging from 0.58 seconds to

34.14 seconds, which can and does present itself as a challenge from the perspective of a due pipeline for

the processing of the data. This sample duration range also implies other problems like the presence of

one or more emotions throughout the same sentence on one side and the lack of of enough information

over small segments on the other. Depending on the approach chosen, it can force researchers into non

optimal paths, especially when the task in hand involves DL, as the treatment of data is a crucial step on

the makings of a good DL system. To deal with variable length input such as audio, RNNs alike algorithms

come to mind where they could be combined with CNNs to take advantage of its efficiency on hardware,

which has been a frequent approach in the past (. and Kwon, 2020) (Kurpukdee et al., 2017). From Fig.3,



22 Te ch n o l o g i c a l Fr amewo r k s

Figure 2: Distribution of the four selected labels over the dataset. .

it can be verified that the distribution of the duration of each samples is rather skewed positively, which

means that relatively low duration samples overtake most of the data.

Figure 3: Distribution of the four selected labels over the dataset. .



3.2. Feature Settings 23

However, the problem would potentially shift towards the stability of a GAN system that could handle such

a model. GANs present a fine line on the optimization process (Lucic et al., 2018), where small changes

can lead to drastic performance changes, meaning that the more complex a model is, the harder to control

the experiment will be. Each choice of data processing heavily influences the model algorithm itself (and

vice-versa), which means that on this set up, special consideration needs to be taken for the final goal,

because the viability of the project itself might get compromised.

3.2 Fe a t u r e s e t t i n g s

The process of audio data takes a fundamental spot on the performance of any type of audio processing

system overall. The type of features extracted, whether handcrafted or automatically extracted, will have a

huge impact on the viability of the whole process.

As input to Neural Networks, the possibilities range from the raw wave form to some high level trans-

formations of the data, according to certain principles (Latif et al., 2021). A standard approach consists

of starting by extracting features known as Low Level Descriptors (LLDs), comprehending loudness, jitter,

shimmer, spectral flux, spectral slope, Mel Frequency Cepstral Coefficients (MFCCs), Log Mel Spectrograms,

fundamental frequency and others. These can be referred to also as frame-level features, as they are ex-

tracted from fixed size frames of audio data. They are then processed again into High Level Descriptors

(HLDs) comprehending arithmetic and geometric means, standard deviations, peak to peak distances and

others. These are considered segment-level features as they compressed variable sized feature vectors into

fixed size ones, relieving and important issue on the processing of variable length data as volatile as audio

(Parthasarathy and Busso, 2019). With the recent development of DL though, Log Mel Spectrograms are

becoming one of the most popular features in the research community (Meng et al., 2019). Its image-like

nature is allowing for the usage of CNNs as models for efficient representation learning and overall relatively

good performance.

3.2.1 Feature Selection

For this instance of work, Log Mel Spectrograms will be selected as an only feature, providing a somewhat

end-to-end like approach (Glasmachers, 2017) to the issue, which is only made possible under these cir-

cumstances by the development of DL. End-to-end systems present many advantages over traditional ML

systems. It has also been verified that end-to-end systems can generate very powerful predictors by sheer

capacity of a model (Glasmachers, 2017). More importantly, the need for feature engineering fades away,

saving considerable empirical time on handcrafting and selecting features which, until the development of

DL, was very prominent and important on the development of ML systems. However, there could be some

problems in the context of the work done arising from the limitations of stochastic gradient descent and the
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learning signals provided during the training phase towards the milestones set. Also, very importantly, the

problem decomposition phase, which can include/coincide with the feature engineering phase, is almost

skipped entirely, ignoring a lot of possible data/model enhancements and steps towards a well conditioned

problem. On the context of ASER, it is a choice to take this kind of approach due to the efficiency of CNNs

on these kind of tasks as well as the good representation capacity associated to Log Mel Spectrograms. To

understand why, its necessary to know what Log Mel Spectrograms represent when one refers it to audio

speech data and why they fit with CNN architecture.

Audio signal's properties dictate that they vary through time. There are representations of such in time

domain or frequency domain, however, our interpretation on sound arises from spectral or temporal aspects

of the sound itself, which creates a need for time-frequency representations (Darji, 2017). For that matter,

the use of spectrograms (French and Handy, 2007) comes up.

Spectrograms are time-frequency representations that provide ways of discerning important features of

many different types of audio signals and can be very helpful when the signal doesn't change rapidly in

time, although, on situations where it actually does, the context on how the frequencies change can also

contribute to the understanding of the underlying information.

In order, to create such representations, one refers to the Short-Time Fourier Transform (STFT) (Allen,

1982). STFT is a sequence of Discrete Fourier Transforms (DFTs) (Bracewell and Bracewell, 1986) of a

windowed signal, where each value corresponds to the energy in the dataframe.

The calculation of the STFT can be then described as follows through the STFT pair on Equation 1.

⎧{
⎨{⎩

𝑋𝑆𝑇𝐹𝑇[𝑚, 𝑛] = ∑𝐿−1
𝑘=0 𝑥[𝑘]𝑤[𝑘 − 𝑚]𝑒−𝑗2𝜋𝑛𝑘/𝐿

𝑥[𝑘] = ∑𝑚 ∑𝑛 𝑋𝑆𝑇𝐹𝑇[𝑚, 𝑛]𝑤[𝑘 − 𝑚]𝑒𝑗2𝜋𝑛𝑘/𝐿 (1)

where x[k] denotes a discrete signal and w[n] denotes a windowing function. The first term refers to the

transformation of the signal to a spectrogram through STFT, whereas the second term refers to the inverse

operation (Kehtarnavaz, 2008). The computational algorithm is built by the Fast Fourier Transform (FFT)

(Brigham and Morrow, 1967), a fast, efficient way of computing the DFT on a computational environment.

The window function is present to address the issues related to spectral leakage, originated by the assump-

tion that the signal on each data block is periodic: when the FFT is calculated over non periodic signals,

the frequency spectrum suffers from leakage, originating artifacts or noise in the representation. To fight

this, the window function, composed by zeros on both ends and a special defining shape in the middle,

is introduced and multiplied by every data frame in order to address the characteristic discontinuities on

the edges of a signal (Ramirez, 1985). A common window function used in the calculation of STFT on the
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context of audio is the Hann Function (Harris, 1978), a bell shapped function, which will also be used on

this dissertation, by default.

Following the calculations for the spectrogram, the Mel scale (Umesh et al., 1999) (Stevens et al., 1937)

is applied. The Mel scale is a fundamental result of psychoacoustics that looks to establish a relationship

between the real frequency and the perceived frequency. This representation looks to somewhat emulate

how humans actually perceive sound, by affecting how frequency scales up to higher values. One of the

most popular formulas for converting signals to the Mel scale is given by Equation 2.

𝑚 = 2595 log10 (1 + 𝑓
700) (2)

After this, the Mel spectrogram is put through a transformation that converts the power values to Decibel

(dB) units, creating a more visible representation of the spectrogram, commonly known as Log Mel Spectro-

gram. Fig.4 shows a comparison between representations, audioform and Log Mel Spectrogram from each

of the selected classes, with arbitrarily selected instances, on the IEMOCAP. On the left, the raw audioform

is presented. The speech parts are relatively easy to distinguish as they can be identified by the sudden

changes along the X-axis. On the right, the Log Mel Spectrogram presents itself as a rich image-like repre-

sentation of sound. The speech parts are identified by a higher dB values on multiple frequencies along the

X-axis. These two representations are very different but both viable as an input to a neural network system.

A pure end-to-end system would rely on actual raw waveforms without any further processing. This won't be

the case here though due to the size of a raw waveform, meaning, number of samples per data instance,

as it could be problematic from the point of view of a generator in a GAN system to create instances of such

dimensions.
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Figure 4: Distribution of the four selected labels over the dataset. .

3.3 Mod e l C o n t e x t u a l i z a t i o n

Regarding the nature of the neural network system used in this work, GANs will be used to employ a solution

for this task. GANs are part of a family of models denominated by Deep Generative Models (DGMs) (Ruthotto

and Haber, 2021). DGMs can be understood as neural networks that reach a certain level of complexity

and aim to approximate probability distributions over high dimensional parameters, on the expense of a

lot of data samples. With the astonishing success of DL, these type of models became a prime topic of

research, as their usage can serve the most diverse purposes, a lot of times only bounded by imagination

(theoretically). The potential of such models, specifically of GANs, is what proved attractive to dive into the

matter of the adaptation of such to SSL, which, until today, remains as a topic with very few resources for

real world applications. This can be attributed to the high difficulty of training on these types of systems,

both computational resource and complexity wise, to the lack of practical measures and testing on other

than standard benchmark datasets like MNIST (Lecun et al., 1998) or CIFAR (Krizhevsky, 2009), and to the

many implications that SSL has on the GAN system, regarding relationships between modules, that are still

not completely understood or even catalogued at all.

3.3.1 GANs

Usually, the final goal of a GAN is to train a Generator network 𝐺 where it learns a distribution 𝑝𝑔 over

data 𝑥 by defining a prior on input noise variables 𝑝𝑧(𝑧), and linking it to data space by 𝐺 (𝑧; 𝜃𝑔), where
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𝐺 represents a neural network parameterized by 𝜃𝑔. In order to provide gradients for 𝐺 to learn on, a

second network, Discriminator𝐷, parameterized by 𝜃𝑑, will generally output a single scalar value𝐷 (𝑥; 𝜃𝑑),
corresponding to the probability over the origin of the data 𝑥 from real data distribution 𝑝𝑑𝑎𝑡𝑎 or from the

𝐺's data distribution 𝑝𝑔. 𝐷 is trained over a standard Binary Cross Entropy (BCE), where 0 corresponds

to a fake example and 1 correspond to a real one, 𝐺 is trained to minimize the probability of 𝐷 classifying

given instances as fake, as shown in Equation 3.

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥∼𝑝dat (𝑥)[log𝐷(𝑥)] + 𝔼𝑧∼𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))] (3)

The GAN formulation showed empirical issues as the theoretical assumptions made on the convergence

analysis did not hold (Manisha and Gujar, 2019). One of the most common issues was associated with

mode collapse, where the generator learns a single mode of the data distribution. More concretely, the

same or extremely similar images are produced every time, usually because the generator "figures out"

that the discriminator is fooled by that instance. The images tend to look good but lack variation. Another

common problem is that the instability of GANs leads to loss values that are not consistent with converging,

which created a lot of issues regarding interpretation of results from task to task. There have been instances

of losses indicating divergence, but still realistic images being produced, without explanation whatsoever

(Manisha and Gujar, 2019).

Regarding the training of 𝐺, the initial formulation also showed itself prone to vanishing gradients is-

sues, so in practice, it got replaced by maximizing the probability of 𝐷 classifying given instances as real

(Goodfellow et al., 2014), which allowed some alleviation of this issue.

From this original formulation, multiple GAN variants appeared, among them, a SSL inspired approach

(Salimans et al., 2016). used in this dissertation, where a supervised objective is added to the Discriminator

in order the map data to a label and still take advantage of the feature extraction process associated with

the GAN system.

3.3.2 SGAN

The standard Classifier receives a data point 𝑥 as input and outputs a vector of size corresponding to 𝐾
classes to which a Softmax function is applied, allowing to generate class probabilities. The model is trained

on a cross entropy loss. By adding samples created by a Generator and assigning it a new pseudo-class,

which will represent all generated samples, the loss function of the model can be extended to include a

unsupervised objective, incorporating the GAN system into the classifier, shown in Equations 4 and 5.
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𝐿supervised = −𝔼𝑥,𝑦∼𝑝data (𝑥,𝑦) log 𝑝model (𝑦 ∣ 𝑥, 𝑦 < 𝐾 + 1) (4)

𝐿unsupervised = − {𝔼𝑥∼𝑝data (𝑥) log [1 − 𝑝model (𝑦 = 𝐾 + 1 ∣ 𝑥)] + 𝔼𝑥∼𝐺 log [𝑝model (𝑦 = 𝐾 + 1 ∣ 𝑥)]}
(5)

By introducing the GAN system into the the classifier, the Generator module also requires a loss function

in order to learn an approximation of the real data distribution. Instead of the standard initial approach of

maximizing the probability of the Discriminator classifying an instance as real, the Feature Matching loss

(Salimans et al., 2016) is used, where the objective of the Generator is to match the statistics of the actual

data, corresponding to some predetermined intermediate layer of the Discriminator, as in Equation 6.

𝐿feature matching = ∥𝔼𝑥∼𝑝data
f(𝑥) − 𝔼𝑧∼𝑝𝑧(𝑧)f(𝐺(𝑧))∥

2
2 (6)

, where 𝑓 (𝑥) represents the activations of the intermediate Discriminator layer. This loss function has

shown itself effective on SGAN training as it also tackles the instability of training during the procedure.

3.4 E x p e r im e n t D e s i g n

3.4.1 Data Preparation

As a start, the dataset is divided into train set and test set, containing 80% and 20% of the data respectively,

for a 5-fold cross validation. After this, each of the instances themselves are divided in 2 second chunks,

with 1 seconds overlap on training and 1.6 seconds overlap on test, where each chunk inherits the label

associated to its original utterance. This methodology, used recently in Xu, Zhang, Cui and Zhang (2021),

allows to tackle the problem of variable length on samples. Although, it is important to note that CNNs have

the capacity of processing variable length inputs due to the sliding window implementation, as long as the

correct form of pooling is used when it comes to get an output class. For the context of a GAN, a variable

output length might be troublesome to the generator and affect the stability of training to some degree,

which is why the choice of fixing the length of samples was taken. While during the training process, each
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chunk represents an isolated instance, on testing time, an aggregation of all chunks per utterance is made

by averaging the prediction output by the network. It was shown that higher level of overlapping between

chunks led to a more robust classification and better performance overall (Xu, Zhang and Zhang, 2021). A

very interesting chunk wise approach was made in Lin and Busso (2021), where a more dynamic solution

presents itself by having chunks that are variable in length from instance to instance, leading to different

overlap levels over each utterance and creating an adaptive behaviour to the processing of speech.

Each of these chunks are then converted to a Log Mel Spectrogram, where 40 bands are used, a common

parameter used in this kind of transformation for ML purposes (Parthasarathy and Busso, 2019), with an

STFT window of 2048 and hop length of 512, originating a 1-channel representation of dimensions 40x59.

Note that his chunk-like approach extends the number of training samples. Depending on the utterances

(randomly) selected, the dataset, from the point of view of the Neural Network, gets bigger, usually approach-

ing the value of 13000 training samples. The same does not happen for the test set as the aggregation

step on classification fixes its length.

3.4.2 Evaluation Metric

For the purpose of evaluating and comparing the results obtained, three metrics were saved, the crossen-

tropy loss, the UAR (also known as WA) and the UA. Among these three, UAR should be the more common

one, as it allows for a better understanding of the model's performance towards an unbalanced dataset.

It's important to have corresponding metrics when it comes to comparing results, which can vary quite a

bit throughout all papers on ASER research, as the dataset conditions and the final goal for the experiment

might change from researcher to researcher. Sometimes this is not possible as the labels for the dataset

change: researchers opt out of categorical emotional labels in favour of continuous measures of valence,

arousal and dominance, as training models with these has shown advantages over categorical labels (Khor-

rami et al., 2016). The human readability might be somewhat affected as the interpretation of continuous

values towards an associated emotion can be trickier.

3.4.3 Model Definition

As a GAN system is employed, the architecture and hyperparameters defined will have a huge impact

on the outcome, as these type of models are sensitive to changes in structure like depth of the network,

learning rate, batch size (Lucic et al., 2018). The SGAN algorithm is no exception. The search for optimal

hyperparameters on a task can be extremely expensive, even somewhat not viable, depending on the data

in hand, the computational resources, time resources, personnel resources, among others. As a result, it is

often advantageous to employ certain conditions verified by other researchers to ensure that there is some

logic to the baseline created. The neural network architecture will then follow closely the work of Lecouat
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et al. (2018). The model starts by receiving an input Log Mel Spectrogram with dimensions 40x59x1. Then,

three 2D convolutional layers, with 32 filters each, with a LeakyRElu (Xu et al., 2015) activation function after

each layer are applied to the input. This is then followed by a Spatial Dropout Tompson et al. (2015) layer

with a ratio of 0,3. Next, another identical block of convolutional layers with LeakyREly activation follows,

but this time with 64 filters each, and once again a Spatial Dropout layer with the same ratio. The last

convolutional block is composed by a 3x3 layer, then two 1x1 layers, with 64 filters each and LeakyRElu

after, followed by a Global Average Pooling into the Dense units that will output the logits for the classifier

and for the discriminator. On the classifier end, the general approach is used, where a softmax is applied to

get an output probability of each class. For the discriminator, the kernel trick mentioned in Salimans et al.

(2016) is used allowing for all the layers and units to be shared between Classifier and Discriminator.The

unsupervised model takes the logits prior to the application of the softmax and makes a normalized sum

of the exponential ouputs. In practice, an aggregation function Lambda layer is used on the logits output

by the Dense units defined by:

𝐷(𝑥) = 𝑍(𝑥)
𝑍(𝑥) + 1 , where 𝑍(𝑥) =

𝐾
∑
𝑘=1

exp [𝑙𝑘(𝑥)] (7)

The model has a small number of parameters due to the size of the labelled dataset: on SSL, it is

common to use a very small amount of labelled data, which can be rather counter-intuitive when it comes

to DL, as huge amounts of data are usually necessary to reliably train a DL system (Alom et al., 2019).

The usage of Spatial Dropout and the last block of the model, consisting of Convolutional layers with 1x1

kernel sizes followed by a Global Average Pooling (GAP) (Lin et al., 2014), are also introduced to help the

susceptibility of the model to overfit to the small portion of labelled instances. Note that all the layers

are applied with Weight Normalization (Salimans and Kingma, 2016), a reparameterization of the weights

to improve the conditioning of the optimization problem, shown to have promising results on generative

models like GANs. The model schematics, for the Discriminator and Classifier shared architecture, up until

the final logits Dense layer are shown in Table 1.

To complete the GAN system, the Generator has to be defined as well. As standard procedure, a latent

dimension of 100 sampled from gaussian distribution is used. Then, to firstly make the shape of an image,

3x4x256 Dense units are used in the start of the processing of the noise input. Then, four similar blocks are

employed, where each block consists of a Strided Convolution layers of 128 filters, Batch Normalization (Ioffe

and Szegedy, 2015) with 0.8 on momentum, and LeakyRElu activation function. Following, two blocks, each

composed by a Convolutional layer with 128 filters, Batch Normalization and LeakyRElu activation function

for a finer processing of latent features. Finally, a Convolutional layer with 1 filter and Weight Normalization
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Model Architecture
40 x 59 x 1 image (Spectrogram)

32 3x3 conv2D Padding Stride=(1,1) weightnorm lReLU
32 3x3 conv2D Padding Stride=(1,1) weightnorm lReLU
32 3x3 conv2D Padding Stride=(2,2) weightnorm lReLU

SpatialDropout(0.3)
64 3x3 conv2D Padding Stride=(1,1) weightnorm lReLU
64 3x3 conv2D Padding Stride=(1,1) weightnorm lReLU
64 3x3 conv2D Padding Stride=(2,2) weightnorm lReLU

SpatialDropout(0.3)
64 3x3 conv2D Stride=(2,2) weightnorm lReLU

64 1x1 conv2D Stride=(1,1) Padding weightnorm lReLU
64 1x1 conv2D Stride=(1,1) Padding weightnorm lReLU

Global Average Pooling
Dense weightnorm

Table 1: Discriminator/Classifier architecture for the GAN system..

applied. The kernel shapes are not mentioned as they are adapted towards achieving the final shape of

40x59x1. The model is shown in Table 2.

Model Architecture
100 x 1 image (Noise)

3x4x256 Dense batchnorm lReLU
128 4x4 conv2DTranspose Stride=(2,2) Padding batchtnorm lReLU
128 4x4 conv2DTranspose Stride=(2,2) Padding batchtnorm lReLU
128 4x4 conv2DTranspose Stride=(2,2) Padding batchtnorm lReLU
128 4x4 conv2DTranspose Stride=(2,2) Padding batchtnorm lReLU

128 4x4 conv2D Stride=(1,1) batchtnorm lReLU
128 4x4 conv2D Stride=(1,1) batchtnorm lReLU

1 3x3 conv2D Stride=(1,1) weightnorm

Table 2: Generator architecture for the GAN system..

To train each of the models, two different optimizer objects are used. Both are Adam optimizers with

0.0001 and beta=0.5, combined with stochastic weight averaging (Izmailov et al., 2019) with 0.999 on the

average decay parameter. The batch size for the discriminator is 128, where samples that have the same

nature are grouped up and fed into the model, i.e. supervised samples, unsupervised real samples and

unsupervised fake samples are separated into their own batches, then fed to the Classifier and Discriminator

in the correct manner. For the Generator, the batch size is 256. Over all instances of testing, the number of

epochs is set to 300, where each epoch is defined by the size of the whole dataset (labelled + unlabelled)
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divided by batch size. All the modules are initialized with a random Normal distribution, of mean 0 and

standard deviation 0,05.

3.4.4 Test Specification and Results

Each testing instance is defined by a 5-fold cross validation and the number of labelled instances, which will

vary between the values of 300, 600, 1200, 2400 and fully labelled dataset. The parcial values represent

roughly 2%, 4%, 9% and 18% of the labelled data on the whole dataset. The results are then averaged among

the tests to present a fair performance value with same weight on every run of the procedure. A simple

ablation test is also ran, where the generator and the discriminator are turned down, turning the task into

a fully supervised matter in order to assess the value that the GAN system brings to the model.

The first round of experiments starts with the lowest number of labelled samples to establish a baseline

to progress on, as this is expected to present the lowest performance out of all of the SSL portion of the

tests. By representing only 2% of the dataset as labelled samples, this is arguably the most insightful and

important test because it illustrates situations where the amount of processed data is extremely scarce.

So, the first test over 300 supervised samples reaches a value of 53.059% UAR and 49.391% UA, with a

cross entropy loss of 1.5880238. From this initial result, it is expected that every test following will have a

considerably higher level of performance.

In the second round of tests, with 600 labelled samples, the model hits 55.597% UAR and 52.967% UA,

with a cross entropy loss of 1.3667043. Going from around 2% of labelled data to around 4% has resulted

in the improvement of the evaluation metrics, UAR and UA, by at least 2.5%. The main loop code is shown

at Appendix B, for an example test over 300 labelled samples.

With 1200 labels, the model hits 58.329% UAR and 56.067% UA, with a cross entropy loss of 1.1982944.

At this point, almost 10% of labelled data is used which sets a mark on SSL paradigm based, as it can bee

seen a reference for testing such algorithms. As the number of labelled instances goes higher, it's expected

that the results of it converges slower and slower to the results that would've been obtained if all the samples

were labelled. So 10% would be a good average indicator for low sample training performance on DL models.

As expected, the improvement is still considerably high.

With 2400 labels, the model hits 62.855% UAR with 61.089% UA with a cross entropy loss of 1.0183306.

There is a steady improvement on every metric, where doubling the amount of labelled data is resulting in a

more or less consistent growth of the model's effectiveness. Naturally, the test instance with higher number

of labelled samples achieves the best results. The compilation of all test results described are shown in

Figures 5 and 6.
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Figure 5: Performance metrics of UAR and UA along with an average.

Figure 6: Cross entropy loss across tests.

By looking at these tests alone, the slope of performance shows some indices of slowing down, meaning

that for a certain dataset, on the context of this procedure, there might be an optimal number of labelled

instances that allows to reach some acceptable performance. The values obtained with this approach are

competitive and even slightly surpass the state of the art shown by Zhao et al. (2020), which is, to the best

of our knowledge, the best results obtained on an SGAN system, on the IEMOCAP dataset. This might be

due to several factors: firstly, the usage of Log Mel Spectrograms combined with Convolutional layers might

show a better capacity of feature extraction which combined with the efficiency on training CNNs makes this

approach somewhat favorable; secondly, the aggregation function used, where the average of the predictions
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is taken as the final prediction for a collection of chunks of the same utterance, changes the classification

scheme a bit, which can turn it into an invalid comparison, since both models are not compared on the

same conditions; same can apply to training, where the chunk division inflates the dataset up to four or five

times its original size; finally, the generator's impact might be greater, as no ablation tests are shown on the

article, due to the naturalness of a convolutional generator to actually generate one channel representations,

i.e. the generator might be able to pick features more easily when convolutional layers are employed; as an

extra, the Feature Matching loss is used to trained the generator, a loss function that Salimans et al. (2016)

shows to improve the performance on an SGAN system. Table 3 shows a comparison with the values of

UAR obtained in Zhao et al. (2020), to understand how algorithm and procedures can change the output

performance.

UAR (%)
300 600 1200 2400

Zhao et al.
(2020)

52.3 55.4 57.8 59.3

This work 53.1 55.6 58.3 62.9

Table 3: Comparison of the results obtained on this work, compared to the state of the results for GAN on
the IEMOCAP.

Along the experiments, as the number of labelled instances changes, the behaviour of the GAN system

is more or less consistent, where they tend to converge to the same values of loss. This would be expected

since the unsupervised task associated doesn't really change, data wise, as every single sample is utilized.

Varying the number of unlabelled samples fed to the GAN system would be an interesting testing point

to verify the impact of number of samples, which could potentially translate to changes in the supervised

vertent as well. The plots of losses for 300 labelled instances and full dataset as labelled are shown on

Figures 7 and 8, respectively.

Figure 7: Cross entropy loss on Discriminator and Feature Matching loss on Generator, over 300 labelled
instances.

The spike at the initial epochs represents the shock that the system suffers on the initialization of the

procedure. The plots eventually get smoother as the training progresses.
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Figure 8: Cross entropy loss on Discriminator and Feature Matching loss on Generator, over full dataset as
labelled instances.

The accuracy charts on the supervised component, the classifier, are a bit different. It would only be

natural that, by changing the amount of labelled data fed into the Classifier, the behaviour of classification

would change. For smaller amounts of data, the difference between training accuracy and validation ac-

curacy would be bigger, because the model would be able to overfit to the small set, especially since 300

epochs is selected for every testing instance as a way of keep training uniform over all tests. The results

are shown in Figure 9.

Figure 9: Evolution of accuracy charts, ranging through 300, 600 , 1200, 2400 and full dataset labelled
instances, with 300 epochs, left to right, top to bottom, with UA metric.

As expected, a lower ammount a of labelled instances means that the model can reach close to 100%

UA on the training set, as it is able to overfit. Inversely, the higher amount of labelled instances, the longer
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it takes for the model to reach its peak. In fact, when the model is trained with full dataset, we can verify

that the accuracy values of training and validation set go hand to hand, meaning that further training would

most likely produce a better model. An interesting observation is that, with 300 and 600 labelled instances,

even though training reaches close to 100%, the validation metric doesnt really dip down drastically as it

sometimes happens on supervised objectives. This could be due to the unsupervised task imposed by the

GAN that doesn't allow the system to completely overfit to the training set. For insigh on the losses, they

are displayed on Figure 10.

Figure 10: Evolution of cross entropy loss charts, ranging through 300, 600 , 1200, 2400 and full dataset
labelled instances, with 300 epochs, left to right, top to bottom.

As mentioned before, to verify the performance changes that the GAN system brings to the Classifier,

tests were made where the Generator and Discriminator task were disabled, for the same range of labelled

instances of 300, 600, 1200, 2400 and full dataset length. For each of these instances, respectively,

the results were the following: 48.296% UAR and 47.892% UA with a cross entropy loss of 2.0307658

for 300 labelled instances; 53.690% UAR and 50.810% UA with a cross entropy loss of 1.6905901 with

600 labelled instances; 54.632% UAR and 54.054% UA with a cross entropy loss of 1.3356034 for 1200

labelled instances; 58.284% UAR and 56.648% UA with a cross entropy loss of 1.2401884 for 2400 labelled

instances; 64.003% UAR and 63.567% UA with a cross entropy loss of 0.9275583 for fully labelled dataset.

Figures 11, 12 and 13 illustrate the performance difference between the SGAN and the same Classifier
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network without intervention of the GAN system, under the same conditions (learning rate, batch size,

initialization).

Figure 11: Evolution of UAR charts, ranging through 300, 600 , 1200, 2400, with a comparison between
an SSL and an SL approach.

Figure 12: Evolution of UA charts, ranging through 300, 600 , 1200, 2400, with a comparison between an
SSL and an SL approach.
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Figure 13: Evolution of the cross entropy loss charts, ranging through 300, 600 , 1200, 2400, with a
comparison between an SSL and an SL approach.

As observed, there is a clear gain of performance from the SGAN when both frameworks are compared

pair to pair. The performance gain might not be efficient enough though, as the optimization and tuning

process of the SGAN takes a considerable amount of time. There are two practical flaws associated with

this comparison though: firstly, the unlabelled data utilized is known to belong to the one of the four classes

utilized on the system, which could influence the feature extraction process of the GAN towards these

classes, and on a real world application, would not be a guarantee to have unlabelled data belonging to the

same class as the labelled set. Secondly, the supervised test is not optimized towards the SL paradigm, as

it takes on parameters and architectural techniques designed towards SSL.

It is, never the less, a start towards what could be the future, as semi supervised approaches start to

grow over, performance wise.

Generally, when training an SGAN, the Generator stops being the focus on the task. This probably

happens due to the lack of knowledge on the relationship between Generator and Classifier, even though

scientists are looking for solid connections (Dai et al., 2017) (Liu and Xiang, 2020) (Lecouat et al., 2018).

The problem is that most of these approaches do not show a empirical character or demonstrate a high

level of complexity (execution wise), which makes them being overlooked when the focus in the whole task

is not the algorithm itself. For this research, the generator was part of the focus until considerably sharp

images were made, where no mode collapse would occur, by monitoring the losses of the GAN system. For

a comparison, Figures 14 and 15 shows a direct look over fake (output of the generator) and real data that

would be fed into the Discriminator.
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Figure 14: Images output out of the generator, ready to be fed to the Descriminator.

Figure 15: Real images post processing, ready to fed to the Discriminator.





4

D I S C U S S I O N

In this chapter, the issues related to current frameworks are explored.

4.1 D a t a s e t s

Datasets made of audio speech have been gathered for years now with the purpose of designing systems

capable of handling audio towards a certain task, in this particular case, we address ASER. As final goal,

the usage in real world applications should always be selected, whether on a personal or commercial use.

From a personal use point of view, customized products can be challenging. Even though there is a unique

robustness to proper developed ML systems, a topic as volatile as emotions, considering the amount of

different cultures there are and the amount of different ways there are of expressing an emotion, will never

show itself as uniform. This means that, as a researcher developing a dataset, either one is able to include

every instance and every type of emotion manifestation on the set, which is virtually impossible, or we look

for aggregating representations for the utterances we have, which is where the design of discrete labels and

continuous attributes attempt to emulate. It was already mentioned before in this work that discrete labels

impose strict boundaries on emotions. It's the design of the system itself that orders that only one type

of emotion is displayed overall. This is not correct as mental states overlap with each other and interact

in a rather dynamic way (Frijda, 2004). This leads to an observation: it is rather counter intuitive to treat

emotions as labels. The usage of dimensional attributes like arousal, dominance and valence can tackle

this restricting factor that categorical labels impose. They present a fluid approach to what emotions are,

where a 3-dimensional space can better characterize the mental state, even if this 3-dimensional space is

composed by conventions. For the success on many scales of speech emotion recognition, it's important to

represent an emotion as something flexible. Now the issue that arises with dimensional attributes that they

themselves are conventions created, is that the measurement is not precise. As psychology concepts, there

is not a scientific verification of these values. If one or more annotators are labelling instances with such

attributes, suddenly, there is a big risk that these concepts do not practically represent what reality really

is. This lack of ground truth, shared with categorical labels in a away, compromises the work done towards

authenticity of emotion recognition. It is indeed a valuable start on standardizing the concept of emotion
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and translating it to paper, but we can not rely on this methodology to build high end high risk systems that

could be on crucial positions to affect people's lives. The point is that current labelling schemes are limited

to the paradigm they are built on.

To tackle such a difficult issue, we talk about two suggestions. The research on the basic emotional

framework is evolving further and further (Keltner et al., 2019), more and more studies try to clarify the

expression of mental states and coordinate into unified opinions. So it is not impossible that in a few

months, maybe a few years, the framework of emotions will be clear enough to build rich sets of data

that allow for the building of reliable systems for ASER. Note that Basic Emotion Theory (BET) does not

apply only to speech data, as other modalities might be included later on. So as science evolves, we as

Computer Scientists will have more and more tools and concepts available on the matter, that will not

raise the credibility of information as an issue. Asking to wait can be seen as an invalid solution, which is

completely reasonable. So the other solution could be digging into unsupervised representations between

data that show different emotional content. UL can be generally used on unlabelled data with its limitations.

But instead of using labels to describe certain aspects of an individual's manifestation, maybe we can use

features in representations that can be associated to an emotion by utilizing the model as a tool to create

simplified versions of the human mind that could be readable with some skill. Keep in mind that the idea

is still to improve Machine-Human interactions, but just like topics like autonomous driving, this is only

possible in an independent way only when the machine "understands" the base grounds for the task and

is able to apply, which is not the case for ASER right now due to the built framework around it.

Researchers have been doing an amazing work to make ASER frameworks available. We came to a point

where we need to be more rigorous with information, which will allow us to take machines to a whole other

level. As we require more sophistication out of technology, it also needs a proper base where it can grow

from.

4.2 SG AN f r amewo r k

With unprocessed audio data existing in bulk, the promise of SSL is being taken up to. The leveraging of

unlabelled data seems to show a future when a lot of efficiency and effectiveness could be extracted for the

digital era we find ourselves on. On this work, with the SGAN framework, there was an attempt to incentive

to such. Generative models do show a lot of potential on many tasks (Andrade et al., 2022), but what this

potential translates to is that amazing accomplishments have been made with the algorithm, but there is

still a lack of standardization together with huge traces of instability that doesn't allow research to flow as

fast as it could. These kind of systems are remarkably hard to train, by requiring a relatively high amount of

experience and touch as well as discipline and time/computational resources. Problems like this together

with the issues on replicability discourage the production of SGANs to real world applications. On top of

this, it is known that complex modules interact on a SGAN system, namely, generator, discriminator and
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classifier. There is still a huge lack of empirical understanding over the effect of generators on classifiers

(Salimans et al., 2016), even though a lot of theoretical work was done to understand these relationships

(Liu and Xiang, 2020). Two important thought processes branch out from this.

Firstly, the importance of unlabelled data should be a high priority research. To have the capacity of

extracting value out of unlabelled data is to increase the efficiency of virtually every existing ML system

deployed in real world applications. Not only a cost reduction is associated with this but also a performance

gain, which could skyrocket technology's sophistication levels. It is a research on the go and on the rise,

with SSL scientists leading the efforts.

The other branch is the selection of proper labelled data. The labelled data will always be the main link

to the final labels. These are instances that form the core connections inside a mapping function forged by

ML algorithms.

The SGAN presents many complex issues that a standard supervised task usually does not, which is why

SSL is still a growing area, with a relatively low empirical use, compared to other paradigms.





5

C O N C L U S I O N S A N D F U T U R E WO R K

5.1 D i f f i c u l t i e s a n d L im i t a t i o n s

A few of the limitations involved was on the coding and design of the whole framework. Tensorflow Keras

offers multiples APIs to deal with many different scenarios. The Sequential API allows for a rather straight-

forward creation of a Neural Network. The Functional API offers higher degree of control, allowing to create

custom algorithms like GANs. The cost that comes with having higher degree of control is that a coder can

be more prone to error, as more aspects of the algorithm are subject to change. Even though many official

implementations of SGAN models exist in repositories like Github, a lot of them do not meet requirements to

use newer software versions, which would make its adaptation way harder: it was necessary to go through

the whole code, from the processing and loading of the data to the final stage of results of the model, to

understand exactly the implications that a particular implementation would have on itself. The solution to

avoid this was to design from scratch the code of SGAN in python, with Tensorflow Keras Functional API.

As SGAN can still port some complexity, a lot of resources were sunk into the verification, correction and

tuning of the algorithm, custom metrics, dataset process. To develop this kind of methodology, a higher

level of discipline is required, as custom algorithms may fail due to the smallest mistake. The same goes

for the processing of the data: the amount of transformations done to the data to make it ready to be fed is

considerable, as it is filtered, divided and transformed multiple times. As the amount of data would grow, as

research progresses to include/involve other datasets of bigger dimension, the rigor of processing becomes

more and more necessary as the resources to allocate are higher and so is the time consumed.

Another issue rises with the inherent aspects of training an SGAN. The slow training speed, as multiple

modules are backpropagated through independently, can be pretty heavy on time. Combining this with the

fact that the algorithm itself has a lot of instability associated, i.e. exploding/vanishing gradients, numeric

overflow/underflow, poor random initialization of the model, the training is interrupted unexpectedly many

times. For this work, 300 epochs are selected but important SGAN works, like in Lecouat et al. (2018), run

up to 1200 epochs on simple datasets, which can be rather taxing depending on resources available.

At last, the interpretation of the losses associated mostly with the GAN part, inside the SGAN system,

are very loose. The wildness of this algorithm makes the losses and other metrics be rather variable and
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volatile from task to task, from dataset to dataset, from model to model. More than on any other algorithm,

experience is very important in understanding where the training procedure of a GAN stands. Recognizing

failure of the algorithm early is a very important step, as a problem will have many model setups that

are not viable. As a counterpart, GANs are known for sometimes being able to bounce back from a bad

start, which usually translate moving from mode collapse on the generator to rich representations, from the

discriminator being able to identify real and fakes perfectly to a more balanced overview and loss functions,

allowing for some proper gradients to run through the model, providing it that important feature extraction

focus. This lack of theoretical and practical understanding of GANs affects all types of research done on it.

5.2 Fu t u r e Wo r k

As an improving point, the priority would come from the theoretical and practical understanding of GANs

on SSL. The expression "leveraging unlabelled data" needs to be translated into something more concrete,

so the development towards solid systems on this paradigm, on the context, can start in a more systematic

way. With more experimentation, more empirical cues will be found, making the task of developing such a

model more consistent.

Next, the methodology development needs more discipline. The gathering of information and research

status was pretty broad and complete, but the translation of it into practice was rather lackluster. The

multiple different phases on the development of ML systems need to be more evident, which by itself allows

its maintenance in a more simplified, efficient and effective way.

5.3 Wo r k D o n e

The field of SSL is very young. Only in the last few years, with the growth of technology, software and

hardware wise, resources were allocated towards SSL experiments as the margin of experimentation grew

larger and larger. Competitive results with fully supervised approaches are being obtained on the most

diverse tasks (Andrade et al., 2022), which is motivating young researchers to dig deeper on the usecases

of this framework. However, there is a rather complex nature, intrinsic to semi supervised approaches, that

makes its introduction harder. A lot of work is needed to refine it to levels of reliability of SL and we are

slowly moving towards it.

After this initial stabilizing, the aim is to deploy real world uses for such models. Unlabelled data is

abundant in many many scenarios, which could turn SSL into a very attractive approach in areas like health,

education.

This work is done to incentive the investigation over the effects of data on the SGAN algorithm and provide

some insight on the frameworks of ASER, as well as setting up a path towards applications revolving audio
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with potential for high levels of parallelization and streamable capacity to produce efficient programs on the

processing of speech data.
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def train(g_model, d_model, c_model, gan_model, numpy_iemotrain, numpy_iemotest,
latent_dim, iemotest, n_epochs=300, n_batch=256):
# select supervised dataset
global train_history_closs
global train_history_dloss_r
global train_history_dloss_f
global train_history_gloss
global val_history_acc
global val_history_loss
supervised_data = select_supervised_samples(numpy_iemotrain,n_samples=300)

bat_per_epo = int(numpy_iemotrain.shape[0] / n_batch)

n_steps = bat_per_epo * n_epochs

half_batch = int(n_batch / 2)
print('n_epochs=%d, n_batch=%d, 1/2=%d, b/e=%d, steps=%d' % (n_epochs, n_batch,

half_batch, bat_per_epo, n_steps))

train_history_acc_avg = []
train_history_closs_avg = []
train_history_dloss_r_avg = []
train_history_dloss_f_avg = []
train_history_gloss_avg = []

for i in range(n_steps):
# update classifier
Xsup_real, ysup_real = generate_real_samples(supervised_data, half_batch,labelled=

True)
c_loss, c_acc = c_model.train_on_batch(Xsup_real, ysup_real)
train_history_acc_avg.append(c_acc)
train_history_closs_avg.append(c_loss)
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# update unsupervised discriminator
X_real,y_real = generate_real_samples(numpy_iemotrain, half_batch,labelled=False,

smooth=True)
d_loss1 = d_model.train_on_batch(X_real, y_real)
train_history_dloss_r_avg.append(d_loss1)

X_fake, y_fake = generate_fake_samples(g_model, latent_dim, half_batch)
d_loss2 = d_model.train_on_batch(X_fake, y_fake)
train_history_dloss_f_avg.append(d_loss2)

# update generator
X_real,y_real = generate_real_samples(numpy_iemotrain, n_batch,labelled=False)
X_gan, y_gan = generate_latent_points(latent_dim, n_batch), gan_activation_model.

predict(X_real)

g_loss = gan_model.train_on_batch(X_gan, y_gan)
train_history_gloss_avg.append(g_loss)

print('>%d, c[%.3f,%.0f], d[%.3f,%.3f], g[%.3f]' % (i+1, c_loss, c_acc*100,
d_loss1, d_loss2, g_loss))

# evaluate the model performance every epoch
i f (i+1) % (bat_per_epo * 1) == 0:

clear_output()
print(supervised_data.shape)
train_history_acc.append(np.mean(train_history_acc_avg))
train_history_acc_avg = []

train_history_closs.append(np.mean(train_history_closs_avg))
train_history_closs_avg = []

train_history_dloss_r.append(np.mean(train_history_dloss_r_avg))
train_history_dloss_r_avg = []

train_history_dloss_f.append(np.mean(train_history_dloss_f_avg))
train_history_dloss_f_avg = []

train_history_gloss.append(np.mean(train_history_gloss_avg))
train_history_gloss_avg = []
summarize_performance(n_steps,i, bat_per_epo, g_model, c_model, d_model,

latent_dim, supervised_data, numpy_iemotest,iemotest)



Cod e 63

#size of the latent space
latent_dim = 100

# create the discriminator models
d_model, c_model, gan_activation_model = define_discriminator()

# create the generator
g_model = define_generator(latent_dim)

# create the gan
gan_model = define_gan(g_model, d_model,gan_activation_model)

# load image data
numpy_iemotrain = np.load("numpy_iemotrain_object.npy",allow_pickle=True)
numpy_iemotest = np.load("numpy_iemotest_object.npy",allow_pickle=True)

# train model
train(g_model, d_model, c_model, gan_model, numpy_iemotrain, numpy_iemotest, latent_dim,

iemotest)

.
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