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a b s t r a c t 

In this paper, we propose a new paradigm for finite differences numerical methods, based 

on compact schemes to provide high order accurate approximations of a smooth solution. 

The method involves its derivatives approximations at the grid points and the construction 

of structural equations deriving from the kernels of a matrix that gathers the variables 

belonging to a small stencil. Numerical schemes involve combinations of physical equa- 

tions and the structural relations. We have analysed the spectral resolution of the most 

common structural equations and performed numerical tests to address both the stability 

and accuracy issues for popular linear and non-linear problems. Several benchmarks are 

presented that ensure that the developed technology can cope with several problems that 

may involve non-linearity. 
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1. Introduction 

The present study is dedicated to the design of a new class of compact finite difference methods. Following Y. Adam

[55] , S. G. Rubin and R. A. Graves [45] and R. Hirsh [25] , we seek for the approximations Z i ≈ ϕ(x i ) of a steady-state prob-

lem (convection diffusion reaction for instance) by introducing new unknowns D i and S i of the first- and second-derivative 

approximations at point x i respectively. Additional equations involving implicit relation between Z, D and S lead to a more 

compact stencil regarding the stencil we should use to provide the same accuracy. In the original design, Adam consid- 

ers two, fourth-order, independent relations with a three point stencil: the first one connects the function and the first 

derivative while the second one links the function with the second derivative. 

In [7,9] , Chu and Fan propose a new three-point sixth-order Combined Compact Scheme (CCS) that involves at the same

time the function and all the derivatives (first and second derivatives) as 

r ∑ 

� = −s 

αi + � Z i + � + 

r ∑ 

� = −s 

βi + � D i + � + 

r ∑ 

� = −s 

γi + � S i + � = 0 . (1) 
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By that way, the locality of the information improves the spectral resolution. The authors then derive two relations from 

(1) . They combine them with the physical one and deliver a sixth-order compact scheme (see also [5] ). The extension of

(CCS) from uniform grid to a non-uniform grid scheme has been tackled by different authors [9,19] . In general, they use a

mapping from a non-uniform grid to a uniform one in order to apply the compact schemes for uniform grids [18,49,59] .

Another variant is the development of staggered compact schemes for incompressible flow to enforce the stability of the 

pressure [4,28,31,37,48] . 

No significative improvements of the compact scheme technology have been done in the two last decades, where in- 

vestigation studies mainly concerned the applications (see the historical notes in appendix). The modus operandi is almost 

the same as the one proposed by Lele [29] or Chu and Fan [7] involving an a priori linear combination of the function and

its derivatives’ approximations where one has to determine the coefficients using the Taylor expansion or some additional 

criteria to improve the spectral resolution. 

In this study, we propose a new paradigm to develop compact schemes with a different approach compared to the 

traditional techniques. In some way, we propose an extension of the High Order Compact (HOC) scheme method with a 

generic procedure to compute the coefficients. 

1. We definitely separate the relations deriving from the physics of the problem —tagged as Physical Equations PE , from 

the relations between the function and the derivatives for any given stencil —tagged as Structural Equations SE . The 

expression ”structural” is motivated by the fact that the relations are independent of the nature of the problem and 

only rely on the structure of the grid. In other words, such relations are determined once for all, given the grid and the

stencils. 

2. We derive the structural relations from the successive kernels of a matrix, where no analytic expression is required. The 

relations are derived from the determination of the eigenvectors of the null space, and the algorithm is performed for 

any type of grid. Therefore, the coefficients are not given explicitly in function of the grid nodes, but are computed by a

pre-processing routine. 

3. We produce an ordered set of structural equations where the first one enjoys the highest accuracy (let’s say m ), whereas

the k -th structural equation is of order m + 1 − k . 

4. The structural equations involve first- and second-order derivates (extension to any order of derivative are not considered 

in the present study) and can be easily designed in function of the problem type, i.e. the user chooses the stencil shape

and the derivatives he wants to connect for his specific problem. 

5. The discrete problem is composed of physical and structural equations that provide a global, very sparse, (non-)linear 

system one has to solve. Different constructions for the same problem are then enabled by varying the choice of the

structural equations to prioritize some property (accuracy, robustness, spectral resolution, computational effort). 

The paper is structured as follows. Section 2 presents the general framework to design the structural equations, while 

Section 3 is dedicated to the spectral resolution analysis. Section 4 concerns the construction of the schemes by combining

physical equations (inner equations and boundary conditions) with the structural ones. Benchmarking is carried out in the 

5-th section to assess the accuracy and stability of the method for a large set of examples. We draw some conclusions in

the last section. 

2. Structural and physical equations 

To introduce the philosophy of the method, we consider, as an example, the simple linear problem rφ + uφ′ − κφ′′ = f on

domain 	 = [ x L , x R ] and let x i = i 
x , i = 0 , · · · , I be a subdivision of 	 with 
x = (x R − x L ) /I. The simplest and well-known

centred scheme is given by, 

rφi + u 

φi +1 − φi −1 

2
x 
− κ

φi +1 + φi −1 − 2 φi 

(
x ) 2 
= f i , 

where φi stands for an approximation of φ(x i ) . In fact, the scheme blends two very different ingredients. On the one hand,

we introduce approximation for the function, the first- and second-derivative denoted by Z i , D i and S i respectively, and state

that such quantities substitute the exact solution in the equation. We obtain the discrete physical equation PE 

rZ i + uD i − κS i = f i . (2) 

On the other hand, we use explicit relations to approximate the derivatives by setting 

D i = 

Z i +1 − Z i −1 

2
x 
, (3) 

S i = 

Z i +1 + Z i −1 − 2 Z i 
(
x ) 2 

. (4) 

Equation (2) mimics the physical equation at the discrete level. On the contrary, equations (3) - (4) are independent of the

underlying physical problem but rely on the connections between the node i and the nodes in the vicinity. The relations

depend on the structure of the grid and the relative position of the points. 
2 
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Fig. 1. Grid notations with the unknowns associated to node i (left panel). Localization of the intermediate node i regarding the extreme node at −
x and 


x . The intermediate point is characterized by parameter θ ∈ [0 , 1] (right panel). 

 

 

 

 

 

 

 

From that point of view, we tag equation (2) as physical equation PE 1 whereas, we tag equations (3) - (4) as structural

equations SE 1 and SE 2. Each node i supports three information (Z i , D i , S i ) , i = 1 , · · · , I − 1 and the global system, together

with boundary conditions, assimilated as a second physical equation PE 2, couples physical and structural equations. 

2.1. Hermitian and combined structural equations 

This section is devoted to a general method to derive Structural Equations SE that provide additional equations together 

with the physical equation. In the previous example, the structural equations provide explicit expressions for the first- and 

second-derivative, but one may introduce implicit relations, and, by that way, increase the number of Degrees Of Freedom 

by introducing local linear combinations between the unknowns Z j , D j and S j , j = i − 1 , i, i + 1 . For example, the so-called

compact hermitian scheme [14,42,55] consists in substituting relations (3) - (4) with the Hermitian Structural Equations HSE 1 
and HSE 2 

0 = 

Z i −1 − Z i +1 


x 
+ 

D i −1 + 4 D i + D i +1 

3 

, (5) 

0 = 

−Z i −1 + 2 Z i − Z i +1 

(
x ) 2 
+ 

S i −1 + 10 S i + S i +1 

12 

. (6) 

Notice that the physical equation remains the same, but we manage to achieve a fourth-order scheme using additional 

unknowns in the structural equations while preserving the stencil. Of course, substitution is now impossible, and the three 

equations are fully coupled, leading to a 3 × I system to solve (leaving apart the question of the boundary condition which

we shall tackle in the sequel). 

A more entangled scheme, involving all the derivatives, was proposed by [7,36] and the Combined Structural Equa- 

tions CSE 1 and CSE 2 read 

0 = −15 

Z i +1 − Z i −1 

(
x ) 2 
+ 

7 D i +1 + 16 D i + 7 D i −1 


x 
− (S i +1 − S i −1 ) = 0 , (7) 

0 = 24 

Z i +1 − 2 Z i + Z i −1 


x 2 
− 9 

D i +1 − D i −1 


x 
+ (S i +1 − 8 S i + S i −1 ) = 0 . (8) 

Using the same physical equations PE 1 (inner) and PE 2 (boundary), we achieve a sixth-order of accuracy. 

2.2. Design of general structural equations 

We propose a global approach to design structural equations that we present within the context of one-dimensional 

problems. We assume that the domain is meshed with points x i and set 
x i +1 / 2 = x i +1 − x i . We introduce the more general

notations φ(s ) 
i 

≈ φ(s ) (x i ) to handle approximations of the function and its derivatives, as presented in Fig. 1 , left panel. 

In the present study, we restrict the construction for the three-points two-derivatives situation. Extension to a more 

general situation is possible, but out of the scope of the paper. On the one hand, we define the linear functional 

E(φ, i ) = 

∑ 

r= −1 , 0 , 1 

∑ 

s =0 , 1 , 2 

a (s ) 
i,r 

φ(s ) (x i + r ) (9) 

where a (s ) 
i,r 

are the 9 real coefficients to be determined. First, we fix the pattern of the relation (9) , where we may omit

some coefficients to reduce the number of unknowns. For example, the first Hermitian equation requires that the second- 

derivative terms are omitted, while the CCS method uses the whole 9 parameters as unknowns. Then, the remaining coeffi- 

cients are determined by prescribing that the relation is exact for polynomial functions up to a fixed degree. We expect, by

this way, to obtain relations between the function and its derivatives that provide very accurate approximations. 
3 
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To present the algorithm that provides the structural equations, we assume that all the 9 coefficients participate in 

the construction of the scheme (no omission parameters). Given a node i = 1 , · · · , I − 1 , we denote by φk,i (x ) = (x − x i ) 
k −1 ,

k = 1 , · · · , 9 the polynomial functions and one has 

E(φk,i , i ) = 

∑ 

s =0 , 1 , 2 

a (s ) 
i, −1 

(k − 1)! 

(k − 1 − s )! 
(−
x i −1 / 2 ) 

k −1 −s + 

∑ 

s =0 , 1 , 2 

a (s ) 
i, 0 

(k − 1)! 

(k − 1 − s )! 
(0) k −1 −s + 

∑ 

s =0 , 1 , 2 

a (s ) 
i, −1 

(k − 1)! 

( k − 1 − s )! 
( 
x i +1 / 2 ) 

k −1 −s 

with the convention 

(k − 1)! 

(k − 1 − s )! 
(
x ) k −1 −s = 0 if k ≤ s and (0) k −1 −s = 1 if k = s + 1 . We define a local indexation by setting

(r, s ) → j = j(r, s ) = 3 s + r + 2 and gathering the entries a (s ) 
i,k 

in a local vector denoted a i [:] with the convention, 

a i [ j] = a (s ) 
i,r 

, j = j(r, s ) . 

For example, a i [1] = a (0) 
i, −1 

while the last term is a i [9] = a (2) 
i, +1 

. In the same way, we define the matrix M i associated to node i

with the entries 

M i [ k, j] = 

(k − 1)! 

(k − 1 − s )! 
(x i + r − x i ) 

k −1 −s , with j = j(r, s ) . 

Remark. We adopt the convention a [: 3] to represent the first 3 entries of the vector a while a [:] is the whole vector.

Similarly, M i [: 6 , :] represents the first 6 rows of the matrix M i . 

Since a vector a i [:] has 9 components, for any k = 1 , · · · , 9 , equation (13) can be written in the matrix form 

E(φk,i , i ) = 

9 ∑ 

j=1 

M i [ k, j ] a i [ j ] = M i [ k, :] a i [:] 

where M i [ k, :] is the k -th row of the square matrix M i . The matrix M is of Vandermonde type and assuming 
x i −1 / 2 > 0 ,


x i +1 / 2 > 0 , the 9 × 9 matrix M i is not singular. Consequently, if one imposes E(φk,i , i ) = 0 for k = 1 , · · · , 9 , then the linear

system reads M i a i = 0 and the solution is trivially a i = 0 in R 

9 . 

Let us now take an integer number 9 > m > 0 , the idea consists in building m linearly independent structural equa-

tions by prescribing E(φk,i , i ) = 0 for k = 1 , · · · , 9 − m only. It is equivalent to providing the vector’s solution of M i [: 9 − m, :

] a i [:] = 0 , that is, the vector a i belongs to the kernel K 

{ m } 
i 

of the 9 − m × 9 matrix M i [: 9 − m, :] . Since the matrix M i is non-

singular, the matrix M i [: 9 − m, :] enjoys the maximal rank property, hence the dimension of the kernel is exactly m . The

idea consists in building m linearly independent structural equations by determining a basis of the kernel. 

2.3. Practical determination of the structural equations 

To provide the structural equations with maximal order of accuracy, we proceed in the following way. 

• Let m = 1 and K 

{ 1 } 
i 

the kernel of matrix M i [1 : 8 , :] , we denote by a { 1 } 
i 

a non-null vector of the kernel and define the

coefficients of the structural equation as 

a 
{ 1 } , (s ) 
i,r 

= a { 1 } 
i 

[ j ] , j = j (r, s ) . 

Then the first structural equation SE 1 (i ) for node i reads ∑ 

r= −1 , 0 , 1 

∑ 

s =0 , 1 , 2 

a 
{ 1 } , (s ) 
i,r 

φ(s ) 
i + r = 0 . (10) 

By construction, relation (10) provides an eighth-order of consistency in the sense that all the polynomials up to degree 

7, exactly match the relation when substituting the approximation with the exact function. Therefore, the rest of the 

Taylor expansion is in order 8. 

• We proceed with m = 2 by determining the kernel K 

{ 2 } 
i 

of the matrix M i [: 7 , :] . The subspace is of dimension two and

already contains vector a { 1 } 
i 

. We then pick up a second vector a { 2 } 
i 

, orthogonal to a { 1 } 
i 

to guarantee that the two vectors

are linearly independent. The coefficients of the second structural equation SE 2 (i ) are then defined as 

a 
{ 2 } , (s ) 
i,r 

= a { 2 } 
i 

[ j ] , j = j (r, s ) , 

and the second structural equation just reads ∑ 

r= −1 , 0 , 1 

∑ 

s =0 , 1 , 2 

a 
{ 2 } (s ) 
i,r 

φ(s ) 
i + r = 0 . (11) 

Notice that the consistency error is of order 7 since the relation is now exact for polynomial functions up to degree 6. 
4 
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• The construction of the structural equations for m = 3 and higher values is performed inductively. Given the structural 

equations from 1 to m − 1 , we build the kernel K 

{ m } 
i 

of the matrix M i [: 9 − m, :] and determine an orthogonal vector a { m } 
i 

to the subspace K 

{ m −1 } 
i 

. We then deduce the m -th structural equation SE m (i ) , exact to polynomials up to degree 8 − m . 

2.4. Uniform grid case 

Assuming that 
x i −1 / 2 = 
x i +1 / 2 = 
x , we aim at recovering the relations of the traditional compact scheme, namely the

Hermitian case and the combined case. Since the grid is uniform, the coefficients of the structural equations are independent 

of the node and the functional (9) now reads 

E(φ) = 

∑ 

r= −1 , 0 , 1 

∑ 

s =0 , 1 , 2 

a (s ) 
r φ(s ) (r
x ) . (12) 

2.4.1. Hermitian compact equations 

The historical design of the Hermitian case is a bit different from the general case, since all the structural equations have

the same order. Indeed, the construction is derived from the functional (12) but with additional constraints (see also 

equations (A .4) and (A .5) ). Structural equation SE 1 requires that we skip the terms of the second-order derivatives, while

we impose E(φk ) = 0 , for φk = x 0 , · · · , x 4 . We get a system of six unknowns with five linear equations, and the associated

one-dimensional kernel provides the non-trivial coefficients for the first Hermitian Structural Equation HSE 1 (5) . 

To provide the second relation, we assume that the coefficients of the first-derivative in (12) are omitted and state

E(φk ) = 0 , for φk = x 0 , · · · , x 4 . We find again that the structural equation from the one-dimensional kernel that provides the

second Hermitian Structural Equation HSE 2 (6) . 

The third equation we shall derive is unusual and has not been considered by the traditional Hermitian compact schemes. 

We assume that the coefficients of the zero-derivative in (12) are omitted, and we build the one-dimensional kernel such 

that the non-null vector corresponds to the third Hermitian Structural Equation HSE 3 given by 

D i −1 − D i +1 


x 
+ 

S i −1 + 4 S i + S i +1 

3 

= 0 . (13) 

Extension to the non-uniform grids is easily achieved by determining the one-dimensional kernels that provide the coeffi- 

cients of the three structural equations. 

The traditional Hermitian method combines the Physical equation PE 1 with the two structural equations HSE 1 and HSE 2.

The combination of PE 1 with HSE 1 and HSE 3 or PE 1 with HSE 2 and HSE 3 can be seen as an alternative to the Hermitian

scheme, where we directly connect the first derivative to the second derivative. Historically, the compact schemes were 

elaborated with the following philosophy: All the variables Z, D , S do not have the same ”status” and the different authors

systematically connect D to Z or S to Z; Variable Z is the reference in the sense that any other variable has to be connected

with Z as in (HSE1) and (HSE2). 

We claim that there is no reason to privilege Z and all the variables Z D , S should be treated in the same way. In that

context, Equation (13) is a relation that does not involve Z and can substitute HSE1 or HSE2 . We have experimented the

different combinations (HSE1+HSE3 and HSE2+HSE3) we did not report in the paper since the accuracy is almost the same, 

so we have decided just to present the alternative HSE3 but without developing the topics. Following the recommendation 

of the reviewer, we then have added some information about the last equation. 

2.4.2. Combined compact equations 

The combined compact scheme proposed by P.C. Chu and C. Fan [7] exactly corresponds to the first and second structural

equations (7) - (8) provided by the method introduced in subsection 2.3 for the particular case of a uniform grid. The third

equation is consistent up to the sixth-order of accuracy CSE 3 and, for the uniform grid, reads 

8 

Z i +1 − 2 Z i + Z i −1 


x 2 
− 5 

D i +1 − D i −1 


x 
+ (S i +1 + S i −1 ) = 0 . (14) 

2.4.3. An intermediate scheme 

The Hermitian scheme requires the introduction of the three quantities Z, D, S but only provides a fourth-order method, 

whereas the two structural equations are fully implicit, leading to a system with 3 × (I + 1) unknowns. To reduce the com-

putational cost using a smaller 2 × (I + 1) system, we propose an intermediate scheme by introducing a new structural

equation, implicit regarding Z and D but explicit in S. 

We first consider the uniform case where analytical expression are simple to derive. To design a relation for S i regarding

Z i −1 , Z i , Z i +1 , D i −1 , D i , and D i +1 , we assume that a (2) 
−1 

= a (2) 
1 

= 0 in the functional (12) . We then prescribe the six constraints

E(φ) = 0 , for φ = x 0 , · · · , x 5 for seven unknown coefficients and get, for a uniform grid, the relation 

S i = 2 

Z i −1 − 2 Z i + Z i +1 

(
x ) 2 
+ 

D i −1 − D i +1 

2
x 
, (15) 
5 
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which provides a fourth-order approximation of the second derivative. 

We also derive a left-shifted new structural equation between S i −1 and the other quantities by assuming that a (2) 
0 

=
a (2) 

1 
= 0 and using the same constraints E(φ) = 0 . We obtain for the uniform grid the relation, 

S i −1 = 

−23 Z i −1 + 16 Z i + 7 Z i +1 

2(
x ) 2 
− 6 D i −1 + 8 D i + D i +1 


x 
. (16) 

Similarly, the right-shifted structural equation for S i +1 reads 

S i +1 = 

−23 Z i +1 + 16 Z i + 7 Z i −1 

2(
x ) 2 
+ 

6 D i +1 + 8 D i + D i −1 


x 
. (17) 

2.4.4. The intermediate scheme on non-uniform grid 

We now consider the general case based on the kernel method where 
x i is not constant. To derive the relation for S i ,

we omit the coefficients a (2) 
i, −1 

= a (2) 
i, 1 

= 0 in functional (9) . Then, we construct the 7 × 7 matrix M i stating that E(φk,i , i ) = 0

for k = 0 , 1 , · · · , 6 that involves the seven unknowns. Matrix M i [: 6 , :] has a one-dimensional kernel characterized by the

non-null vector which we denote ac i and provides the coefficients 

ac (s ) 
i,r 

= ac i [ j ] , j = j (r, s ) , r = −1 , 0 , 1 , s = 0 , 1 . 

We rescale the eigenvector such that coefficient ac (2) 
i, 0 

= 1 . We obtain an explicit relation for S i labelled Intermediate Centred

Structural Equation ICSE (i) at node i of the form 

S i = −
∑ 

r= −1 , 0 , 1 

ac (0) 
i,r 

Z i + r −
∑ 

r= −1 , 0 , 1 

ac (1) 
i,r 

D i + r . (18) 

Similarly, to provide the relation between S i −1 and the other variables D and Z, we omit the coefficients a (2) 
i, −1 

= a (2) 
i, 0 

= 0

and build the new matrix M using the constraints E(φk,i , i ) = 0 for k = 0 , 1 , · · · , 6 . The kernel of matrix M i [: 6 , :] provides

the non-null vector, al i which we normalize such that al 
(2) 
i, −1 

= 1 . We then obtain the Intermediate Left-shifted Structural 

Equation ILSE (i) at node i for S i −1 of the form 

S i −1 = −
∑ 

r= −1 , 0 , 1 

al 
(0) 
i,r Z i + r −

∑ 

r= −1 , 0 , 1 

al 
(1) 
i,r D i + r . (19) 

At last, a relation for S i +1 with respect to the other unknowns is stored in vector ar i with normalized coefficient ar (2) 
i, 0 

= 1

and provides the Intermediate Right-shifted Structural Equation at node i IRSE (i) 

S i +1 = −
∑ 

r= −1 , 0 , 1 

ar (0) 
i,r 

Z i + r −
∑ 

r= −1 , 0 , 1 

ar (1) 
i,r 

D i + r . (20) 

3. Spectral analysis of the structural equations 

Spectral analysis of the structural equation relies on the capacity to resolve the high frequencies for a given grid. Some

authors [8,18] present a spectral analysis of the three-points combined compact scheme, while [46] compares classical and 

compact methods for non-uniform grids. Similarly, in the structural equations we consider the usage of a stencil of three 

nodes which we assume to be −1 , 0 and 1 without losing the generality (a simple shift enables to centre the problem at

node 0, thus we skip index i ). Moreover, and without loss of generality, we assume that node −1 and node 1 are located

at point x −1 = −
x and x 1 = 
x respectively while node 0 lies in [ −
x, 
x ] with coordinate x 0 = (2 θ − 1)
x as shown in

Fig. 1 , right panel. For θ = 0 we have x 0 = x −1 and θ = 1 corresponds to x 0 = x 1 . At last θ = 0 . 5 represents the uniform grid

case. 

3.1. General spectral equations 

Let i = 

√ −1 , the imaginary number. Following [29] and [8] , we consider the function φ(x ) = exp (i kx ) . The analytical

derivatives read φ′ (x ) = i k exp (i kx ) , φ′′ (x ) = (i k ) 2 exp (i kx ) with k ∈ C . Structural equations provide approximation of the

first and second derivatives, and we write the numerical functions as 

φ(1) 
r = i k ′ exp (i kr
x ) , k ′ ∈ C , 

φ(2) 
r = (i k ′′ ) 2 exp (i kr
x ) , k ′′ ∈ C , 

where k ′ and k ′′ are some approximations of k for the first and second derivatives respectively. Plug in the approximations

φ(0) 
r , φ(1) 

r , φ(2) 
r in the structural equation with r = −1 , 0 , 1 , s = 0 , 1 , 2 , provides relations between k , k ′ , k ′′ and 
x . Roughly

speaking, we want that k ′ ≈ k and k ′′ ≈ k , that is the ratio k ′ /k and k ′′ /k has to be close to one. Generally, the authors only

consider a uniform grid, but we would like to analyse the spectral resolution even for non-uniform grid. 
6 
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Fig. 2. Dispersion (left panel) and dissipation (right panel) for the first-derivative using the Hermitian scheme. We plot the real and imaginary part of the 

ratio χ ′ (ω; θ ) in function of ω for several values of θ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given θ , we numerically determine the three structural equations (Hermitian, Intermediate or Combined) using the ker- 

nel method presented in Section 2.3 . To this end, the m -th structural equation SE m is computed, and the Kernel method

provides the coefficients a 
{ m } , (s ) 
r = a 

{ m } , (s ) 
r (θ ) , with r = −1 , 0 , 1 , s = 0 , 1 , 2 . Then, the spectral relations associated to SE m is

an expression k ′ and k ′′ , we write under the form 

c { m } , (0) + c { m } , (1) (i k ′ 
x ) + c { m } , (2) (i k ′′ 
x ) 2 = 0 , (21) 

where we define for s = 0 , 1 , 2 

c { m } , (s ) (ω; θ ) = 

∑ 

r= −1 , 0 , 1 

a 
{ m } , (s ) 
r (θ ) exp (i rω) , (22) 

with ω = k 
x and θ the parameter of the grid. At last, noting ω 

′ = k ′ 
x , ω 

′′ = k ′′ 
x , a structural equation gives rise to a

relation between ω, ω 

′ and ω 

′′ that reads 

c { m } , (0) (ω; θ ) + i ω 

′ c { m } , (1) (ω; θ ) + (i ω 

′′ ) 2 c { m } , (2) (ω; θ ) = 0 . 

Ideally, curves should be ω 

′ (ω; θ ) = ω and ω 

′′ (ω; θ ) = ω, hence the quality of the formulae regarding the spectral resolution

is assessed by the deviation of the ratio 

χ ′ (ω; θ ) = 

ω 

′ (ω; θ ) 

ω 

, 

χ ′′ (ω; θ ) = 

ω 

′′ (ω; θ ) 

ω 

. 

The closest to unit the coefficients χ ′ (ω; θ ) and χ ′′ (ω; θ ) are, the better is the scheme from the spectral point of view.

Notice that the real part of corresponds to the dispersion of the scheme, whereas the imaginary part represents the dissi-

pation. 

3.2. Hermitian scheme 

We begin with the Hermitian case where relation HSE 1 connects the function and the first-derivative while 

c { 1 } , (2) (ω; θ ) = 0 leads to the spectral relation 

c { 1 } , (0) (ω; θ ) + i ω 

′ c { 1 } , (1) (ω; θ ) = 0 (23) 

from which we easily deduce ω 

′ and thus the ratio χ ′ (ω; θ ) . We numerically compute χ ′ and display in Fig. 2 the real part

(dispersion) and the imaginary part (dissipation) for several values of θ . Notice that the case θ = 1 / 2 corresponds to the

symmetric case where no dissipation is reported. 

Note on the interpretation of the figures. As we mentioned above, a ratio equal to one represents the ideal situation, hence

the curve deviation to the unit quantifies the spectral resolution of the structural equation. Since χ ′ is a complex value function,

the real part and imaginary part represent two distinct aspects of the scheme. The real part relies on the dispersion, that is the

phase deviation of the scheme, while the imaginary part is the numerical (anti)diffusion of the scheme. The smaller is the value,

the better is the scheme. 

For θ ≤ 0 . 1 , we observe a strong improvement of the dispersion and diffusion for the first derivative (the ratio is close

to 1 for a longer interval of w ). 

The second hermitian structural equation HSE 2 yields that c { 2 } , (1) (ω; θ ) = 0 and provides the spectral equation 

c { 2 } , (0) (ω; θ ) + (i ω 

′′ ) 2 c { 2 } , (2) (ω; θ ) = 0 . (24) 

We numerically compute the second ratio χ ′′ (ω; θ ) and plot in Fig. 3 the dispersion on the left panel and the dissipation

on the right panel for the different values of θ . 
7 
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Fig. 3. Dispersion (left panel) and dissipation (right panel) for the second-derivative using the Hermitian scheme. We plot the real and imaginary part of 

the ratio χ ′′ (ω; θ ) in function of ω for several values of θ . 

Fig. 4. Dispersion (left panel) and dissipation (right panel) for the second-derivative using the intermediate scheme. We plot the real and imaginary part 

of the ratio χ ′′ (ω; θ ) in function of ω for several values of θ . 

 

 

 

 

 

 

 

 

 

 

 

The dispersion and dissipation are admissible for ω ≤ π/ 2 and the second derivative scheme is far from efficient for

larger values, for any values of θ . Such a consequence motivates the adoption of a new representation for the second deriva-

tive, implicit in Z and D but explicit in S. 

3.3. Intermediate scheme 

An upgrade for the second derivative has been proposed with formula (15) in substitution to the original equation (6) in

the particular case of a uniform grid. We proceed in the same way for the non-uniform case by substituting HSE 2 with

ICSE . On the one hand, we use the same spectral equation (23) between the function and the first-derivative but use the

intermediate relation (15) with c { 2 } , (2) (ω; θ ) = 1 and get a modified spectral relation 

c { 2 } , (0) (ω; θ ) + i ω 

′ c { 2 } , (1) (ω; θ ) + (i ω 

′′ ) 2 = 0 . (25) 

Plugging the expression of ω 

′ from (23) into relation (25) provides a relation of ω 

′′ regarding ω, thus χ ′′ (ω; θ ) . We plot in

Fig. 4 the dispersion (left panel) and the dissipation (right panel) for the ratio. The gain of spectral resolution for the second

derivative is noticeable compared to the Hermitian case (24) . In particular, small values of θ enable to achieve excellent

spectral properties both for the dispersion and the dissipation. 

3.4. Combined schemes 

The Combined scheme fully couples the function and its derivatives, leading to a more expensive system to solve. How- 

ever, it provides the best spectral resolution. Gathering the two structural equations CSE 1 and CSE 2 yields 

0 = c { 1 } , (0) (ω; θ ) + i ω 

′ c { 1 } , (1) (ω; θ ) + (i ω 

′′ ) 2 c { 1 } , (2) (ω; θ ) , 

0 = c { 2 } , (0) (ω; θ ) + i ω 

′ c { 2 } , (1) (ω; θ ) + (i ω 

′′ ) 2 c { 2 } , (2) (ω; θ ) . 

Solving the 2 × 2 linear system in order to ω 

′ and ω 

′′ provides the ratio χ ′ (ω; θ ) and χ ′′ (ω; θ ) . We plot in Fig. 5 the ratio

for the first derivative with the respective dispersion and dissipation, while the spectral resolution of the second derivative 

approximation is given in Fig. 6 . 

The curves clearly suggest that the dispersion and dissipation are strongly reduced for small values of θ . It indicates

that a grid constituted of a series of pairs of close points of the form x 2 i = i 
x , x 2 i +1 = x 2 i + θ
x with a small θ would be

efficient to catch high-frequency plane waves. 
8
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Fig. 5. Dispersion (left panel) and dissipation (right panel) for the first-derivative using the combined scheme. We plot the real and imaginary part of the 

ratio χ ′ (ω; θ ) in function of ω for several values of θ . 

Fig. 6. Dispersion (left panel) and dissipation (right panel) for the second-derivative using the combined scheme. We plot the real and imaginary part of 

the ratio χ ′′ (ω; θ ) in function of ω for several values of θ . 

 

 

 

 

4. The numerical schemes 

We design two numerical schemes by combining the structural and the physical equations. The boundary conditions 

are treated similarly to the inner domain problem, namely the boundary equation corresponds to an additional physical 

equation PE 2 while we shall use a specific structural equation to take the one-side configuration of the border. 

To provide a guideline for the presentation, we consider the simple linear convection diffusion equation given by 

−κφ′′ + uφ′ = f (26) 

with κ ≥ 0 the diffusion coefficient, u the velocity, while f stands for the source term. The domain is the interval 	 = [ x L , x R ]

and we prescribe general Robin boundary conditions on the left and right side x L = 0 and x R = 1 as 

αL φ(x L ) + βL φ
′ (x L ) = g L , (27) 

αR φ(x R ) + βR φ
′ (x R ) = g R . (28) 

4.1. Scheme 4thZD 

The fourth-order scheme is obtained by combining the structural equation HSE 1 and the intermediate structural equa- 

tion ICSE for the second derivative for inner nodes, while we take the relations ILSE and IRSE for the left and right

boundary nodes. The scheme is designed as follows. 

• Inner nodes i = 1 , · · · , I − 1 : 

We use the physical equation PE 1 (i ) : −κS i + uD i = f i together with HSE 1 (i ) and ICSE (i ) . 
• Left node i = 0 : 

We use again the physical equation PE 1(0): −κS 0 + uD 0 = f 0 together with the ILSE (1) at node i = 1 to provide a

non-trivial relation for S 0 . We add the other physical equation PE 2(0): αL Z 0 + βL D 0 = g L that prescribes the boundary

condition. 
9 
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• Right node i = I: 

Similarly, we take the physical equation PE 1 (I) : −κS I + uD I = f I together with the IRSE (I − 1) at node i = I − 1 to in-

volve S I . The other boundary physical equation PE 2 (I) then reads αR Z I + βR D R = g R . 

The assembly matrix has the following structure ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

PE1(0) 
PE2(0) 
ILSE(0) 

. . . 

PE1(i) 
HSE1(i) 
ICSE(i) 

. . . 

PE1(I) 
PE2(I) 
IRSE(I) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

Z 0 
D 0 

S 0 
. . . 

Z i 
D i 

S i 
. . . 

Z I 
D I 

S I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

f 0 
g L 
0 

. . . 
f i 
0 

0 

. . . 
f I 

g R 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

Since the relation ILSE , ICSE and IRSE are explicit regarding S, the system is reshaped into a 2(I + 1) system by sub-

stituting S i with its representation. Consequently, the solution just involves the data (Z i , D i ) 
I 
i =0 

and approximations of S i are

computed a posteriori with the Intermediate relations ICSE , ILSE and IRSE . 

4.2. Scheme 6thZDS 

The sixth-order scheme has some similarities with the original combined compact scheme of Chu and Fan [7] but differs

in several points: (i) we use the third structural equation for the boundary condition treatment; (ii) we derive the struc- 

tural equations using the computation of the different kernels using m = 1 , 2 and 3 deriving from matrix M i that give more

versatility to provide the structural equations when dealing with non-uniform grids. The design of the scheme is as follows. 

• Inner nodes i = 1 , · · · , I − 1 : 

We use the physical equation PE 1 (i ) : −κS i + uD i = f i together with equation CSE 1 (i ) and CSE 2 (i ) . 
• Left node i = 0 : 

We use the physical equation PE 1(0): −κS 0 + uD 0 = f 0 and the boundary condition PE 2(0): αL Z 0 + βL D 0 = g L that pro-

vides the boundary condition. At last, the structural equation CSE 3(1) ( note that the index is 1, and not 0 ) closes the

system. 
• Right node i = I: 

Similarly, the physical equations PE 1 (I) : −κS I + uD I = f I and PE 2 (I) : αR Z I + βR D I = g R provide the boundary condition.

At last, the structural equation CSE 3 (I − 1) ( note that the index is I-1, and NotI ) closes the system. 

The structure of the linear system reads, ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

PE1(0) 
PE2(0) 
CSE3(1) 

. . . 

PE1(i) 
CSE1(i) 
CSE2(i) 

. . . 

PE1(I) 
PE2(I) 
CSE3(I-1) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

Z 0 
D 0 

S 0 
. . . 

Z i 
D i 

S i 
. . . 

Z I 
D I 

S I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

f 0 
g L 
0 

. . . 
f i 
0 

0 

. . . 
f I 

g R 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

Remark. Notice that we are expecting a fifth-order scheme due to the use of the structural equation CSE 3 at the bound-

ary. On the one hand, we lose accuracy, but on the other hand, we do not need to introduce a more complex structural

equation involving other nodes. �

5. Benchmarking 

We carry out several benchmarks to assess the accuracy, stability and spectral precision of the method together with the 

ability to handle non-linear problems. Since we are dealing with regular solutions, we use the L ∞ -norm of the error of the
10 
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Table 1 

Errors and convergence orders for scheme 4thZD . 

uniform non-uniform 

I error Z order error Z order σ

10 8.64e-06 ∗∗∗ 1.30e-05 ∗∗∗ 2.62e-06 

20 6.52e-07 3.7 7.67e-07 4.1 1.60e-07 

40 4.55e-08 3.8 5.05e-08 3.9 5.93e-09 

80 3.02e-09 3.9 3.36e-09 4.0 3.13e-10 

uniform non-uniform 

I error D order error D order σ

10 4.41e-04 ∗∗∗ 3.70e-04 ∗∗∗ 1.25e-04 

20 2.98e-05 3.9 2.87e-05 3.7 6.95e-06 

40 1.94e-06 3.9 2.00e-06 3.8 7.90e-07 

80 1.24e-07 4.0 1.39e-07 3.9 5.92e-08 

uniform non-uniform 

I error S order error S order σ

10 4.41e-04 ∗∗∗ 3.70e-04 ∗∗∗ 1.25e-04 

20 2.98e-05 3.9 2.87e-05 3.7 6.95e-06 

40 1.94e-06 3.9 2.00e-06 3.8 7.90e-07 

80 1.24e-07 4.0 1.39e-07 3.9 5.92e-08 

 

 

 

 

 

 

 

 

 

 

 

 

solution over the grid G = (x i ) 
I 
i =0 

, given by 

E Z (G ) = max 
x i ∈ G 

| Z i − φ(x i ) | . 
The method order between two consecutive grids is given by 

O Z (G, G 

′ ) = 

ln 

(
E Z (G ) /E Z (G 

′ ) 
)

ln 

(
| G 

′ | / | G | 
)

where | G | is the number of points of the grid. Similarly, we define E D , O D and E S , O S to assess the first and second derivative

convergence order. 

5.1. Convection diffusion equation 

We are concerned with the accuracy of the simple convection diffusion problem. Such a problem is an important 

building-block to solving non-linear problems in the future and has been studied by a large community of researchers. 

In [52] (see also [57] ), the authors apply a fourth-order HODIE formulation for the Poisson equation, while [24] use the

standard Hermitian compact scheme for non-linear diffusion equations. 

We seek the numerical approximation of 

−κφ′′ + v φ′ = f (29) 

on the [0,1] interval with κ > 0 and v ∈ R while f stands for the source term. We test two kinds of boundary conditions

and check the accuracy. 

5.1.1. Dirichlet-Dirichlet boundary conditions 

We first prescribe Dirichlet condition on both sides of the domain. The manufactured solution is φ(x ) = exp (2 x ) and the

right-hand side f is computed to match the physical equation. We take κ = 1 , v = 1 and carry out the calculation of the

errors and orders for different values of I. 

We present in Tables 1 and 2 the errors and convergence orders for the 4thZD and 6thZDS schemes, respectively. To

assess the accuracy with non-uniform grid, we carry out 10 times the simulation with random deformed grids by moving 

arbitrary the inner nodes to up 30% of the original uniform grid. We provide the statistics (average and standard deviation

σ ) to compare with the uniform grid case. We obtain the optimal accuracy for the fourth-order scheme, while the 6thZDS
scheme only achieves the sixth-order of accuracy for the approximation Z. The accuracy of the first and second derivative is

degraded, and we report a fifth-order of convergence. 

5.1.2. Dirichlet-Neumann boundary conditions 

We use again the manufactured solution φ(x ) = exp (2 x ) and prescribe the Neumann condition φ′ (0) = −2 on the left

side, while the Dirichlet condition φ(1) = e 2 is imposed on the right side. The Source term f is deduced from the exact

solution, and we take κ = 1 , v = 1 . We apply the 4thZD and 6thZDS schemes using a uniform grid of I + 1 points. We also
11 
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Table 2 

Errors and convergence orders for scheme 6thZDS . 

uniform non-uniform 

I error Z order error Z order σ

10 1.06e-06 ∗∗∗ 1.07e-06 ∗∗∗ 5.66e-07 

20 1.96e-08 5.8 2.55e-08 5.4 1.12e-08 

40 3.34e-10 5.9 6.20e-10 5.5 2.57e-10 

80 5.36e-12 6.0 9.58e-12 6.0 4.93e-12 

uniform non-uniform 

I error D order error D order σ

10 4.70e-05 ∗∗∗ 4.01e-05 ∗∗∗ 1.50e-05 

20 2.98e-05 4.8 1.61e-06 4.6 4.56e-06 

40 5.40e-08 4.9 5.70e-08 4.8 2.03e-08 

80 1.72e-09 5.0 1.96e-09 4.9 8.36e-10 

uniform non-uniform 

I error S order error S order σ

10 4.70e-05 ∗∗∗ 4.01e-05 ∗∗∗ 1.50e-05 

20 2.98e-05 4.8 1.61e-06 4.6 4.56e-06 

40 5.40e-08 4.9 5.70e-08 4.8 2.03e-08 

80 1.72e-09 5.0 1.96e-09 4.9 8.36e-10 

Table 3 

Errors and convergence orders for 4thZD . 

Uniform non-uniform 

I error Z order error Z order σ

10 1.90e-04 ∗∗∗ 2.11e-04 ∗∗∗ 4.93e-05 

20 1.19e-05 4.0 1.39e-05 3.9 6.32e-06 

40 7.46e-07 4.0 7.63e-07 4.2 1.09e-07 

80 4.67e-08 4.0 5.39e-08 3.8 1.86e-08 

Uniform non-uniform 

I error D order error D order σ

10 5.25e-04 ∗∗∗ 5.52e-04 ∗∗∗ 1.09e-04 

20 3.48e-05 3.9 3.98e-05 3.8 1.01e-05 

40 2.24e-06 3.9 2.31e-06 4.1 2.34e-07 

80 1.42e-07 4.0 1.64e-07 3.8 3.05e-08 

Uniform non-uniform 

I error S order error S order σ

10 5.25e-04 ∗∗∗ 5.52e-04 ∗∗∗ 1.09e-04 

20 3.48e-05 3.9 3.98e-05 3.8 1.01e-05 

40 2.24e-06 3.9 2.31e-06 4.1 2.34e-07 

80 1.42e-07 4.0 1.64e-07 3.8 3.05e-08 

 

 

 

 

 

 

 

generate non-uniform grids by applying a 30% perturbation to the inner nodes to assess the convergence for mild deformed

grids. We report the errors and convergence order in Tables 3 and 4 for the fourth and fifth order schemes, respectively.

We compute 10 times the solution and errors with different deformed grids and report the statistics to compare with the

uniform grid case. 

We obtain an effective fourth-order of accuracy with 4thZD and a fifth-order for scheme 6thZDS due to the Neumann 

boundary condition. We observe a significant error reduction of two orders of magnitude between the schemes (for instance, 

E Z with I = 80 ). As indicated, the boundary treatment is simply achieved by combining the two Physical Equations (convec-

tion diffusion and the boundary condition) with the third structural equation. Notice that the error for the first and second

derivative are the same, due to the physical equation that directly links D to S. 

5.1.3. Boundary layer 

A critical issue for convection diffusion problem is the boundary layers that represent a challenging question to correctly 

catch the strong gradients near the boundary. We consider the equation −κφ′′ + v φ′ = f with f = 0 and the boundary

conditions φ(0) = 1 and φ(1) = 0 such that we develop a boundary layer on the right side x R = 1 . The exact solution is

given by 

φ(x ) = 

exp (v /κ) − exp (v x/κ) 

exp ( v /κ) − 1 
12 
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Table 4 

Errors and convergence orders for 6thZDS . 

Uniform non-uniform 

I error Z order error Z order σ

10 1.74e-05 ∗∗∗ 2.35e-05 ∗∗∗ 1.04e-05 

20 4.84e-07 5.1 4.49e-07 5.7 2.57e-07 

40 1.42e-08 5.0 1.80e-08 4.6 1.15e-08 

80 4.29e-10 5.0 4.46e-10 5.3 2.41e-10 

Uniform non-uniform 

I error D order error D order σ

10 7.44e-05 ∗∗∗ 8.77e-05 ∗∗∗ 2.71e-05 

20 2.40e-06 4.9 2.08e-06 5.4 8.33e-07 

40 7.65e-08 5.0 9.31e-08 4.5 3.81e-08 

80 2.40e-09 5.0 2.26e-09 5.4 8.06e-10 

Uniform non-uniform 

I error S order error S order σ

10 7.44e-05 ∗∗∗ 8.77e-05 ∗∗∗ 2.71e-05 

20 2.40e-06 4.9 2.08e-06 5.4 8.33e-07 

40 7.65e-08 5.0 9.31e-08 4.5 3.81e-08 

80 2.40e-09 5.0 2.26e-09 5.4 8.06e-10 

Fig. 7. Solution of the boundary layer problem for Pe = 10 (left panel) and Pe = 100 (right panel) with a grid of I = 80 points. The characteristic size of the 

boundary layer is e/Pe . 

 

 

 

 

 

 

 

 

 

 

For κ = 0 . 1 and v = 1 (Péclet number Pe = 10 ), we obtain a mild boundary layer of characteristic length h = e/Pe , e = exp (1)

which we easily catch with a I = 80 uniform grid Fig. 7 , left panel). Taking κ = 0 . 01 and u = 1 yields to a more difficult

approximation of the boundary layer with a strong local gradient ( Fig. 7 , right panel). We observe that no oscillations are

created even in the situation 
x > e/Pe that usually provokes undesirable non-physical oscillations. 

We report in Table 5 the relative errors (by dividing with the maximum value) and convergence orders, both for schemes

4thZD and 6thZDS for the Péclet number Pe = 100 . The coarsest grid I = 40 enables to catch the steep gradient with the

two schemes. The fourth-order scheme reaches to the asymptotic optimal order, but the 6thZDS scheme requires finer 

grids to recover the asymptotic sixth-order of convergence for the function. Notice that the first and second derivatives only 

converge to a fifth-order of accuracy. 

5.2. Helmholtz equation 

Helmholtz’s equation is a standard benchmark for evaluating the dispersion of a numerical method and the phase alter- 

ation [53] . We consider the linear complex value problem on the domain [0,1] 

−φ′′ + (2 πk ) 2 φ = f (30) 

equipped with the boundary conditions φ(0) = 0 and the Sommerfeld radiation condition [13] expressed by φ′ (1) −
i 2 πkφ(1) = 0 . The exact complex solution is given by φ(x ) = exp (i 2 πkx ) with f = 0 . We use I = 80 in all the cases and

carry out the simulations for different wave numbers k . The relative errors for the first and second derivatives are obtained

by dividing the absolute error with 2 πk and (2 πk ) 2 respectively to draw a fair comparison for the different wave numbers.

Table 6 reports the relative error of the two schemes for the function, the first and second derivative, regarding the

frequency. Since I = 80 , the maximum wave number is k = 25 and corresponds to ω = 2 π25 , 
x = 

25 
40 π ≈ 1 . 96 to confront

with the spectral curves of Section 3 . As expected, the scheme 6thZDS provides better accuracy. Nevertheless, the errors 
13 
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Table 5 

Relative errors and convergence orders for the boundary layer problem 

( Pe = 100 ) using 4thZD (left table) and 6thZDS (right table). 

4thZD 

I error Z order error S order error D order 

40 7.67e-02 ∗∗∗ 1.62e-01 ∗∗∗ 1.62e-01 ∗∗∗

80 3.89e-03 4.3 1.73e-02 3.2 1.73e-02 3.2 

160 3.39e-04 3.5 1.61e-03 3.4 1.61e-03 3.4 

320 2.38e-05 3.8 1.27e-04 3.7 1.27e-04 3.7 

640 1.63e-06 3.9 8.95e-06 3.8 8.95e-06 3.8 

6thZDS 

I error Z order error S order error D order 

40 8.25e-03 ∗∗∗ 1.30e-01 ∗∗∗ 1.30e-01 ∗∗∗

80 6.38e-04 3.7 1.01e-02 3.7 1.01e-02 3.7 

160 4.61e-05 3.8 5.85e-04 4.1 5.85e-04 4.1 

320 1.48e-06 5.0 2.58e-05 4.5 2.58e-05 4.5 

640 1.96e-08 6.2 8.88e-07 4.9 8.88e-07 4.9 

Table 6 

Relative errors for the 4thZD (left panel) 

and 6thZDS scheme (right panel) with I = 80 

points. 

4thZD 

k error Z error D error S 

2.0 1.41e-05 1.86e-05 1.41e-05 

6.0 1.07e-03 1.24e-03 1.07e-03 

10.0 7.72e-03 8.15e-03 7.72e-03 

15.0 3.60e-02 3.66e-02 3.60e-02 

20.0 1.04e-01 1.09e-01 1.04e-01 

25.0 2.33e-01 2.49e-01 2.33e-01 

6thZDS 

k error Z error D error S 

2.0 1.14e-06 1.36e-06 1.14e-06 

6.0 2.06e-04 2.72e-04 2.06e-04 

10.0 3.12e-03 3.13e-03 3.12e-03 

15.0 2.15e-02 2.20e-02 2.15e-02 

20.0 8.49e-02 8.65e-02 8.49e-02 

25.0 2.38e-01 2.48e-01 2.38e-01 

 

 

 

 

 

 

 

between the two methods tend to be very similar for the highest frequencies. Spectral resolution is excellent and numerical 

simulations confirm the theoretical study. 

5.3. Viscous burger’s equation 

The non-linear Bürger’s equation is a popular benchmark for assessing the numerical scheme for a non-linear problem 

within a simple context. Liao [30] proposed a fourth HODIE formulation for the non-stationary 1D case, and an extension 

for the sixth-order was proposed in [47] (see also [56] ). We also mention that a WENO version has been developed in

[23] for the non-regular case when solutions present some discontinuity in space (see also [15] for implicit method with

conservation law). 

We seek a solution on 	 = [0 , 1] for the problem 

φφ′ − εφ′′ = f, 

with ε ≥ 0 the dissipation coefficient. Adopting the Z − D − S notation, the equation reads ZD − εS = f and clearly high-

lights the non-linearity resulting from the product ZD . To this end, one has to introduce some iterative procedure and

linearize the equation. We seek a sequence (Z (k ) , D 

(k ) , S (k ) ) , k = 0 , · · · , by solving successively: given Z (k ) , compute Z (k +1) ,

D 

(k +1) , S (k +1) such as 

Z (k ) D 

(k +1) − εS (k +1) = f, 

with the appropriate boundary conditions. 

At the discrete level, we denote by Z = [ Z 0 , · · · , Z I ] 
t the approximation of φ(x i ) , over the grid x i , i = 0 , · · · , I and similar

notations are adopted for D and S. Noting that Z (k ) plays the role of the velocity in equation (29) , we just have to update

the velocity and solve the linear system. Notice that the velocity varies in space. We now detail the two schemes. 
14 
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Table 7 

Errors and convergence orders for the viscous Burger equa- 

tion with scheme 4thZD . 

uniform non-uniform 

I error Z order error Z order σ

40 2.08E-04 ∗∗∗ 4.42E-03 ∗∗∗ 2.75E-03 

80 1.57E-05 3.7 1.57E-04 4.8 1.12E-04 

160 1.01E-06 4.0 6.30E-06 4.6 3.77E-06 

320 6.34E-08 4.0 1.52E-07 5.4 7.85E-08 

640 3.96E-09 4.0 1.33E-08 3.5 7.00E-09 

uniform non-uniform 

I error D order error D order σ

40 5.67E-03 ∗∗∗ 6.83E-03 ∗∗∗ 7.79E-04 

80 3.24E-04 4.1 3.78E-04 4.2 4.39E-05 

160 1.97E-05 4.0 2.53E-05 3.9 2.73E-06 

320 1.23E-06 4.0 1.56E-06 4.0 1.03E-07 

640 7.69E-08 4.0 1.00E-07 4.0 4.63E-09 

uniform non-uniform 

I error S order error S order σ

40 2.73E-06 ∗∗∗ 1.34E-04 ∗∗∗ 8.81E-05 

80 2.18E-07 3.7 4.77E-06 4.8 3.55E-06 

160 1.41E-08 4.0 1.66E-07 4.8 1.16E-07 

320 8.81E-10 4.0 3.90E-09 5.4 1.86E-09 

640 5.65E-11 4.0 3.72E-10 3.4 2.18E-10 

 

 

 

 

 

 

 

 

 

• The 4thZD scheme combines the physical equation PE 1 (i ) 

Z (k ) 
i 

D 

(k +1) 
i 

− εS (k +1) 
i 

= f i , i = 1 , · · · , I − 1 

with the structural equation HSE 1 (i ) for the first derivative and ICSE (i ) for the second derivative. The Dirichlet bound-

ary conditions are treated as indicated in the Dirichlet-Dirichlet situation for the linear case with i = 0 and i = I. 
• The 6thZDS scheme uses the same physical equation together with the two structural equations CSE 1 (i ) and CSE 2 (i ) .

One more time, the boundary conditions are similarly treated with the additional physical equation and the CSE 3 (i )

relation for i = 0 and i = I. 

To assess the accuracy of the scheme, we use the manufactured solution 

φ(x ) = 

1 

1 + 100(x − 1 / 2) 2 

and prescribe the Dirichlet condition on both sides of the domain. The source term f is computed by applying the viscous

Burger equation to the exact solution with ε = 1 . 

Table 7 provides the absolute errors and convergence rates for the 4thZD scheme. We present two situations: the uni- 

form grid and the deformed grid by using a 30% random perturbation of the uniform grid. We report the statistics based on

10 samples. We clearly find out the fourth-order of accuracy both for the function and the successive derivatives. Table 8

corresponds to the errors for the 6thZDS scheme. For the coarser grid, the order of convergence is optimal and corresponds

to the expected one. Nevertheless, the error reduction is stuck to 1.0E-11 due to the high conditioning number of the system.

5.4. Isentropic euler system 

We now deal with the 1D isentropic Euler problem, given by the following non-linear hyperbolic system over domain 

	 =] x L , x R [ , with ρ the density, u the velocity and p = κργ the pressure with κ > 0 and γ ∈ ]1 , 3[ 

A (x ) = ρ
du 

dx 
+ u 

dρ

dx 
, 

B (x ) = ρu 

du 

dx 
+ 

dp 

dx 
. 

Source terms A (x ) and B (x ) are given functions together with the Dirichlet condition for ρ and u at the boundaries x = x L 
and x R . We introduce the variables Z ρ , D ρ , Z u , and D u as the approximations at the grid nodes of ρ , ρ′ , u and u ′ respectively.

The system then reads 

A (x ) = Z ρD u + Z u D ρ, 

B (x ) = Z ρZ u D u + κγ (Z ρ ) γ −1 D ρ . 
15 
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Table 8 

Errors and convergence orders for the viscous Burger equa- 

tion with scheme 6thZDS . 

uniform non-uniform 

I error Z order error Z order σ

40 4.47E-05 ∗∗∗ 1.2E-03 7.3 6.88E-04 

80 7.31E-07 5.9 7.81E-06 7.3 6.81E-06 

160 1.25E-08 5.9 1.12E-07 6.1 9.52E-08 

320 1.15E-09 3.4 9.42E-10 6.9 3.40E-10 

640 1.98E-09 -0.8 7.96E-11 3.6 4.49E-11 

uniform non-uniform 

I error D order error D order σ

40 8.51E-04 ∗∗∗ 1.35E-03 ∗∗∗ 3.48E-04 

80 1.03E-05 6.4 1.48E-05 6.5 2.89E-06 

160 1.51E-07 6.1 2.74E-07 5.8 7.80E-08 

320 1.59E-09 6.6 4.21E-09 6.0 2.82E-10 

640 4.80E-09 -1.6 7.49E-11 5.8 1.36E-11 

uniform non-uniform 

I error S order error S order σ

40 8.53E-07 ∗∗∗ 3.81E-05 ∗∗∗ 2.24E-05 

80 1.09E-08 6.3 2.41E-07 7.3 2.04E-07 

160 1.38E-10 6.3 3.24E-09 6.2 2.87E-09 

320 3.48E-11 2.0 2.64E-11 6.9 1.04E-11 

640 6.04E-11 -0.8 2.42E-12 3.4 1.41E-12 

 

 

To overcome the non-linearity issue, we propose two types of linearization we shall compare in terms of stability 

and computational efficiency. The linearization is based on an iterative procedure where one as to build a succession (
Z (k ) 
ρ , D 

(k ) 
ρ , Z (k ) 

u , D 

(k ) 
u 

)
that converges to the solution ( Z ρ, D ρ, Z u , D u ) of the non-linear discrete problem. 

5.4.1. Rough linearization 

Let us assume that we have an approximation at iteration k . The rough linearization simply consists of substituting most

of the terms with their approximation at stage k and keeping the most predominant terms for the solver stage k + 1 . 

A (x ) = D 

(k ) 
u Z (k +1) 

ρ + Z (k ) 
u D 

(k +1) 
ρ , (31) 

B (x ) = Z (k ) 
ρ Z (k ) 

u D 

(k +1) 
u + κγ

(
Z (k ) 
ρ

)
γ −1 D 

(k +1) 
ρ . (32) 

For the mass conservation, we have privileged the density variable, while the momentum conservation equation focuses on 

the velocity variable. 

5.4.2. Upgrade of the pressure discretisation 

Pressure represents the major non-linearity in the Euler system and may lead to non-physical oscillations. To this end, 

we propose a better discretisation for (Z ρ ) γ −1 D ρ . Let Z (k ) 
ρ and Z (k +1) 

ρ be the two successive stages, one has (
Z (k +1) 
ρ

)
γ −1 = 

(
Z (k +1) 
ρ − Z (k ) 

ρ + Z (k ) 
ρ

)
γ −1 , 

≈
(

Z (k ) 
ρ

)
γ −1 + (γ − 1) 

(
Z (k ) 
ρ

)
γ −2 

(
Z (k +1) 
ρ − Z (k ) 

ρ

)

≈ (2 − γ ) 
(

Z (k ) 
ρ

)
γ −1 + (γ − 1) 

(
Z (k ) 
ρ

)
γ −2 Z (k +1) 

ρ . 

We then propose the linearization (
dp 

dx 

)(k +1) 

≈ κγ (2 − γ ) 
(

Z (k ) 
ρ

)
γ −1 D 

(k +1) 
ρ + κγ (γ − 1) 

(
Z (k ) 
ρ

)
γ −2 Z (k +1) 

ρ D 

(k ) 
ρ

and substitute in place of κγ
(
Z (k ) 
ρ

)
γ −1 D 

(k +1) 
ρ providing the relation 

B (x ) = Z (k ) 
ρ Z (k ) 

u D 

(k +1) 
u + κγ (2 − γ ) 

(
Z (k ) 
ρ

)
γ −1 D 

(k +1) 
ρ + κγ (γ − 1) 

(
Z (k ) 
ρ

)
γ −2 Z (k +1) 

ρ D 

(k ) 
ρ . (33)
16 
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Table 9 

Relative errors and convergence orders for the Isentropic Euler Problem using 4thZD and 6thZDS using the rough linearization. 

4thZD 

I error u order error ρ order error u ′ order error ρ ′ order its 

20 2.76e-08 ∗∗∗ 1.11e-09 ∗∗∗ 5.19e-09 ∗∗∗ 6.58e-09 ∗∗∗ 72 

40 1.88e-09 3.9 7.54e-11 3.9 3.66e-10 3.9 4.30e-10 3.9 72 

80 1.23e-10 3.9 5.00e-12 3.9 2.47e-11 3.9 2.76e-11 4.0 71 

160 8.06e-12 3.9 3.90e-13 3.7 2.98e-12 3.1 1.78e-12 4.0 71 

6thZDS 

I error u order error ρ order error u ′ order error ρ ′ order error u ′′ order error ρ ′′ order its 

10 1.90e-09 ∗∗∗ 1.08e-09 ∗∗∗ 1.01e-08 ∗∗∗ 6.57e-09 ∗∗∗ 1.99-06 ∗∗∗ 1.89e-06 ∗∗∗ 69 

20 3.98e-11 5.6 2.36e-11 5.5 2.42e-10 5.4 1.42e-10 5.5 1.53e-07 3.7 1.42e-07 3.7 69 

30 4.31e-12 5.5 2.36e-12 5.7 2.44e-11 5.7 1.40e-11 5.7 3.46e-08 3.7 2.99e-08 3.9 69 

40 1.29e-12 4.2 4.62e-13 5.7 6.02e-12 4.9 2.67e-12 5.8 1.34e-08 3.3 9.72e-09 3.9 70 

Table 10 

Relative errors and convergence orders for the Isentropic Euler Problem using 4thZD and 6thZDS using the upgraded linearization. 

4thZD 

I error u order error ρ order error u ′ order error ρ ′ order its 

20 2.76e-08 ∗∗∗ 1.11e-09 ∗∗∗ 5.19-09 ∗∗∗ 6.58e-09 ∗∗∗ 70 

40 1.88e-09 3.9 7.54e-11 3.9 3.66e-10 3.9 4.30e-10 3.9 71 

80 1.23e-10 3.9 5.05e-12 3.9 2.47e-11 3.9 2.76e-11 4.0 70 

160 8.12e-12 3.9 4.35e-13 3.5 2.69e-12 3.2 1.80e-12 3.9 71 

6thZDS 

I error u order error ρ order error u ′ order error ρ ′ order error u ′′ order error ρ ′′ order its 

10 1.96e-09 ∗∗∗ 1.08e-09 ∗∗∗ 1.07e-08 ∗∗∗ 6.57e-09 ∗∗∗ 2.04e-06 ∗∗∗ 1.89e-06 ∗∗∗ 70 

20 4.07e-11 5.6 2.36e-11 5.5 2.59e-10 5.4 1.42e-10 5.5 1.57e-07 3.7 1.42e-07 3.7 70 

30 4.25e-12 5.6 2.34e-12 5.7 2.85e-11 5.4 1.39e-11 5.7 3.48e-08 3.7 2.99e-08 3.9 70 

40 1.33e-12 4.1 4.59e-13 5.7 7.52e-12 4.6 2.66e-12 5.8 1.42e-08 3.1 9.66e-09 3.9 70 

 

 

 

 

 

 

 

 

 

5.4.3. Structural scheme 

We have identified the two physical equations (31) - (32) or, alternatively, the upgrade version (31) and (33) . At least two

more equations are required to close the linear system. 

• The 4thZD method consists in adding twice the structural equation HSE 1 (i ) for variables Z ρ , D ρ and for variables Z u , D u ,

for all the inner nodes i = 1 , · · · , I − 1 . For the first node i = 0 , the two missing equations are provided by the boundary

conditions Z ρ, 0 and u u, 0 at x = x L . We proceed in the same way for the other boundary x = x R . 
• The 6thZDS method requires the introduction of the second derivatives S ρ and S u and four additional equations. We 

use CSE 1 (i ) and CSE 2 (i ) for both ρ and u at the inner nodes i = 1 , · · · , I − 1 . At the boundary, we prescribe the two

Dirichlet conditions, but two equations are still missing. We then complete the system with the CSE 3 (i ) relations at

node i = 1 and i = I − 1 for the two variables. 

Remark. Fix point method requires that the operator is a contraction. A usual trick to guarantee the convergence consists 

in, given the data at stage k , solving the linearized system to provide a candidate 

(
Z (k +1 / 2) 
ρ , Z (k +1 / 2) 

u , D 

(k +1 / 2) 
ρ , D 

(k +1 / 2) 
u 

)
. Then,

we update the stage with a convex combination 

Z (k +1) 
ρ = θZ (k +1 / 2) 

ρ + (1 − θ ) Z (k ) 
ρ , 

and the same for the other variables. We tune the coefficient θ to guarantee the convergence while avoiding too many

iterations. 

5.4.4. Benchmarks 

The first numerical test concerns the subsonic case, where one considers the manufactured solution as follows, 

ρ = x 2 + 0 . 5 cos (x ) + 1 , u = 0 . 5 x 2 + sin (x ) + 0 . 5 , p = κργ , 

with κ = 1 and γ = 1 . 4 . Dirichlet boundary conditions are prescribed at both sides of the domain [0,1]. 

We report in Tables 9 the errors and convergence orders for the fourth-order 4thZD and sixth-order 6thZDS methods 

using the rough linearization together with the number of iterations. We use θ = 1 / 2 to enforce the convergence of the

procedure. Optimal order is achieved and no oscillations of the solution have been detected. The upgrade version of the 

linearization is provided in Table 10 . The number of iterations is quite similar to the rough configuration, and the numerical
17 



S. Clain, R.M.S. Pereira, P.A. Pereira et al. Applied Mathematics and Computation 457 (2023) 128207 

Table 11 

Relative errors and convergence orders for the Isentropic Euler second Problem using 4thZD and 6thZDS using the rough linearization. 

4thZD 

I error u order error ρ order error u ′ order error ρ ′ order its 

20 1.31e-08 ∗∗∗ 2.44e-09 ∗∗∗ 1.80e-09 ∗∗∗ 1.24e-08 ∗∗∗ 69 

40 8.64e-10 3.9 1.67e-10 3.9 1.21e-10 3.9 8.53e-10 3.9 69 

80 5.56e-11 4.0 1.11e-11 3.9 7.72e-12 4.0 5.46e-11 4.0 68 

160 3.59e-12 4.0 8.79e-13 3.7 4.71e-13 4.0 3.45e-12 4.0 67 

6thZDS 

I error u order error ρ order error u ′ order error ρ ′ order error u ′′ order error ρ ′′ order its 

10 1.02e-09 ∗∗∗ 2.26e-09 ∗∗∗ 1.38e-09 ∗∗∗ 1.07e-08 ∗∗∗ 4.63e-08 ∗∗∗ 1.72e-06 ∗∗∗ 69 

20 2.13e-11 5.6 4.82e-11 5.6 2.90e-11 5.6 2.35e-10 5.5 3.52e-09 3.7 1.23e-07 3.8 68 

30 1.83e-12 6.1 4.87e-12 5.7 2.80e-12 5.8 2.26e-11 5.8 8.58e-10 3.5 2.55e-08 3.9 69 

40 2.82e-13 6.5 4.87e-12 5.0 5.19e-13 5.9 4.14e-12 5.9 4.26e-10 2.4 8.23e-09 3.9 69 

Table 12 

Relative errors and convergence orders for the Isentropic Euler second Problem using 4thZD and 6thZDS using the upgraded linearization. 

4thZD 

I error u order error ρ order error u ′ order error ρ ′ order its 

20 1.31e-08 ∗∗∗ 2.44e-09 ∗∗∗ 1.80e-09 ∗∗∗ 1.24e-08 ∗∗∗ 69 

40 8.64e-10 3.9 1.67e-10 3.9 1.21e-10 3.9 8.53e-10 3.9 69 

80 5.55e-11 4.0 1.11e-11 3.9 7.71e-12 4.0 5.46e-11 4.0 69 

160 3.58e-12 4.0 8.79e-13 3.7 4.46e-13 4.1 3.45e-12 4.0 69 

6thZDS 

I error u order error ρ order error u ′ order error ρ ′ order error u ′′ order error ρ ′′ order its 

10 1.01e-09 ∗∗∗ 2.26e-09 ∗∗∗ 1.38e-09 ∗∗∗ 1.07e-08 ∗∗∗ 4.71e-08 ∗∗∗ 1.72e-06 ∗∗∗ 69 

20 2.14e-11 5.6 4.80e-11 5.6 2.90e-11 5.6 2.35e-10 5.5 3.50e-09 3.75 1.23e-07 3.8 69 

30 1.84e-12 6.0 4.88e-12 5.6 2.78e-12 5.8 2.26e-11 5.8 8.18e-10 3.6 2.55e-08 3.9 69 

40 2.73e-13 6.6 1.14e-12 5.0 5.23e-13 5.8 4.12e-12 5.9 3.87e-10 2.6 8.21e-09 4.0 69 

 

 

 

approximations are identical. In short, the new linearization does not substantially improve the convergence of the iterative 

method. 

The second benchmark tackles the situation with a transition between subsonic and supersonic regimes. The manufac- 

tured solution is 

ρ = x 2 + 0 . 5 cos (x ) + 1 , u = 5 x 2 + sin (x ) + 0 . 5 p = kργ , 

with κ = 1 and γ = 1 . 4 . Dirichlet boundary conditions are prescribed at both ends of the domain [0,1]. 

Table 11 gives the errors and convergence orders for the fourth-order 4thZD and sixth-order 6thZDS methods using the 

rough linearization together with the number of iterations, while the upgrade version of the linearization is presented in 

Table 12 . The number of iterations between the two algorithms is quite similar. Convergences are optimal, and no oscillation

is detected. 

5.5. Perfect gas euler system 

The Euler system equipped with the perfect gas law is a more complex situation involving deeper entanglements between 

the density, velocity and pressure. Several compact schemes have been already proposed using the a priori WENO approach 

[58] or the a posteriori MOOD paradigm [32] to handle the discontinuities. 

The non-conservative system reads 

A (x ) = ρ
du 

dx 
+ u 

dρ

dx 
, 

B (x ) = ρu 

du 

dx 
+ 

dp 

dx 
, 

C(x ) = ρ2 u 

d 

dx 

(
p 

ρ

)
+ (γ − 1) ρp 

du 

dx 
. 

with ρ the density, u the velocity and p the pressure with γ ∈ ]1 , 3[ . Source terms A (x ) , B (x ) and C(x ) are given functions

together with the Dirichlet condition for ρ , u and p at the boundaries x = x L and x R . We rewrite the equation in Z − D

variables 
18 
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Table 13 

Relative errors and convergence orders for the density using method 

4thZD (left panel) and method 6thZDS (right panel). 

4thZD 

I error ρ ord error ρ ′ ord its 

10 2.12e-07 ∗∗∗ 1.38e-06 ∗∗∗ 126 

20 9.39e-09 4.5 6.49e-08 4.4 124 

40 4.97e-10 4.2 3.54e-09 4.2 125 

60 9.32e-11 4.1 6.69e-10 4.1 126 

80 2.87e-11 4.1 6.69e-13 4.1 125 

6thZDS 

I error ρ ord error ρ ′ ord error ρ ′′ ord its 

10 1.09e-09 ∗∗∗ 7.61e-09 ∗∗∗ 2.13e-06 ∗∗∗ 135 

20 2.45e-11 5.5 2.01e-10 5.2 1.66e-07 3.7 140 

30 2.45e-12 5.7 2.14e-11 5.5 3.55e-08 3.8 141 

40 4.71e-13 5.7 4.24e-12 5.6 1.18e-08 3.8 142 

Table 14 

Relative errors and convergence orders for the velocity using method 

4thZD (left panel) and method 6thZDS (right panel). 

4thZD 

I error u ord error u ′ ord its 

10 5.21e-08 ∗∗∗ 6.58e-09 ∗∗∗ 126 

20 2.48e-09 4.4 3.19e-10 4.4 124 

40 1.37e-10 4.2 1.77e-11 4.2 125 

60 2.61e-11 4.1 3.35e-12 4.1 126 

80 8.08e-12 4.1 1.03-12 4.1 125 

6thZDS 

I error u ord error u ′ ord error u ′′ ord its 

10 7.22e-11 ∗∗∗ 1.70e-10 ∗∗∗ 1.15e-07 ∗∗∗ 135 

20 1.56e-12 5.5 5.51e-12 4.9 8.43e-09 3.8 140 

30 1.61e-13 5.6 6.35e-13 5.3 1.80e-09 3.8 141 

40 2.89e-14 6.0 1.22e-13 5.7 5.78e-09 4.0 142 

Table 15 

Relative errors and convergence orders for the pressure using method 

4thZD (left panel) and method 6thZDS (right panel). 

4thZD 

I error p ord error p ′ ord its 

10 2.85e-07 ∗∗∗ 8.85e-07 ∗∗∗ 126 

20 1.29e-08 4.5 4.46e-08 4.3 124 

40 6.91e-10 4.2 2.52e-09 4.1 125 

60 1.20e-10 4.1 4.82e-10 4.1 126 

80 4.01e-11 4.1 1.50-10 4.1 125 

6thZDS 

I error p ord error p ′ ord error p ′′ ord its 

10 3.69e-10 ∗∗∗ 1.00e-09 ∗∗∗ 8.54e-07 ∗∗∗ 135 

20 8.03e-12 5.5 2.92e-11 5.1 6.73e-08 3.7 140 

30 7.92e-13 5.7 3.23e-12 5.4 1.44e-08 3.8 141 

40 1.58e-13 5.6 6.04e-13 5.8 4.64e-09 3.9 142 

 

A (x ) = Z ρD u + Z u D ρ, 

B (x ) = Z ρZ u D u + D p , 

C(x ) = Z ρZ u D p − Z p D ρ + (γ − 1) Z ρZ p D u . 

As in the isentropic case, we adopt a rough linearization of the system and, given the data at stage k , we compute the

new stage with 

A (x ) = Z (k +1) 
ρ D 

(k ) 
u + Z (k ) 

u D 

(k +1) 
ρ , 

B (x ) = Z (k ) 
ρ Z (k ) 

u D 

(k +1) 
u + D 

(k +1) 
p , 
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C(x ) = Z (k ) 
ρ Z (k ) 

u D 

(k +1) 
p − Z (k +1) 

p D 

(k ) 
ρ + (γ − 1) Z (k ) 

ρ Z (k +1) 
p D 

(k ) 
u . 

The numerical test concerns a smooth transition from supersonic to subsonic regime with the following manufactured 

solution 

ρ = x 2 + 0 . 5 cos (x ) + 1 , u = 0 . 5 x 2 + sin (x ) + 0 . 5 ; p = 2 − x 3 

3 

− sin (x ) 

2 

. 

Right-hand side source term A , B and C are computed while Dirichlet boundary conditions are prescribed at both ends of

the domain [0,1]. 

Tables 13 , 14 , and 15 provide the errors and convergence orders for the density, velocity and pressure respectively. The

left table corresponds to the fourth-order 4thZD method, while the right table reports the information for the sixth-order 

6thZDS method. Similarly to the other benchmarks, we obtain the optimal fourth-order of accuracy for the first scheme 

both for the function and the derivative. The sixth-order is achieved by the function and its first derivative, but the second

derivative accuracy is stuck to the fourth-order. No convergence problem has been reported and the number of iterations is 

almost the same independently of the grid size. 

6. Conclusion 

We have proposed a new paradigm for elaborating compact schemes to provide accurate approximations of smooth solu- 

tions. The method involves the function and its derivatives approximations at the grid nodes, and relies on the construction 

of structural equations deriving from the kernels of a matrix that gathers the variables belonging to a small stencil. Numer-

ical schemes are then elaborated from the combinations of physical equations and structural relations to equal the number 

of unknowns. We have analysed the spectral resolution of the most common structural equations and performed numerical 

tests to address both the stability and accuracy issues for popular linear and non-linear problems. The two- and three- 

dimensional cases have not been tackled, since we aim at focusing on the proof of concept and detailing the construction

for the one-dimensional problem. The higher dimension will be considered by dimensional splitting together with an ADI 

procedure that enables to rewrite the d-dimensional problem into a series of one-dimensional problems. 
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Appendix A. Historical notes 

Compact finite difference method dates back to the early sixties with the publication of the Collatz’s book in 1960 

[11] and his Mehrstellenverfahren formula. Quoting Osborne in the paper of 1967 [41] , the objective is “ to provide general

schemes for generating difference approximations which make the best use of available information in the sense of minimizing 

truncation error”. Different technologies have proposed all along of six decades, and we roughly distinguish two different ap- 

proaches for elaborating compact schemes: the methods that involve the operators/equations such as the Operator Compact 

Implicit (OCI) method; the methods that only involve relations between the approximations and the derivatives, indepen- 

dently of the underlying problem, like the High Order Compact (HOC) method. 

To better highlight the differences, let us consider the simple linear steady-state problem 

L (φ) ≡ a (x ) φ′′ (x ) + b(x ) φ′ (x ) + c(x ) φ(x ) = f (x ) , (A.1)

with appropriate boundary conditions while denoting φi the approximation of φ(x i ) over a grid x i = i 
x , i = 0 , 1 , . . . , I. 

• The Operator Compact Implicit (OCI) method [10] , also named Elimination method in the review of [14] p. 52, consists in

coupling a classical finite difference scheme (the left-hand side of (A.2) ) with linear combination of the operator (the
20 
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right-hand side of (A.2) ) 

r ∑ 

� = −r 

αi,� φi + � = 

r ∑ 

� = −r 

βi,� L (φ) i + � (A.2) 

The coefficients are determined in order to be consistent with the highest degree as possible polynomials while exactly 

satisfying equation (A.1) . The Numerov scheme [39] is a popular example of OCI scheme for linear diffusion reaction

equation. We highlight two important points: (i) the method is problem-dependent in the sense that coefficients α and β
depend on the equation; (ii) it only deals with approximations φi and does not introduce the derivative approximations. 

It may result in a discrepancy of the accuracy for the first or second derivatives, and the large stencil of the neighbour

nodes leads to a high condition number of the whole linear system. 

The High-Order Difference approximation with Identity Expansion (HODIE) formulation [33] is an extension of the original 

OCI method by adding new degrees of freedom to the original finite difference method, introducing new parameters β
to the right-hand side approximation: 

r ∑ 

� = −r 

αi + � φi + � = 

L ∑ 

� = −L 

βi,� f i,� 

where f i,� = f (ξi,� ) are evaluated on a sub-grid ξi,� on interval [ x i −r , x i + r ] . 
• The High Order Compact (HOC) method, also called Hermitian method [55] , and also labelled as implicit method in [14] p.

40 is based on approximations Z i , D i and S i of the function φ(x i ) and its derivatives φ′ (x i ) , φ
′′ (x i ) respectively, with

i = 0 , · · · , I. On the one hand, the approximations are substituted in equation (A.1) and provide the physical discrete

equation 

a (x i ) S i + b(x i ) D i + c(x i ) Z i = f (x i ) . (A.3) 

On the other hand, relations between the unknowns S, D and Z over a compact stencil are expressed in the form 

r ∑ 

� = −s 

αi + � Z i + � + 

r ∑ 

� = −s 

βi + � D i + � = 0 , (A.4) 

r ∑ 

� = −s 

α′ 
i + � Z i + � + 

r ∑ 

� = −s 

γi + � S i + � = 0 . (A.5) 

Coefficients α, β and α′ , γ of (A.4) and (A.5) are determined to provide accuracy and stability. The Hermitian scheme 

proposed in [55] is a very popular example of HOC method. We highlight two important aspects of the method: (i)

coefficients α, β and α′ , γ are independent of the problem and only rely on the grid structure; (ii) first and second

order derivatives are also the unknowns of the problem; (iii) combining equations (A .4) and (A .5) together with the

discrete physical equation (A.3) provides a large 3(I + 1) system in Z, D , S to solve. 

The origin of the OCI method [40] is derived from the construction of a local four-degree polynomial approximation 

of the solution and its second derivative over a three-point stencil to provide fourth-order approximations. The method is 

generalized in [41] for a large class of operators. From those pioneer papers, several authors have formalized the OCI scheme

[10,51] . Doedel presents an extension of the OCI method where the collocation points of the solution and the operator

approximations (the right-hand side source term) are different [12] , equation (2.5), providing more degrees of freedom and 

increasing the accuracy (see also [34] ). The author also introduces compact schemes for the boundary conditions to preserve

the optimal accuracy. Applications to the wave equation are presented in [34] while non-linear systems such as the shallow

water equations are solved with an OCI method in [38] . A more advanced HODIE formulation is proposed in [2,33,50] and

achieves a very-high order of accuracy. Nevertheless, it turns to be more computational expensive for non-linear problems 

since all the coefficients have to be recomputed in the iterative linearization procedure. 

We can trace back the first HOC method to the visionary paper of Bickley [3] in 1968. A short paper but with the main

idea about the Hermitian compact scheme construction, considering Z and D as unknowns. In his conclusion, the author 

highlights that ”these simple experiments prove that the method is potentially useful”. Following this pioneer work, Albasiny 

and Hoskins [1] produced in the same year a generalization of the Bickley method over a uniform grid. In particular, the

implicit relation between Z and S is given in the paper. At last, the article of Fyfe [17] in 1969 gives the readable version

of the HOC method. The discrete physical equation is explicitly mentioned ( equation (21) in the paper) together with the

relations between Z, D and S ( equations (5) -(6) of the document). Moreover, the author proves an error estimate that

concludes the method is of order four. 

The modern HOC (hermitian) finite difference method has been published in three independent papers in 1975: (i) Y. 

Adam [55] for the parabolic equation; (ii) S. G. Rubin and R. A. Graves [45] for viscous flow; (iii) R. Hirsh [25] using the

Padé approximations. Curiously, the authors reached to similar results using very different approaches. Adam establishes 

the relation between Z, D and S by setting, a priori , the linear combinations between function and derivatives. Then he

determines the coefficients by achieving the highest order of consistency. Rubin and Graves, following [17] , use cubic spline
21 
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for approximating the solution and deduce relations between Z, D and Z, S. In both papers, Z, D and S are unknowns leading

to a larger linear system to solve. Regarded to the equivalence of the different approaches (spline, hermitian, Padé method), 

we quote a note in the introduction of [44] ”The authors have examined these procedures [... ] and found them to be, in fact,

identical”. 

The next decade brought consolidation and extensions of the compact finite difference theory and several issues were 

tackled such as the boundary condition [2,50] , the stability [33] , upwind scheme [6,27] , non-equidistant mesh [22] and non-

linear fluid mechanics problems. The Ph.D. thesis of Pettigrew [14] provides an excellent review of the state of the art at

the end of the eighties. Spectral resolution ability turns to be one of the major issues in the nineties. The pioneer work of

Lele in 1992 [29] proposes a general construction of the compact schemes and a spectral analysis. As mentioned in [54] ,

the number of Points Per Wavelength (PPW) limits the smallest scale of resolution and ”implicit compact schemes had better 

resolution than regular explicit schemes of the same order of accuracy and computational stencil”. The design of both accurate 

and high-resolution schemes has then been tackled by several authors [18,26,36,42] during the decade. 

Regarded to the Combined Compact Scheme (CCS) of Chu and Fan [7] published in 1998, it is noteworthy to see that, in

the study of Rubin and Khosla in 1976 [43] , p. 10, the authors had already proposed the sixth-order three-point compact

method using a fifth-order spline reconstruction, very similar to the Combined Compact Scheme. The technical document 

has been forgotten by the community, while it contains a very interesting review of the HOC method developed at that time.

Moreover, fourth- and sixth-order simulations of non-trivial applications in one-dimension and two-dimensional geometries 

represent an incredible technical feature in the middle of the seventies. 

We also mention the so-called Super Compact Finite Difference (SCFD) scheme introduced by Fu and Ma [16,35] of 

arbitrary order with minimal stencil size, where the authors use 3-points higher 2 M − 1 derivatives but with a specific

odd-even pattern for the combinations (see also [20,21] ). Nevertheless, on the one hand, they do not take advantage of all

the intermediate derivatives as it is done in the CCD method and, on the other hand, the method requires that the solution

is very smooth with no steep variations (boundary layer problem for instance). Indeed, the SCFD uses fourth- or fifth-order 

derivatives when the CCD only handles first and second order derivatives. 
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