

Progress in the cryogenics work package

InnovEEA Project Meeting, 30.03.2022 Jonas Arnsberg, Steffen Grohmann

J. Arnsberg, S. Grohmann – Progress in the cryogenics work package

- CompactLight design study comparing cryostat designs
 - Cryoocooler-cooled design:

LHe-cooled design:

- Heat load estimation for both cryostat designs
 - Cryoocooler-cooled design
 - LHe-cooled design

Ē

- Comparison of required power input for cooling
- Heat load estimation showed 75 % of cryogenic heat load arising from 18 current leads per segment

- Comparison of current lead cooling designs
 - (Classical) conduction cooled current leads with heat absorption at the cold end
 - (Novel) mixed-refrigerant cooled current leads with continous heat absorption
- Current leads cooled by mixed-refrigerant cycles promise reduction of power demand by ²/₃ ^[1]
- Development of microstructured mixedrefrigerant cooled current lead prototype
 - Ultra compact 24 cm long
 - Ultra efficient heat absorption at the source
 - Scalable, fitting the specific application

 $T \uparrow$ 300 K $d\dot{Q}_{\text{CL}}$ $d\dot{Q}_{\text{CL}}$ $d\dot{Q}_{\text{CL}}$ $d\dot{Q}_{\text{CL}}$ $d\dot{Q}_{\text{CL}}$ $d\dot{Q}_{\text{CL}}$

[1] Shabagin, 2022.

Compact Accelerator Systems Test Stand (COMPASS)

COMPASS – General aspects

- Dedicated experimental facility to study compact accelerator components
 - Microstrutured mixed-refrigerant cooled current leads (MSCL)
 - Superconducting magnets and undulators
 - SC-cavities
- Two mixed-refrigerant cycles to cover broad power spectrum
 - Supply currents for superconducting systems from a few 100 A to 10 kA
 - Testing mixed-refrigerant cascades^[2], for providing cooling power at $T \ll 78$ K

[2] Kochenburger, 2019.

COMPASS – Schematic overview

COMPASS – Cryostat design

- Cryostat vessel of 1300 mm diameter
- Shields cooled by two Cryocoolers (PT425, Cryomech^[3])
 - 77 K-shield cooled by 1st stages
 - 4 K-shield cooled by 2nd stage
- Field measurements in LTS-magnets or cavities possible
 - Installation space for cold mass 50x50x50 cm³

[3] www.cryomech.com.

COMPASS – Cryostat design

- Cryostat vessel of 1300 mm diameter
- Shields cooled by two Cryocoolers (PT425, Cryomech^[3])
 - 77 K-shield cooled by 1st stages
 - 4 K-shield cooled by 2nd stage
- Field measurements in LTS-magnets or cavities possible
 - Installation space for cold mass 50x50x50 cm³
 - Current supply via two separate circuits
 - CMRC-cooled and classical conduction cooled current leads

[3] www.cryomech.com.

COMPASS – Cryostat design

- Cryostat vessel of 1300 mm diameter
- Shields cooled by two Cryocoolers (PT425, Cryomech^[3])
 - 77 K-shield cooled by 1st stages
 - 4 K-shield cooled by 2nd stage
- Field measurements in LTS-magnets or cavities possible
 - Installation space for cold mass 50x50x50 cm³
 - Current supply via two separate circuits
 - CMRC-cooled and classical conduction cooled current leads
 - Optical access from four sides

[3] www.cryomech.com.

COMPASS – cryogenic installation space

COMPASS – Cryostat set-up

- Cryostat in hanging set-up
 - Lid attached to frame 2.5 m above ground
 - Cryostat vessel to be attached and detached from below
 - Lowering of the vessel by lifting cart
 - > No movement of the lid
 - Permanently installed wiring
 - Avoiding leakage of pipings and capillaries
- ITEM-frame dimensioned for total load of 2500 kg
- Working platform to reach cryostat lid

CMRC-Process

14 March 30, 2022 J. Arnsberg, S. Grohmann – Progress in the cryogenics work package

Cooling power estimation

- Calculation of heat load due to ohmic losses and parasitic heat conduction
- Assumptions
 - Linear temperature profile in both CMRC-MSCLs
 - Geometry of mechanical prototype for both CMRC-MSCLs

Compressor choice

- Basis: required cooling power
- Boundary conditions: $p_{\rm HP}$, $p_{\rm LP}$, $T_{\rm suc}$
- Problem: No commercially available compressor for specific mixtures
- Propane-(R290)-compressor for HC-CMRC
 - Conversion of boundary conditions for CMRC to pure fluid properties required
 - Type of compressor oil must fit mixed refrigerant
- CO₂-Compressor for LC-CMRC providing high pressures

LC-CMRC – flexibility for smaller heat loads

- Additionally to the CO₂-compressor, a smaller R290-compressor is integrated
- Compressor operation
 - Individual, R290- or R744-compressor

LC-CMRC – flexibility for smaller heat loads

- Additionally to the CO₂-compressor, a smaller R290-compressor is integrated
- Compressor operation
 - Individual, R290- or R744-compressor
 - Serial, R290- as pre-stage for R744compressor

LC-CMRC – flexibility for smaller heat loads

- Additionally to the CO₂-compressor, a smaller R290-compressor is integrated
- Compressor operation

20

- Individual, R290- or R744-compressor
- Serial, R290- as pre-stage for R744compressor
- Allowing operation of the LC-cycle for a heat load of 100 W with conventional pressures ($p_{\rm HP} < 25$ bar)

Adjustable operating conditions

21 March 30, 2022 J. Arnsberg, S. Grohmann – Progress in the cryogenics work package

Filling & Sampling

- Filling directly from gas cylinder cabinet via leakage-proof pipe connections
- Metering device for precise dosing of single components
- Manual valves for sampling in sample cylinders

Ĉ

Offline composition analysis via in-house gas chromatogrophy

Exactly determined mixture compositions

Summary & Outlook

J. Arnsberg, S. Grohmann – Progress in the cryogenics work package

Summary & Outlook

- Current leads cooled by mixed-refrigerant cycles promise reduction of power demand by ²/₃
- Mechanical prototype of micro-structured CMRC-cooled current lead available
- COMPASS Test Stand for experimental investigation of current leads and magnet systems under development
 - Broad power range from a few hundred to 10 kA
 - Highly flexible for testing magnet components and MSCLs
 - Croygenic installation space of 50x50x50 cm³

Summary & Outlook

- Development of thermally optimized MSCLs with numerical tools
- **Experimental investigation** of MSCLs in COMPASS
- Experimental investigation of thermal behaviour of sc magnets and cavities in cryogenic installation space

[5] David Saez de Jauregui, 2022.

Thank you! Questions?

J. Arnsberg, S. Grohmann – Progress in the cryogenics work package

Literature

[1] E. Shabagin, "Development of a CMRC cooled 10 kA current lead for HTS applications, PhD thesis, Karlsruhe Institute of Technology, Karlsruhe, 2022.

[2] T. Kochenburger, "Kryogene Gemischkältekreisläufe für hochtemperatursupraleitende Anwendungen", PhD thesis, Karlsruhe Institute of Technology, Karlsruhe, 2019.

[3] https://www.cryomech.com/products/pt425/, last checked 24.03.2022.

[4] https://www.agilent.com/en/product/gas-chromatography/gc-analyzers/energy-chemical-gc-analyzers/liquefied-petroleum-gas-analyzers, last checked 03.11.2020.

[5] David Saez de Jauregui, personal communication, 2022.