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Abstract. The tensile and bending behavior of woven fabrics are among the
most important characteristics in complex deformation analysis and modelling
of textile fabrics and they govern many aesthetics and performance aspects such
as wrinkle/buckle, hand and drape. In this paper, a numerical method for ana-
lyzing of the tensile and bending behavior of plain-woven fabric structure was
developed. The formulated model is based on the first-order shear deformation
theory (FSDT) for a four-node quadrilateral element (Q4) and a strain smoothing
method in finite elements, referred as a cell-based smoothed finite element
method (CS-FEM). The physical and low-stress mechanical parameters of the
fabric were obtained through the fabric objective measurement technology
(FOM) using the Kawabata evaluation system for fabrics (KES-FB). The results
show that the applied numerical method provides higher efficiency in compu-
tation in terms of central processing unit (CPU) time than the conventional finite
element method (FEM) because the evaluation of compatible strain fields of Q4
element in CS-FEM model is constants, and it was also appropriated for
numerical modelling and simulation of mechanical deformation behavior such
as tensile and bending of woven fabric.
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1 Introduction

In engineering sectors of textile and apparel industry, numerical modelling and sim-
ulation have been widely developed and applied in solving complex problems in the
product design and engineering process to predict how an apparel product reacts to
real-world forces, moisture absorption, heat transfer and other physical effects and so
forth [1–4]. Tensile properties are considered as the most important factor that govern
the performance characteristics of textile fabrics. The investigation of tensile properties
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encounters many difficulties due to the complexity of fabric structure leading to vari-
ation strain during deformation [5]. In general, each fabric sheet consists of a large
amount of constituent fibers and yarns which will response subsequently to a series of
complex movements under any deformation state. This makes the mechanical prop-
erties of textile fabrics more complicated due to both fibers and yarns behaving in a
non-Hookean law during deformation and presenting hysteresis effect [5, 6]. In addi-
tion, mechanical bending properties of textile fabrics govern many aspects of fabric
appearance and performance, such as wrinkle/buckle, hand and drape. These are one of
the most important characteristics in complex deformation analysis and modelling of
textile fabrics.

Numerical modelling of large-deflection elastic structural mechanics from numer-
ical models have been widely applied to examine specific textile fabric engineering and
apparel industry problems [6]. The applicability of mechanical modelling of tensile and
bending behavior of textile fabrics is very limited because it requires a large number of
mechanical parameters and is, therefore, difficult to express in a closed form [3]. The
most detailed analysis of the bending behavior of plain-woven fabrics can be found in
[7] The tensile and bending properties of woven fabrics have, therefore, received
considerable attention in both literature and model experiments.

A strain smoothing operation [8] was proposed recently as a CS-FEM A cell-based
strain smoothing method in finite elements (CS-FEM), was improved the accuracy and
convergence rate of the existing conventional finite element finite element method
(FEM) of elastic solid mechanics problems [9–12]. It was also applied to improve
formulation of a locking-free four-node quadrilateral flat shell element (Q4) with five
degrees of freedom per node, and able to reduce the mesh distortion sensitivity and
enhance the coarse mesh accuracy.

Therefore, this paper presents a numerical solution that offer a better efficiency of
computation but effective performance in modelling and simulation of tensile and
bending behavior of woven fabric structures. The numerical model is based on the
integration scheme of CS-FEM model into the Mindlin-Reissner plate element and the
plane-stress element using a four-node quadrilateral element [13–15]. The plain-woven
fabric is assumed as an elastic with orthotropic anisotropy for which the constitutive
laws formulated are using low-stress mechanical properties obtained from KES-FB [6].
The numerical result is subjected to evaluate and investigate the applicability of
CS-FEM models using one smoothing cell to improve the computational efficiency in
analyzing the bending and tensile behavior of woven fabric.

2 Formulations of the Shell Structure

Consider a reference plane that occupies a domain X 2 R3 bounded by C at the middle
surface of shell is. Let u, v and w be the translational displacements and transverse
displacement, hx and hy be the rotations in the xz and yz planes in the Cartesian
coordinate system as shown in Fig. 1.

The problem domain X is discretized into a set of four-node quadrilateral flat shell
elements Xe with boundary Ce. The generalized displacement vector uh can be then
approximated as
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in which NI is shape function and qTI ¼ uI vI wI hxI hyIf g is vector of nodal
degrees of freedom associated with each of nodes I.

Based on the FSDT, the generalized strains comprises of three parts, namely em, eb

and es. The membrane strain em, curvature strain eb and transverse shear strain es are
defined, respectively, as
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where superscripts m, b and s stand for the membrane, bending (curvature) and
transverse shear elements, respectively, and B is the strain matrices.

The constitutive relations between the stress and train fields of elements are
defined as

Fig. 1. A four-node quadrilateral flat shell element
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rm ¼ rx ry sxyf gT¼ Dmem; ð5Þ

rb ¼ rx ry sxzf gT¼ Dbeb; ð6Þ

rs ¼ sxz syzf gT¼ Dses; ð7Þ

in which the stress components rx and ry, shear components cxy, sxy, sxz and syz lead to
the force and moment resultants per unit length. Let subscripts 1 and 2 be associated
with directions of the warp and weft yarns, and h, E, v, B, H and G are respectively the
thickness of shell, Young’s modulus, Poisson’s ratios, flexural moduli, torsional
rigidity and shear modulus. Then the material matrices related to the plane-stress Dm,
bending Db and transverse shear deformation Ds are defined, respectively, as
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The discretized system equations in term of a weak form solution of generalized
displacement field uh that satisfies the Galerkin weak form for the tensile and bending
problems can be written as

Kq ¼ f ; ð9Þ

in which f indicates the force vector and K ¼ Km þ Kb þ Ks is the global stiffness
matrix [16].

3 Cell-Base Strain Smoothing Operation

The cell-based strain smoothing operation [17, 18] performs over the kth smoothing
domain Xs

k with Cs
k of the element Xe is addressed as

�ru xkð Þ ¼ Z
Xs

i

e xð ÞU x� xkð ÞdX; ð10Þ

where U is a smoothing or weight function associated with point xi in Xs
k , and

ru xð Þ ffi e xð Þ. This smoothing function must satisfy the basic conditions of U� 0 andR
Xs

i
UdX ¼ 1. For simplicity, a piecewise constant function is applied here, as given by:

U x� xkð Þ ¼ 1=As
k; x 2 Xs
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�
; ð11Þ
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where As
k ¼

R
Xs

k
dX the area of the kth smoothing domain Xs

k � Xe.

In an CS-FEM model, the strain in smoothing domain Xs
k can be further assumed to

be a constant and equals �e xkð Þ. By substituting smoothing function U into Eq. (10), the
averaged/smoothed gradient of displacement is defined as
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The averaged/smoothing strain operation for membrane strains and curvature
strains in Eqs. (2) and (3), as shown in Fig. 2, can be reformed as
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in which n is the outward normal matrix containing the components of the outward unit
normal vector to the boundary Cs

k and BkI stand for the smoothed gradient matrices
defined as
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Fig. 2. An discretized element of domain is further divided into 1-, 2-, 3- and 4 smoothing
domains (SDs) including the orthogonal nodal shape functions NI .
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In Eq. (16), nxb and nyb indicate the components of the outward unit normal to the
bth boundary segment and xGb is the cooinate value of Gauss point of the bth boundary
segment. Using Eq. (15), the membrane and bending terms of the stiffness matrix Km

and Kb in Eq. (9) can be evaluated using 1 to 4 smoothing cells.

4 Mixed Interpolation of Tensorial Components

Mindlin-Reissner (or FSDT) plate elements exhibit a shear locking phenomenon due to
incorrect transverse forces under bending, or in the case of the thickness of the plate
tends to zero. To overcome the shear locking phenomena, the approximation of the
shear strain fields c is formulated with the mixed interpolation of tensorial components
approaches [13] as
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cyz

� �
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in which
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and J is Jacobian transformation matrix and superscripts A;B;C and D are the mid-side
node, as shown in Fig. 1. Expressing cAg ; c

C
g and cBn ; c

D
n in terms of the discretized fields

qI , the shear part of the stiffness matrix is then rewritten as
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The coordinates of the unit square are ni 2 �1; 1; 1; �1f g and gi 2
�1; �1; 1; 1f g and the allocation of the mid-side nodes to the corner nodes of

element are given as i;M; Lð Þ 2 1;B;Að Þ; 2;B;Cð Þ; 3;D;Cð Þ; 4;D;Að Þf g. Using
Eq. (19), the shear term of the stiffness matrix Ks in Eq. (9) can be evaluated using full
integration of 2 � 2 Gauss Quadrature.
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5 Numerical Implementation and Results

The numerical results of a four-node quadrilateral flat shell element (Q4) for bending
and tensile analysis of a square woven fabric sheet having boundaries include clamped
edges (C), simply supported edges (S) and free edges (F) under uniform pressure was
implemented for both FEM and CS-FEM models, see Figs. 3 and 4.

Mechanical and physical parameters of a plain-woven fabric sample were com-
puted with KES-FB comprising of the thickness mm½ � of h ¼ 0:0848, elastic modulus
[gf/cm], E1 ¼ 3823:7993, E2 ¼ 14092:4464 and E12 ¼ 6896:5517, Poisson’s ratio
v1 ¼ 0:0211 and v2 ¼ 0:0778, bending rigidity [gf.cm2/cm] of B1 ¼ 0:1237, B2 ¼
0:1333 and B12 ¼ 0:0880, transverse shear modulus gf:cm2½ � of G ¼ 217:3100.

The computational results for tensile behavior, as illustrated in Figs. 5 and 6,
produced an accurate numerical results implemented by one smoothing cell per a
four-node quadrilateral shell element and it was compared with the conventional
FEM’s results, which is clearly well-balanced feature of the CS-FEM.

The numerical results also indicated that the membrane elements implemented by
CS-FEM are well refined, not distorted and not coarse even. Thus, the strain smoothing
operation for four-node flat shell element are in good agreement with the conventional
FEM solution.

In order to compare the accuracy of strain fields evaluated by CS-FEM and FEM,
train fields of membrane and curvature of the formulated shell element was imple-
mented using Eqs. (2) and (3) for FEM and Eq. (15) for CS-FEM. Figure 7 indicates

Fig. 3. Bending deformation of a plain-woven fabric sheet, using 20 � 20 Q4 elements and one
smoothing cell per element with different boundaries.
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Fig. 4. The stress distribution (magnitude and direction) of fabric sheet yielded by the bending
deformed under uniform pressure using 20 � 20 Q4 and one smoothing cell per element.

Fig. 5. The magnitude of the stress, under uniaxial applied force in warp direction, using
70 � 70 Q4 elements and one smoothing domains per element.
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that the graphs of strain energy computed by CS-FEM model is approximate and
coincided with that one of FEM on the same boundary conditions and mesh density
under uniform pressure. However, the linear shape functions of CS-FEM using a point
interpolation method (PIM) are constant as shown in Fig. 2. Vice versa, the shape
functions of a Q4 element are those of bilinear Lagrange shape functions in natural
coordinates ðn; g; fÞ that are needed to be transformed into Cartesian coordinates (x, y,
z) when one evaluates strain gradient matrix. This requires a Jacobian transformation
matrix and needs to be evaluated by one or more Gauss points. Thus, the strain
smoothing technique reduces the computation time in terms of the central processing
unit time.

Fig. 6. The magnitude of the stress, under uniaxial applied force in weft direction, using
70 � 70 Q4 elements and one smoothing domains per element.
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6 Conclusions

The CS-FEM gives a higher computational efficiency in term of GPU time but effective
performance in analyzing the bending and tensile behavior of woven fabric compared
with standard FEM. Thus, the application of FOM and CS-FEM to displacement-based
low-order finite element formulations, that based on quadrilateral plate/shell finite
element models, are well refined and appropriate for numerical modelling and simu-
lation of the mechanical deformation behavior of tensile and bending for woven fabric
in terms of elastic material with both isotropy and orthotropic anisotropy.
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