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Resumo

Os termoplásticos reforçados com fibras utilizam frequentemente fibras de vidro ou carbono

para melhorar as propriedades de termoplásticos simples. As propriedades deste tipo de materiais

compósitos depende das propriedades dos seus constituintes base, no ambiente termo-mecânico

desenvolvido durante o seu processamento e nos parâmetros de distribuição das fibras, nomeadamente

a sua concentração e orientação, tendo a última uma relevância maior na propriedades finais da peça.

Atualmente existem vários modelos fenomenológicos desenvolvidos com o objetivo de prever

a evolução da orientação das fibras para diversos fluxos. Alguns destes modelos estão presentes

em software proprietário, cujo acesso ao código é limitado ou inexistente, o que compromete a

verificação e adaptação do mesmo. Como alternativa, software de código-aberto oferecem aos

utilizadores acesso irrestrito ao código, permitindo assim análises cientificas detalhadas e contínuo

melhoramentos. O OpenFOAM® é uma biblioteca computacional de fonte aberta, que contém diversos

solvers capazes de simular diferentes problemas da mecânica computacional, com especialização

na dinâmica computacional de fluídos, o que o torna uma ferramenta adequada para o trabalho a

realizar.

Neste dissertação é proposta uma estratégia inovadora para a implementação de um modelos

estado-de-arte de orientação de fibras no ambiente do OpenFOAM®. Os modelos foram implementados

na forma de um utilitário, que pode ser utilizado juntamente com outros solvers, desde que exista

acesso ao campo de velocidades. Com a finalidade de realizar verificações numéricas, foi desenvolvido

um código em python capaz de calcular a evolução da orientação das fibras num domínio sujeito a

um campo de velocidades variável e os resultados obtidos foram verificados com base em informação

obtida da literatura. Este código foi posteriormente implementado como uma referência para verificar

o utilitário introduzido no OpenFOAM®, que foi testado em casos semelhantes aos encontrados em

condições realistas para típicas aplicações poliméricas, como fluxo de corte simples e estiramento, tal

como o fluxo na injeção de um disco ao centro. Os resultados obtidos nos casos de estudo permitiram

concluir que a implementação dos modelos foi adequada, o que transforma esta ferramenta numa

alternativa confiável a software proprietário, para a previsão da evolução da orientação de fibras em

diversos tipos de fluxo.

Palavras-chave: orientação de fibras, termoplásticos reforçados com fibras, modelação numérica,

OpenFOAM®
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Abstract

Fiber reinforced thermoplastic materials commonly employ glass or carbon fibers as structural

reinforcements to enhance the properties of single thermoplastic materials. The properties of this class

of composite materials depend on the properties of the individual constituents, the thermomechanical

environment developed during its processing, but also on the fibers distribution parameters, namely

the concentration and orientation. The latter has a special relevance in the final part performance.

Currently, there are various phenomenological models devised to predict the evolution of fiber

orientation in general flows. Some fiber orientation models are available in proprietary software, which

work on a black-box concept, where the users are not allowed to check the underlying code and have

limited or no possibilities to adapt the code to their own needs. On the other side, open-source software

supplies the end-users with full access to the code, making it available for scientific scrutiny and

continuous improvement. OpenFOAM® is an open-source computational library with a wide range of

solvers able to simulate different continuum mechanics problems, with special focus on computational

fluid dynamics. Such properties make the software a suitable tool to work as base to the proposed

work.

In this dissertation a novel strategy for implementing state-of-the-art fiber orientation models

is proposed and implemented in the OpenFOAM® framework. The fiber orientation models were

implemented as an utility, which can be used with other existing solvers, in which there is access

to the velocity field. For numerical verification purposes, a python script able to compute the fiber

orientation evolution in a location subjected to variable velocity gradient field, was implemented and

verified against data found in literature. This python script was subsequently employed as a benchmark

to verify the implementation of the novel OpenFOAM® utility, which was tested considering some flows

that represent the ones found in practice, in typical polymer processing applications (simple shear

flow and stretch flow), as well as the flow in a standard center-gated disk. The results obtained in the

tested case studies allowed to conclude that the fiber orientation models were properly implemented.

Consequently, this new OpenFOAM® utility is now a reliable alternative to proprietary software for

predicting the evolution of fiber orientation in different flow environments.

Keywords: fiber orientation, fiber reinforced thermoplastic materials, numerical modeling,

OpenFOAM®
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CHAPTER1 Introduction

Fiber reinforced polymers (FRP) are a subclass of composite materials, where thermoplastics

or thermoset polymers are used as the continuous phase matrix, and either glass or carbon fibers

comprise the reinforcing dispersed phase. The main purpose of the reinforcements is to enhance the

ratio mechanical properties per weight of the final parts, however, thermal and electrical behavior can

also be tailored to some extent to devise products with additional functionalities [1, 2].

Due to the wide range of properties that FRP can present, they are attractive to several

industries, as is the case for the automotive, aerospace and construction sectors [1--3], which benefit

from the load bearing capabilities allied with low density of this class of materials. For instance, it is

common practice in the automotive industry to replace metallic components by FRP to create lighter

components and, therefore, improve fuel consumption [4].

Commercially, most FRP incorporate thermoset resins for the matrix, such as epoxy [3]. This

type of polymers can be reshaped until undergoing an irreversible chemical reaction, usually triggered

by heat. On the other side, to be reshaped, thermoplastics need to go through a cycle that comprises,

at least, heating-forming-cooling phases. Thermoplastic materials can be reheated and reshaped a

(limited) number of times, which makes them reusable [5]. Despite the more difficult processing

associated with thermoplastics matrices [3], mainly due to their high viscosity at the melt state when

compared with uncured thermoset resins, they have been growing in use, not only for their increased

recyclability, but also because thermoplastics processing can be much faster [6].

FRP materials can also be grouped by the length of the fiber employed, which can be

discontinuous or continuous. The latter results in materials with high strength and stiffness, due to

their high orientation along the desired direction. Meanwhile, discontinuous fibers tend to have random

orientation and therefore lower strength. However, they can still provide a significant reinforcement,

are cheaper and can be used to produce complex parts [1, 2].
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Discontinuous fibers can be further divided into two categories, depending on the fibers’

length. Long fiber reinforced composites are usually obtained through a pultrusion process, to obtain

continuous fiber filaments, which are subsequently pelletized, resulting in pellets comprising fibers

with a length of around 12 mm. On the other side, short fiber reinforced composites are produced

by compounding extrusion, where chopped fibers are mixed with the matrix, which are subsequently

shaped in filaments and then pelletized. These materials comprise fibers having a typical length of

around 1 mm [7, 8].

Discontinuous fiber reinforced thermoplastic materials (FRTM) join the advantages of a

thermoplastic matrix and discontinuous fibers. Discontinuous FRTM can be processed through

conventional thermoplastic processes, like 3D printing, compression molding or injection molding [1].

The latter is widely used by the industry for large scale production, due to its high dimensional

precision, variety of complex geometries, high rates of production and ease of automation [3, 6].

1.1 Processing and resulting properties

The injection molding (IM) technique consists of a cyclic process in which the molten plastic,

conveyed from the plasticizing unit, is forced into a mold cavity with a predetermined geometry, where

it is held under pressure until it cools down and solidifies. The mold can integrate a single or multiple

cavities of similar or dissimilar shapes. The processing cycle ends with the opening of the mold and

the subsequent extraction of the part(s) [9]. The behavior of FRTM parts manufactured by IM are highly

dependent upon processing conditions and fiber-related parameters, such as: orientation, length and

concentration, among others. All these interrelated parameters are difficult to control.

Fiber orientation can greatly impact the properties of the final part, such as its mechanical

properties, for instance, the part will present a better performance in regions where the fibers are

more aligned with the direction of the applied load. The fiber orientation is mostly determined by the

flow of the polymeric matrix during injection into the mold cavity, which usually results in a complex

anisotropic distribution.

Based on the above, for design purposes it is important to predict fibers distribution and

orientation. This knowledge allows for better comprehension of related phenomena such as shrinkage

and warpage [10], and also the mechanical behaviour [11], which are mandatory to support part

design.
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1.2 Computational tools

Nowadays, computational modeling is widely used to predict the filling of mold cavities during

the IM process, and some of the available software has the capability of predicting the resulting fiber

orientation [12, 13], thanks to phenomenological numerical models based on Jeffery’s work [14].

Despite being a powerful ally for design and analysis tasks, the accuracy and generality of the available

software present several limitations.

Proprietary software, such as Autodesk Moldflow® [15] and Moldex3D® [16], offer fiber

orientation numerical modeling. Despite the availability of these software, the validation work performed

with these models is still scarce, which limits significantly the capability of selecting the best option

for a specific case. The scarcity in information can be partially attributed to limitations of proprietary

software, such as:

• Proprietary software works as a black-box, where the user is not allowed to verify the underlying

code, and, therefore, cannot assess how adequate the software is for the envisaged use.

• The source code cannot be accessed, analyzed or modified, limiting the possibility of detecting

bugs, performing improvements or customize it.

• Due to the their commercial nature, these software comprise expensive licensing fees, which

limits the possibility of their use to only large companies.

An alternative to proprietary software, are the open-source counterparts, such as the OpenFOAM®

toolbox [17]. OpenFOAM® is an open-source computational library with a wide range of solvers able to

simulate different continuum mechanics problems, with special focus on computational fluid dynamics

(CFD) (e.g., incompressible, compressible, multi-phase, conjugate heat transfer). The library, that also

includes several tools for pre and post-processing tasks, can be executed in parallel, and is under

continuous active development, with two versions being released annually. The open-source character

has the advantage of supplying the end-user with full access to the code, making it available for

scientific scrutiny and improvement. This framework makes OpenFOAM® a highly suitable vehicle for

building numerical tools to model fiber orientation, and to foster the industry to progress in its digital

transformation.
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1.3 Motivation and Objectives

Due to the limitations of proprietary software, which limit a through analysis and verification

of the available models developed to predict the evolution of fiber orientation, the objective of this

dissertation is the implementation and verification of state-of-art numerical models for fiber orientation

in the open source computational library, OpenFOAM®. To achieve the objective, firstly, the fiber

orientation models will be studied, as well as the computational tools that will be used, OpenFOAM®

and Python. The later will be utilized to create a benchmark tool to verify the results obtained from the

developed OpenFOAM® utility.

1.4 Dissertation organization

The remaining dissertation is organized as follows. Firstly, the state-of-art fiber orientation

models will be described and discussed in Chapter 2. Chapter 3 describes the computational tools

utilized, Python and OpenFOAM®, as well as the code developed within the respective libraries of both

tools. Additionally, the test cases that will be examined in this dissertation are described by expounding

the appropriate definition of explored flows. Finally, in Chapter 4, the verification of the developed code

will be presented. The python script is verified trough comparison with data from available literature,

and, by using this tool as a benchmark, the OpenFOAM®’s utility will be verified against it. The main

conclusions from this work and the proposals for future activities are reported in Chapter 5.
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CHAPTER2 State-of-the-art

2.1 Descriptors of fiber orientation

In the literature, fibers are usually treated as a straight and rigid cylinder. Under these conditions,

its orientation can be described by two angles, \ and 𝜙. A unit vector, p, oriented along the fiber’s

symmetry axis, as shown in Figure 2.1, is an appropriate micro-descriptor for single fiber orientation

and it is related to \ and 𝜙 by:

p =


𝑝1

𝑝2

𝑝3


=


sin\ cos𝜙

sin\ sin𝜙

cos\


(2.1)

p

1

2

3

1p

2p

3p

𝒑

Figure 2.1: Orientation of a fiber.

In FRTM there might be thousands of fibers per cubic millimetre [7]. Consequently, in a

general case, the usage of the previous descriptor for each individual fiber is cumbersome and
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2.1 Descriptors of fiber orientation

significantly demanding to compute, thus, approaches based in statistical methods were proposed

in the literature [7]. In these, the proposed descriptor for large groups of fibers is the a probability

distribution function (PDF), 𝜓(p, 𝑡), which reflects a meso-scale descriptor and is defined in such a

way that 𝜓(p, 𝑡) dp defines the probability of a fiber being oriented in the range p and p+dp.

The PDF has the following properties:

• Periodicity: 𝜓(p) = 𝜓(−p) (The fibers ends are not distinguished);

• Normalized:
∮
𝜓(p, 𝑡)dp = 1 (The integral over all possible orientations in space adds to unity);

• Continuity: 𝐷𝜓

𝐷𝑡
= −∇𝑠 · (𝜓 ¤p) (If the orientation of a fraction of fibers changes, the remaining

fibers will suffer a consequent change on their orientation).

The computation of the PDF is possible for planar orientation, but for practical cases in

three-dimensions the PDF becomes excessively expensive [18]. For this reason, Advani and

Tucker [18] proposed the use of orientation tensors as a macro-scale descriptor. The most commonly

used tensors are the 2nd and 4th order orientation tensors, defined as:

A =

∮
𝜓pp dp (2.2)

A =

∮
𝜓pppp dp (2.3)

The orientation tensors have the following properties:

• Symmetry [18]:

– A𝑖 𝑗 = A 𝑗𝑖,

– A𝑖 𝑗 𝑘𝑙 = A 𝑗𝑖𝑘𝑙 = A𝑘 𝑗𝑖𝑙 = A𝑙 𝑗 𝑘𝑖 = A𝑖𝑘 𝑗 𝑙 = A𝑖𝑙𝑘 𝑗 ;

• Due to the normalization condition of the PDF, the 2nd order orientation tensor has an unitary

trace, tr(A) = 1 [18];

• Higher order tensors provide complete information about lower order tensors: A𝑖 𝑗 =A𝑖 𝑗 𝑘 𝑘 [18];

• The orientation state described by the orientation tensors is not unique [7, 19];

The second-order tensor provides information about the principal directions of the orientation

state, as well as its principal values. The principal directions define how the orientation distribution
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2.2 Fiber orientation modeling

is situated in space, and the principal values quantify the alignment of the fibers with the principal

directions. The principal directions are defined by the eigenvectors of the orientation tensor, and the

magnitude of said vectors, are defined by its corresponding eigenvalues [7]. Figure 2.2 shows a

general representation of the principal directions.

e1

λ1

λ2

λ3

e2

e3 x

y

z

Figure 2.2: Representation of principal directions and values of a second-order orientation tensor.

As it will be further evidenced in this work, the use of tensors to describe the fiber orientation

leads to the need of a closure approximation. Despite this, these macro-descriptor are still the

state-of-the-art fiber orientation descriptors [7, 19].

2.2 Fiber orientation modeling

Modeling of fiber orientation started with the seminal work of Jeffery in 1922 [14], who modeled

a fiber as an inertialess rigid spheroid, suspended in a Newtonian fluid. The proposed equation for the

rate of change p reads:

¤p = W ·p+ b (D ·p−D : ppp), (2.4)

where:

• W is the vorticity tensor, defined as W =
1
2

(
∇u− (∇u)T

)
;
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2.2 Fiber orientation modeling

• D is the rate-of-deformation tensor, defined as D =
1
2

(
∇u+ (∇u)T

)
with ∇u as the velocity

gradient, defined as ∇u = 𝜕ui/𝜕xj;

• b is the particle shape function defined as b =
(𝑙/𝑑)2−1
(𝑙/𝑑)2 +1

, where 𝑙 is the length of the fiber

and 𝑑 its diameter.

The term W ·p in Equation (2.4) represents the effect of rigid-body rotation on fiber orientation.

If the fluid has a rotation motion, this term adds it to the fiber rotation-rate. The second term,

b (D ·p−D : ppp) represents the effect of fluid deformation on the fiber orientation. The unusual

term, where the rate-of-deformation tensor is contracted with the triple dyadic product of p, is defined

by Tucker [7], and aims at subtracting the portion of D ·p that is parallel to p, which assures that the

time rate of change of p is always perpendicular to p, and that the length of p does not change.

This model was proved to be useful in dilute suspensions, where fibers interaction can be

neglected [20]. The suspension state is characterized by the concentration of fibers, 𝑐, and the fiber

aspect ratio, 𝑙/𝑑. When 𝑐 < (𝑙/𝑑)2, the distance in-between fibers is greater than its length, and,

therefore, the fibers can rotate freely, which corresponds to the dilute regime [20].

Given the large number of fibers that can exist in FRTM, concentrated suspensions must be

considered, where fiber interactions become a relevant, or a dominant effect. To tackle this, Folgar

and Tucker (FT) [20], in 1984, formulated a phenomenological model extending the one proposed by

Jeffery, which accounts for the effect of fiber interactions through a scalar rotary diffusivity. The model

reads:

¤𝜓 = −∇𝑠 · (𝜓 ¤p−𝐶𝐼 ¤𝛾∇𝑠𝜓), (2.5)

where:

• CI is a phenomenological constant, the fiber-fiber interaction coefficient;

• ¤𝛾 is the scalar magnitude of the rate of deformation tensor, defined as ¤𝛾 =
√

2D : D;

• ∇s is the gradient operator on the surface of the unit sphere, defined as ∇s = 𝛿\
𝜕
𝜕\
+𝛿𝜙 1

sin𝛿
𝜕
𝜕𝜙

;

• ¤𝜓 is the material derivative of 𝜓.

Since the computation of the PDF is too expensive in general 3D cases, orientation tensors are

used as macro-descriptors of the fibers’ orientation state. For this, Equation (2.5) is rewritten for the
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2.2 Fiber orientation modeling

evolution of the second order orientation tensor [18] and reads:

¤A = ¤AH + ¤AIRD (2.6)

¤AH = W ·A−A ·W+ b (D ·A+A ·D−2A : D) (2.7)

¤AIRD = 2𝐶𝐼 ¤𝛾(I−3A) (2.8)

The time-rate of change of the orientation tensor is decomposed into a hydrodynamic contribution, ¤AH,

Equation (2.7) from the Jeffery model, and a diffusive term, from the work of Folgar and Tucker [18],

¤AIRD, Equation (2.8). From the hydrodynamic contribution, it is possible to observe the appearance of

a 4th order tensor in the evolution equation of A. To be able to solve this system a closure relationship

is required. This topic will be addressed in Section 2.3.

Several practical studies have showed that orientation kinetics predicted by the FT model were

much faster than the ones observed experimentally [21, 22], so Huynh [23] introduced the strain

reduction factor(SRF), 𝛼, rewriting Equation (2.6) to obtain:

¤A = 𝛼

(
¤AH + ¤AIRD

)
. (2.9)

Since the SRF model violates material objectivity requirements, Wang and co-workers [24]

proposed the Reduced Strain Closure model (RSC) to slow the orientation kinetics, in order to have

a better agreement with experimental observations. This phenomenological model is based on the

spectral decomposition of the second order tensor, A, evolution. The model affects the rate-of-growth

of the A eigenvalues, through an empirical slow-down parameter, ^, while keeping the eigenvectors

evolution unchanged. The model reads:

¤A = ¤ARSC + ^ ¤AIRD, (2.10)

where:

¤ARSC = W ·A−A ·W+ b (D ·A+A ·D−2[A+ (1− ^) (L−M : A)] : D), (2.11)

L =
3∑︁
𝑖=1

_𝑖 (e𝑖e𝑖e𝑖e𝑖), (2.12)
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2.2 Fiber orientation modeling

M =

3∑︁
𝑖=1
(e𝑖e𝑖e𝑖e𝑖), (2.13)

and

A =

3∑︁
𝑖=1

_𝑖 (e𝑖e𝑖). (2.14)

The two models described so far handle the rotary diffusivity as a scalar quantity, however, there is no

practical reason to do so. Long fibers exhibit less alignment in the flow-direction [8], and the FT model

is not able to adequately reproduce this effect. This motivated the modeling of the rotary diffusivity

as a tensor quantity, which allows the rotary diffusion to be anisotropic. This approach was proposed

by Phelps et al. [8] in 2009, who built on the work of Phan-Thien et al. [25], to reach the anisotropic

rotary diffusion (ARD) model. The model reads:

¤A = ¤AH + ¤AARD, (2.15)

¤AARD = ¤𝛾 [2C−2tr(C)A−5(C ·A+A ·C) +10A : C], (2.16)

The rotary diffusion tensor, C, was proposed as a polynomial function of the second-order orientation

tensor, A, and the rate-of-deformation, D, tensors:

C(A,D) = b1I+b2A+b3A2 + b4
¤𝛾 D+ b5

¤𝛾2 D2, (2.17)

where the dimensionless parameters, 𝑏1,...,5, are obtained by fitting experimental data.

Also within the work of Phelps et al. [8] the RSC model was combined with the ARD model to

better describe the experimental data, resulting in the ARD-RSC model. This model, which is available

in the proprietary software AutoDesk MoldFlow® [13], is equated as:

¤AARD−RSC = ¤ARSC + ¤AdARD (2.18)

¤AdARD = ¤𝛾{2[C− (1− ^)M : C] −2^ tr(C)A−5(C ·A+A ·C) (2.19)

+10[A+ (1− ^) (L−M : A)] : C}.

Due to inaccurate predictions of the components of the second order orientation tensor, A, for
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2.2 Fiber orientation modeling

a center-gated disk [26] with the ARD-RSC model, a new model was proposed by Tseng et al. [27, 28],

which presented an improved ARD (iARD) calculation combined with a new Retarding Principal Rate

(RPR) model, for slowing-down the orientation kinetics. The RPR model considers that the deceleration

of the orientation kinetics is due to the fiber-matrix interaction [27], unlike the RSC model, that

considers it is due the deformation of the fibers and the fluid [24]. The iARD-RPR model describe

the rotary diffusion tensor with a single dependency on the rate-of-deformation tensor, the interaction

coefficient proposed by Folgar-Tucker, and a new phenomenological parameter, 𝐶𝑀 , describing the

fiber-matrix interaction. The model reads:

¤AiARD−RPR = ¤AH + ¤AARD + ¤A𝑅𝑃𝑅, (2.20)

CiARD = CI

(
I−CM

D2����D2
����
)
, (2.21)

C←− CiARD, (2.22)

¤ARPR = −R · ¤𝚲IOK ·RT, (2.23)

¤ΛIOK
ii = 𝛼 ¤_ i, j,k = 1,2,3 , (2.24)

where:

• 𝐶𝑀 is a scalar parameter representing the fiber-matrix interaction;

• ¤𝚲IOK
is the material derivative of a diagonal tensor calculated under the intrinsic orientation

kinetics (IOK) assumption [27];

• _i is the ith eigenvalue of A, such that (_1 ≥ _2 ≥ _3);

• R is the rotation matrix built from the eigenvectors columns of A ( R = [e1,e2,e3]). The

superscript T indicates the transpose operator;

• 𝛼 is a slow-down scalar parameter.

This model is available in the commercial IM simulation software Moldex3D® [27, 28].

Further developments to fiber orientation modelling were made in 2018, when Tseng et al. [29]

and Bakharev et al. [30] proposed a similar fiber orientation model, where the anisotropic rotary

diffusion tensor was modeled with a single dependency on the second-order fiber orientation tensor.
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2.2 Fiber orientation modeling

The models are known as principal Anisotropic rotary diffusion (pARD) [29] and Moldflow Rotational

Diffusion (MRD) [30], respectively. In both models the rotary tensor is defined as [31]:

C𝑝𝐴𝑅𝐷,𝑀𝑅𝐷 = CIR

©«
C1 0 0

0 C2 0

0 0 C3

ª®®®®®®¬
RT. (2.25)

However, the choice of parameters and overall equation differs. For the pARD model the RPR model

is included and the governing equation is as follows:

¤ApARD−RPR = ¤AH + ¤AARD + ¤ARPR, (2.26)

C←− CpARD, (2.27)

and the authors selected C1 = 1, C2 = 𝛺 and C3 = 1−𝛺 with 0.5 ≤ 𝛺 ≤ 1.

Regarding the MRD model the governing equation reads:

¤AMRD = ¤AH + ¤AmARD, (2.28)

¤AmARD = 2 ¤𝛾
(
CMRD− tr(CMRD)A

)
. (2.29)

As with the pARD model, the coefficients C1, C2 and C3 show a biased rotational diffusion tensor

towards the direction of the principal vectors of fiber orientation tensor. In their report [30] the default

values identified to provide the best results are C1 = 1, C2 = 0.5 and C3 = 0.3. This model replicates

the FT model when all parameters are set to unity.

Wang observed that, for the ARD model, the parameters b4 and b5 typically have low values [32],

therefore opted by defining b2, b4, and b5 as null, reducing the number of parameters that need fitting.

Applying this to Equation 2.17, the rotary diffusion tensor, C, becomes:

CWang = b1I+b3A2. (2.30)

Experimental tests, performed by Lambert and Baird [33], for the evolution of fiber orientation

under shear and extensional flow showed that, contrary to what was assumed before, ^ is dependent

on the flow type. While slow orientation kinetics is present for simple shear flow, the same is not
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2.2 Fiber orientation modeling

observed for extensional flow, and therefore, does not need correction. For this reason, Chen et

al. [34] first proposed the idea of a kinetic parameter that changes depending on the flow type, which

can unravel the degree of strain imposed on the fibers during shear, extension and mixed flows. The

proposed objective parameter reads:

𝛽 =
D : D+W : W
D : D−W : W

, (2.31)

where:

W = −W−𝛺, (2.32)

𝛺 = ¤E ·E, (2.33)

in which 𝛺 is the rate-of-rotation of the principle directions of D, and E is the matrix of right

eigenvectors of D. With ^e as the kinetic parameter for extensional flow, and ^s for shear-flow, ^, the

scalar parameter in Equation (2.10), is defined as:

^ = 𝛽^e + (1− 𝛽)^s. (2.34)

More recently, Kugler et al. [35] proposed a different flow type dependent parameter, which

resorts to the Manas-Zloczower number, Mz, proposed in Cheng and Manas-Zloczower [36], to

characterize the type of flow, which is given by:

Mz =
| |D| |

| |D| | + | |W| | , (2.35)

where | |D| | and | |W| | is the magnitude of the respective tensor, defined as:

| |D| | =
√︁

trD2, (2.36)

| |W| | =
√︂

1
2
| |𝛺 | |2. (2.37)

By assuming that the fiber orientation for mixed shear and elongational flow is a linear combination of

the fiber orientation models corresponding to each flow, the proposed model to track the evolution of
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2.3 Closure approximations

the second order orientation tensor, A, is given by:

¤A = 2(Mz−0.5) ¤Ae +2(1−Mz) ¤As, (2.38)

where ¤Ae and ¤As are the fiber rate of change calculated using the parameters for shear and elongation

flow, respectively, with a preferred numerical model for fiber orientation.

Comparison of experimental data with flow dependent models [35, 37] has shown that they

yield results with comparable or improved accuracy to other models.

2.3 Closure approximations

As previously mentioned, the use of tensors as a descriptor of fiber orientation requires a closure

approximation, to calculate the next even-ordered orientation tensor as a function of the previous, and

to be able to calculate the evolution of the previous order tensor (see Equation 2.7)

Hand [38] proposed a fourth-order linear closure, that can be obtained by combining the

product of the second order tensor A and the unit tensor 𝛿. It requires the tensorial expression to be

symmetric for any pair of indices, and to meet the normalization condition, Aiikl = Akl. The proposed

relation reads:

ALinear
𝑖 𝑗 𝑘𝑙 =− 1

35
(
𝛿ij𝛿kl + 𝛿ik𝛿jl + 𝛿il𝛿jk

)
+ 1

7
(
Aij𝛿kl +Aik𝛿jl +Ail𝛿jk +Akl𝛿𝑖 𝑗 +Ajl𝛿ik +Ajk𝛿𝑖𝑙

)
.

(2.39)

This relationship represents exactly the isotropic state of orientation [39].

Alternatively, the quadratic closure, proposed by several authors [40--42], is defined by the

dyadic the product of the second order tensor with itself:

AQuadratic = AA, (2.40)

which is exact for a perfectly aligned fiber orientation state [39].

Since the previously mentioned closure approximations do not provide an accurate solution for

all states of fiber orientation, Advani and Tucker [39] proposed subsequently the hybrid closure, which

was obtained by blending the linear closure with the quadratic closure, through a blending coefficient,
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2.3 Closure approximations

𝑓 .

AHybrid = (1− 𝑓 )A𝐿𝑖𝑛𝑒𝑎𝑟 + 𝑓AQuadratic

𝑓 = 1−27det(A).
(2.41)

The hybrid closure over-predicts the actual fiber alignment, but despite of this, it is still widely

used within the industry due to its simplicity and ease of computation [43].

Not satisfied with the solution offered by the hybrid approximation, Verleye and Dupret [44]

introduced the natural closure (NAT), that describes A in terms of A and the identity second order

tensor 𝛿, through a fitting process, which is only valid when the fiber-fiber interactions are neglected

(the dilute flow regime), and reads as:

ANatural
ijkl =𝛽1𝑆

(
𝛿ij𝛿kl

)
+ 𝛽2S

(
𝛿ijAkl

)
+ 𝛽3S

(
AijAkl

)
+ 𝛽4S

(
𝛿ijAkmAml

)
+ 𝛽5S

(
AijAkmAml

)
+ 𝛽6S

(
AimAmjAknAnl

)
,

(2.42)

where the coefficients 𝛽1− 𝛽6 are functions of the second and third invariants of A. These coefficients

have to satisfy the normalization condition, Aijkk = Aij. S is a function that returns the symmetric part

of a 4th order tensor, as:

S
(
Tijkl

)
=

1
24

(
Aijkl +Ajikl +Aijlk +Ajilk +Aklij +Alkij

+Aklji +Alkji +Aikjl +Akijl +Aiklj +Akilj +Ajlik +Aljik +Ajlki

+Aljki +Ailjk +A𝑙𝑖 𝑗 𝑘 +Ailkj +Alikj +Ajkil +Akjil +Ajkli +Akjli

)
.

(2.43)

It is known that the NAT closure suffers from singularity issues for asymmetric orientation

states [44].

Later, Cintra and Tucker [45] developed an orthotropic fitted (ORF) closure approximation and

proved the increasing accuracy of this closure approximation over the previous ones. Due to the

symmetry restrictions of the second order tensor, the tensor has three orthogonal eigenvectors, that

define its principal axes, and the three corresponding eigenvalues, that define its principal values.

Since the fourth order tensor can only be obtained trough the information that the second order tensor

provides, the fourth order tensor must be orthotropic, and therefore, have the same principal axes as
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2.3 Closure approximations

the second order tensor, and the remaining components are a function of the principal values.

Âmm = Cm +C2
m_1 +C3

m_
2
1 +C4

m_2 +C5
m_

2
2 +C6

m_1_2 𝑚 = 1,2,3,4,5,6 , (2.44)

where _𝑖 are the eigenvalues and 𝐶𝑚 are coefficients obtained from fitting data obtained from

calculations of the distribution function for specific types of flow. Âmm stands for the fourth order

tensor in contracted notation, that can be obtained from establishing the following symmetries:

Aijkl = Ajikl = Aijlk, and then the following relationship: Aijkl = Amn, where 𝑚 and 𝑛 are related to

𝑖 𝑗 and 𝑘𝑙, respectively, according to Table 2.1.

Tensor indices 𝑖 𝑗 11 22 33 23 or 32 31 or 13 12 or 21

Contracted index 𝑚 or 𝑛 1 2 3 4 5 6

Table 2.1: Relationship between tensor indices and contracted indices.

The ORF approximation performs better than previous closure approximations, but suffers from

nonphysical oscillations at low values of 𝐶𝐼 .

Chaubal and Leal [46] opted to use a known probability density function to obtain the unknown

parameters 𝐶𝑚 , the Bingham distribution, and like this created the Bingham closure.

Wetzel [47] and Verweyst [48] introduced another version of an orthotropic fitted closure

approximation, ORE, that aimed to improve the ORF closure (Equation(2.44)). The flow data fitted was

obtained from analytic solutions corresponding to 𝐶𝐼 = 0 and _ = 1, as performed in the NAT closure

approximation (Equation (2.42)).

Chung and Kwon [49] also contributed to improve the ORF closure approximation, and were

able to remove the nonphysical oscillations. They proposed the ORW and ORW3 closures, in which

additional flow data was fitted, to comprise all fiber orientation states.

The previous orthotropic fitted closure approximations (ORF, ORE, ORW and ORW3) are also

called eigenvalue based optimal fitting (EBOF) closure approximations. These, when applied to real life

flows, require a lot of computational power due the calculation of the eigenvalues [50]. To circumvent

this, Chung and Kwon [50] developed the invariant-based optimal fitting (IBOF) closure approximation,

that combined the NAT and EBOF closure approximations. They eliminated the singularity problems of

the NAT closure, by fitting against data obtained from a more diverse flow types, and the computational

burden of EBOF, by using the invariants of the tensor, instead of its eigenvalues. Similar to the NAT

16



2.3 Closure approximations

approximation, the fourth order orientation tensor is defined in terms of the second order, but the

unknown parameters are determined in a similar approach used in EBOF closure approximations.

In the IBOF approximation, the fourth order tensor can be obtained by Equation (2.42), but

unlike the natural closure, only the coefficients 𝛽3, 𝛽4 and 𝛽6 are strictly functions of the second and

third invariants of A. The remaining coefficients, 𝛽1, 𝛽2 and 𝛽5, are a function of the independent

components and the invariants of the second-order orientation tensor, fitted with data obtained from

calculations of the PDF. The equations for these coefficients are reported in Appendix A.

The neural network closure, proposed in Jack et al. (NNET) [51], utilizes an artificial neural

network to compute the forth-order tensor in function of the corresponding second-order tensor. The

artificial neural network is able to map the relationship between input and outputs when a exact

mathematical model for this relationship does not exist [51]. For this closure the neural network is

trained using known the second-order tensors and the corresponding fourth-order tensors, obtained

from experimental data. The neural network closure was shown to have better or equal accuracy to

orthotropic closures, and higher efficiency (around 3 times faster than orthotropic closures).

Verleye and Dupret [52] stated that there is an exact closure if the fiber orientation is at one

time isotropic. Based on this work, Montgomery-Smith et al. [53] determined the exact closure using

Cartesian coordinates on the sphere and the Carlson form of elliptic integrals. Under the assumption

that at the initial condition the orientation is isotropic, the second order tensor can be expressed in the

following way:

A =

∫
𝑆

pp

4𝜋(B : pp)
3
2

dp, (2.45)

where

¤B = −B · (W+ bD) − (−W+ bD) ·B, (2.46)

with B = I at 𝑡 = 0 𝑠.

In the same article, Montgomery-Smith et al. [53] also introduced the fast exact closure (FEC),

a more computational efficient form of the exact closure. For this, B is computed via an ordinary

differential equation, obtained from solving simultaneously the Equations 2.8 and 2.46. If the initial

data is not isotropic, then B must be calculated for the initial condition by inverting the Equation 2.45.

This format of the FEC is valid only for when the diffusion terms are absent, so later
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2.3 Closure approximations

Montgomery-Smith et al. [54] derived the FEC for other models, which account for diffusion. For this,

two fourth-rank tensors, C and D, defined as conversion tensors, are introduced, such that:

DA
Dt

= −C :
DB
Dt

,

DB
Dt

= −D :
DA
Dt

.

(2.47)

The FEC can be expressed in a general form as:

DA
Dt

= −C : F(B) +G(A)

DB
Dt

= F(B) −D : G(A)
, (2.48)

where the definition of functions F and G depend on the fiber orientation model that is being used [54].

Table 2.2 gives an overview of the presented state-of-the-art for the numerical models and

closure approximations.
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Name Acronym Reference

Numerical models

Jeffery - [14]

Folgar and Tucker FT [20]

Advani and Tucker - [18]

Strain reduction factor SRF [14]

Reduced Strain Closure RSC [24]

Anisotropic rotary diffusion ARD [8]

improved Anisotropic rotary diffusion iARD [27, 28]

Retarding Principal Rate RPR [27]

principal Anisotropic rotary diffusion pARD [29]

Moldflow Rotational Diffusion MRD [30]

Wang - [32]

Flow-dependent model - [34, 35]

Closure Approximations

Linear - [38]

Quadratic - [40--42]

Hybrid - [39]

Natural NAT [44]

Orthotropic fitted ORF [45]

Bingham - [46]

Orthotropic fitted Eigenvalues based ORE [47, 48]

Orthotropic fitted wide-𝐶𝑖 ORW [49]

Invariant-based optimal fitting IBOF [50]

Neural network NNET [51]

Exact - [53]

Fast exact closure FEC [53, 54]

Table 2.2: Literature overview of the state-of-art numerical models and closure approximations.
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CHAPTER3 Computational tools

3.1 Python

As a benchmark tool, a script was developed in python language to model fiber orientation.

This high-level programming language focuses on code readability, is open-source and has a wide

range of libraries and tools that can be used for scientific (NumPy [55] and SciPy [56]) and symbolic

(Sympy [57]) computations, as well as for data visualization (matplotlib [58]). The results from this

script will be validated against data available in the literature and serve as a benchmark for the

computed results in OpenFOAM®.

The developed python script has the ability of calculating the ordinary derivative of the

second-order orientation tensor as a function of time for a given flow field,
dA
d𝑡

. The script can

also compute the time-rate-of-change of the second order orientation tensor for a center-gated disk

(CGD) as a function of the normalized radius (𝑟), given by the ratio between the radius and the disk

half-thickness.

Additionally, due the inability of OpenFOAM® to cope with fourth-order tensors, a script was

developed to generate code in the C++ programming language for the calculation of the double

dot contraction A : D, an mathematical operation present in all phenomenological fiber orientation

models.

The code is available online in GitHUB [59] and will be described in the following subsections.

3.1.1 Calculation of fiber orientation in a given flow field

Listing 3.1 shows the python script main function, programmed to calculate the second-order

tensor evolution along time, for simple-shear flow, with the Folgar-Tucker model (2.6) and hybrid

closure approximation (2.41).
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� �
1 import numpy as np

2 from scipy.integrate import solve_ivp

3 import fiberOrientationModels as FOM

4

5 def gradU(t):

6 return np.array([[0.0, 1.0, 0.0],

7 [0.0, 0.0, 0.0],

8 [0.0, 0.0, 0.0]])

9

10 time = np.arange(0,10.1,0.01)

11

12 A2_0 = np.eye(3)*(1/3)

13

14 closure = ’hybrid’

15

16 xi = 1

17

18 CI = 0.01

19

20 sol = solve_ivp(

21 FOM.FT,

22 (time[0], time[-1]),

23 A2_0.ravel(),

24 method="RK45",

25 t_eval=time,

26 rtol=1e-6,

27 args=(gradU, closure, xi, CI)

28 )

29

30 A2=np.transpose(sol.y)� �
Listing 3.1: Main function of the python script for a simple flow.

In Lines 1-3, the required libraries and modules are imported. Numpy is used for standard

numerical computations and data structures creation, the solve_ivp routine is imported from

the scipy library to solve the ordinary differential equation (ODE), and the custom module

fiberOrientationModels that contains the implemented fiber orientation models.

The solve_ivp [60] routine is an ordinary differential equation(ODE) solver for initial value

problems (IVP) in the form
dA
d𝑡

= 𝑅𝐻𝑆. This routine takes as input:

• A function that allows calculating the right-hand size of the system;

• The time interval to be considered
[
𝑡0, 𝑡 𝑓

]
;

• The initial condition, A0
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3.1 Python

• the numerical technique to solve the initial value problem;

• Solver specific parameters (e.g., absolute/relative tolerances, max time-step, evaluation times,

etc.);

• The parameters required by the ODE.

Lines 5-8 show the definition of the velocity gradient tensor function. By design, this function is

defined as a function of time 𝑡 to allow the consideration of a general time-varying velocity gradient.

Lines 10-12 define the integration parameters, that are the time interval and initial value of the second

order tensor, and in Lines 16 and 18 the fiber orientation model (FOM) dependent parameters. Finally,

in lines 20-28 the numerical integration routine is used through a Runga-Kutta method of order 5(4)

and the solution is stored for post-processing in Line 30.

The beginning of the custom module fiberOrientationModels is shown in Listing 3.2.

In line 2, similarly to was done in the main function, a costume module is imported, which contains

the closure approximations.

Line 85 marks the start of the function that contains the Folgar-Tucker model. Firstly, in line 8,

the fourth-order tensor is calculated in function of the selected closure and the current value of the

second-order tensor. In line 10, the rate-of-deformation tensor is calculated, in line 12, the vorticity

tensor, and, in line 14, the shear rate scalar. The Folgar-Tucker method is then calculated, following

the Equation (2.6).� �
1 import numpy as np

2 from fiberOrientationClosures import compute_closure

3

4 def FT(t, A2, gradU, closure, xi, CI):

5

6 A2 = np.reshape(A2, (3, 3))

7

8 A4 = compute_closure(A2, closure)

9

10 D = 0.5*(gradU(t)+np.transpose(gradU(t)))

11

12 W = 0.5*(gradU(t)-np.transpose(gradU(t)))

13

14 shrRate = np.sqrt(2*np.tensordot(D,D,axes=2))

15

16 I = np.eye(3)

17

18 FT = (

19 (np.tensordot(W,A2,axes=1)-np.tensordot(A2,W,axes=1))
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3.1 Python

20 +xi*(np.tensordot(D,A2,axes=1)+np.tensordot(A2,D,axes=1)

21 -2*np.tensordot(A4,D,axes=2))

22 +6*(CI*shrRate)*(I/3-A2)

23 )

24

25 return FT.ravel()� �
Listing 3.2: Custom module fiberOrientationModels which contains the fiber orientation models.

Listing 3.3 shows exerts of the fiberOrientationClosuresmodule, in which the function

compute_closure resides. Inside this function, the closures are defined inside a if...else

block.� �
1 def compute_closure(A2, closure):

2

3 if (closure==’linear’):� �� �
23 elif (closure==’quadratic’):� �� �
30 elif (closure==’hybrid’):� �� �
39 elif (closure==’IBOF’):� �� �

242 elif (closure==’ORE’):

243

244 lambda_, Q = np.linalg.eig(A2)

245

246 idx = lambda_.argsort()[::-1]

247 lambda_ = lambda_[idx]

248 Q = Q[:,idx]

249

250 A4 = np.zeros((3,3,3,3))

251

252 Cm = np.array ([[0.636256796880687, 0.636256796880687, 2.74053289560253],

253 [-1.8726629637381 , -3.31527229742146 , -9.12196509782692],

254 [-4.47970873193738 , -3.03709939825406 , -12.2570587036254] ,

255 [11.9589562332320 , 11.8273285968852 , 34.3199018916987] ,

256 [3.84459692420086 , 6.88153952058044 , 13.8294699121940] ,

257 [11.3420924278159 , 8.43677746778325 , 25.8684755253884] ,

258 [-10.9582626069691 , -15.9120667157641 , -37.7029118029384] ,

259 [-20.7277994684132 , -15.1515872606307 , -50.2756431927485] ,

260 [-2.11623214471004 , -6.48728933641926 , -10.8801761133174] ,

261 [-12.3875632855619 , -8.63891419284016 , -26.9636915239716] ,

262 [9.81598389716748 , 9.32520343452661 , 27.3346798054488] ,

263 [3.47901510567439 , 7.74683751713295 , 15.2650686148651] ,

264 [11.7492911177026 , 7.48146870624441 , 26.1134914005375] ,

265 [0.508041387366637, 2.28476531637958 , 3.4321384033477] ,

266 [4.88366597771489 , 3.59772251134254 , 10.6117418066060] ])
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267

268 for i in range(3):

269 A4[i,i,i,i] = Cm[0,i] + (Cm[1,i] * lambda_[0]) + (Cm[2,i] * lambda_[1])

270 + (Cm[3,i] * lambda_[0] * lambda_[1]) + (Cm[4,i] * np.power(lambda_[0],2))

271 + (Cm[5,i] * np.power(lambda_[1],2))

272 + (Cm[6,i] * np.power(lambda_[0],2) * lambda_[1])

273 + (Cm[7,i] * lambda_[0] * np.power(lambda_[1],2))

274 + (Cm[8,i] * np.power(lambda_[0],3)) + (Cm[9,i] * np.power(lambda_[1],3))

275 + (Cm[10,i] * np.power(lambda_[0],2) * np.power(lambda_[1],2))

276 + (Cm[11,i] * np.power(lambda_[0],3) * lambda_[1])

277 + (Cm[12,i] * lambda_[0] * np.power(lambda_[1],3))

278 + (Cm[13,i] * np.power(lambda_[0],4) ) + (Cm[14,i] * np.power(lambda_[1],4))

279

280 A4[1,2,1,2] = 0.5*(1.0 - 2.0*lambda_[0] + A4[0,0,0,0] - A4[1,1,1,1] - A4[2,2,2,2])

281 A4[2,0,2,0] = 0.5*(1.0 - 2.0*lambda_[1] - A4[0,0,0,0] + A4[1,1,1,1] - A4[2,2,2,2])

282 A4[0,1,0,1] = 0.5*(-1.0 + 2.0*lambda_[0] + 2.0*lambda_[1] - A4[0,0,0,0]

283 - A4[1,1,1,1] + A4[2,2,2,2])

284

285 A4[2,1,2,1] = A4[1,2,2,1] = A4[2,1,1,2] = A4[1,2,1,2]

286 A4[0,2,0,2] = A4[2,0,0,2] = A4[0,2,2,0] = A4[2,0,2,0]

287 A4[1,0,1,0] = A4[1,0,0,1] = A4[0,1,1,0] = A4[0,1,0,1]

288

289 A4[1,1,0,0] = A4[0,0,1,1] = A4[0,1,0,1]

290 A4[2,2,1,1] = A4[1,1,2,2] = A4[1,2,1,2]

291 A4[0,0,2,2] = A4[2,2,0,0] = A4[2,0,2,0]

292

293 A4_ORE=np.einsum("im,jn,ko,lp,mnop->ijkl", Q, Q, Q, Q, A4)

294

295 return A4_ORE� �
Listing 3.3: Closure approximations defined in a "if" cycle.

After line 242, the definition of the ORE closure (2.44) is defined. First, the eigenvalues,

lambda_, and eigenvectors, Q, are calculated (line 244) and afterwards they are organized in

descending order (lines 246-247) of the eigenvalues. In line 250 an empty fourth-order tensor is

created, A4, in which the components will be stored, after being calculated. In a Numpy array (Lines

252-266) the values of the coefficients obtained from fitting data, as explained in Section 2.3, are

stored. From lines 268 to 278, the 3 independent components are calculated following Equation 2.44,

and in Lines 280-283 the remaining independent components are calculated, following the contraction

property of the fourth-order tensor (
∑3

𝑘=1A𝑖 𝑗 𝑘 𝑘 = A𝑖 𝑗 [7]).

With all the independent components calculated, the remaining tensor components are

populated by following its symmetries (Lines 285-291).

As a last step, the fourth order tensor is transformed from the principal coordinates to laboratory
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coordinates. For this a rotation matrix, Q, is constructed. This operation is done in Line 293, through

the np.einsum [61] routine. In line 295, the final calculation is return to the user.

A similar approach is applied for the calculation of the other closure approximations.

3.1.2 Calculation of fiber orientation in a center-gated disk

The evolution of the second-order tensor, A, along the normalized radius of a center gated disk,
dA
d𝑟

, can be calculated by doing simple modifications to the code provided in Listing 3.1.

The velocity vector and velocity gradient tensor corresponding to this axisymetric flow can be

found in Chung and Kwon [50], and are defined in Equations (3.1) and (3.2) respectively.

u𝑟 =



3𝑄
8𝜋𝑟𝑏

(
1− 𝑧2

𝑏2

)
0

0


(3.1)

𝜕u𝑖

𝜕𝑥 𝑗
=

3𝑄
8𝜋𝑟𝑏



−1
𝑟

(
1− 𝑧2

𝑏2

)
0 −2

𝑏

( 𝑧
𝑏

)
0

1
𝑟

(
1− 𝑧2

𝑏2

)
0

0 0 0


(3.2)

where 𝑄 is the volumetric flux in, 𝑟 is the radius of the disk, 𝑧, its thickness, and 𝑏, the half-thickness.

In Figure 3.1, a center-gated disk is shown in reference to the coordinates 𝑟 and 𝑧.

In Lines 5-9 of Listing 3.4 the velocity vector, u, is defined as presented above. The velocity in

a disk depends on the radius, 𝑟 , and on the thickness, 𝑧. The velocity gradient is defined as a function

of the radius and thickness in lines 11-21. Now the calculation should be performed in the following

range 𝑟 ∈
[
𝑟0, 𝑟 𝑓

]
, which is defined in Line 24, and the thickness 𝑧 is defined in Line 26.

� �
1 import fiberOrientationModels as FOM

2 import numpy as np

3 from scipy.integrate import solve_ivp

4
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z

r

θ

2b

Figure 3.1: Scheme of a center-gated disk.

5 def U(r,z):

6 Q = 1e-3

7 b = 0.0015

8 return ( (3*Q)/(8*np.pi*r*b) ) *

9 ( 1-(np.power(z,2)/np.power(b,2)) )

10

11 def gradU(r, z):

12 Q = 1e-3

13 b = 0.0015

14 Qt= (3.0*Q)/(8.0*np.pi*r*b)

15

16 tmp1=(1/r)*(1-(np.power(z,2)/np.power(b,2)))

17 tmp2=-(2/b)*(z/b)

18

19 return Qt*np.array([[-tmp1, 0.0, tmp2],

20 [0.0, tmp1, 0.0],

21 [0.0, 0.0, 0.0]])

22

23 r = np.arange(0.01,0.1,0.0001)

24

25 z = 0.1

26

27 A2_0 = np.eye(3)*(1/3)

28

29 closure = ’hybrid’

30

31 xi = 1

32

33 CI = 0.01

34

35 sol = solve_ivp(

36 FOM.FT,

37 (r[0], r[-1]),

38 A2_0.ravel(),

39 method="RK45",
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40 t_eval=r,

41 rtol=1e-6,

42 args=(gradU, closure, xi, CI)

43 )

44

45 A2=np.transpose(sol.y)� �
Listing 3.4: Main function of the python script for the flow in a center-gated disk.

Since
dA
d𝑟

is the equation to be solved, instead of
dA
d𝑡

as done in 3.1.1, the relation between

these two derivatives has to be devised, which can be obtained by resorting to the chain rule.

d𝑧
d𝑥

=
d𝑧
d𝑦
· d𝑦

d𝑥
(3.3)

By knowing that the velocity depends either on 𝑟 or 𝑡, whose relation, 𝑡 (𝑟), is known, the following

equality is obtained:

dA
d𝑟

=
dA
d𝑡
· d𝑡
d𝑟

=
dA
d𝑡
· 1
𝑢(𝑟, 𝑧)

(3.4)

This operation is done in Line 26 of the Listing 3.5.

� �
1 import numpy as np

2 from fiberOrientationClosures import compute_closure

3

4 def FT(r, A2, gradU, U, closure, xi, CI, z):

5

6 A2 = np.reshape(A2, (3, 3))

7

8 A4 = compute_closure(A2, closure)

9

10 D = 0.5*(gradU(r,z)+np.transpose(gradU(r,z)))

11

12 W = 0.5*(gradU(r,z)-np.transpose(gradU(r,z)))

13

14 shrRate = np.sqrt(0.5*np.tensordot(D,D,axes=2))

15

16 I = np.eye(3)

17

18 FT = (

19 (np.tensordot(W,A2,axes=1)-np.tensordot(A2,W,axes=1))

20 +xi*
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21 (np.tensordot(D,A2,axes=1)+np.tensordot(A2,D,axes=1)

22 -2*np.tensordot(A4,D,axes=2))

23 +6*(CI*shrRate)*(I/3-A2)

24 )

25

26 FT_U = FT * (1/U(r,z))

27

28 return FT_U.ravel()� �
Listing 3.5: Example of a model for fiber orientation in terms of the radius of a disk.

3.1.3 Symbolic computation of the double dot contraction A : D

Symbolic computation refers to the manipulation and analysis of mathematical expressions

using symbols rather than numerical approximations, allowing for exact and symbolic solutions to

mathematical problems. Furthermore, symbolic algorithms are capable of simplifying the computed

expressions [62].

As mentioned before, OpenFOAM® cannot handle fourth-order tensors, and therefore, the

closure approximation cannot be computed in OpenFOAM®. But, since the result of a double dot

contraction between a fourth order and seconder tensor is a second order tensor, which is the

operation present in all models, A : D, OpenFOAM® can handle the result of this operation, providing

just second order tensors are employed in the code.

Therefore, symbolic computation was used to create a formula that expressed the required

double dot contraction, A : D, as function of the second-order tensor A and D. In the case of the

ORE closure, A : D is also dependent on the eigenvectors.

In Listing 3.6, it is shown how the needed variables can be defined using sympy.� �
1 import sympy as sym

2

3 def make_sym(T):

4 T[1,0]=T[0,1]

5 T[2,0]=T[0,2]

6 T[2,1]=T[1,2]

7

8 return T

9

10 a2 = sym.MatrixSymbol(’A’,3,3)

11 A2 = make_sym(sym.Matrix(a2))

12

13 d = sym.MatrixSymbol(’D’,3,3)
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14 D = make_sym(sym.Matrix(d))

15

16 evals = sym.MatrixSymbol(’eVals’,1,3)

17 eVals = sym.Matrix(evals)

18

19 evecs = sym.MatrixSymbol(’eVecs’,3,3)

20 eVecs = sym.Matrix(evecs)

21

22 eVals_tmp=eVals.copy()

23 eVals[0]=eVals_tmp[2]

24 eVals[2]=eVals_tmp[0]

25

26 eVecs_tmp=eVecs.copy()

27 eVecs[0,:]=eVecs_tmp[2,:]

28 eVecs[2,:]=eVecs_tmp[0,:]

29 eVecs = sym.transpose(eVecs)

30

31 a = sym.Symbol(’alpha’)

32 b = sym.Symbol(’beta’)

33

34 k=sym.Symbol(’k’)� �
Listing 3.6: Defining variables with sympy.

Since both A and D are symmetric tensors, the numbers of tensor components that have to be

computed and stored can be reduced. The function used to impose symmetry is defined in Lines 3-6.

In Lines 10-14 the variables used to store the tensors A (tensor A2)and D (tensor D)are defined, and

in Lines 16-20, the same happens for the variables used to store the eigenvalues (vector eVals) and

eigenvectors (vector eVecs). Additionally, scalar parameters used by the fiber orientation models are

defined in Lines 31-34.

The eigenvalues must be organized in descending order(_1 ≥ _2 ≥ _3), and the corresponding

eigenvectors as column vectors. However, the OpenFOAM® routines that computes the eigenvalues

and eigenvectors sort the values in ascending order and store the eigenvectors as row vectors, so they

must be reorganized. This operation could be done within OpenFOAM®, but for efficiency reasons,

it was chosen to be done within the symbolic computation. In Lines 22-29 the eigenvalues and

eigenvectors are reordered, and the eigenvectors tensor is reshaped to be stored in the tensor rows.

Listing 3.7 shows how the computation of a closure approximation was done in symbolic code.

The closure approximations are defined as functions.� �
1 import numpy as np

2 import sympy as sym� �
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� �
256 def ORE(A2, eVecs, eVals):

257

258 A4 = sym.MutableDenseNDimArray(np.zeros((3,3,3,3)))

259

260 Cm = sym.Matrix ([[0.636256796880687, 0.636256796880687, 2.74053289560253],

261 [-1.8726629637381 , -3.31527229742146 , -9.12196509782692],

262 [-4.47970873193738 , -3.03709939825406 , -12.2570587036254] ,

263 [11.9589562332320 , 11.8273285968852 , 34.3199018916987] ,

264 [3.84459692420086 , 6.88153952058044 , 13.8294699121940] ,

265 [11.3420924278159 , 8.43677746778325 , 25.8684755253884] ,

266 [-10.9582626069691 , -15.9120667157641 , -37.7029118029384] ,

267 [-20.7277994684132 , -15.1515872606307 , -50.2756431927485] ,

268 [-2.11623214471004 , -6.48728933641926 , -10.8801761133174] ,

269 [-12.3875632855619 , -8.63891419284016 , -26.9636915239716] ,

270 [9.81598389716748 , 9.32520343452661 , 27.3346798054488] ,

271 [3.47901510567439 , 7.74683751713295 , 15.2650686148651] ,

272 [11.7492911177026 , 7.48146870624441 , 26.1134914005375] ,

273 [0.508041387366637, 2.28476531637958 , 3.4321384033477] ,

274 [4.88366597771489 , 3.59772251134254 , 10.6117418066060] ])

275

276 for i in range(3):

277 A4[i,i,i,i] = Cm[0,i] + (Cm[1,i] * eVals[0]) + (Cm[2,i] * eVals[1]) +

278 (Cm[3,i] * eVals[0] * eVals[1]) + (Cm[4,i] * np.power(eVals[0],2)) +

279 (Cm[5,i] * np.power(eVals[1],2)) + (Cm[6,i] * np.power(eVals[0],2) * eVals[1]) +

280 (Cm[7,i] * eVals[0] *

281 np.power(eVals[1],2)) + (Cm[8,i] * np.power(eVals[0],3)) + (Cm[9,i] *

282 np.power(eVals[1],3)) + (Cm[10,i] * np.power(eVals[0],2) *

283 np.power(eVals[1],2)) + (Cm[11,i] * np.power(eVals[0],3) * eVals[1]) +

284 (Cm[12,i] * eVals[0] * np.power(eVals[1],3)) + (Cm[13,i] *

285 np.power(eVals[0],4) ) + (Cm[14,i] * np.power(eVals[1],4))

286

287 A4[1,2,1,2] = 0.5*( 1.0 - 2.0*eVals[0] + A4[0,0,0,0] - A4[1,1,1,1] - A4[2,2,2,2] )

288 A4[2,0,2,0] = 0.5*( 1.0 - 2.0*eVals[1] - A4[0,0,0,0] + A4[1,1,1,1] - A4[2,2,2,2] )

289 A4[0,1,0,1] = 0.5*( -1.0 + 2.0*eVals[0] + 2.0*eVals[1] - A4[0,0,0,0] - A4[1,1,1,1]

290 + A4[2,2,2,2] )

291

292 A4[2,1,2,1] = A4[1,2,2,1] = A4[2,1,1,2] = A4[1,2,1,2]

293 A4[0,2,0,2] = A4[2,0,0,2] = A4[0,2,2,0] = A4[2,0,2,0]

294 A4[1,0,1,0] = A4[1,0,0,1] = A4[0,1,1,0] = A4[0,1,0,1]

295

296 A4[0,0,1,1] = A4[0,1,0,1]

297 A4[1,1,0,0] = A4[0,0,1,1]

298

299 A4[1,1,2,2] = A4[1,2,1,2]

300 A4[2,2,1,1] = A4[1,1,2,2]

301

302 A4[2,2,0,0] = A4[2,0,2,0]

303 A4[0,0,2,2] = A4[2,2,0,0]
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304

305 A4_ORE = sym.MutableDenseNDimArray(np.zeros((3,3,3,3)))

306

307 for i in range(3):

308 for j in range(3):

309 for k in range(3):

310 for l in range(3):

311 for m in range(3):

312 for n in range(3):

313 for o in range(3):

314 for p in range(3):

315 A4_ORE[i,j,k,l] += eVecs[i,m]*eVecs[j,n]

316 *eVecs[k,o]*eVecs[l,p]*A4[m,n,o,p]

317

318 return A4_ORE� �
Listing 3.7: ORE closure aprroximattion expressed in symbolic code.

Firstly, the necessary libraries are imported. As done for the scientific code, in line 258 a empty

tensor is created, but the sympy library is used to define it, so that it can be employed in symbolic

calculations, as well as the necessary coefficients (lines 260-274), that are stored in a sympy matrix.

The independent components are calculated and the tensor is populated following its symmetries, as

it was previously done. Lastly, the transformation of coordinates as to be done. sympy does not have

a routine similar to np.einsum, therefore a "for" loop was used for this operation.

In Listing 3.8 it is shown how the double contraction is expressed in symbolic code. Firstly,

the sympy library and custom modules are imported. The file variables was shown previously in

Listing 3.6, and fiberOrientationClosures contains the closures approximations, as Listing

3.7.� �
1 import sympy as sym

2 from variables import *

3 from fiberOrientationClosures import *

4 from fiberOrientationClosures_RSC import tensorCombination

5 from generate_code import generateCCode

6

7 closure = hybrid(A2)

8

9 D_doubleDot_A4 = sym.MutableDenseMatrix

10 (sym.tensorcontraction(sym.tensorproduct(hybrid(A2), D), (0,4),(1,5)))

11

12 generateCCode(D_doubleDot_A4 , nDecimalCases=17, OFSyntax=True)� �
Listing 3.8: Computation of the double contraction A : D.
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The selected closure is indicated in Line 7. In line 9 and 10, the double contraction operation

is done. The function generateCCode, from the module generate_code, is responsible for the

optimization of the symbolic code, as well as its output to the terminal. This module makes use of

sympy’s Pow expansion algorithm [63] , with which simple powers up to 6 are expanded, as well

as the cse routine, abbreviation for Common Subexpression Detection and Collection, which allows

for the identification of common subexpressions and their evaluation only once, which increases

computation efficiency.

The obtained code is shown in Listing 3.9.� �
1 ------------D_doubleDot_A4 ------------

2 const scalar tmp0 = A.yz()*A.yz();

3 const scalar tmp1 = A.xy()*A.xy();

4 const scalar tmp2 = 27*A.zz();

5 const scalar tmp3 = A.xz()*A.xz();

6 const scalar tmp4 = 27*tmp0*A.xx() + tmp1*tmp2 - tmp2*A.xx()*A.yy() + 27*tmp3*A.yy()

7 - 54*A.xy()*A.xz()*A.yz();

8 const scalar tmp5 = tmp4 + 1;

9 const scalar tmp6 = -tmp4;

10 const scalar tmp7 = (0.4285714285714286)*tmp6;

11 const scalar tmp8 = tmp7*A.xy();

12 const scalar tmp9 = tmp5*A.xx();

13 const scalar tmp10 = tmp8 + tmp9*A.xy();

14 const scalar tmp11 = 2*D.xy();

15 const scalar tmp12 = tmp7*A.xz();

16 const scalar tmp13 = tmp12 + tmp9*A.xz();

17 const scalar tmp14 = 2*D.xz();

18 const scalar tmp15 = (0.1428571428571429)*tmp6;

19 const scalar tmp16 = tmp15*A.yz();

20 const scalar tmp17 = tmp16 + tmp9*A.yz();

21 const scalar tmp18 = 2*D.yz();

22 const scalar tmp19 = (0.1428571428571429)*A.yy();

23 const scalar tmp20 = (0.1428571428571429)*A.xx() - 0.02857142857142857;

24 const scalar tmp21 = tmp6*(tmp19 + tmp20);

25 const scalar tmp22 = tmp21 + tmp9*A.yy();

26 const scalar tmp23 = (0.1428571428571429)*A.zz();

27 const scalar tmp24 = tmp6*(tmp20 + tmp23);

28 const scalar tmp25 = tmp24 + tmp9*A.zz();

29 const scalar tmp26 = tmp15*A.xy();

30 const scalar tmp27 = tmp5*A.xy();

31 const scalar tmp28 = tmp26 + tmp27*A.zz();

32 const scalar tmp29 = tmp27*A.yy() + tmp8;

33 const scalar tmp30 = tmp15*A.xz();

34 const scalar tmp31 = tmp27*A.yz() + tmp30;

35 const scalar tmp32 = tmp16 + tmp27*A.xz();

36 const scalar tmp33 = tmp10*D.xx() + tmp11*(tmp1*tmp5 + tmp21) + tmp14*tmp32 + tmp18*tmp31

37 + tmp28*D.zz() + tmp29*D.yy();
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38 const scalar tmp34 = tmp5*A.xz();

39 const scalar tmp35 = tmp30 + tmp34*A.yy();

40 const scalar tmp36 = tmp12 + tmp34*A.zz();

41 const scalar tmp37 = tmp26 + tmp34*A.yz();

42 const scalar tmp38 = tmp11*tmp32 + tmp13*D.xx() + tmp14*(tmp24 + tmp3*tmp5)

43 + tmp18*tmp37 + tmp35*D.yy() + tmp36*D.zz();

44 const scalar tmp39 = tmp7*A.yz();

45 const scalar tmp40 = tmp5*A.yy();

46 const scalar tmp41 = tmp39 + tmp40*A.yz();

47 const scalar tmp42 = tmp6*(tmp19 + tmp23 - 0.02857142857142857);

48 const scalar tmp43 = tmp40*A.zz() + tmp42;

49 const scalar tmp44 = tmp39 + tmp5*A.yz()*A.zz();

50 const scalar tmp45 = tmp11*tmp31 + tmp14*tmp37 + tmp17*D.xx() + tmp18*(tmp0*tmp5 + tmp42)

51 + tmp41*D.yy() + tmp44*D.zz();

52

53 result.xx() = tmp10*tmp11 + tmp13*tmp14 + tmp17*tmp18 + tmp22*D.yy() + tmp25*D.zz()

54 + D.xx()*(tmp5*(A.xx()*A.xx())

55 + tmp6*((0.8571428571428571)*A.xx() - 0.08571428571428572));

56 result.xy() = tmp33;

57 result.xz() = tmp38;

58 result.yy() = tmp11*tmp29 + tmp14*tmp35 + tmp18*tmp41 + tmp22*D.xx() + tmp43*D.zz()

59 + D.yy()*(tmp5*(A.yy()*A.yy())

60 + tmp6*((0.8571428571428571)*A.yy() - 0.08571428571428572));

61 result.yz() = tmp45;

62 result.zz() = tmp11*tmp28 + tmp14*tmp36 + tmp18*tmp44 + tmp25*D.xx() + tmp43*D.yy()

63 + D.zz()*(tmp5*(A.zz()*A.zz())

64 + tmp6*((0.8571428571428571)*A.zz() - 0.08571428571428572));� �
Listing 3.9: Example of code obtained for computation of the double contraction A : D with the Hybrid closure.
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3.2 OpenFOAM®

OpenFOAM®, also known as Open-source Field Operation And Manipulation, is an open-source

computational library with a wide range of numerical solvers able to simulate different continuum

mechanics problems, with special focus on computational fluid dynamics (CFD) problems [64].

OpenFOAM® is programmed in C++, an object oriented programming language. This allows for

modularity and easy code re-usability.

The library, that also includes several tools for pre and post-processing tasks, is under continuous

active development with two versions being released annually. The open-source character allows the

end-user full access to the code, making it available for scientific scrutiny, continuous improvement

and customization. For this reason, OpenFOAM® has a growing user base across different areas of

industries, academic institutes and research organizations [64].

3.2.1 Finite Volume Method in OpenFOAM®

To numerically solve partial differential equations, OpenFOAM® resorts to the Finite Volume

Method (FVM) [65]. This numerical approach discretizes the equations by partitioning the domain

of the problem in a set of control volumes (or computational cells). Then, conservation equations,

for example, of mass, momentum and energy, are applied to every control volume of the discretized

domain, and by calculating the conserved quantity exchanged through the cell faces and source

contributions, linear algebraic equations are obtained for each cell. These equations are then

assembled and solved to obtain the numerical solution [66].

The set of control volumes from a domain form the computational mesh, being each delimited

by planar faces, which can have different polyhedral shapes. The faces can be either internal, which

are shared by two control volumes, or external, boundary faces. OpenFOAM® uses a co-located

grid, that is, the problem unknowns are stored in a single point of the control volume, which is the

centroid [65]. The size of the control volumes, or, the degree of mesh refinement, can be defined by

the user, who looks for a balance between accuracy of the results, improved by refining the mesh, and

computational power required, which is less for more coarse meshes.
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3.2.2 General Case Set Up

OpenFOAM® does not have a graphical user interface, therefore a case is defined by a number

of files distributed by a set of folders. In the following scheme, a general set up case is shown.

i Case

i 0

A U

A p

The 0 folder contains the initial conditions of the different variables, such as velocity and

pressure.

i constant

i polyMesh

A transportProperties

A turbulenceProperties

In this folder, the files that contain material proprieties, such as density, can be found,

and also others properties, such as the presence of turbulence. Additionally, the

folder polyMesh can also be found, which contains information about the mesh.

i system

A controlDict

A fvSchemes

A fvSolution

The controlDict file controls the start and end point of the simulation, as well as its time

step, and how the data is saved. The fvSchemes file sets the discretization schemes

for each term of the equation being solved. The tolerances and algorithms for the

solution can be selected on the fvSolution dictionary, as well as the residual control

for different variables.

The case set up and launch is executed trough command prompts. For the visualization of the

data, Paraview [67], an open-source post-processing visualization engine, is usually employed.
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3.2.3 Development of a OpenFOAM® utility

python is only capable of solving the fiber orientation in function of time,
dA
d𝑡

, but the fiber

orientation depends on space too. OpenFOAM® is capable of solving material derivatives, which

describe the rate of change in function of time and space.

The material derivative,
𝐷A
𝐷𝑡

, can be expressed as [7]:

𝐷A
𝐷𝑡

=
𝜕A
𝜕𝑡
+u · ∇A. (3.5)

However, the term u · ∇A cannot be solved implicitly, since OpenFOAM® does not support

tensors beyond second-order, as is the case of the third-order tensor ∇A. For this reason and having

in mind the following relation:

∇ · (uA) = (∇ ·u)A+u · ∇A, (3.6)

the term that cannot be calculated in Equation (3.5) is replaced by:

u · ∇A = ∇ · (uA) − (∇ ·u)A. (3.7)

Therefore, the governing equation to be solved in OpenFOAM® will be:

𝜕A
𝜕𝑡
+∇ · (uA) − (∇ ·u)A = W ·A−A ·W+ b (D ·A+A ·D−2A : D)

+ ¤𝛾 [2C−2(trC)A−5(C ·A+A ·C) +10A : C] .
(3.8)

In Figure 3.2, the methodology that the code follows to solve the ¤A is presented. Firstly, a solver

capable of calculating the velocity field of the problem and geometry of interest is required. Generally,

such solvers employ the PIMPLE algorithm, that is a segregated algorithm able to calculate the velocity

and pressure fields in general flows.

Using the velocity field provided by the solver, the developed OpenFOAM® code is capable of

calculating the fiber orientation evolution induced by the calculated flow field. To allow the user the

selection of fiber orientation model and closure approximation that they wish to be implemented, the

factory method was employed. By calling the factory method instead of a constructor, an object can be
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Start

𝑡𝑛 = 𝑡𝑛−1 +Δ𝑡
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¤A equation
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Figure 3.2: Flow chart of the steps to solve A in OpenFOAM®.
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¤A equation fModel→solve();

Fiber Model Closure Model

FT
iARD-RPR
MRD-RSC

Hybrid
IBOF
ORE

=

Figure 3.3: Structure of the factory method.

created without instantiating a class, making this the task of the subclasses, which grants it the ability

to modify the object’s instance [68]. The class diagram is shown in Figure 3.3. There is two main

classes, one containing the implementation of the fiber orientation models and the other, the closure

approximations. The fiber orientation models classes is capable of using the closure approximation

class to create an object containing the selected closure, and implement it on the desired fiber

orientation model. The selected model is then solved for the desired time inside the time loop in the

selected solver.

Listing 3.10 shows the header file for the base class of fiber orientation models. In Lines 21-31

the variables and parameters that are common to all models are declared. The velocity field (U_) and

the face flux field(phi_) are passed by reference since these variables are calculated in the associated

flow solver. In Line 31 the class contained the closure approximations is pointed to.

In Lines 67 and 69, two purely virtual functions are declared. These functions cannot create

objects, therefore they do not need to be defined. In derived classes, that can create objects, all

purely virtual functions must be defined. The solve function will contain the implementation of the

fiber orientation models in the derived classes and the read function will be used to get data from a

dictionary file with the information needed by a specific model.

� �
14 namespace Foam

15 {

16 class fiberModel

17 :public IOdictionary

18 {

19

20 protected:

21 const volVectorField& U_;

22 const surfaceScalarField& phi_;

23 volTensorField gradU_;

39



3.2 OpenFOAM®

24 volSymmTensorField D_;

25 volTensorField W_;

26 volScalarField shrRate_;

27 volSymmTensorField A2_;

28 volSymmTensorField D_doubleDot_A4_;

29 scalar CI_;

30 scalar xi_;

31 autoPtr<closureModel > closureModel_;� �� �
65 virtual ~fiberModel() = default;

66

67 virtual void solve() = 0;

68

69 virtual bool read() = 0;

70 };

71 }� �
Listing 3.10: Header file for base class of fiber models.

The library created for the closure approximations follows a similar approach. As shown in

Listing 3.11, the variables common to all cases are declared in the base class, which are a reference

to the dictionary that was declared in the fiber models class and the second-order tensor field A2_.

The functions to be implemented in classes derived from the closureModel classe are the

following: (i) the pure virtual function compute_D_doubleDot_A4, where the computation, trough

Symbolic code, of the operation A : D is implemented (Lines 48-49); (ii) the pure virtual function

compute_D_doubleDot_A4_RSC, which will also contain the implementation of the double

contraction between A and D, in which case the operation to be computed is:

[A+ (1− ^) (L−M : A)] : D (Lines 51-53), as shown in Equation (2.11).

� �
8 namespace Foam

9 {

10 class closureModel

11 {

12 protected:

13 const dictionary& dict_;

14 const volSymmTensorField& A2_;� �� �
48 virtual void compute_D_doubleDot_A4(volSymmTensorField& D_doubleDot_A4 ,

49 const volSymmTensorField& D) = 0;

50

51 virtual void compute_D_doubleDot_A4_RSC(volSymmTensorField& D_doubleDot_A4 ,

52 const volSymmTensorField& D, const volTensorField& eVecs, const volVectorField& eVals,

53 const scalar& k) = 0;
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54 };

55 }� �
Listing 3.11: Header file for base class of closure approximations.

Listing 3.12 illustrates an example of a dictionary that must exist in the case folders to use this

library.

� �
1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: 3.0.1 |

5 | \\ / A nd | Web: www.OpenFOAM.org |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object fiberProperties;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17 CI 0.01;

18 xi 1;

19

20 closureModel IBOF;

21 fiberModel iARD_RSC;

22

23 alpha 0.1;

24 beta 0;

25 CM 0.92;

26 // ************************************************************************* //� �
Listing 3.12: Illustrative Dictionary file of the developed utility (using iARD-RSC as fiber model and IBOF for

closure).

Additionally, a modified solver, based on the pimpleFoam solver, that allows using the developed

utility is shown in Listings 3.13 and 3.14.

First, a smart pointer to the fiber model library is needed. This is set up in the standard

createFields.H file of OpenFOAM®, since here are declared all the fields used by the solver,

including the ones that this library needs, velocity and face flux. The arrow operator(->), which allows

the access to member classes trough a pointer, can then be used to call this utility during the
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computing step that the user finds more appropriate, per example, after the PIMPLE loop finishes and

the velocity field for a given time step is solved. In the developed solver it’s simply called after the

time is increased by a time step, in line 54.

� �
1 #include "createRDeltaT.H"

2

3 Info<< "Reading field U\n" << endl;

4 volVectorField U

5 (

6 IOobject

7 (

8 "U",

9 runTime.timeName(),

10 mesh,

11 IOobject::MUST_READ ,

12 IOobject::AUTO_WRITE

13 ),

14 mesh

15 );

16

17

18 Info << "Reading/calculating face flux field phi" << nl << endl;

19 surfaceScalarField phi

20 (

21 IOobject

22 (

23 "phi",

24 runTime.timeName(),

25 mesh,

26 IOobject::NO_READ,

27 IOobject::AUTO_WRITE

28 ),

29 linearInterpolate(U) & mesh.Sf()

30 );

31

32 autoPtr<fiberModel > fModel (fiberModel::New(U, phi));� �
Listing 3.13: File "createFields.H" containing the definition of fields in OpenFOAM.� �

34 Info<< "\nStarting time loop\n" << endl;

35

36 while (runTime.run())

37 {

38 #include "readDyMControls.H"

39

40 if (LTS)

41 {
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42 #include "setRDeltaT.H"

43 }

44 else

45 {

46 #include "CourantNo.H"

47 #include "setDeltaT.H"

48 }

49

50 ++runTime;

51

52 Info<< "Time = " << runTime.timeName() << nl << endl;

53

54 fModel->solve();

55

56 runTime.write();

57

58 runTime.printExecutionTime(Info);

59 }� �
Listing 3.14: Time loop of the created solver.
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CHAPTER4 Verification of the Developed Computational

Tools

4.1 Python benchmark tool

Data obtained from the literature [18, 28, 48, 50, 69] was used to validate the developed

python benchmark tool. Most of the data from the literature is available in graphical format. In these

cases, the utility WebPlotDigitizer [70] was used to obtain the most possible accurate values.

Around 20-30 points were collected from selected images depicting the evolution of fiber orientation

under simple homogeneous flows. Due to the uncertainty associated with the literature data collection

procedure, including image quality and resolution, the values cannot be treated as exact. However,

the obtained points should provide sufficient insight for comparison with the developed python

benchmark tools.

Throughout this section of the dissertation, figures with the points represent the data collected

from literature, while continuous lines represent the data resulting from the developed python

modules.

4.1.1 Simple Shear flow

When a FRTM is forced to flow under pure shear, the flow field exerts forces and stresses on the

fibers, which force their rotation. To minimize the energy associated with the fiber-matrix interaction,

the fibers undergo reorientation and align themselves parallel to the streamlines of the flow [7]. The

velocity field of simple shear flow is defined as:

u =


¤𝛾𝑦

0

0


, (4.1)
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where ¤𝛾 is a scalar defining the rate of shear forces.

Figure 4.1 illustrates the evolution of fiber orientation resulting from the application of a uniform

and constant shear rate, with a velocity field given by u =
[
𝑦 0 0

]T
, calculated with the FT framework

with different closure models. In this case, the FT model parameters were set as: ¤𝛾 = 1𝑠−1, 𝐶𝐼 = 0.01

and b = 1. The probability of the fibers aligning along the direction of the tensor component 𝐴11,

which corresponds to the flow direction, increases with time and reaches a steady-state at ¤𝛾𝑡 ≈ 14.

The orientation ceases to evolve due to the strength of the interaction coefficient. The A12 component

starts from zero and initially rises up to ¤𝛾𝑡 ≈ 2. Afterwards, the value decreases and reaches a finite

steady-state value. This indicates that one of the principal axes of orientation lies between the 1 and 2

directions.

Figure 4.1: Prediction of Folgar-Tucker model under simple shear flow. Data obtained from Hybrid[18], IBOF[50]

and ORE[48].

The results obtained with the IBOF and ORE closures are similar, since they are based on

similar approaches (both are fitted using data from calculations of the PDF). The most relevant

difference between them is their computation time, because the use of invariants of a tensor results

in lesser calculations needed to be done, comparatively to the use of eigenvalues [50]. Conversely,

the data obtained from the Hybrid closure approximation exhibits a different steady-state value. This

discrepancy is a known issue in the literature, where the Hybrid closure tends to overshoot the values

of A [39].

Figure 4.2 displays the evolution of A for a velocity field defined as u =
[
¤𝛾𝑧 0 0

]T
, using

the iARD-RPR model and IBOF closure, with the following parameters: 𝐶𝐼 = 0.025, b = 1, 𝐶𝑀 = 1,

𝛼 = 0.967 and 𝛽 = 0.
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Figure 4.2: iARD-RPR model using the IBOF for simple shear flow. Data obtained from [28].

The fibers exhibit the same trend for 𝐴11 and 𝐴22, as for the iARD-RPR model. Additionally,

in this case, the evolution of 𝐴33 and 𝐴13 is also represented. 𝐴33 corresponds to the direction

transverse to the flow direction, and therefore, the probability of the fibers being oriented in this

directions tends to decrease. The initial rise and subsequent decrease in the evolution of 𝐴13 can be

explained by the principal axis of orientation being 𝐴11.

Figure 4.3 displays the results of fiber orientation for a simple-shear flow, as reported for the

results in 4.1, and solved with the MRD-RPR model using the IBOF closure. The following parameters

were used: ¤𝛾 = 1𝑠−1, 𝐶𝐼 = 0.017, b = 1, 𝐶1 = 1, 𝐶2 = 0.66, 𝐶3 = 0.34, and ^ = 0.275.

Figure 4.3: MRD-RSC model allied with the IBOF closure approximation under simple shear flow. Data obtained

from [69].

For the case in which the MRD-RSC model was tested, the authors made the decision not to

start from an isotropic state. Despite the different initial values, the fibers still tend to align along

the flow direction and exhibit the same trend as for previous models for all the represented tensor
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components, therefore, the final state of orientation depends on its initial values. However, the final

equilibrium state is affected. The probability of A11 and A33 shows a significant difference between

the initial and final states, while, comparatively, A22 undergoes only a slight change.

4.1.2 Shear/Elongational flow

A shearing/elongational flow combines simple shear with elongational flow. This pattern is

comparable to the one observed in a center-gated disk, where shearing forces compete with the

elongational forces along the thickness of the part. The velocity field of uniaxial elongation flow can be

defined as:

u =


− ¤𝜖𝑥

− ¤𝜖 𝑦

2 ¤𝜖 𝑦


, (4.2)

and planar elongational flow can be defined as:

u =


¤𝜖𝑥

− ¤𝜖 𝑦

0


. (4.3)

The velocity equation corresponding to shear/elongational flow can be obtained by the summation of

Equation (4.2) or (4.3) and (4.1).

The shear/elongational ratio ( ¤𝛾/ ¤𝜖) determines the steady-state orientation. When the ratio is

less than 10, the elongational flow dominates the orientation, resulting in a orientation distribution

similar to that one of an elongational flow. In an elongational flow the fibers tend to align themselves

along the flow direction. On the other hand, for a ratio greater than 50, the shearing flow dominates.

However, when the ratio is equal to 20, the effects of the two flows nearly balance each other, resulting

in a steady orientation that is close to random in terms of the orientation direction imposed by the

shearing flow and the direction imposed by the elongational flow [18, 45].

For the studied test cases corresponding to Hybrid and IBOF closure approximations, the fibers

were subjected to a shear/elongation ratio of ( ¤𝛾/ ¤𝜖) = 20, with elongation along axis 3 and shearing in
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the plane 1-3. This corresponds to the following velocity field u =
[
− 1

20 𝑥+𝑧 −
1

20 𝑦
1

10 𝑧
]T

, with 𝐶𝐼 = 0.01

and b = 1.

As observed in Figure 4.4, the fibers are primarly aligned along the direction 𝐴11, which is

imposed by the shearing flow, as well as the direction 𝐴33, which is imposed by the elongational flow.

Figure 4.4: Orientation evolution predicted by the FT model using different closure approximation under simple

shear/elongational flow. Hybrid and IBOF closures tested under ¤𝛾/ ¤𝜖 = 20 and ORE, ¤𝛾/ ¤𝜖 = 10. Data obtained

from Hybrid[18], IBOF[50] and ORE[48].

For the ORE closure approximation, the orientation distribution was tested under a different

flow condition, with a shear/elongation ration ( ¤𝛾/ ¤𝜖) = 10. In this case, elongation occurred in the

axis plane 2-2, while shearing took place in the plane 1-2. This corresponds to a velocity field of

u =
[
− 1

10 𝑥+𝑧
1

10 𝑦 0
]

with 𝐶𝐼 = 0.01 and b = 1. As a result, the fibers preferred aligning along the

directions 𝐴11 and 𝐴22.

4.1.3 Center-gated disk

For a center-gated disk, the velocity and velocity gradient can be defined by the Equations (3.1)

and (3.2), respectively.

In injection moulded parts, it is common to observe the formation of a core-shell structure [7, 71].

In the shell region of a disk, the fibers are highly orientated in the flow direction. This is attributed to

the parabolic velocity profile that forms along the thickness of the disk. The maximum velocity occurs

in the middle of the thickness (𝑧 = 0), and it becomes zero at the wall. This velocity profile generates

high shearing forces near the walls, resulting in significant orientation along the flow direction of the

disk. Additionally, due to the small injection gate in comparison with the size of the cavity, a diverging
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flow develops, leading to in in-plane elongation deformation across the flow direction. Consequently,

in the core of the disk, the fiber orientation will be perpendicular to the flow direction [7, 71].

In Figure 4.5, the evolution of fiber orientation as a function of the normalized radius, 𝑟 , is

presented. At the normalized thickness 𝑧 = 0.9 , representing the near-wall regions of the disk, the

fibers exhibit a high orientation along the flow direction (A11), at the steady-state. On the other hand,

at the middle of the thickness (𝑧 = 0), the orientation along the flow direction is absent, being, thus,

consistent with the previous description of the core-shell morphology.

Figure 4.5: FT model associated with IBOF closure approximation, applied to a center-gated disk. Data obtained

from [50].

Figure 4.6 depicts the evolution of fiber orientation as a function of the normalized thickness,

𝑧, for a normalized radius of 𝑟 = 20. This plot clearly demonstrates the formation of a shell-core

morphology. Near the walls, at 𝑧 = −0.9 and 0.9, the orientation component 𝐴11 exhibits the

maximum value of orientation. Conversely, at 𝑧 = 0, the fibers show a preferred cross-flow orientation,

corresponding to the component 𝐴22. The component 𝐴13 has the same magnitude, but different

direction at 𝑧 = −0.9 and 0.9, resulting from the symmetry of the diverging flow.
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Figure 4.6: iARD-RPR model allied with the IBOF closure approximation applied to a center-gated disk. Data

obtained from [28].

4.2 OpenFOAM® utility

For the verification of the OpenFOAM® utility, three flow scenarios were considered, two simple

flows (simple-shear and planar elongation) and one more representative of industrial processes (flow

in a center-gated disk). For ease of verification, the utility setExprFields [72] was used to impose

the velocity and velocity gradient fields for all the test cases, and the mesh was created with the

blockMesh [72] utility.

The codes verification were undertaken by comparing the results predicted by the developed

code with data obtained from the python code presented in Section ??. Since the results obtained with

the python script, correspond just to the time evolution in homogeneous flows, and the OpenFOAM®

counterpart refer to flows that integrate space and time distributions, a relation between position and

time has to be established.

4.2.1 Test cases and Time-Position Relations

4.2.1.1 Simple-shear Flow

Simple-shear flow can be described by only having one non-null velocity component with a

constant velocity gradient, as shown in Equation (4.1). For this test case ¤𝛾 was defined as unitary

and it was assumed to take place in an unitary square, which results in the velocity field depicted

Figure 4.7, being the employed boundary conditions presented in Table 4.1.
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Figure 4.7: Velocity field of the simple shear flow test case.

Boundary A u (m/s)

Left
fixedValue

zeroGradient
uniform (0.(3) 0 0 0.(3) 0 0.(3))

Right zeroGradient zeroGradient

Top zeroGradient
fixedValue

uniform (1 0 0)

Bottom zeroGradient
fixedValue

uniform (0 0 0)

Front & Back symmetry symmetry

Table 4.1: Boundary conditions used for the Simple Shear test case.

Having in mind this flow, the residence time of a virtual particle that enters in the Left patch

is obtained by dividing its 𝑥 coordinate by its velocity. Accordingly, for this test case, the relationship

between position and time can be obtained by dividing the position of the cell on the 𝑥 coordinate by

its velocity, i.e., 𝑡 = 𝑥/𝑢𝑥 .

4.2.1.2 Planar elongational flow

In a planar elongational flow, the material is stretched in one direction (the flow direction),

and, due to the incompressibility restriction, and contracts equally in the other direction, as shown in

Equation (4.3). For this test study, the velocity profile was defined by setting ¤𝜖 = 2𝑠−1. The resulting

velocity field is shown in Figure 4.8, and the boundary conditions were defined as shown in Table 4.1.
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Figure 4.8: Velocity field of the planar elongational flow test case.

Boundary A u (m/s)

Left
fixedValue fixedGradient

uniform (0.(3) 0 0 0.(3) 0 0.(3)) uniform (-2 0 0)

Right zeroGradient
fixedGradient

uniform (2 0 0)

Top zeroGradient
fixedGradient

uniform (0 -2 0)

Bottom zeroGradient
fixedGradient

uniform (0 2 0)

Front & Back symmetry symmetry

Table 4.2: Boundary conditions used for the planar elongation case.

The relation between position and time can be obtained from the relation between velocity,

position and time. The relationship that relates velocity and position is:

𝑢 = 𝑢0 +
∫
𝑥

𝑑𝑢 = 𝑢0 +
∫
𝑥

𝑑𝑢

𝑑𝑥
𝑑𝑥 = 𝑢0 +

∫
𝑥

𝑎𝑑𝑥 = 𝑢0 + 𝑎
∫
𝑥

𝑑𝑥 = 𝑢0 + 𝑎𝑥 (4.4)

and between velocity and time is:

𝑑𝑢

𝑑𝑡
=
𝑑𝑢

𝑑𝑥

𝑑𝑥

𝑑𝑡
= 𝑎𝑢⇔ 𝑑𝑢

𝑢
= 𝑎𝑑𝑡⇔ ln𝑢 = 𝑎𝑡 + 𝑐⇔ 𝑢 = 𝑐𝑒𝑎𝑡⇔ 𝑢 = 𝑢0𝑒

𝑎𝑡

𝑡 = 0→ 𝑢 = 𝑢0⇔ 𝑐 = 𝑢0

(4.5)

with 𝑢0 being the initial velocity, and 𝑎 = 𝑑𝑢
𝑑𝑥

, the acceleration.
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From these two relationships, we can obtain the relation between the residence time and the

position given by the cell 𝑥 coordinate.

𝑢 = 𝑢0 + 𝑎𝑥 = 𝑢0𝑒
𝑎𝑡⇔ 𝑥 =

𝑢0
𝑎

(
𝑒𝑎𝑡 −1

)
⇔ 𝑡 =

ln
(
𝑎𝑥
𝑢0
+1

)
𝑎

(4.6)

Equation (4.6) only holds when the velocity in the 𝑦-axis is null(𝑣𝑦 = 0), which happens at the

middle of the mesh, when 𝑦 = 0.

4.2.1.3 Center-gated disk

The velocity field for the center-gated disk, in local Cartesian coordinates coordinates, is given

by Equation (3.1), in which the radial velocity just depends on the radius, which corresponds to the

position in the x-axis, and thickness, which corresponds to the position in the z-axis.

The disk geometry was created as a 5◦ slice as depicted in Figure 4.9, and the boundary

conditions were defined as shown in Table 4.3.

x

y

z

Top

Bottom

Left Right

Figure 4.9: Velocity field on the disk segment in which the flow was modelled for the center-gated disk test case.

Boundary A u (m/s)/ grad(u)(m/s)

Left
fixedValue

Calculated by
setExprBoundaryFields
utility

uniform (0.(3) 0 0 0.(3) 0 0.(3))

Right zeroGradient

Front & Back zeroGradient

Top & Bottom symmetry

Table 4.3: Boundary conditions used for the center-gated disk test case.

For this case, the boundary conditions of the velocity and gradient velocity were imposed with

the setExprBoundaryFields utility, according the Equations 3.1 and 3.2.
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For the disk, the data is analyzed in function of the space, so there was no need for a

time-position conversion.

4.2.2 Computational framework setup

Table 4.4 shows the discretization schemes used for the test cases, and Table 4.5 presents the

linear solver setup and respective tolerances.

Time scheme Euler

Gradient Scheme Least Squares

Divergent Scheme Gauss Upwind

Interpolation Scheme Linear

Table 4.4: Temporal and spacial discretization schemes for the simple flow cases.

For the center-gated disk case, the method of Crank–Nicolson was used for the time discretization

scheme, and for the remaining schemes, the same as for the simple flow cases was employed.

Since, as mentioned before, the velocity field was defined by an mathematical expression, and,

therefore, it was not calculated, a linear solver for this parameter was not needed. The

Parameter A

Linear solver Stabilized Preconditioned (bi-)conjugate gradient

Smooth solvers Diagonal incomplete-Cholesky with Gauss-Seidel

Absolute residual tolerance 10-11

Relative tolerance 0

Table 4.5: Solution methods for the test cases.

4.2.3 Error Measure

To evaluate the error between the results from the python script and the OpenFOAM® code

predictions, a similar approach to the one employed by Cintra and Tucker[45] was used. Firstly, an

second order error tensor (𝜺𝑖 𝑗 ) was calculated as the difference between the python results, which
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is assumed as the most exact result, and the one provided by OpenFOAM®, as follows:

𝜺𝑖 𝑗 = Apython
𝑖 𝑗

−AOpenFOAM
𝑖 𝑗

. (4.7)

Then the scalar magnitude of the error tensor is used to estimate the overall error, with the following

expression:

| |𝜺 | | =
√︂

1
2
𝜺𝑖 𝑗𝜺 𝑗𝑖 . (4.8)

Following this procedure, two different error parameters were calculated. The steady state error

that corresponds to the error magnitude obtained for the last calculated time, | |𝜺 | | (𝑡f), and the time

average error, given by the integration of | |𝜺 | | over time:

¯| |𝜺 | | = 1
𝑡f

∫ 𝑡f

0
| |𝜺 | | (𝑡)d𝑡. (4.9)

4.2.4 Mesh Sensitivity Studies

Aiming at quantifying the error associated with the refinement of the mesh, calculations were

performed with different mesh refinement levels. Since the flow takes place along in the 𝑥 − 𝑎𝑥𝑖𝑠

direction for all test cases, the mesh was just refined along 𝑥. In the case of the planar elongational

flow, despite existing flow in the y-axis direction, both the velocity and velocity gradient were imposed

by exact analytic expressions, and, therefore, mesh refinement along the y-axis direction does not have

impact in the results obtained.

For all test cases, the number of cells imposed along the 𝑥-axis was increased according the

following equation:

No.Cellsx = 2𝑖+4, 𝑖 = 1,2,3,4,5,6,7. (4.10)

4.2.5 Results and Discussion

Figures 4.10 - 4.14 were obtained with a 𝐶𝐼 of 0.01 and b equal to 1, for a simple shear flow.

The parameters for the iARD-RPR model were set as 𝐶𝑀 = 0.9 and 𝛼 = 0.1, and for the MRD-RSC
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model were set as ^ = 0.9 and 𝐶1 = 1, 𝐶2 = 0.5, 𝐶3 = 0.3. The reduction of the error with mesh

refinement can be both visually examined and quantified.

Figure 4.10: Prediction of Folgar-Tucker model with the Hybrid closure for the simple shear flow test case (left)

and calculated errors (right), for different mesh refinement levels.

Figure 4.11: Prediction of Folgar-Tucker model with the IBOF closure for the simple shear flow test case (left)

and calculated errors (right), for different mesh refinement levels.

By comparing of the Figure 4.10 and 4.11, it is clear the overprediction of the fiber orientation,

that results from the Hybrid closure, that was referred to in Section 2.3. For the Hybrid closure, around

𝑡 ≈ 10𝑠, the orientation has already reached its steady state. Meanwhile, for the IBOF closure, the

steady state is only reached around 𝑡 ≈ 15𝑠.
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Figure 4.12: Prediction of Folgar-Tucker model with the ORE closure for the simple shear flow test case (left)

and calculated errors (right), for different mesh refinement levels.

As previously mentioned in Section 2.3, the IBOF (Figure 4.11) and the ORE (Figure 4.12)

closures present similar approaches, and therefore similar results, but their computational efficiency

is not equal. By analysing the error, it can be seen that both present similar accuracy for different

mesh refinement levels. For instance, a mesh with 1024 cells in the 𝑥-axis direction, the test case for

the IBOF closure had an execution time of 2:39:27 hours, while the case for the ORE closure, had a

execution time of 3:01:18 hours. Therefore, the ORE closure needed more 22 min to solve the test

case under the same conditions, then the one used for the IBOF closure. In the developed code, the

ORE closure involves the calculation of the tensor’s eigenvalues, but the same is not needed for the

IBOF closure, so this is the cause for the different times.
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Figure 4.13: Prediction of iARD-RPR model with the IBOF closure under simple shear flow.

Figure 4.14: Prediction of MRD-RSC model with the IBOF closure under simple shear flow.

Since the remaining results obtained for the remaining test cases present similar trends the

additional data is provided in Appendix B.

From the overall analysis of the results obtained, it can be concluded that the accuracy of the

prediction of the steady state error is not highly dependent on the mesh refinement for the case of

the FT model. This happens because the steady state distribution does not depend on the time step

employed. For the iARD-RPR and MRD-RSC model, the steady state error reduces with the refinement

because the length of the mesh is not enough for the distribution of the fiber to reach its steady state

due the deceleration of the orientation kinetics that this models induce.
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The average error decreases with the mesh refinement, as expected, but not with the degree

that corresponds to the one of the discretization schemes employed. For first-order discretization

schemes, such as Euler and Upwind, if the number of cells of a mesh are doubled, the error should

reduce by half.

To identify the source of this behavior, the spacial component of material derivative of A was

removed and the OpenFOAM® results were directly compared to the ones from python. To assess

the correctness of the implementation, a time-refinement study was carried out and the convergence

order was assessed through the following expression [73]:

Convergence order =
ln E𝑐𝑜𝑎𝑟𝑠𝑒𝑟

E 𝑓 𝑖𝑛𝑒𝑟

ln Δ𝑡𝑐𝑜𝑎𝑟𝑠𝑒𝑟
Δ𝑡 𝑓 𝑖𝑛𝑒𝑟

,
(4.11)

where E corresponds to the difference between the results obtained from OpenFOAM® and python,

and Δ𝑡, the time step used. Moreover, the subscript "coarser" stands for the results obtained from

the mesh with less number of cells, and finer, with more cells.

For this test case, the FT model with the Hybrid closure was used, with random initial values of

the A and a random velocity gradient, for a final time of 8𝑠. The results obtained are presented in the

Table 4.6.

Δ𝑡 (s) Convergence order

5x10−3 1.013

1x10−3 1.005

5x10−4 1.001

Table 4.6: Convergence error in function of the time step.

With the reduction of the time step, the convergence error is approximately first-order, which is

consistent with the time discretization scheme used in OpenFOAM®. Therefore, it can be concluded

that the time evolution of the fiber orientation is being solved correctly.

The spacial dependency in the equation is given by the term ∇ · (uA) which translates into

syntax as fvm::div(phi, A2). Although not formally proven, but given that OpenFOAM® is a

well-established software and that with the progressive mesh refinement the results approach its single

material point counterpart, the results obtained provide confidence that the code is well implemented
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and solving the correct equations.

The unexpected behavior can be attributed to the error associated with the time refinement.

With the increase of the spacial refinement of the mesh, the time refinement should accompany it.

Due to computational efficiency, this was not done, and the time step was regulated according the

number of Courant. Therefore, the error associated with the time refinement has impact in the results

shown of the error in function of the spatial refinement.
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CHAPTER5 Conclusions and Future Work

5.1 Conclusions

Due the importance of determining the fiber orientation distribution, various proprietary software

offer different fiber orientation numerical models. Despite the availability of this software, few validation

works have been performed due to the inaccessible source code and costly licences. Open-source

software emerges as a solution since it offers full unrestricted access to the code and its modification,

as is the case of OpenFOAM®.

The main objective was to develop an utility in OpenFOAM®, to be attached to a existing solver,

containing state-of-the-art fiber orientation models and closure approximations, for the prediction of

the fiber orientation distribution in different types of flow.

Through a study on the state-of-art numerical models for the prediction of fiber orientation, the

models to be implemented were selected. These models were firstly implemented in a python script,

capable of solving the evolution of the second-order orientation tensor in function of time exclusively.

This tool was validated against data found in literature, and it was concluded to be able to replicate the

selected data accurately. Therefore, it could be used as a benchmark for the developed OpenFOAM®

utility. Moreover, it was also used to create symbolic code to express the closure approximations in

terms of second-order tensors exclusively, since OpenFOAM® cannot handle fourth-order tensors.

The OpenFOAM® utility was tested in simple flows, such as simple shear and planar elongational

flow, chosen due to their presence in industrial process of FRTM. Additionally, the flow in a center-gated

disk was also studied, due to its higher complexity and similarity to real-life manufacturing processes.

The results obtained were in agreement with literature described behaviour, and from the

studies on the impact of mesh refinement onto the convergence order, it could be concluded that

the developed utility can handle correctly the calculation of the desired models. The developed
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tool, alongside OpenFOAM®, demonstrated potential to replace proprietary software in industrial

application.

5.2 Future work

Although the convergence order calculated is very close to the expected, a formal study on the

convergence order in function of the spacial refinement could be performed to locate the cause of

this behaviour and further confirm the tool’s adequacy. Additionally, more complex flows could be

studied, complementing equally complex existing solvers, such as openInjMoldSim [74], which

would further consolidate the adequacy of the developed utility to industrial use.

Further development of the add-on is also possible and, since the factory method was employed,

it should be fairly easy to implement other models, such as flow-dependent ones. Additionally, models

that allow for the calculation of viscosity in function of the second-order orientation tensor could be

introduced.
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Appendices

A Calculation of 𝛽 for the IBOF closure

𝛽𝑖 = A𝑖,1 +A𝑖,2II+A𝑖,3II3 +A𝑖,4III+A𝑖,5III2 +A𝑖,6IIIII+A𝑖,7II2III+A𝑖,8IIIII2 +A𝑖,9II3 +
A𝑖,10III3 +A𝑖,11II3III+A𝑖,12II2III2 +A𝑖,13IIIII3 +A𝑖,14II4 +A𝑖,15III4 +A𝑖,16II4III+A𝑖,17II3III2 +
A𝑖,18II2III3 +A𝑖,19IIIII4 +A𝑖,20II5 +A𝑖,21III5, (𝑖 = 3,4,6)

𝛽1 =
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3 II)

B Results and Discussion

The parameters for the following test cases were the same as for the simple shear flow cases,
indicated in Section 4.2.5.

B.1 Planar Elongational flow

Due the exponential relationship between time and space, a mesh with a large length along the
x-axis would be needed for the analyses of times corresponding to the steady state. The necessary
mesh’s length is not computationally possible with the available resources, and, therefore, the error
for the steady state was not calculated.

Figure B.1: Prediction of Folgar-Tucker model with the Hybrid closure for the planar elongational flow test case

(left) and calculated errors (right), for different mesh refinement levels.

i



Figure B.2: Prediction of Folgar-Tucker model with the IBOF closure for the planar elongational flow test case

(left) and calculated errors (right), for different mesh refinement levels.

Figure B.3: Prediction of Folgar-Tucker model with the ORE closure for the planar elongational flow test case

(left) and calculated errors (right), for different mesh refinement levels.
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Figure B.4: Prediction of iARD-RPR model with the IBOF closure for the planar elongational flow test case (left)

and calculated errors (right), for different mesh refinement levels.

Figure B.5: Prediction of MRD-RSC model with the IBOF closure for the planar elongational flow test case (left)

and calculated errors (right), for different mesh refinement levels.
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B.2 Flow in a center-gated disk

Since the center-gated disk is analysed in function of space, and not time, the error associated
with it was not calculated.

Figure B.6: Prediction of Folgar-Tucker model with the Hybrid closure for the center-gated disk case at 𝑧 ≈ 0.1
(left) and calculated errors (right), for different mesh refinement levels.

Figure B.7: Prediction of Folgar-Tucker model with the IBOF closure for the center-gated disk case at 𝑧 ≈ 0.1
(left) and calculated errors (right), for different mesh refinement levels.
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Figure B.8: Prediction of Folgar-Tucker model with the ORE closure for the center-gated disk case at 𝑧 ≈ 0.1
(left) and calculated errors (right), for different mesh refinement levels.

Figure B.9: Prediction of iARD-RPR model with the IBOF closure for the center-gated disk case at 𝑧 ≈ 0.1 (left)

and calculated errors (right), for different mesh refinement levels.
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Figure B.10: Prediction of MRD-RSC model with the IBOF closure for the center-gated disk case at 𝑧 ≈ 0.1 (left)

and calculated errors (right), for different mesh refinement levels.
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