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Abstract -
This paper discusses the estimation of the swing angle and 

digging depth during the excavation operation. The abil-
ity to calculate the excavator’s productivity is an essential 
step toward autonomous excavators. The swing angle and 
digging depth have significant effects on the excavator’s pro-
ductivity and must be taken into account for the productivity 
estimation. Two approaches are proposed to estimate these 
variables. The first method estimates the swing angle using 
cabin encoder measurements. The local minimum and max-
imum points are found, and then Otsu’s method is exploited 
to detect the points that are representative of scooping and 
dumping positions. The second method utilizes the bucket 
position to estimate the digging depth. The bucket posi-
tion is calculated using Inertial Measurement Units (IMUs) 
measurements and the forward kinematics of the excavator. 
Otsu’s method is used to distinguish the local minimum points 
that are representative of the digging depth during the opera-
tion. Moreover, the algorithms are computationally efficient. 
Finally, the performance of the proposed methods is studied 
using real measurements. The results show that the methods 
can effectively estimate the swing angle and digging depth un-
der different working conditions such as various materials, 
swing angles, and digging depths.
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1 Introduction
Heavy-duty mobile machines (HDMMs) play signifi-

cant roles in the world and are exploited in many fields such 
as construction, forestry, and mining industries. These in-
dustries are one of the highly increasing industries and 
have significant c hallenges s uch a s l ack o f s killed hu-
man operators, high productivity, harsh environment, and 
safety [1]. It has been analyzed that the 5% to 10% of di-
rect costs in building projects and up to 40% of direct costs 
in highway construction projects are related to equipment 
costs [2]. These industries are highly competitive, and 
companies must try to improve their products to remain

Figure 1. A typical hydraulic excavator and its dif-
ferent parts [4].

in business against other competitors. In order to reduce
costs, the effects of the challenges, and also to increase
the productivity of mobile machines, autonomous HD-
MMs are one main solution. Proposing one autonomous
method for all HDMMs is highly complicated since there
are a lot of mobile machines in different sizes, shapes, and
functions [3].

1.1 Excavator’s Productivity

There are different types of HDMMs, and the hydraulic
excavator is one of the most used machines in this field.
The excavator is a human-operated machine that is mostly
driven by using a hydraulic system. Fig. 1 shows a typical
hydraulic excavator. The excavator is one of the primary
earth-moving machines in various construction projects
such as the construction of highways, airports, industrial
and residential buildings. Almost all construction projects
require various types of excavation work [5]. An excavator
is a multi-functional machine that can easily do different
tasks such as dig & dump, trenching and leveling cycles,
and utilize different tools. The traveling body, swing body,
and front digging manipulator are three main parts of the
hydraulic excavator. The manipulator consists of three
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links: boom, arm, and bucket. The links are manipulated
by hydraulic cylinders. Also, the excavator has revolute
joints between the swing body, boom, arm, and bucket [6].
The ability to calculate the productivity of hydraulic

excavators during different operations can be an essential
step toward autonomous excavators. Monitoring the pro-
ductivity of excavators can reduce the operation time, fuel
consumption, and optimize the planning and working pa-
rameters. Also, the estimation of the excavator’s produc-
tivity has major effects on the management and economic
aspects. The performance of excavators highly depends
on the skills of the human operator, therefore a method for
productivity monitoring is significantly required. In ad-
dition, human operators can improve their skills by using
feedback from the excavator’s productivity. Furthermore,
since the excavator has repetitive duty cycles, a slight im-
provement in the operation cycle time or fuel efficiency can
bring about huge improvements in the overall performance
[3].
Generally, the quantity of material and the operation cy-

cle time are the main factors for the productivity of most
cyclical types of machinery. The excavator’s productiv-
ity means the quantity of transferred material per unit of
time. The quantity can be the weight or volume of ma-
terial. This is the simplest definition of the excavator’s
productivity. There are different parameters and working
conditions such as the swing angle, digging depth, size of
the excavator, bucket capacity, dumping conditions, type
of materials, weather conditions, and operator’s skill that
can significantly increase or decrease the productivity of
the excavators [6]. Dig & dump duty cycle is one of the
most important tasks in different construction projects.
This duty cycle consists of four main sub-tasks: 1) dig-
ging, 2) swinging loaded, 3) dumping, and 4) swinging
empty. Digging depth and type of material are two of the
essential factors in the digging sub-task. When the soil
becomes harder or the location of material gets deeper,
it takes longer to fill the bucket. Moreover, the swing
angle is another variable that can increase or decrease
the time of swinging loaded/empty and subsequently the
overall cycle time [7, 8]. Also, the cycle time is highly
dependent on the machine’s size because small machines
can cycle faster than large machines. Another challenge
is continuous variations in environmental and load condi-
tions. These variations can substantially change the pro-
ductivity of excavators. Furthermore, the cycle time can
be influenced by dumping conditions. There are different
dumping conditions such as trucks in various sizes, and
large or small dump targets [9].

1.2 Literature Review

Publications show the prediction of productivity is done
by analyzing the effects of different parameters. Thereby

the use of special datasets and methods of companies’
handbooks is common. In [10], the authors proposed a
deterministic multiple regression model to predict the ex-
cavator’s cycle time as a measure of productivity. The
machine’s weight, swing angle, and digging depth are in-
puts or predictor variables in the regression model. The
dataset was obtained from companies’ performance hand-
books. In [11], the authors propose an artificial neural
network by using the same dataset of [10]. The proposed
ANNhas a higher performance than theMRmodel in [10].
In [12], an artificial neural network combinedwith queuing
theory is designed to predict the productivity of earthwork
machinery including several excavators and haulers. Be-
cause of the lack of real data, a computer simulation is
utilized to generate data. In [13], the operator competence
is presented as a modifying factor in the productivity esti-
mation. The authors model the operator competence and
then analyze the effects of this variable on the productivity
estimation. In [14], a deep neural network (DNN) model
is presented to predict the productivity of excavators by
using telematics data. Deep neural networks require a
huge dataset and have a high computational load. These
challenges can limit the efficiency and practicability of the
model. In [15], different deterministic productivity esti-
mation methodologies are introduced and compared with
each other. It has been studied that the productivity of
the excavator is highly influenced by the swing angle and
digging depth. The methods shown only try to approxi-
mately predict the operation cycle time, and subsequently,
the excavator’s productivity and cannot calculate the pro-
ductivity in real time. These methods are very dependent
on datasets and cannot be used for different machines, job
conditions, and operators. The most significant challenge
is that these methods cannot estimate the swing angle and
digging depth, and these parameters should be anticipated
by managers or operators at the beginning of operations.
During the operation, the swing angle and digging depth
change and the assumption of constant values for these
variables cannot be a correct solution. Furthermore, these
methods cannot be easily utilized for different duty cycles
such as trenching.

1.3 Objectives

The focus of this paper is to propose novel frameworks
to estimate the swing angle and digging depth during the
dig & dump duty cycle. There are several methods to cal-
culate the excavator’s productivity, and all of them highly
depend on the swing angle and digging depth. These vari-
ables can significantly affect the operation cycle time and
subsequently the productivity of the excavator. In conven-
tional methods, managers consider only constant values
as the swing angle and digging depth at the beginning of
operations, but in the proposed algorithm, these variables
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Figure 2. A visualization of swinging movements.

are not considered constant values. In the paper, the swing
angle and digging depth are estimated based on the mea-
surements from the excavator and are updated during the
operation. The presented algorithms are computationally
efficient and use common sensors such as the incremental
encoder and Inertial Measurement Units (IMUs) that are
affordable and can be easily installed on different excava-
tors. Also, the method can be easily utilized for different
duty cycles and also extended for other heavy-duty ma-
chines. Currently, there is no automated algorithm for
the swing angle and digging depth estimation in commer-
cial automated machine guidance systems. The proposed
method can be an interesting feature for the new genera-
tion of excavators’ automated machine guidance systems.
The information about the swing angle, digging depth,
and productivity estimation can be utilized as feedback
to analyze and improve the skill of human operators in
machine guidance systems. Furthermore, the excavator’s
productivity can be used for the optimization of worksites.
This paper is organized as follows: the methods to es-

timate the swing angle and digging depth are introduced
in Section 2. Section 3 briefly describes the collected
datasets and measurements in the experiments. The re-
sults of the methods are explained in Section 4. Finally,
Section 5 concludes the paper.

2 Methodology
The estimation of swing angle and digging depth is

certainly required to calculate and analyze the excavator’s
productivity during different operations and conditions. In
Sections 2.1 and 2.2, twomethods are proposed to estimate
the swing angle and digging depth, respectively. The pro-
posed methods use measurements from common sensors
in the excavator and also are computationally efficient.

2.1 Swing Angle

The swing angle can significantly affect the operation
cycle time during the dig& dump duty cycle. In this paper,

Figure 3. The prominence value [16]

a novel framework is proposed to estimate and update
the swing angle by using the measurement of the cabin
encoder. The swinging movements are shown in Fig. 2.
Measurements of the cabin encoder during the previous
𝑇 seconds are considered as input data in this algorithm.
The length of the input vector is equal to 𝑇 × 𝑓𝑠 , where 𝑓𝑠
is the sampling frequency of measurements.
Firstly, a moving average filter is used to reduce the

effects of noises and sudden movements and variations. In
this filter, each element of the output is computed by using
an equal number of input data on either side of the central
value. Actually, the number of samples in one sliding time
window is equal to 𝑇 𝑓 𝑖𝑙𝑡𝑒𝑟 × 𝑓𝑠 , where 𝑇 𝑓 𝑖𝑙𝑡𝑒𝑟 is the length
of the sliding time window.
Secondly, local minimum and maximum points are de-

tected to specify the scooping and dumping positions. A
prominence value is defined for each local minimum or
maximum point. In fact, the prominence of a local mini-
mum point (or a valley) determines its depth compared to
other local minimum points. To calculate the prominence
of a local minimum point, a horizontal line from the lo-
cal minimum point is extended to the left and right of the
point. Where the horizontal line intersects the data can
be another local minimum point or the end of the data.
The intersections are outer end-points of the left and right
intervals. In the next step, the highest peaks in both the left
and right intervals are found, and only the smaller peak is
considered. The vertical distance between the local min-
imum point and the peak is called the prominence value.
Also, there is a similar definition for the prominence of
local maximum points. The prominence of a local max-
imum point (or a peak) specifies the height of the point
with respect to the other local maximum points. To cal-
culate the prominence of a local maximum point, firstly a
horizontal line from the local maximum point is extended
to the left and right of the point. The intersections of the
line with data can be another peak or the end of data. The
intersections specify outer end-points of the left and right
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Figure 4. The flowcharts of the proposed methods:
(a) swing angle estimation, (b) digging depth esti-
mation.

intervals. After that, the lowest valleys in both the left and
right intervals are detected, and only the larger valley is
taken into account. The prominence is defined as the ver-
tical distance between the valley and the local maximum
point [17]. Fig. 3 shows an example for the prominence
calculation of a local maximum point. Firstly, a horizon-
tal line from the local maximum point is extended to the
left and right of the peak. The left interval lies between
the peak and crossing due to another peak, and the right
interval lies between the peak and crossing due to another
peak. The lowest points on the left and right intervals are
shown by 𝑚𝑖𝑛𝐿 and 𝑚𝑖𝑛𝑅, respectively. The reference
level (highest minimum) is 𝑚𝑖𝑛𝑅. The prominence is the
vertical distance between the reference level and the local
maximum point.

Figure 5. The forward kinematics of the excavator
[19].

Probably, all local minimum or maximum points are
not acceptable and cannot be considered as the scooping or
dumping positions. Otsu’smethod is exploited to automat-
ically distinguish the valid local extremum points. Otsu’s
method is an optimum thresholding method by maximiz-
ing the variance between classes. This method is mainly
used for image segmentation [18]. Finally, Otsu’s method
diagnoses the valid local extremum points that are repre-
sentative of the scooping and dumping positions based on
their prominence values. The swing angle is defined as
the difference between the minimum and maximum an-
gles. The flowchart of the proposed method is presented
in Fig. 4.

2.2 Digging Depth

The digging depth is another essential parameter that
must be taken into account for the productivity analysis.
In this paper, the digging depth is estimated based on the
bucket position. The position of the bucket is calculated
by using the forward kinematics of the excavator and mea-
surements from four Inertial Measurement Units (IMUs)
that were installed on the different parts of the excavator
such as the swing body, boom, arm, and bucket. In this
part, the swing of the cabin is not considered since it does
not have any effect on the digging depth. The axis and
frame of forward kinematics of the excavator based on the
two-dimensional space is provided in Fig. 5. The end-
point position of the excavator is calculated by using the
following equations

𝑃𝑥 = 𝐿1 cos(𝜃𝑝𝑖𝑡𝑐ℎ + 𝜃1) + 𝐿2 cos(𝜃𝑝𝑖𝑡𝑐ℎ + 𝜃1 + 𝜃2)
+ 𝐿3 cos(𝜃𝑝𝑖𝑡𝑐ℎ + 𝜃1 + 𝜃2 + 𝜃3) (1)

𝑃𝑦 = 𝐿1 sin(𝜃𝑝𝑖𝑡𝑐ℎ + 𝜃1) + 𝐿2 sin(𝜃𝑝𝑖𝑡𝑐ℎ + 𝜃1 + 𝜃2)
+ 𝐿3 sin(𝜃𝑝𝑖𝑡𝑐ℎ + 𝜃1 + 𝜃2 + 𝜃3) (2)

where 𝑃𝑥 and 𝑃𝑦 are 𝑥 and 𝑦-components of the bucket
position, respectively.

625



39 𝑡ℎ International Symposium on Automation and Robotics in Construction (ISARC 2022)

Figure 6. The excavator used in the data collection
phase. In the picture the cabin (1.), boom (2.), arm
(3.) and bucket (4.) are highlighted with red boxes.

The estimation of digging depth is performed by using
the 𝑦-component of the bucket position. This algorithm
is similar to the swing angle estimation approach intro-
duced in Section 2.1. In each iteration, the length of input
data is equal to 𝑇 × 𝑓𝑠 . Firstly, a moving average filter
is utilized to reduce the effects of noises and meaningless
movements, and variations of the bucket. Secondly, to
find the depth of digging, local minimum points are de-
tected. There are a lot of local minimum points that are not
representative of actual digging depth. Otsu’s method is
applied to the prominence values of local minimum points
to find the valid local minimum points. The flowchart of
the presented method is shown in Fig. 4.

3 Data Collection
In this paper, the dataset was collected from a Komatsu

PC138US excavator. The crawler excavator used in the
experiments is shown in Fig. 6. Although this excava-
tor is old, it has been well-maintained, and it is in good
condition. The inspection and maintenance are performed
every 500 working hours. The operating weight of this
medium-rated excavator is 14000𝐾𝑔 and has a standard
mono boom, arm, and bucket. The bucket is attached to
the arm by using a quick coupler, and also, the excava-
tor has a tiltrotator. The heaped capacity of the bucket is
0.37𝑚3 based on the standard of the Society of Automotive
Engineers (SAE). The MathWorks Simulink model was
used to collect data from the excavator. Measurements of
different sensors are transmitted over the controller area
network (CAN) bus. The model is connected to the CAN
bus utilizing a Kvaser leaf light CAN to USB interface.
The sampling frequency 𝑓𝑠 is equal to 200𝐻𝑧. The In-
ertial Measurement Units (IMUs) and an incremental en-
coder are utilized to measure the orientation and rotation
of moving parts of the excavator. The configuration of the
sensors on the excavator is shown in Fig. 7. The data
collection was done in a private worksite where there was
no active construction work in the worksite. In fact, there
is no unexpected factor that suddenly stops the operation.

Figure 7. The configuration of the sensors on the
excavator [20].

In the experiments, the dig & dump duty cycle is done by
an inexperienced operator, and also two types of materi-
als such as sand and rough gravel are used to show the
robustness of the methods. The dig & dump duty cycle
is one of the main tasks in all worksites, and it comprises
four sub-tasks such as filling the bucket, swinging loaded,
dumping, and swinging empty. The operator has practiced
less than 30 hours to drive the excavator which this factor
can bring about more vibrations and meaningless move-
ments of the excavator and subsequently can increase the
challenges of swing angle and digging depth estimation.
There are two different scenarios in the dataset. The dura-
tion of each scenario is approximately 6minutes. The start
and end positions in both scenarios are near the digging
position. In the first scenario, the type of material is rough
gravel, and the swing angle of operation is around 60◦.
In the second scenario, the type of material is sand, the
swing angle is approximately 120◦, and the digging depth
is higher than in the first scenario. To increase the digging
depth in the second scenario, the excavator goes on top of
a small pile to reach a higher position.

4 Results
The performance of the proposed methods is illustrated

by using real measurements. The algorithm was imple-
mented using MathWorks Matlab R2021a on a laptop
with a 1.8 G𝐻𝑧 Intel Core i7 CPU and 16GB of RAM. The
proposed algorithms are computationally efficient. The
average required time for the computation at each time
step in the swing angle and digging depth estimation algo-
rithms are 0.0034 and 0.0024 seconds, respectively. The
length of input data 𝑇 is equal to 60 seconds. The output
variables such as the swing angle and digging depth are
updated in each iteration. The updating rate can easily
change based on the application and final goal. Firstly,
the performance of the swing angle estimation is analyzed
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Figure 8. The estimation of maximum andminimum
boundaries in the first scenario.
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Figure 9. The estimation of swing angle in the first
scenario.

in two scenarios. In the algorithm, the length of the time
window in the moving average filter 𝑇 𝑓 𝑖𝑙𝑡𝑒𝑟 is equal to 5
seconds. In the first experiment, the dig&dump duty cycle
with a swing angle of 60◦ is done, and the type of material
is rough gravel. The results of the method are shown in
Fig. 8 and Fig. 9. The results show the method efficiently
estimates the swing angle and can track the changes during
the operation. Moreover, the method is evaluated by using
another experiment. In the second experiment, the swing
angle is approximately 120◦, and the type of material is
sand. The results are presented in Fig. 10 and Fig. 11.
The method can effectively estimate the swing angle.
In the next phase, the performance of the digging depth

estimation is investigated in two scenarios. In this al-
gorithm, the length of the time window in the moving
average 𝑇 𝑓 𝑖𝑙𝑡𝑒𝑟 is equal to 2.5 seconds. In the first ex-
periment, the digging depth is lower than in the second
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Figure 10. The estimation of maximum and mini-
mum boundaries in the second scenario.
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Figure 11. The estimation of swing angle in the sec-
ond scenario.

experiment. The type of used material in this experiment
is rough gravel, and the swing angle is approximately 60◦.
The estimation of digging depth is shown in Fig. 12. The
method can estimate the digging depth, and it is robust
against sudden movements of the bucket. In the second
experiment, the type of material is sand, and the swing
angle is approximately 120◦. The result is shown in Fig.
13. The algorithm accurately estimates the current dig-
ging depth based on the bucket position. The results prove
the presented methods can easily be utilized for real-time
productivity estimation of excavators in different working
conditions.

5 Conclusion
In this paper, two novel frameworks are presented to

estimate the swing angle and digging depth of the dig &
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Figure 12. The estimation of digging depth in the
first scenario.
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Figure 13. The estimation of digging depth in the
second scenario.

dump duty cycle in real time. These variables have sig-
nificant effects on the excavator’s productivity and must
be taken into account. Firstly, an algorithm is proposed
to estimate the swing angle using the cabin encoder mea-
surements. A moving average filter is used to reduce the
effects of noises and sudden movements of the cabin, and
then local minimum and maximum finders are utilized to
find the extremum points. Afterward, Otsu’s method is ex-
ploited to find the extremum points that are representative
of scooping and dumping positions. Secondly, a similar
approach is proposed to estimate the digging depth dur-
ing operations based on the bucket position. The bucket
position is calculated by using the measurements of IMU
sensors and the forward kinematics of the excavator. After
using the moving average filter, the local minimum points
of the bucket position are found, and then Otsu’s method
is used to recognize the local minimum points that are

representative of the digging depth. Finally, the methods
are tested by using the collected dataset in a private work-
site. The dataset includes two scenarios including different
materials such as sand and rough gravel, different swing
angles, and digging depths. The results prove the methods
can be used in the productivity estimation of excavators.
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