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Abstract. Robotic assistive devices have emerged as a potential complement 

for repetitive and user-centered gait rehabilitation. In this field, the development 

of electromyography (EMG)-based torque controls has played a crucial role in 

improving the user experience with robotic assistive devices. However, most 

existing approaches for EMG-based joint torque estimation (i) are designed for 

upper limbs; (ii) often do not consider the complexity of the walking motion, 

focusing only on the stance phase; and (iii) rely on complex mathematical mod-

els that result in time-consuming estimations. This study aims to address these 

shortcomings by evaluating the generalization ability of a Deep Learning re-

gressor (Convolutional Neural Network (CNN)) for estimating ankle torque tra-

jectories, in real-time. Several inputs were incorporated, namely, EMG signals 

from Tibialis Anterior and Gastrocnemius Lateralis, hip kinematic data in the 

sagittal plane (angle, angular velocity, angular acceleration), walking speed 

(from 1.5 to 2.0 km/h), user's demographic (gender and age) and anthropomet-

ric information (height and mass, ranging from 1.50 to 1.90 m and 50.0 to 90.0 

kg, respectively, and shank and foot lengths). Results showed that a CNN mod-

el with two convolutional layers showed the highest generalization ability (Root 

Mean Square Error: 23.4±8.36, Normalized Mean Square Error: 0.494±0.299, 

and Spearman Correlation 0.754±0.105). CNN model’s time-effectiveness was 

tested in an active ankle orthosis, being able to estimate ankle joint torques in 

less than 2 milliseconds. This study contributes to a more time-effective model 

for real-time EMG-based torque estimation, enabling a promising advancement 

in EMG-based torque control for lower limb robotic assistive devices. 
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1 Introduction 

Restoring the motor function of individuals with lower limb impairments is of ut-

most importance, enabling them to regain independence in performing daily living 

activities and enhancing their overall quality of life. At this level, robotic assistive 

devices, such as active orthoses and exoskeletons, have been suggested in the reha-

bilitation field to serve as a complement to conventional physiotherapy, to improve 

the movement coordination and muscular function of motor-disabled patients [1]. For 

that, trajectory tracking controls (such as position control strategies) have been widely 

used [2]. According to [2], although these control strategies impose repetitive gait 

training, they are prone to result in less safe and comfortable strategies for the users 

since high forces can be done by the robotic assistive device when the human-robot 

interaction is low. 

Different control approaches have been suggested in the last years to enable a more 

smoothly use of the robotic assistive device by the user. In this field, electromyogra-

phy (EMG)-based torque controls have been developed [3]. Despite the use of EMG 

sensors has disadvantages related to the movements between the skin and the EMG 

sensors, the correct placement of the electrodes may empower torque control, since 

EMG signals can be measured before the muscle contraction [3]. Several methods 

have been proposed for EMG-based torque estimation to control a robotic assistive 

device [4–16]. Despite being a valuable contribution to EMG-based control, most of 

the developed methods (i) were not developed for lower limbs [12–16]; (ii) did not 

encompass the walking motion [7, 8]; (iii) those that consider walking, did not esti-

mate the torque for the entire gait cycle, focusing only on the stance phase [6–8]; (iv) 

depend on user- and muscle-specific parameters (such as muscle-tendon unit, penna-

tion angle, optimal fiber length, optimal length of the tendon, musculotendon length, 

and moment arm) that are difficult to measure [4, 5, 9–11]; (v) did not present the 

time required to perform a single joint torque estimation [6, 12–16]. For instance, the 

neuromusculoskeletal model proposed in [5] lasted 63 ms to estimate the knee joint 

torque. The use of this method will entail a control frequency of approximately 2 Hz 

(below the gait frequency), which is not feasible for controlling an exoskeleton for 

gait rehabilitation.  

To the best knowledge of the authors, there is no method able to estimate the joint 

torque in a time-effective manner for real-time control of an exoskeleton without 

depending on time-consuming calibration steps and muscle-specific parameters. This 

study proposes a Deep Learning (DL) method for the real-time EMG-based ankle 

joint torque estimation during walking, according to the measured user’s anthropome-

try and demographic data, speed, and joint kinematics data. The ankle joint was se-

lected since it is a commonly affected lower limb joint in neurological diseases [17]. 

This study extends teamwork [17] by optimizing the prediction performance of the 

DL method and by integrating it into SmartOs - Smart, Stand-alone Active Orthotic 

System, to assess its time-effectiveness for real-time torque estimation [18]. We hy-

pothesize that the estimated ankle joint torque can be obtained in less than 63 ms, 

without considering kinematic information. 
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2 Materials and Methods 

2.1 SmartOs Architecture 

SmartOs is a modular framework hierarchically structured, following a non-

centralized architecture (Fig. 1). This architecture consists of (i) a Central Controller 

Unit (CCU) responsible for managing the communication between all modules of the 

system and for running gait analysis tools and high-level controllers at 100 Hz; and 

(ii) three development boards with lower computational capabilities. These boards 

consist of: (i) the Low-Level Orthotic System (LLOS), which interfaces with the ac-

tive ankle orthosis (Exo-H2 - Technaid, Madrid, Spain [19]) through Control Area 

Network (CAN) protocol and manages the low- and mid-level controllers within the 

hierarchical control architecture [18]; (ii) the Wearable Motion LAB, which handles 

the real-time data acquisition of team-developed sensor systems (such as InertialLab 

used in this study) [18, 20, 21]; and (iii) the Wearable Biofeedback System, which 

handles the biofeedback systems (auditory and vibrotactile cues embedded in the 

system) [22]. Further, SmartOs embodies two user-friendly graphical applications: the 

mobile application for selecting the therapy settings and the desktop application for 

real-time and/or offline visualization of therapy data. Further details are presented in 

[18].  

 

Fig. 1. Design of SmartOs modular framework. 

The CCU corresponds to an UDOO X86 computer with an Intel® Celeron N3160 

up to 2.24 GHz processor and a Random Access Memory with 4.0 GB. The develop-

ment boards are the STM32F4-Discovery board (STMicroelectronics, Switzerland), 

running at 168 MHz, and communicate with the CCU by UART interface. Further-

more, the active orthosis consist of an electrical actuator (EC60 100W Flat Brushless 

(Maxon, Germany), 100W and a maximum efficiency of 86 %) coupled to a gearbox 

(CSD-20-160-2A-GR (Harmonic Drive, Japan) with a gear ratio of 160:1, and a max-

imum efficiency of 55 %) able to provide an average and peak torques of 35 N.m and 

180 N.m, respectively [18, 19]. The power supply system consists of a lithium iron 

phosphate battery (LifePO4) with a voltage of 22.4 V and a capacity of 12 Ah. This 
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battery provides a minimum of 8 hours of autonomy and is equipped with a hardware 

interface to supply power to all modules of SmartOs, operating at 5 V. All these 

hardware components are mounted inside a backpack to make the system comfortable 

and practical to use (Fig. 2). 

 

Fig. 2. Male participant instrumented with SmartOs, InertialLab, and Delsys systems, all com-

bined for real-time ankle joint torque estimation. 

2.2 EMG Delsys System Integration 

To measure and record the EMG muscle activity during the walking motion, the 

surface 8-channel Delsys Trigno wireless EMG system (Delsys, MA, USA) was used 

[23]. In our study, this device was integrated into SmartOs system by using the Trigno 

SDK, to enable the real-time acquisition of EMG signals during the orthosis’ use [23]. 

For that, a Transmission Control Protocol/Internet Protocol (TCP/IP) was implement-

ed to communicate between both systems (CCU of SmartOs system and the Base 

Station of Delsys system). To decrease the amount of data to be sent via TCP/IP and 

to work with cleaner EMG signals, the Root Mean Square (RMS) mode of the Delsys 

system was configured (Avanti-Only Modes: 83) [23]. This mode enables the acquisi-

tion of rectified EMG signals with a frequency of 148 Hz, by applying the RMS 

method. By default, the Trigno SDK sends 27 EMG samples at every 0.0135 s (74 

Hz). These samples were reprocessed in SmartOs system by using the RMS at 74 Hz 

[24].  

2.3 Development of DL regression model 

Participants. A walking dataset was collected to create the DL regression model. The 

study involved 17 healthy participants (9 females and 8 males) with a mean body 

height of 168.0 ± 10.31 cm, a mean body mass of 70.11 ± 14.26 kg, and a mean age 

of 28.05 ± 3.66 years. Efforts were made to include a stratified anthropometric distri-

bution in an attempt to consider eventual gender biomechanical differences [25].  

Instrumentation and Data Collection. Although the ankle joint is the focus of this 

study, the joint kinematics and kinetics of the three lower limb joints were recorded 
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using a motion-capture system with twelve cameras (Oqus; Qualysis – Motion Cap-

ture System, Göteborg, Sweden) and a Force Plate-Instrumented Treadmill (Side-by-

Side Treadmill – AMTI, MA, USA), respectively, at 200 Hz.  

EMG signals were acquired at 2000 Hz, using 8 surface EMG electrodes from the 

Trigno system (Delsys, MA, USA). The sensors were attached to the participants’ 

skin following the SENIAM recommendations, acquiring signals from the Vastus 

Lateralis (VL), Biceps Femoris (BF), Gastrocnemius Lateralis (GAL), and Tibialis 

Anterior (TA) [26]. More information can be found in [27]. 

Protocol. The protocol started by collecting the gender, age, body mass, height, and 

shank and foot lengths of each participant. To normalize the EMG data, two maxi-

mum voluntary contractions (MVCs) were subsequently performed for each muscle. 

Finally, each participant was instructed to walk for 4 minutes on the instrumented 

treadmill, performing 2 minutes at 1.5 km/h and then 2 minutes at 2 km/h.  

Data Processing. The kinematics recorded by the motion capture system were fil-

tered using a fourth-order lowpass zero-lag Butterworth filter with cut-off frequencies 

of 6 Hz. The EMG signals were filtered using the same filter with cut-off frequencies 

of 20 and 450 Hz. The kinematic and kinetic data were then processed in the Visu-

al3D software to calculate the joint angles and torques of the lower limbs. This calcu-

lated torque corresponds to the ground truth of torque data used to build the DL re-

gression models. Additionally, the first and the last 30 seconds of each walking speed 

were removed from the dataset, to avoid possible irregularities caused by the adapta-

tion to the walking speed. Thus, 1 minute of data in each walking speed was used to 

train the DL tool. 

Regression Models. In this study, a Convolutional Neural Network (CNN) was im-

plemented and evaluated by using Matlab® (2022a, The Mathworks, MA, USA). The 

CNN was chosen since it provided the best performance across a benchmark analysis 

in a previous teamwork study [17, 28]. 

Concerning the CNN, the data were organized by sequences composed of X col-

umns and K lines. While the X represents the number of samples organized sequen-

tially by time and participants, the K lines represent the 9 or 12 inputs (depending if 

kinematic data are included or not). We studied the CNN performance for ankle 

torque estimation with and without kinematic data, creating two types of datasets. 

One dataset had 9 inputs, namely the EMG signals from GAL and TA (normalized by 

the MVC), walking speed, shank and foot length, body mass and height, gender, and 

age. The second dataset included the same data with addition of the joint kinematic 

data (joint angle, angular velocity, and angular acceleration in the sagittal plane), 

resulting in 12 inputs. The GAL and TA muscles were chosen since they are the mus-

cles more responsible for the ankle joint movement [17, 28]. 

We conducted an empirical analysis to select (i) the kernel size (2, 10, 20, 40, 60); 

(ii) the number of convolutional layers (1, 2, 3, 4); (iii) the number of filters per con-

volutional layer (8, 16, 32, 64, 128); (iv) the sequence length (this means, the value of 



6 

X) (40, 50, 60, 80, 100, 120, 150); (v) the batch size (50, 100, 150); and (vi) the drop-

out value (0, 0.25, 0.50, 0.75). The normalization method was also studied among 

max-min, z-score, and robust normalization methods. Furthermore, the rectified recti-

linear unit (ReLU) function was used for convolutional layers and the adaptive mo-

ment estimation optimization algorithm based on the mean square error was used to 

update the weights and biases of the CNN. This empirical analysis was conducted 

through the leave-one-subject-out cross-validation (LOSOCV) procedure. Of the sev-

enteen subjects who participated in this study, one subject (female with 27 years old 

and a body mass and height of 73.4 kg and 1.63 m, respectively) was randomly se-

lected to test the final model. Thus, the model was trained with data from 16 subjects. 

2.4 Integration of DL regression model into SmartOs 

Once the CNN model was trained and created, it was integrated into the CCU of 

SmartOs. Considering that the CCU main project is programmed in C++, and the DL 

regression model was created in Matlab, we had to convert the CNN model to the 

Open Neural Network Exchange (ONNX) format to enable the easy model transfer-

ence between programming languages [29]. After being converted to ONNX, the 

CNN model was integrated into the C++ Project of the SmartOs’ CCU to receive the 

EMG and kinematics data from the Delsys and InertialLab systems, respectively, as 

well as the anthropometric, demographic and speed information send by the mobile 

application. From these data, the CNN model was inferenced inside SmartOs system 

by employing the ONNX Runtime library – a Cross-Platform Accelerated Machine 

Learning [29].  

2.5 Model Evaluation 

Four evaluation metrics were employed to evaluate the CNN’s performance, name-

ly, the RMS Error (RMSE), the Normalize Mean Square Error (NMSE), the Spear-

man Correlation (SC), and the prediction time. The first three metrics were computed 

between the predicted and the real (ground truth) ankle joint torque trajectories during 

the LOSOCV and the final model testing procedures (both performed in a Hewlett-

Packard computer with an Intel® Core™ i7-4710MQ CPU @ 2.50 GHz processor 

and a Random Access Memory with 16.0 GB).  

Further, we have performed an experimental protocol to evaluate the real-time per-

formance of the CNN in SmartOs, namely its prediction time (in a UDOO X86 com-

puter (CCU of SmartOs). This protocol involved one healthy and adult male partici-

pant (27 years old) with a body height of 1.70 m and a body mass of 81.2 kg. The 

participant was instrumented with (i) two EMG sensors from Delsys system, acquir-

ing EMG data from the TA and GAL muscles of the right limb (the lower limb in-

strumented with active orthosis); (ii) 7 IMUs from the InertialLab system positioned 

on both feet, shanks, thighs, and torso, assessing the ankle, knee, and hip joint angles 

of the right and left sides (although only 2 IMUs were required (torso and right thigh) 

to monitor the hip angle) [20]; (iii) SmartOs system to perform ankle joint torque 
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estimations in the CCU that controls the ankle orthosis. All systems are exhibited in 

Fig. 2. The EMG and the InertialLab data were used in the CNN at 100 Hz. 

At the beginning, the participant's gender, age, body mass, height, leg length and 

foot length were measured and introduced in the mobile application of the SmartOs 

system. Then, the participant performed two MVCs for each muscle (TA and GAL) to 

normalize the EMG data. After that, the participant was instructed to perform a 5-s 

standing calibration trial for calibrating the InertialLab system. At last, the participant 

walked on the instrumented treadmill for 5 minutes at 1.5 km/h. 

3 Results 

3.1 Regression Models Evaluation 

Table 1 presents the best results achieved during the LOSOCV method, using the 

Hewlett-Packard computer. In Table 1, two types of results are presented: results for 

torque estimation using (i) EMG, anthropometric, demographic, and speed data; and 

(ii) EMG, anthropometric, demographic, speed, and kinematic data (joint angle, angu-

lar velocity, and angular acceleration of the sagittal plane), testing knee and hip kine-

matic data. The ankle kinematics were not considered because it is affected by the 

motion of the active ankle orthosis, i.e., the ankle kinematics could result from the 

human and/or robot motion. Thus, the user’s ankle joint torque estimation could be 

jeopardized.  

Table 1. RMSE, NMSE, and SC metrics for LOSOCV procedure 

Input Data Hyperparameters 
RMSE 

(N.m) 
NMSE SC 

EMG, anthropometric, de-

mographic, and speed data 

Kernel size: 40 

CNN layers (fil-

ters): 4 (16, 32, 

64, 128) 

Dropout: 0.5 

Sequence length: 

100 

Batch size: 100 

23.2±8.35 0.602±0.615 0.703±0.242 

EMG, anthropometric, knee 

kinematics, demographic, 

and speed data 

22.4±9.79 0.492±0.391 0.790±0.092 

EMG, anthropometric, hip 

kinematics, demographic, 

and speed data 

20.2±4.44 0.390±0.267 0.802±0.054 

 

Considering the different combinations of input data, the results suggested that the 

CNN achieved high generalization ability, characterized by the high mean and low 

standard deviation values for all evaluation metrics when EMG, anthropometric de-

mographic, speed, and hip kinematic data are used as input. Taking into account this 

combination of inputs, the number of convolutional layers was deeply studied since 

these layers have a strong impact not only on the performance of the model but also 

on the prediction time [30].  

Table 2 exhibits the CNN performance for both LOSOCV and final testing proce-

dures when varying the number of convolutional layers. LOSOCV results pointed out 
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that CNN performance reduces as fewer convolutional layers are employed. However, 

different results were achieved for the final testing procedure, where the CNN reached 

the best performance when only two convolutional layers were used. For that model, 

the real and the predicted joint torques of the test dataset were graphically analyzed, 

being depicted in Fig. 3. Based on Fig. 3, a high level of similarity between the mo-

notony of both curves is reached, confirmed by the SC value (0.846). From Table 2 

and Fig. 3, we verified that the RMSE values (slightly above 20 N.m) are associated 

with the fact that the model cannot achieve the maximum signal magnitude. 

Table 2. RMSE, NMSE, and SC during the LOSOCV and final test procedures. The best test 

metrics were obtained using 2 convolutional layers  

Input Data 

Convolutional 

layers  

(filters) 

RMSE (N.m) NMSE SC 

LOSOCV Test LOSOCV Test LOSOCV Test 

EMG, anthro-

pometric, de-

mographic, 

speed, and hip 

kinematics data 

4 (16, 32, 64, 

128) 
20.2±4.44 27.0 0.390±0.267 0.454 0.802±0.054 0.857 

3 (16, 32, 64) 21.4±4.74 27.2 0.469±0.323 0.459 0.781±0.062 0.841 

2 (16, 32) 23.4±8.36 20.5 0.494±0.299 0.261 0.754±0.105 0.846 

 

Fig. 3. Real and predicted ankle torques for the test subject (female with 27 years old, body 

mass and height of 73.4 kg and 1.63 m, respectively), using a CNN with 2 convolutional layers. 

3.2 Real-time performance of Regression Models  

To complete the CNN model evaluation, we have assessed, in the real experiments, 

the prediction time of the three CNN architectures (with 2, 3, and 4 convolutional 

layers), all integrated into SmartOs framework, i.e., into the UDOO x86. Results pre-

sented in Table 3 show that there is a high difference in the prediction time when the 

number of convolutional layers vary, being achieved the lowest time (2 ms) when two 

convolutional layers are used. 
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Since the high-level of SmartOs system works at 100 Hz, i.e., every 10 ms, the 

torque estimation performed by the CNN architecture with two convolutional layers is 

the only one that complies with that operating frequency. For that model, it is depict-

ed in Fig. 4 the estimated ankle joint torque along with the ankle joint angle recorded 

by InertialLab system, and the EMG signals of TA and GAL recorded by Delsys sys-

tem. Based on Fig. 4, we can infer that the ankle joint torque pattern estimated in 

SmartOs is similar to the one presented in Fig. 3. 

Table 3. RMSE, NMSE, and SC for the test subject 

Input Data 
Convolutional layers  

(filters) 

Mean prediction time 

(ms/sample) 

EMG, anthropometric, demographic, 

speed, and hip kinematics data 

4 (16, 32, 64, 128) 42 

3 (16, 32, 64) 29 

2 (16, 32) 2 

 

Fig. 4. Ankle and hip joint angles (in degrees, InertialLab), EMG data (as a percentage of 

MVC) from TA and GAL (Delsys), and ankle joint torque (in N.m) estimated in the SmartOs 

system, using a CNN with 2 convolutional layers. 

4 Discussion 

This study was developed in the context of robotics gait rehabilitation, where 

EMG-based control strategies are required to provide the patient with assistive train-

ing without imposing healthy joint motion. The primary contributions to the state of 

the art focused on proposing a tool to estimate ankle joint torque during walking mo-

tion without relying on (i) complex mathematical models that take too long to provide 

usable torques for exoskeleton control; (ii) force platforms that are limited to motion 

analysis labs; (iii) torque sensors, commonly not used in robotic assistive devices 

given their obtrusive design; and (iv) muscle-specific parameters that are difficult to 

measure. 

This study demonstrates the proof-of-concept for using DL regressors to achieve a 

generalized estimation of ankle joint torque. The applicability of these regressors was 
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tested under two slow walking speeds, namely 1.5 and 2.0 km/h, and for subjects with 

varying body height (from 1.50 to 1.90 m) and mass (from 50.0 to 90.0 kg). Conse-

quently, this method enables the estimation of ankle joint torque covering the mean 

anthropometric data across countries. In addition, this work extends study [17], by 

optimizing the performance and the prediction time of a DL tool for ankle joint torque 

estimation, implementing it in a robotic assistive device for real-time operation. 

The achieved results indicate that the hypothesis of estimating ankle joint torques 

based on EMG, anthropometric, demographic, and speed data is not supported, since 

better results were achieved when kinematic data were also included. In fact, these 

results are in line with the ones reported by [28]. Furthermore, the results show that 

CNN fed by EMG from TA and GAL, anthropometric information (body height and 

mass, shank and foot length), and hip kinematics (hip joint angles, angular velocities, 

and angular acceleration in the sagittal plane) along with the gender, age, and walking 

speed provided reasonably ankle joint torque curves (RMSE = 23.4±8.36 N.m, NMSE 

= 0.494±0.299, and SC = 0.754±0.105 in an effective time (2 ms). Study [7] predicted 

the isokinetic torques for the knee joint, achieving RMSE values between 26.8 and 

29.0. Our study estimates the ankle joint torque for the entire gait cycle with lower 

RMSE values (23.4±8.36 N.m). In [8], the peak ankle joint dorsiflexion torque using 

linear and quadratic equations achieves a Correlation Coefficient (R) of 0.69. In our 

study, the best model presented a R value of 0.86±0.23 for the entire gait cycle. 

Moreover, the study [5] required 63 ms to estimate the knee joint torque using a mus-

culoskeletal model. Our approach based on a DL model was able to estimate joint 

torque in 2 ms. The achieved outcomes proved that the proposed tool can be imple-

mented in a robotic assistive device (in this case, SmartOs) with a low computational 

burden, which enable its use to control the ankle orthosis in real-time. 

Despite the proposed DL tool offering promising results, there is still room for im-

provements, namely, (i) validate the CNN performance in SmartOs system with more 

participants, comparing the achieved results with ground truth data measured by force 

platforms; (ii) explore knowledge distillation methods to CNN model with more lay-

ers to reduce their computational burden. 

5 Conclusions 

This study addresses a gap in the current literature by introducing a DL-based 

model for estimating ankle joint torque trajectories in real-time. The hypothesis of 

estimating ankle joint torque trajectories without relying on kinematic information is 

not supported since the best DL model consists of a CNN with two convolutional 

layers, using as inputs EMG data from the TA and GAL muscles, hip joint kinematics 

in the sagittal plane (angle, angular velocity, angular acceleration), demographic 

(gender and age), anthropometric (shank and foot lengths, body height and mass), and 

speed data. This comprehensive model showed remarkable results with low computa-

tional burden in estimating ankle joint torque trajectories into a wearable CCU within 

2 ms. Future studies can use this time-effective model for real-time ankle torque esti-

mation, considering walking speeds ranging from 1.5 to 2.0 km/h and subjects with 
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heights and masses varying from 1.50 to 1.90 m and from 50.0 to 90.0 kg, respective-

ly. 

References 

1.  Meng W, Liu Q, Zhou Z, et al (2015) Recent development of mechanisms and control 

strategies for robot-assisted lower limb rehabilitation. Mechatronics 31:132–145. 

https://doi.org/10.1016/j.mechatronics.2015.04.005 

2.  Zhang J, Cheah CC, Collins SH (2017) Torque Control in Legged Locomotion. In: 

Bioinspired Legged Locomotion, 1st ed. Elsevier, pp 347–400 

3.  Baud R, Manzoori AR, Ijspeert A, Bouri M (2021) Review of control strategies for 

lower-limb exoskeletons to assist gait. J Neuroeng Rehabil 18:119. 

https://doi.org/10.1186/s12984-021-00906-3 

4.  Ao D, Song R, Gao J (2017) Movement Performance of Human–Robot Cooperation 

Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle 

Power-Assist Exoskeleton Robot. IEEE Trans Neural Syst Rehabil Eng 25:1125–1134. 

https://doi.org/10.1109/TNSRE.2016.2583464 

5.  Sartori M, Lloyd DG, Reggiani M, Pagello E (2009) A stiff tendon 

neuromusculoskeletal model of the knee. In: 2009 IEEE Workshop on Advanced 

Robotics and its Social Impacts. IEEE, pp 132–138 

6.  Gui K, Liu H, Zhang D (2019) A Practical and Adaptive Method to Achieve EMG-

Based Torque Estimation for a Robotic Exoskeleton. IEEE/ASME Trans Mechatronics 

24:483–494. https://doi.org/10.1109/TMECH.2019.2893055 

7.  Chandrapal M, Chen X, Wang W, et al (2011) Investigating improvements to neural 

network based EMG to joint torque estimation. Paladyn, J Behav Robot 2:185–192. 

https://doi.org/10.2478/s13230-012-0007-2 

8.  Lelas JL, Merriman GJ, Riley PO, Kerrigan DC (2003) Predicting peak kinematic and 

kinetic parameters from gait speed. Gait Posture 17:106–112. 

https://doi.org/10.1016/S0966-6362(02)00060-7 

9.  Fleischer C, Reinicke C, Hommel G (2005) Predicting the intended motion with EMG 

signals for an exoskeleton orthosis controller. In: 2005 IEEE/RSJ International 

Conference on Intelligent Robots and Systems. IEEE, pp 2029–2034 

10.  Liu L, Luken M, Leonhardt S, Misgeld BJE (2017) EMG-driven model-based knee 

torque estimation on a variable impedance actuator orthosis. In: IEEE International 

Conference on Cyborg and Bionic Systems (CBS). IEEE, pp 262–267 

11.  Durandau G, Farina D, Sartori M (2018) Robust Real-Time Musculoskeletal Modeling 

Driven by Electromyograms. IEEE Trans Biomed Eng 65:556–564. 

https://doi.org/10.1109/TBME.2017.2704085 

12.  Li Y, Chen W, Yang H, et al (2020) Joint Torque Closed-Loop Estimation Using 

NARX Neural Network Based on sEMG Signals. IEEE Access 8:. 

https://doi.org/10.1109/ACCESS.2020.3039983 

13.  Lu L, Wu Q, Chen X, et al (2019) Development of a sEMG-based torque estimation 

control strategy for a soft elbow exoskeleton. Rob Auton Syst 111:88–98. 

https://doi.org/10.1016/j.robot.2018.10.017 



12 

14.  Ullauri JB, Peternel L, Ugurlu B, et al (2015) On the EMG-based torque estimation for 

humans coupled with a force-controlled elbow exoskeleton. In: 2015 International 

Conference on Advanced Robotics (ICAR). IEEE, pp 302–307 

15.  Wang C, Peng L, Hou Z-G, et al (2018) sEMG-Based Torque Estimation Using Time-

Delay ANN for Control of an Upper-Limb Rehabilitation Robot. In: 2018 IEEE 

International Conference on Cyborg and Bionic Systems (CBS). IEEE, pp 585–591 

16.  Yang N, Li J, Xu P, et al (2022) Design of Elbow Rehabilitation Exoskeleton Robot 

with sEMG-based Torque Estimation Control Strategy. In: 2022 6th International 

Conference on Robotics and Automation Sciences (ICRAS). IEEE, pp 105–113 

17.  Moreira L, Figueiredo J, Vilas-Boas JP, Santos CP (2021) Kinematics, Speed, and 

Anthropometry-Based Ankle Joint Torque Estimation: A Deep Learning Regression 

Approach. Machines 9:154. https://doi.org/10.3390/machines9080154 

18.  Figueiredo J, Santos CP, Moreno JC (2019) Smart wearable orthosis to assist impaired 

human walking 

19.  Bortole M, Venkatakrishnan A, Zhu F, et al (2015) The H2 robotic exoskeleton for 

gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil 

12:54. https://doi.org/10.1186/s12984-015-0048-y 

20.  Figueiredo J, Carvalho S, Vilas-Boas JP, et al (2020) Wearable Inertial Sensor System 

towards Daily Human Kinematic Gait Analysis : Benchmarking Analysis to MVN 

BIOMECH. Sensors. https://doi.org/10.3390/s20082185 

21.  Figueiredo J, Ferreira C, Costa L, et al (2017) Instrumented Insole System for 

Ambulatory and Robotic Walking Assistance : First Advances. In: IEEE International 

Conference on Autonomous Robot Systems and Competitions (ICARSC 2017) 

22.  Pinheiro C, Figueiredo J, Magalhães N, Santos CP (2020) Wearable Biofeedback 

Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait 

Training: A Pre-Post Controlled Study in Healthy Participants. Sensors 20:5876. 

https://doi.org/10.3390/s20205876 

23.  Delsys Incorporated (2019) TRIGNO ® Wireless System SDK User’s Guide. 1–29 

24.  Lévesque L (2014) Nyquist sampling theorem: Understanding the illusion of a 

spinning wheel captured with a video camera. Phys Educ 49:697–705. 

https://doi.org/10.1088/0031-9120/49/6/697 

25.  Kerrigan DC, Todd MK, Croce UD (1998) Gender Differences in Joint Biomechanics 

During Walking. Am J Phys Med Rehabil 77:2–7. https://doi.org/10.1097/00002060-

199801000-00002 

26.  Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of 

recommendations for SEMG sensors and sensor placement procedures. J 

Electromyogr Kinesiol 10:361–374. https://doi.org/10.1007/s10750-015-2551-3 

27.  Moreira L, Figueiredo J, Fonseca P, et al (2021) Lower limb kinematic, kinetic, and 

EMG data from young healthy humans during walking at controlled speeds. Sci Data 

8:103. https://doi.org/10.1038/s41597-021-00881-3 

28.  Moreira L (2019) Assist-As-Needed EMG-based Control Strategy for Powered 

Wearable Assistive Devices. Universidade do Minho 

29.  ONNX Runtime. https://onnxruntime.ai/ 

30.  Shah B, Bhavsar H (2022) Time Complexity in Deep Learning Models. Procedia 

Comput Sci 215:202–210. https://doi.org/10.1016/j.procs.2022.12.023 


