
Information Flow Control-by-Construction for
an Object-Oriented Language

Tobias Runge1,2 [0000-0002-9154-7743], Alexander Kittelmann1,2 [0000-0002-8804-7051],
Marco Servetto3, Alex Potanin4 [0000-0002-4242-2725], and Ina Schaefer1,2

1 TU Braunschweig, Braunschweig, Germany
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

3 Victoria University of Wellington, Wellington, New Zealand
4 Australian National University, Canberra, Australia

{tobias.runge,alexander.kittelmann,ina.schaefer}@kit.edu,
marco@ecs.vuw.ac.nz, alex.potanin@anu.edu.au

Abstract. In security-critical software applications, confidential infor-
mation must be prevented from leaking to unauthorized sinks. Static
analysis techniques are widespread to enforce a secure information flow
by checking a program after construction. A drawback of these systems
is that incomplete programs during construction cannot be checked prop-
erly. The user is not guided to a secure program by most systems. We
introduce IFbCOO, an approach that guides users incrementally to a
secure implementation by using refinement rules. In each refinement step,
confidentiality or integrity (or both) is guaranteed alongside the functional
correctness of the program, such that insecure programs are declined by
construction. In this work, we formalize IFbCOO and prove soundness
of the refinement rules. We implement IFbCOO in the tool CorC and
conduct a feasibility study by successfully implementing case studies.

Keywords: correctness-by-construction, information flow control, security-by-
design

1 Introduction

For security-critical software, it is important to ensure confidentiality and integrity
of data, otherwise attackers could gain access to this secure data. For example, in
a distributed system, one client A has a lower privilege (i.e., a lower security level)
than another client B. When both clients send information to each other, security
policies can be violated. If A reads secret data from B, confidentiality is violated. If
B reads untrusted data from A, the integrity of B’s data is no longer guaranteed. To
ensure security in software, mostly static analysis techniques are used, which check
the software after development [28]. A violation of security is only revealed after
the program is fully developed. If violations occur, an extensive and repetitive
repairing process of writing code and checking the security properties with the
analysis technique is needed. An alternative is to check the security with language-
based techniques such as type systems [28] during the development. In such a

2 Tobias Runge et al.

secure type system, every expression is assigned to a type, and a set of typing
rules checks that the security policy is not violated [28]. If violations occur, an
extensive process of debugging is required until the code is type-checked.

To counter these shortcomings, we propose a constructive approach to directly
develop functionally correct programs that are secure by design without the need
of a post-hoc analysis. Inspired by the correctness-by-construction (CbC) approach
for functional correctness [18], we start with a security specification and refine
a high-level abstraction of the program stepwise to a concrete implementation
using a set of refinement rules. Guided by the security specification defining the
allowed security policies on the used data, the programmer is directly informed
if a refinement is not applicable because of a prohibited information flow. With
IFbCOO (Information Flow control by Construction for an Object-Oriented
language), programmers get a local warning as soon as a refinement is not secure,
which can reduce debugging effort. With IFbCOO, functionally correct and secure
programs can be developed because both, the CbC refinement rules for functional
correctness and the proposed refinement rules for information flow security, can
be applied simultaneously.

In this paper, we introduce IFbCOO which supports information flow control
for an object-oriented language with type modifiers for mutability and alias
control [13]. IFbCOO is based on IFbC [25] proposed by some of the authors
in previous work, but lifts its programming paradigm from a simple impera-
tive language to an object-oriented language. IFbC introduced a sound set of
refinement rules to create imperative programs following an information flow
policy, but the language itself is limited to a simple while-language. In contrast,
IFbCOO is based on the secure object-oriented language SIFO [27]. SIFO’s type
system uses immutability and uniqueness properties to facilitate information flow
reasoning. In this work, we translate SIFO’s typing rules to refinement rules as
required by our correctness-by-construction approach. This has the consequence
that programs written in SIFO and programs constructed using IFbCOO are
interchangeable. In summary, our contributions are the following. We formalize
IFbCOO and establish 13 refinement rules. We prove soundness that programs
constructed with IFbCOO are secure. Furthermore, we implement IFbCOO in
the tool CorC and conduct a feasibility study.

2 Object-Oriented Language SIFO by Example

SIFO [27] is an object-oriented language that ensures secure information flow
through a type system with precise uniqueness and (im)mutability reasoning.
SIFO introduces four type modifiers for references, namely read, mut, imm, and
capsule, which define allowed aliasing and mutability of objects in programs.
While, mut and imm point to mutable and immutable object respectively, a
capsule reference points to a mutable object that cannot be accessed from other
mut references. A read reference points to an object that cannot be aliased or
mutated. In this section, SIFO is introduced with examples to give an overview
of the expressiveness and the security mechanism of the language. We use in the

Information Flow Control-by-Construction for an Object-Oriented Language 3

examples two security levels, namely low and high. An information flow from
low to high is allowed, whereas the opposite flow is prohibited. The security
levels can be arranged in any user-defined lattice. In Section 4, we introduce SIFO
formally. In Listing 1, we show the implementation of a class Card containing
a low immutable int number and two high fields: a mutable Balance and an
immutable Pin.

1 class Card{low imm int number; high mut Balance blc;

2 high imm Pin pin;}

3 class Balance{low imm int blc;}

4 class Pin{low imm int pin;}

Listing 1: Class declarations

In Listing 2, we show allowed and prohibited field assignments with immutable
objects as information flow reasoning is the easiest with these references. In a
secure assignment, the assigned expression and the reference need the same
security level (Lines 6,7). This applies to mutable and immutable objects. The
security level of expressions is calculated by the least upper bound of the accessed
field security level and the receiver security level. A high int cannot be assigned
to a low blc reference (Line 8) because this would leak confidential information
to an attacker, when the attacker reads the low blc reference. The assignment
is rejected. Updates of a high immutable field are allowed with a high int

(Line 9) or with a low int (Line 10). The imm reference guarantees that the
assigned integer is not changed, therefore, no new confidential information can
be introduced and a promotion in Line 10 is secure. The promotion alters the
security level of the assigned expression to be equal to the security level of the
reference. As expected, the opposite update of a low field with a high int is
prohibited in Line 11 because of the direct flow from higher to lower security
levels.

5 low mut Card c = new low Card ();//an existing Card reference

6 high mut Balance blc = c.blc;// correct access of high blc

7 high imm int blc = c.blc.blc;// correct access of high blc.blc

8 low imm int blc = c.blc.blc;// wrong high assigned to low

9 c.blc.blc = highInt;// correct field update with high int

10 c.blc.blc = c.number;// correct update with promoted imm int

11 high imm int highInt = 0;// should be some secret value

12 c.number = highInt;//wrong , high int assigned to low c.number

Listing 2: Examples with immutable objects

Next, in Listing 3, we exemplify which updates of mutable objects are legal
and which updates are not. We have a strict separation of mutable objects
with different security levels. We want to prohibit that an update through a
higher reference is read by lower references, or that an update through lower
references corrupt data of higher references. A new Balance object can be
initialized as a low object because the Balance object itself is not confidential
(Line 12). The association to a Card object makes it a confidential attribute of

4 Tobias Runge et al.

the Card class. However, the assignment of a low mut object to a high reference
is prohibited. If Line 13 would be accepted, Line 14 could be used to insecurely
update the confidential Balance object because the low reference is still in scope
of the program. Only an assignment without aliasing is allowed (Line 16). With
capsule, an encapsulated object is referenced to which no other mut reference
points. The low capsBlc object can be promoted to a high security level and
assigned. Afterwards, the capsule reference is no longer accessible. In the case
of an immutable object, the aliasing is allowed (Line 18), since the object itself
cannot be updated (Line 19). Both imm and capsule references are usable to
communicate between different security levels.

12 low mut Balance newBlc = new low Balance (0);//ok

13 c.blc = newBlc;//wrong , mutable secret shared as low and high

14 newBlc.blc = 10;//ok? Insecure with previous line

15 low capsule Balance capsBlc = new low Balance (0);//ok

16 c.blc = capsBlc;//ok , no alias introduced

17 low imm Pin immPin = new low Pin (1234); //ok

18 c.pin = immPin;//ok , pin is imm and can be aliased

19 immPin.pin = 5678; //wrong , immutable object cannot be updated

Listing 3: Examples with mutable and encapsulated objects

3 IFbCOO by Example

With IFbCOO, programmers can incrementally develop programs, where the
security levels are organized in a lattice structure to guarantee a variety of
confidentiality and integrity policies. IFbCOO defines 13 refinement rules to create
secure programs. As these rules are based on refinement rules for correctness-
by-construction, programmers can simultaneously apply refinements rules for
functional correctness [18, 26, 12] and security. We now explain IFbCOO in the
following examples. For simplicity, we omit the functional specification. IFbCOO
is introduced formally in Section 4.

In IFbCOO, the programmer starts with a class including fields of the class
and declarations of method headers. IFbCOO is used to implement methods in
this class successively. The programmer chooses one abstract method body and
refines this body to a concrete implementation of the method. A starting IFbCOO
tuple specifies the typing context Γ and the abstract method body eA. The
expression eA is abstract in the beginning and refined incrementally to a concrete
implementation. During the construction process, local variables can be added.
The refinement process in IFbCOO results in a method implementation which
can be exported to the existing class. First, we give a fine-grained example to
show the application of refinement rules in detail. The second example illustrates
that IFbCOO can be used to implement larger methods.

The first example in Listing 4 is a setter method. A field number is set
with a parameter x. We start the construction with an abstract expression
eA : [Γ ; low imm void] with a typing context Γ = low mut C this, low imm int x

Information Flow Control-by-Construction for an Object-Oriented Language 5

extracted from the method signature (C is the class of the method receiver).
The abstract expression eA contains all local information (the typing context
and its type) to be further refined. A concrete expression that replaces the
abstract expression must have the same type low imm void, and it can only
use variables from the typing context Γ . The tuple [Γ ; low imm void] is now
refined stepwise. First, we introduce a field assignment: eA→ eA1.number = eA2.
The newly introduced abstract expressions are eA1 : [Γ ; low mut C] and eA2 :
[Γ ; low imm int] according to the field assignment refinement rule. In the next
step, eA1 is refined to this, which is the following refinement: eA1.number =
eA2 → this.number = eA2. As this has the same type as eA1, the refinement
is correct. The last refinement replaces eA2 with x, resulting in this.number =
eA2 → this.number = x. As x has the same type as eA2, the refinement is correct.
The method is fully refined since no abstract expression is left.

1 low mut method low imm void setNumber(low imm int x) {

2 this.number = x; }

Listing 4: Set method

To present a larger example, we construct a check of a signature in an email
system (see Listing 5). The input of the method is an email object and a client

object that is the receiver of the email. The method checks whether the key
with which the email object was signed and the stored public key of the client

object are a valid pair. If this is the case, the email object is marked as verified.
The fields isSignatureVerified and emailSignKey of the class email have a
high security level, as they contain confidential data. The remaining fields have
low as security level.

1 static low imm void verifySignature(

2 low mut Client client , low mut Email email) {

3 low imm int pubkey = client.publicKey;

4 high imm int privkey = email.emailSignKey;

5 high imm boolean isVerified;

6 if (isKeyPairValid(privkey , pubkey)) {

7 isVerified = true;

8 } else {

9 isVerified = false;

10 }

11 email.IsSignatureVerified = isVerified;

12 }

Listing 5: Program of a secure signature verification

In Figure 1, we show the starting IFbCOO tuple with the security level of
the variables (type modifier and class name are omitted) at the top. In our
example, we have two parameters client and email, with a low security level.
To construct the algorithm of Listing 5, the method implementation is split into
three parts. First, two local variables (private and public key for the signature
verification) are initialized and a Boolean for the result of the verification is

6 Tobias Runge et al.

Ref(6) Γ [mut(high)]

eA : [low email, low client; low imm void]

 low imm int pubkey = client.publicKey;
 high imm int privkey = email.emailSignKey;

 high imm boolean isVerified;

if isKeyPairValid(privkey, pubkey) then eT else eF email.isSignatureVerified = isVerified;

isVerified = true;

Ref(1)

Ref(2) Ref(3)

eA1 : [low email, low client; low imm void]
eA2 : [low email, low client, low pubkey, high

privkey, high isVerified; low imm void]

eA22 : [low email, low
client, low pubkey, high
privkey, high isVerified;

low imm void]

eA21 : [low email, low
client, low pubkey, high
privkey, high isVerified;

low imm void]

Ref(4)

Ref(5) Γ [mut(high)]

Ref(7)

isVerified = false;

Fig. 1: Refinement steps for the signature example

declared. Second, verification whether the keys used for the signature form a
valid pair takes place. Finally, the result is saved in a field of the email object.

Using the refinement rule for composition, the program is initially split into
the initialization phase and the remainder of the program’s behavior (Ref(1)).
This refinement introduces two abstract expressions eA1 and eA2. The typing
contexts of the expressions are calculated by IFbCOO automatically during
refinement. As we want to initialize two local variables by further refining eA1,
the finished refinement in Figure 1 already contains the local high variables
privkey and isVerified, and the low variable pubkey in the typing context of
expression eA2.

In Ref(2), we apply the assignment refinement5 to initialize the integers pubkey
and privkey. Both references point to immutable objects that are accessed via
fields of the objects client and email. The security levels of the field accesses
are determined with the field access rule checked by IFbCOO. The determined
security level of the assigned expression must match the security level of the
reference. In this case, the security levels are the same. Additionally, it is enforced
that immutable objects cannot be altered after construction (i.e., it is not possible
to corrupt the private and public key). In Ref(3), the next expression eA2 is split
with a composition refinement into eA21 and eA22.

Ref(4) introduces an if-then-else-expression by refining eA21. Here, it is
checked whether the public and private key pair is valid. As the privkey object
has a high security level, we have to restrict our typing context with Γ [mut(high)].
This is necessary to prevent indirect information leaks. With the restrictions,
we can only assign expressions to at least high references and mutate high

5 To be precise, it would be a combination of composition and assignment refinements,
because an assignment refinement can only introduce one assignment expression.

Information Flow Control-by-Construction for an Object-Oriented Language 7

T ::= s mdf C
s ::= high | low | . . . (user defined)
mdf ::= mut | imm | capsule | read
CD ::= class C implements C {F MD } | interface C extends C {MH }
F ::= s mut C f ; | s imm C f ;
MD ::= MH {return e;}
MH ::= s mdf method T m(T1 x1, . . . ,Tn xn)
e ::= eA | x | e0.f = e1 | e.f | e0.m(e) | new s C (e) | e0; e1

| if e0 then e1 else e2 | while e0 do e1 | declassify(e)
Γ ::= x1 : T1 . . . xn : Tn

E ::= [] | E .f | E .f = e | e.f = E| E .m(e) | e.m(e E e) | new s C (e E e)

Fig. 2: Syntax of the extended core calculus of SIFO

objects (mut(high)) in the then- and else-expression. If we assign a value in the
then-expression to a low reference that is visible outside of the then-expression,
an attacker could deduce that the guard was evaluated to true by reading that
low reference.

Ref(5) introduces an assignment of an immutable object to a high reference,
which is allowed in the restricted typing context. As explained, the assignment to
low references is forbidden. The assigned immutable object true can be securely
promoted to a high security level. In Ref(6), a similar assignment is done, but
with the value false. Ref(7) sets a field of the email object by refining eA22.
We update the high field of the email object by accepting the high expression
isVerified. With this last refinement step, the method is fully concretized. The
method is secure by construction and constitutes valid SIFO code (see Listing 5).

4 Formalizing Information Flow Control-by-Construction

In this section, we formalize IFbCOO for the construction of functionally correct
and secure programs. Before, we introduce SIFO as the underlying programming
language formally.

4.1 Core Calculus of SIFO

Figure 2 shows the syntax of the extended core calculus of SIFO [27]. SIFO is an
expression-based language similar to Featherweight Java [17]. Every reference
and expression is associated with a type T . The type T is composed of a security
level s , a type modifier mdf and a class name C . Security levels are arranged in a
lattice with one greatest level > and one least level ⊥ forming the security policy.
The security policy determines the allowed information flow. Confidentiality
and integrity can be enforced by using two security lattices and two security
annotations for each expression. Each property is enforced by a strict separation of
security levels. In the interest of an expressive language, we allow the information
flow from lower to higher levels (confidentiality or integrity security levels) using

8 Tobias Runge et al.

promotion rules while the opposite needs direct interaction with the programmer
by using the declassify expression. For convenience, we will use only one lattice
of confidentiality security levels in the explanations.

The type modifier mdf can be mut, imm, capsule, and read with the following
subtyping relation. For all type modifier mdf : capsule ≤ mdf ,mdf ≤ read. In
SIFO, objects are mutable or (deeply) immutable. The reachable object graph
(ROG) from a mutable object is composed of mutable and immutable objects,
while the ROG of an immutable object can only contain immutable objects. A
mut reference must point to a mutable object; such an object can be aliased
and mutated. An imm reference must point to an immutable object; such an
object can be aliased, but not mutated. A capsule reference points to a mutable
object. The object and the mutable objects in its ROG cannot be accessed from
other references. As capsule is a subtype of imm and mut the object can be
assigned to both. Finally, a read reference is the supertype that points to an
object that cannot be aliased or mutated, but it has no immutability guarantee
that the object is not modified by other references. These modifiers allow us to
make precise decisions about the information flow by utilizing immutability or
uniqueness properties of objects. For example, an immutable object cannot be
altered, therefore it can be securely promoted to a higher security level. For a
mutable object, a security promotion is insecure because an update through other
references with lower security levels can corrupt the confidential information.

Additionally, the syntax of SIFO contains class definitions CD which can
be classes or interfaces. An interface has a list of method headers. A class has
additional fields. A field F has a type T and a name, but the type modifier can
only be mut or imm. A method definition MD consists of a method header and a
body. The header has a receiver, a return type, and a list of parameters. The
parameters have a name and a type T . The receiver has a type modifier and a
security level. An expression e can be a variable, field access, field assignment,
method call, or object construction in SIFO. In the extended version presented in
the paper, we also added abstract expressions, sequence of expressions, conditional
expression, loop expression, and declassification. With the declassify operator
a reverse information flow is allowed. The expression eA is abstract and typed
by [Γ ;T]. Beside the type T a local typing context Γ is used to have all needed
information to further refine eA. We require a Boolean type for the guards in the
conditional and loop expression. A typing context Γ assigns a type Ti to variable
xi. With the evaluation context E , we define the order of evaluation for the
reduction of the system. The typing rules of SIFO are shown in the report [24].

4.2 Refinement Rules for Program Construction

To formalize the IFbCOO refinement rules, in Figure 3, we introduce basic
notations, which are used in the refinement rules.

L is the lattice of security levels to define the information flow policy and
lub is used to calculate the least upper bound of a set of security levels. The
functional and security specification of a program is defined by an IFbCOO
tuple {P ;Q;Γ ;T ; eA}. The IFbCOO tuple consists of a typing context Γ , a

Information Flow Control-by-Construction for an Object-Oriented Language 9

L Bounded upper semi-lattice (L,≤) of security levels
lub : P(L)→ L Least upper bound of the security levels in L
{P ;Q;Γ ;T ; eA} Starting IFbCOO tuple
eA : [P ;Q;Γ ;T] Typed abstract expression eA

Γ [mut(s)] Restricted typing context
sec(T) = s Returns the security level s in type T

Fig. 3: Basic notations for IFbCOO

type T , an abstract expression eA, and a functional pre-/postcondition, which
is declared in the first-order predicates P and Q . The abstract expression is
typed by [P ;Q;Γ ;T]. In the following, we focus on security, so the functional
specification is omitted.

The refinement process of IFbCOO starts with a method declaration, where
the typing context Γ is extracted from the arguments and T is the method return
type. Then, the user guides the construction process by refining the first abstract
expression eA. With the notation Γ [mut(s)], we introduce a restriction to the
typing context. The function mut(s) prevents mutation of mutable objects that
have a security level lower than s. When the user chooses the lowest security
level of the lattice, the function does not restrict Γ . The function sec(T) extracts
the security level of a type T .

Refinement Rules. The refinement rules are used to replace an IFbCOO tuple
{Γ ;T ; eA} with a concrete implementation by concretizing the abstract expression
eA. This refinement is only correct if specific side conditions hold. On the right side
of the rules, all newly introduced symbols are implicitly existentially quantified.
The rules can introduce new abstract expressions eAi which can be refined by
further applying the refinement rules.

Refinement Rule 1 (Variable)
eA is refinable to x if eA : [Γ ;T] and Γ (x) = T .

The first IFbCOO rule introduces a variable x, which does not alter the program.
It refines an abstract expression to an x if x has the correct type T .

Refinement Rule 2 (Field Assignment)
eA is refinable to eA0.f := eA1 if eA : [Γ ;T] and eA0 : [Γ ; s0 mut C0] and
eA1 : [Γ ; s1 mdf C] and s mdf C f ∈ fields(C0) and s1 = lub(s0, s).

We can refine an abstract expression to a field assignment if the following
conditions hold. The expression eA0 has to be mut to allow a manipulation of the
object. The security level of the assigned expression eA1 has to be equal to the
least upper bound of the security levels of expression eA0 and the field f . The
field f must be a field of the class C0 with the type s mdf C . With the security
promotion rule, the security level of the assigned expression can be altered.

10 Tobias Runge et al.

Refinement Rule 3 (Field Access)
eA is refinable to eA0.f if eA : [Γ ; s mdf C] and eA0 : [Γ ; s0 mdf 0 C0] and
s1 mdf 1 C f ∈ fields(C0) and s = lub(s0, s1) and mdf 0 � mdf 1 = mdf .

We can refine an abstract expression to a field access if a field f exists in the
class of receiver eA0 with the type s1 mdf 1 C . The accessed value must have the
expected type s mdf C of the abstract expression. This means, the class name
of the field f and C must be the same. Additionally, the security level of the
abstract expression eA is equal to the least upper bound of the security levels
of expression eA0 and field f . The type modifiers must also comply. The arrow
between type modifiers is defined as follows. As we allow only mut and imm fields,
not all possible cases are defined: mdf � mdf ′ = mdf ′′

• mut� mdf = capsule� mdf = mdf
• imm� mdf = mdf � imm = imm

• read� mut = read.

Refinement Rule 4 (Method Call)
eA is refinable to eA0.m(eA1, . . . , eAn) if eA : [Γ ;T] and eA0 : [Γ ;T0] . . . eAn :
[Γ ;Tn] and T0 . . . Tn → T ∈ methTypes(class(T0), m) and sec(T) ≥ sec(T0) and
forall i ∈ {1, . . . , n} if mdf(Ti) ∈ {mut, capsule} then sec(Ti) ≥ sec(T0).

With the method call rule, an abstract expression is refined to a call to method
m. The method has a receiver eA0, a list of parameters eA1 . . . eAn, and a return
value. A method with matching definition must exist in the class of receiver
eA0. This method definition is returned by the methTypes function. The function
class returns the class of a type T . The security level of the return type has to
be greater than or equal to the security level of the receiver. This condition is
needed because through dynamic dispatch information of the receiver may be
leaked if its security level is higher than the security level of the return type.
The same applies for mut and capsule parameters. The security level of these
parameters must also be greater than or equal to the security level of the receiver.
As the method call replaces an abstract expression eA, the return value must
have the same type (security level, type modifier, and class name) as the refined
expression. In the technical report [24], we introduce multiple methods types [27]
to reduce writing effort and increase the flexibility of IFbCOO. A method can be
declared with specific types for receiver, parameters and return value, and other
signatures of this method are deduced by applying the transformations from the
multiple method types definition, where security level and type modifiers are
altered. All these deduced method declarations can be used in the method call
refinement rule.

Refinement Rule 5 (Constructor)
eA is refinable to new s C(eA1 . . . eAn) if eA : [Γ ; s mdf C] and fields(C) =
T1 f1 . . . Tn fn and eA1 : [Γ ;T1[s]] . . . eAn : [Γ ;Tn[s]].

The constructor rule is a special method call. We can refine an abstract expression
to a constructor call, where a mutable object of class C is constructed with a

Information Flow Control-by-Construction for an Object-Oriented Language 11

security level s. The parameter list eA1 . . . eAn must match the list of declared
fields f1 . . . fn in class C. Each parameter eAi is assigned to field fi. This
assignment is allowed if the type of parameter eAi is (a subtype of) Ti[s]. T [s]
is a helper function which returns a new type whose security level is the least
upper bound of sec(T) and s. It is defined as: T [s] = lub(s, s ′) mdf C , where
T = s ′ mdf C , defined only if s′ ≤ s or s ≤ s′. By calling a constructor, the
security level s can be freely chosen to use parameters with security levels that
are higher than originally declared for the fields. In other words, a security level
s is used to initialize lower security fields with parameters of higher security level
s. This results in a newly created object with the security level s [27]. As the
newly created object replaces an abstract expression eA, the object must have
the same type as the abstract expression. If the modifier promotion rule is used
(i.e., no mutable input value exist), the object can be assigned to a capsule or
imm reference.

Refinement Rule 6 (Composition)
eA is refinable to eA0; eA1 if eA : [Γ ;T] and eA0 : [Γ ;T0] and eA1 : [Γ ;T].

With the composition rule, an abstract expression eA is refined to two subsequent
abstract expression eA0 and eA1. The second abstract expression must have the
same type T as the refined expression.

Refinement Rule 7 (Selection)
eA is refinable to if eA0 then eA1 else eA2 if eA : [Γ ;T] and eA0 : [Γ ; s imm

Boolean] and eA1 : [Γ [mut(s)];T] and eA2 : [Γ [mut(s)];T].

The selection rule refines an abstract expression to a conditional if-then-else-
expression. Secure information can be leaked indirectly as the selected branch
may reveal the value of the guard. In the branches, the typing context is restricted.
The restricted typing context prevents updating mutable objects with a security
level lower than s. The security level s is determined by the Boolean guard eA0.
When we add updatable local variables to our language, the selection rule must
also prevent the update of local variables that have a security level lower than s.

Refinement Rule 8 (Repetition)
eA is refinable to while eA0 do eA1 if eA : [Γ ;T] and eA0 : [Γ ; s imm Boolean]
and eA1 : [Γ [mut(s)];T].

The repetition rule refines an abstract expression to a while-loop. The repetition
rule is similar to the selection rule. For the loop body, the typing context is
restricted to prevent indirect leaks of the guard in the loop body. The security
level s is determined by the Boolean guard eA0.

Refinement Rule 9 (Context Rule)
E [eA] is refinable to E [e] if eA is refinable to e.

The context rule replaces in a context E an abstract expression with a concrete
expression, if the abstract expression is refinable to the concrete expression.

12 Tobias Runge et al.

Refinement Rule 10 (Subsumption Rule)
eA : [Γ ;T] is refinable to eA1 : [Γ ;T ′] if T ′ ≤ T .

The subsumption rule can alter the type of expressions. An abstract expression
that requires a type T can be weakened to require a type T ′ if the type T ′ is a
subtype of T .

Refinement Rule 11 (Security Promotion)
eA : [Γ ; s mdf C] is refinable to eA1 : [Γ ; s′ mdf C] if mdf ∈ {capsule, imm}
and s′ ≤ s.

The security promotion rule can alter the security level of expressions. An abstract
expression that requires a security level s can be weakened to require a security
level s′ if the expression is capsule or imm. Other expressions (mut or read)
cannot be altered because potentially existing aliases are a security hazard.

Refinement Rule 12 (Modifier Promotion)
eA : [Γ ; s capsule C] is refinable to eA1 : [Γ [mut\read]; s mut C].

The modifier promotion rule can alter the type modifier of an expression eA.
An abstract expression that requires a capsule type modifier can be weakened
to require a mut type modifier if all mut references are only seen as read in
the typing context. That means, that the mutable objects in the ROG of the
expression cannot be accessed by other references. Thus, manipulation of the
object is only possible through the reference on eA.

Refinement Rule 13 (Declassification)
eA : [Γ ;⊥ mdf C] is refinable to declassify(eA1) : [Γ ; s mdf C] if mdf ∈
{capsule, imm}.

In our information flow policy, we can never assign an expression with a higher
security level to a variable with a lower security level. To allow this assignment
in appropriate cases, the declassify rule is used. An expression eA is altered
to a declassify-expression with an abstract expression eA1 that has a security
level s if the type modifier is capsule or imm. A mut or read expression cannot
be declassified as existing aliases are a security hazard. Since we have the
security promotion rule, the declassified capsule or imm expression can directly
be promoted to any higher security level. Therefore, it is sufficient to use the
bottom security level in this rule without restricting the expressiveness. For
example, the rule can be used to assign a hashed password to a public variable.
The programmer has the responsibility to ensure that the use of declassify is
secure.

4.3 Proof of Soundness

In the technical report, we prove that programs constructed with the IFbCOO
refinement rules are secure according to the defined information flow policy. We

Information Flow Control-by-Construction for an Object-Oriented Language 13

prove this by showing that programs constructed with IFbCOO are well typed
in SIFO (Theorem 1). SIFO itself is proven to be secure [27]. In the technical
report [24], we prove this property for the core language of SIFO, which does
not contain composition, selection, and repetition expressions. The SIFO core
language is minimal, but using well-known encodings, it can support composition,
selection, and repetition (encodings of the Smalltalk [14] style support control
structures). We also exclude the declassify operation because this rule is an
explicit mechanism to break security in a controlled way.

Theorem 1 (Soundness of IFbCOO).
An expression e constructed with IFbCOO is well typed in SIFO.

5 CorC Tool Support and Evaluation

IFbCOO is implemented in the tool CorC [26, 12]. CorC itself is a hybrid tex-
tual and graphical editor to develop programs with correctness-by-construction.
IFbC [25] is already implemented as extension of CorC, but to support object-
orientation with IFbCOO a redesign was necessary. Source code and case studies
are available at: https://github.com/TUBS-ISF/CorC/tree/CCorCOO.

5.1 CorC for IFbCOO

For space reasons, we cannot introduce CorC comprehensively. We just summarize
the features of CorC to check IFbCOO information flow policies:

– Programs are written in a tree structure of refining IFbCOO tuples (see
Figure 1). Besides the functional specification, variables are labeled with a
type T in the tuples.

– Each IFbCOO refinement rule is implemented in CorC. Consequently, func-
tional correctness and security can be constructed simultaneously.

– The information flow checks according to the refinement rules are executed
automatically after each refinement.

– Each CorC-program is uniquely mapped to a method in a SIFO class. A
SIFO class contains methods and fields that are annotated with security
labels and type modifiers.

– A properties view shows the type T of each used variable in an IFbCOO
tuple. Violations of the information flow policy are explained in the view.

5.2 Case Studies and Discussion

The implementation of IFbCOO in the tool CorC enables us to evaluate the
feasibility of the security mechanism by successfully implementing three case
studies [16, 32] from the literature and a novel one in CorC. The case studies are
also implemented and type-checked in SIFO to confirm that the case studies are
secure. The newly developed Database case study represents a secure system that

14 Tobias Runge et al.

Name #Security
Levels

#Classes #Lines of Code #Methods in
CorC

Database 4 6 156 2

Email [16] 2 9 807 15

Banking [32] 2 3 243 6

Paycard 2 3 244 5

Table 1: Metrics of the case studies

strictly separates databases of different security levels. Email [16] ensures that
encrypted emails cannot be decrypted by recipients without the matching key.
Paycard (http://spl2go.cs.ovgu.de/projects/57) and Banking [32] simulate
secure money transfer without leaking customer data. The Database case study
uses four security levels, while the others (Email, Banking, and Paycard) use two.

As shown in Table 1, the cases studies comprise three to nine classes with
156 to 807 lines of code each. 28 Methods that exceed the complexity of getter
and setter are implemented in CorC. It should be noted that we do not have
to implement every method in CorC. If only low input data is used to compute
low output, the method is intrinsically secure. For example, three classes in the
Database case study are implemented with only low security levels. Only the class
GUI and the main method of the case study, which calls the low methods with
higher security levels (using multiple method types) is then correctly implemented
in CorC. The correct and secure promotion of security levels of methods called
in the main method is confirmed by CorC.

Discussion and Applicability of IFbCOO. We emphasize that CbC and also IFb-
COO should be used to implement correctness- and security-critical programs [18].
The scope of this work is to demonstrate the feasibility of the incremental con-
struction of correctness- and security-critical programs. We argue that we achieve
this goal by implementing four case studies in CorC.

The constructive nature of IFbCOO is an advantage in the secure creation
of programs. Instead of writing complete methods to allow a static analyzer to
accept/reject the method, with IFbCOO, we directly design and construct secure
methods. We get feedback during each refinement step, and we can observe the
status of all accessible variables at any time of the method. For example, we
received direct feedback when we manipulated a low object in the body of a high

then-branch. With this information, we could adjust the code to ensure security.
As IFbCOO extends CorC, functional correctness is also guaranteed at the same
time. This is beneficial as a program, which is security-critical, should also be
functionally correct. As IFbCOO is based on SIFO, programs written with any
of the two approaches can be used interchangeably. This allows developers to use
their preferred environment to develop new systems, re-engineer their systems, or
integrate secure software into existing systems. These benefits of IFbCOO are of
course connected with functional and security specification effort, and the strict
refinement-based construction of programs.

Information Flow Control-by-Construction for an Object-Oriented Language 15

6 Related Work

In this section, we compare IFbCOO to IFbC [25, 29] and other Hoare-style logics
for information flow control. We also discuss information flow type systems and
correctness-by-construction [18] for functional correctness.

IFbCOO extends IFbC [25] by introducing object-orientation and type modi-
fiers. IFbC is based on a simple while language. As explained in Section 4, the
language of IFbCOO includes objects and type modifiers. Therefore, the refine-
ment rules of IFbC are revised to handle secure information flow with objects.
The object-orientation complicates the reasoning of secure assignments because
objects could be altered through references with different security levels. If private
information is introduced, an already public reference could read this information.
SIFO and therefore IFbCOO consider these cases and prevent information leaks
by considering immutability and encapsulation and only allowing secure aliases.

Previous work using Hoare-style program logics with information flow control
analyzes programs after construction, rather than guaranteeing security during
construction. Andrews and Reitman [5] encode information flow directly in a
logical form. They also support parallel programs. Amtoft and Banerjee [3] use
Hoare-style program logics and abstract interpretations to detect information
flow leaks. They can give error explanations based on strongest postcondition
calculation. The work of Amtoft and Banerjee [3] is used in SPARK Ada [4] to
specify and check the information flow.

Type system for information flow control are widely used, we refer to Sabelfeld
and Myers [28] for a comprehensive overview. We only discuss closely related
type systems for object-oriented languages [11, 9, 31, 20, 30, 10]. Banerjee et al. [9]
introduced a type system for a Java-like language with only two security levels.
We extend this by operating on any lattice of security levels. We also introduce
type modifiers to simplify reasoning in cases where objects cannot be mutated
or are encapsulated. Jif [20] is a type system to check information flow in Java.
One main difference is in the treatment of aliases: Jif does not have an alias
analysis to reason about limited side effects. Therefore, Jif pessimistically discards
programs that introduce aliases because Jif has no option to state immutable or
encapsulated objects. IFbCOO allows the introduction of secure aliases.

In the area of correctness-by-construction, Morgan [19] and Back [8] propose
refinement-based approaches which refine functional specifications to concrete
implementations. Beside of pre-/postcondition specification, Back also uses invari-
ants as starting point. Morgan’s calculus is implemented in ArcAngel [22] with
the verifier ProofPower [33], and SOCOS [6, 7] implements Back’s approach. In
comparison to IFbCOO, those approaches do not reason about information flow
security. Other refinement-based approaches are Event-B [1, 2] for automata-based
systems and Circus [21, 23] for state-rich reactive systems. These approaches have
a higher abstraction level, as they operate on abstract machines instead of source
code. Hall and Chapman [15] introduced with CbyC another related approach
that uses formal modeling techniques to analyze the development during all stages
(architectural design, detailed design, code) to eliminate defects early. IFbCOO
is tailored to source code and does not consider other development phases.

16 Tobias Runge et al.

7 Conclusion

In this paper, we present IFbCOO, which establishes an incremental refinement-
based approach for functionally correct and secure programs. With IFbCOO
programs are constructed stepwise to comply at all time with the security
policy. The local check of each refinement can reduce debugging effort, since
the user is not warned only after the implementation of a whole method. We
formalized IFbCOO by introducing 13 refinement rules and proved soundness by
showing that constructed programs are well-typed in SIFO. We also implemented
IFbCOO in CorC and evaluated our implementation with a feasibility study. One
future direction is the conduction of comprehensive user studies for user-friendly
improvements which is only now possible due to our sophisticated tool CorC.

Acknowledgments This work was supported by KASTEL Security Research Labs.

References

1. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An Open Toolset for Modelling and Reasoning in Event-B. International Journal
on Software Tools for Technology Transfer 12(6), 447–466 (2010)

3. Amtoft, T., Banerjee, A.: Information Flow Analysis in Logical Form. In: Interna-
tional Static Analysis Symposium. LNCS, vol. 3148, pp. 100–115. Springer (2004)

4. Amtoft, T., Hatcliff, J., Rodŕıguez, E., Robby, Hoag, J., Greve, D.A.: Specifica-
tion and Checking of Software Contracts for Conditional Information Flow. In:
International Symposium on Formal Methods. pp. 229–245. Springer (2008)

5. Andrews, G.R., Reitman, R.P.: An Axiomatic Approach to Information Flow in
Programs. ACM Transactions on Programming Languages and Systems (TOPLAS)
2(1), 56–76 (1980)

6. Back, R.J.: Invariant Based Programming: Basic Approach and Teaching Experi-
ences. Formal Aspects of Computing 21(3), 227–244 (2009)

7. Back, R.J., Eriksson, J., Myreen, M.: Testing and Verifying Invariant Based Pro-
grams in the SOCOS Environment. In: International Conference on Tests and
Proofs (TAP). LNCS, vol. 4454, pp. 61–78. Springer (2007)

8. Back, R.J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer
Science & Business Media (2012)

9. Banerjee, A., Naumann, D.A.: Secure Information Flow and Pointer Confinement in
a Java-like Language. In: Computer Security Foundations Workshop. vol. 2, p. 253
(2002)

10. Barthe, G., Pichardie, D., Rezk, T.: A Certified Lightweight Non-Interference Java
Bytecode Verifier. In: European Symposium on Programming. LNCS, vol. 4421, pp.
125–140. Springer (2007)

11. Barthe, G., Serpette, B.P.: Partial Evaluation and Non-Interference for Object
Calculi. In: International Symposium on Functional and Logic Programming. LNCS,
vol. 1722, pp. 53–67. Springer (1999)

12. Bordis, T., Cleophas, L., Kittelmann, A., Runge, T., Schaefer, I., Watson, B.W.:
Re-CorC-ing KeY: Correct-by-Construction Software Development Based on KeY.
In: The Logic of Software. A Tasting Menu of Formal Methods. Springer (2022)

Information Flow Control-by-Construction for an Object-Oriented Language 17

13. Giannini, P., Servetto, M., Zucca, E., Cone, J.: Flexible Recovery of Uniqueness
and Immutability. Theoretical Computer Science 764, 145–172 (2019)

14. Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implementation.
Addison-Wesley Longman Publishing Co., Inc. (1983)

15. Hall, A., Chapman, R.: Correctness by Construction: Developing a Commercial
Secure System. IEEE Software 19(1), 18–25 (2002)

16. Hall, R.J.: Fundamental Nonmodularity in Electronic Mail. Automated Software
Engineering 12(1), 41–79 (2005)

17. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A Minimal Core Calculus
for Java and GJ. ACM Transactions on Programming Languages and Systems
(TOPLAS) 23(3), 396–450 (2001)

18. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer Science & Business Media (2012)

19. Morgan, C.: Programming from Specifications. Prentice Hall, 2nd edn. (1994)
20. Myers, A.C.: JFlow: Practical Mostly-Static Information Flow Control. In: Proceed-

ings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 228–241. ACM (1999)

21. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP Semantics for Circus. Formal
Aspects of Computing 21(1), 3–32 (2009)

22. Oliveira, M.V.M., Cavalcanti, A., Woodcock, J.: ArcAngel: A Tactic Language for
Refinement. Formal Aspects of Computing 15(1), 28–47 (2003)

23. Oliveira, M.V.M., Gurgel, A.C., Castro, C.G.: CRefine: Support for the Circus
Refinement Calculus. In: 2008 Sixth IEEE International Conference on Software
Engineering and Formal Methods. pp. 281–290. IEEE (Nov 2008)

24. Runge, T., Kittelmann, A., Servetto, M., Potanin, A., Schaefer, I.: Information Flow
Control-by-Construction for an Object-Oriented Language Using Type Modifiers
(2022), https://arxiv.org/abs/2208.02672

25. Runge, T., Knüppel, A., Thüm, T., Schaefer, I.: Lattice-Based Information Flow
Control-by-Construction for Security-by-Design. In: Proceedings of the 8th Interna-
tional Conference on Formal Methods in Software Engineering (2020)

26. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool
Support for Correctness-by-Construction. In: International Conference on Funda-
mental Approaches to Software Engineering. LNCS, vol. 11424, pp. 25–42. Springer,
Cham (2019)

27. Runge, T., Servetto, M., Potanin, A., Schaefer, I.: Immutability and Encapsulation
for Sound OO Information Flow Control (2022), Under Review

28. Sabelfeld, A., Myers, A.C.: Language-Based Information-Flow Security. IEEE
Journal on Selected Areas in Communications 21(1), 5–19 (2003)

29. Schaefer, I., Runge, T., Knüppel, A., Cleophas, L., Kourie, D., Watson, B.W.: To-
wards Confidentiality-by-Construction. In: International Symposium on Leveraging
Applications of Formal Methods. LNCS, vol. 11244, pp. 502–515. Springer (2018)

30. Strecker, M.: Formal Analysis of an Information Flow Type System for MicroJava.
Technische Universität München, Tech. Rep (2003)

31. Sun, Q., Banerjee, A., Naumann, D.A.: Modular and Constraint-Based Information
Flow Inference for an Object-Oriented Language. In: International Static Analysis
Symposium. LNCS, vol. 3148, pp. 84–99. Springer (2004)

32. Thüm, T., Schaefer, I., Apel, S., Hentschel, M.: Family-based Deductive Verification
of Software Product Lines. In: Proceedings of the 11th International Conference on
Generative Programming and Component Engineering. pp. 11–20 (2012)

33. Zeyda, F., Oliveira, M., Cavalcanti, A.: Supporting ArcAngel in ProofPower. Elec-
tronic Notes in Theoretical Computer Science 259, 225–243 (2009)

