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Security-critical software applications contain confidential information which has to be protected from

leaking to unauthorized systems. With language-based techniques, the confidentiality of applications can

be enforced. Such techniques are for example type systems that enforce an information flow policy through

typing rules. The precision of such type systems, especially in object-oriented languages, is an area of active

research: an appropriate system should not reject too many secure programs while soundly preserving

noninterference. In this work, we introduce the language SIFO which supports information flow control for

an object-oriented language with type modifiers. Type modifiers increase the precision of the type system by

utilizing immutability and uniqueness properties of objects for the detection of information leaks. We present

SIFO informally by using examples to demonstrate the applicability of the language, formalize the type system,

prove noninterference, implement SIFO as a pluggable type system in the programming language L42, and

evaluate it with a feasibility study and a benchmark.

CCS Concepts: • Security and privacy→ Information flow control.

Additional Key Words and Phrases: security, information flow, type system, mutation control, confidentiality,

integrity

1 INTRODUCTION
In security-critical software development, it is important to guarantee the confidentiality and

integrity of the data. For example, in a client-server application, the client has a lower privilege

than the server. If the client reads information from the server in an uncontrolled manner, we may

have a violation of confidentiality; this causes the client to release too much information to the user.

On the other hand, if the server reads information from the client in an uncontrolled manner, we

may have a violation of integrity; this causes the server to accept input that has not been validated.

Language-based techniques such as type systems are used to ensure specific information flow

policies for confidentiality or integrity [Sabelfeld and Myers 2003]. A type system assigns an explicit

security type to every variable and expression, and typing rules prescribe the allowed information

flow in the program and reject programs violating the security policy. For example, we can define a
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security policy as a lattice of security levels with the highest level high and the lowest level low, and

an information flow from high to low is prohibited.

For simple while-languages, type systems to control the information flow are widely stud-

ied [Hunt and Sands 2006; Li and Zhang 2017; Volpano et al. 1996]. We focus on the less researched

area of information flow control for object-oriented languages. Analysis techniques such as fine-

grained taint analysis [Arzt et al. 2014; Enck et al. 2014; Graf et al. 2013; Hedin et al. 2014; Huang

et al. 2014, 2012; Milanova and Huang 2013] detect insecure flows from sources to secure sinks by

analyzing the flow of data in the program. Coarse-grained dynamic information flow approaches [Jia

et al. 2013; Nadkarni et al. 2016; Roy et al. 2009; Xiang and Chong 2021] reduce the writing effort of

annotations by tracking information at the granularity of lexically or dynamically scoped section

of code instead of program variables. By writing annotation, users can increase precision of the

information flow results [Xiang and Chong 2021]. Moreover, there are approaches using program

logic [Amtoft et al. 2006, 2008; Beckert et al. 2013] to analyze and reason about information flow.

In this work, we focus on security type systems for object-oriented languages [Banerjee and Nau-

mann 2002; Barthe et al. 2007; Myers 1999; Strecker 2003]. Sun, Banerjee, and Naumann [Banerjee

and Naumann 2002; Sun et al. 2004] created a Java-like language annotated with security levels for

the standard information flow policy with only two security levels. Myers et al. [Myers 1999] created

the Jif language which extends Java with a type system that supports information flow control.

The precision of the type systems for object-oriented languages is a major challenge. Both related

approaches do not have an alias analysis or an immutability concept, so they conservatively reject

secure programs where confidential and non-confidential references could alias the same object.

This important drawback is addressed in our work. Additionally, as done for other type systems,

we give a correctness guarantee through a proof of noninterference: high data never influences

low data. This means that an attacker who can observe low data cannot obtain information about

high data. If an untrusted library is in the code base, the developer can leverage the type system to

ensure that only low data is served to such library.

We introduce SIFO
1
which supports information flow control for an object-oriented language

with type modifiers for mutability and alias control [Giannini et al. 2019]. With respect to former

work on security type systems for object-oriented languages, SIFO provides a more precise type

system, allowing to type more correct programs. In this work, we show that reasoning about

immutability and encapsulation is beneficial to reason about information flow. In addition to adding

expressivity, SIFO allows a natural and compact programming style, where only a small part of the

code needs to actually be annotated with security levels. This result is achieved by building over

the concept of promotion/recovery [Giannini et al. 2019; Gordon et al. 2012], and extending it to

allow methods and data structures to be implicitly parametric on the security level. For example,

with promotion, a data structure can be used with any security level, but security is still enforced

by not allowing data structures of different security levels to interfere with each other. This reduces

the programming effort of developers and supports reuse of programs and libraries [Giannini et al.

2019].

The contents of this paper are as follows. First, we introduce the language SIFO for information

flow control. Second, we formalize the type system by introducing typing and reduction rules.

Third, we show that our language is sound by proving the noninterference property that secret data

is never observable by a public state. Fourth, we implement SIFO and evaluate it with a feasibility

study and a benchmark to compare SIFO with state-of-the-art information flow analysis tools.

1
SIFO is an acronym for Secure Information Flow in an Object-oriented language
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2 INFORMAL PRESENTATION OF SIFO
In this section, we explain the challenges of securely checking the information flow in object-

oriented languages. We then give an informal introduction to SIFO. Last, we discuss well and ill

typed SIFO expressions for a more detailed explanation.

2.1 Motivating example
Consider the following partially annotated code using two security levels low and high:

1 class Person { low id; Person(low id){ this.id=id; } }

2 ...

3 low local_id = GiveMe.anId ();

4 high p = new Person(local_id );

5 high inside = p.id;

In SIFO, security is an instance based property: the person p is high, but other persons could have a

different security level. Security is also a deep property: the content of all the fields of p encodes

high information. In our example, every person has an id. Even if the id field is declared low, it will

encode high information inside of the high instance p. The value of local_id is low. We can use it to

initialize id since information can flow from low to high, but not from high to low.

When extracting the value of the field id, the information is now part of the high Person, and

thus, needs to be seen as high: p.id produces a high value.

Is this code conceptually correct with respect to information flow? Can we complete the type

annotations on this code to make it correct? If the id is just a primitive integer, this is possible and

easy in both SIFO
2
and other languages for information flow, such as Jif [Myers 1999]:

1 class Person { //SIFO CODE

2 Int id; //low is the default security level

3 Person(Int id){ this.id = id; } }

4 ...

5 local_id = GiveMe.anId (); //a low Int

6 high p = new high Person(local_id );

7 high inside = p.id;

The corresponding Jif code is also quite easy, but a little more involved and with a different

syntax; we report it in Listing 1. Both in SIFO in Line 6, and in Jif in Line 9, the value of local_id

gets promoted from low to high.

1 class Person[label L] {

2 final int{L;this} id;

3 Person(int{L;this} id){ this.id = id; }

4 }

5 ...

6 //label {high ->low} allows low and high to read the variable

7 int{high ->low} id = GiveMe.anId ();

8 //label {high ->} allows only high to read the variable

9 Person [{high ->}]{high ->} p = new Person [{high ->}](id);

10 int{high ->} inside = p.id;

Listing 1. Example in Jif syntax

What happens if the id is a more complex custom object type? The following code is accepted in

SIFO:

2
In the examples, we use a rich language including local variables and literals with the usual semantics. Those are supported

by our artifact, but in the formal model we present a minimal language where we keep only the most crucial OO features.
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1 class Account { Int id; String name; Date firstTransaction ;... }

2 class Person {

3 Account id;

4 Person(Account id){ this.id = id; } }

5 ...

6 local_id = GiveMe.anId ();//a low Account

7 high p = new high Person(local_id );

8 high inside = p.id;

9 high name = inside.name;

As you can see, not much has changed. Of course, we need to define the Account class, but then we

can use it in the same way we use Int before.

On the other hand, Jif [Myers 1999] (the most closely related work) cannot accept this kind of

code. In a pure object-oriented setting, everything is an object, and pre-defined types, as integers,

should be treated as any other object. However, Jif treats primitive types in a privileged way. In Jif,

it is possible to write more flexible code relying on primitive types than on objects. The difficulty

revolves around aliasing and mutation: the local variable local_id is still available, and now it is

aliased inside of the high Person object p. Thus, if p is used to update any field of the Account, then

the low part of the program could see this high information through local_id. This can happen

because with the base type system of Java all objects can be both mutated and aliased. Jif builds on

top of Java and only adds type properties directly related to information flow, so it cannot make

immutability and aliasing assumptions. On the other side, SIFO builds on top of L42 [Giannini et al.

2019], a language with built-in support for immutability and aliasing control using type modifiers

(also called reference capabilities).

In L42, the default modifier for references is imm (immutable), and the default security level of

SIFO is low. Thus, a fully annotated version of the code above would look as follows:
3

1 class Account {

2 low imm Int id; low imm String name; low imm Date firstTransaction;

3 ... }

4 class Person {

5 low imm Account id;

6 Person(low imm Account id){ this.id = id; }

7 }

8 ...

9 low imm Account local_id = GiveMe.anId ();

10 high mut Person p = new high Person(local_id );

11 high imm Account inside = p.id;

12 high imm String name=inside.name;

Since the Account is immutable, in SIFO the value of local_id is promoted from low to high for the

constructor call, exactly as it happens for Int before. Indeed, deeply immutable objects allow for

the same kind of reasoning that primitive types allow in Java. In this way, SIFO code can scale and

use objects as easily as primitive types in contrast to Jif and other approaches.

To make the same kind of behavior accepted in Jif, the code would have to be modified in the

following way:

1 low mut Account local_id = GiveMe.anId (); //in Jif , there is no immutability

2 low mut Date a = local_id.firstTransaction;

3
To help readability, in the rest of the paper we will write type modifiers and security levels explicitly, but a syntactically

much lighter style, as shown above, is accepted by our artifact and it is the preferred way to code, once the programmer

gets used to those defaults.
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3 high mut Person p = new high Person(

4 new high Account(local_id.id,local_id.name ,

5 new high Date(a.day ,a.month ,a.year )));

This code is accepted by both SIFO and Jif. This is a technique called defensive cloning [Bloch 2016];

it is very popular in settings where aliasing and mutability cannot be controlled.

In SIFO, we have mutable and immutable objects; where the reachable object graph (ROG) of an
immutable object is composed only of other immutable objects (deep immutability), while the ROG
of a mutable object can contain both mutable and immutable objects [Giannini et al. 2019]. The set

of mutable objects in a ROG is called MROG.
In addition to imm, L42 also offers the capsule concept: a capsule reference refers to a mutable

object whose MROG is reachable only through such reference. Both imm and capsule references can be

safely promoted from low to high; this avoids the need of defensive cloning also when encapsulated

mutable state is involved.

1 low capsule Account local_id = GiveMe.anId ();

2 high mut Person p = new high Person(local_id );

Capsule variables are affine, that is, they can only be used zero or one time, thus if p is used to

update the state of the account, the local capsule variable local_id cannot be used to examine these

updates.

As you can see from those examples, aliasing and mutability control is a fundamental tool

needed to support information flow in the context of an object-oriented language. A typical

misunderstanding of type modifiers is that a mutable field would always refer to a mutable object.

This is not the case, indeed all the fields of immutable objects will transitively contain only

immutable objects. This of course includes all fields originally declared as mutable. The same

applies to security labels: a low field in a high object would transitively contain only high objects.

This is different with respect to many other object-oriented languages, where the declarations

determine what to expect. If there is information from the context, that is normally explicit in the

usage site. In SIFO instead, the declared type is only a first approximation: the security level (and

type modifier) of an expression is a combination of what is declared in the class table and what is

implied from the usage site.

Note how in our example the class Person is declared with a low field, but the high Person object

actually stores a high value for such field. In SIFO, a low field is not like a low field in Jif, but it is

more like a field with generic/parametric security: the value of a low field of a low object will be low

but the value of a low field of a high object will be high. In general, the ROG of an object is always

at least as secure as the security of the object itself. This aligns nicely with mutability control in

L42, where immutable instances of classes declaring a mut field will hold immutable values in such

fields. Deep properties (like L42 immutability and SIFO security) allow for a much simpler and

more predictable reasoning with respect to (optionally) shallow properties, like Rust immutability

(that supports internal mutability) and Jif security (where low values can be stored in the ROG of

high values).

2.2 SIFO Concepts
Objects and references. As we anticipated above, in SIFO, we havemutable and (deeply) immutable

objects. We also have four kinds of references: imm, mut, capsule, and read [Giannini et al. 2019]. An

imm reference must point to an immutable object, and can be freely aliased, but as the name suggests,

the fields of an immutable object cannot be updated. A mut reference must point to a mutable object;

such an object can be aliased and mutated. A capsule reference points to a mutable object that is

kept under strict aliasing control: the mutable ROG reachable from the capsule reference cannot be
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T ::= s mdf C
s ::= high | low | . . . (user defined)
mdf ::= mut | imm | capsule | read
CD ::= class C implements C {𝐹 𝑀𝐷 } | interface C extends C {MH }
𝐹 ::= s mut C 𝑓 ; | s imm C 𝑓 ;

𝑀𝐷 ::= MH {return 𝑒;}
MH ::= s mdf method T m(T1 𝑥1, . . . , T𝑛 𝑥𝑛)
𝑒 ::= 𝑥 | 𝑒.𝑓 | 𝑒0 .𝑓 = 𝑒1 | 𝑒0.𝑚(𝑒) | new s C (𝑒)

Fig. 1. Syntax of the core calculus of SIFO

reached from other references. The capsule reference can be used only once to assign this isolated

portion of the heap to a reference of any kind. In particular, this means that a capsule reference can

be used to initialize/update an imm reference/field; when this happens all the objects in the ROG of
such a reference become immutable.

The “only used once” restriction is necessary so that no alias for the isolated portion of the heap

can be introduced, which would violate the capsule property.

Finally, a read reference is the common supertype of imm and mut. With a read reference, the ROG
cannot be mutated and aliases cannot be created; but there is no immutability guarantee that the

object is not accessible by other references, even mut ones.

Types. Types in SIFO are composed by a security level s, a type modifier mdf , and a class name

C. The security levels s are arranged in a lattice that specifies the allowed data flow direction

between them. For example, we have a lattice with a low and a high security level, where the allowed

information flow is from low to high, but not vice versa. The type modifier mdf can be mut, imm,

capsule, and read as introduced above. The subtyping relation between modifiers is defined as

follows: for all mdf , capsule ≤ mdf ,mdf ≤ read. This means that, for example, a mut reference can

be used if a read is needed, and a capsule reference can be used both as a mut or as an imm one. This

is sound, because capsule variables can be used only once.

Core Calculus. The syntax of the core calculus of SIFO is shown in Fig. 1. It covers classes C, field
names 𝑓 , method names𝑚, and declarations for classes, interfaces, and methods. A class consists

of fields and methods. The class itself has no modifier or security level. The modifiers and security

levels are associated with references and expressions. A field has a type T and a name. A method

has a return type, a list of input parameters with names and types, and also a security level and

a type modifier for the receiver; they are specified in front of the keyword method. We have the

standard expressions: variable, field access, field assignment, method call, and object construction.

When an object is initialized, its security level is initially determined by the constructor invocation.

Thus, different references to objects of the same class can have different security levels. 𝐶 ,𝑚, 𝑓 ,

and 𝑥 in Fig. 1 are all disjoint syntactic categories.

Method Calls. A method has to be defined in a class with parameter types, a return type and a

receiver type. For example, an Accumulator class has a low Int field acc and a method add that adds

another low Int parameter to the acc field and updates the field.

1 class Accumulator {

2 low imm Int acc;

3 low mut method low imm Int add(low imm Int x){ return this.acc=this.acc+x; }

4 }

5 ...// below we show examples of user code
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6 low Accumulator a = GiveMe.aLowAcc ();//a low Accumulator

7 low imm Int w = 5;

8 low imm Int x = a.add(w); //ok to call as low*low -> low

9

10 high Accumulator b = GiveMe.aHighAcc ();//a high Accumulator

11 high imm Int y = 6;

12 high imm Int z = b.add(y); //ok to call as high*high -> high

We can call such a method if the receiver and the actual input parameter are low. However, SIFO

adds flexibility to method calls using multiple method types. Formally defined in Section 4, they

allow to call a method as if it was declared with a range of different type modifiers and security

levels. In this example, the multiple method types rule allows us to call the add method also if the

receiver and the parameter are all increased to the same security level (for example to high) and

returning a value with this same security level. Without this feature, the method add needs to be

declared for each security level. This feature also has benefits in comparison to a parameterized

version of the language because legacy code and standard libraries can be used in SIFO without

adding security level annotations: low is the default security level, and imm is the default modifier.

Control Flow and Implicit Information Leaks. Information flow control mechanisms [Sabelfeld and

Myers 2003; Volpano et al. 1996] are used to enforce an information flow policy that specifies the

allowed data flow in programs. A program can leak information directly through a field update. This

can be prevented by ensuring that no confidential data is assigned to a less confidential variable.

However, information can also flow implicitly through conditionals, loops, and (crucial in OO)

dynamic dispatch. For example, the chosen branch of a conditional reveals information about the

values in the guard. As shown from Smalltalk [Goldberg and Robson 1983], in a pure OO language,

dynamic dispatch can be used to emulate conditional statements and various forms of iterations

and control flow. Thus, our core language does not contain explicit conditional statements, but they

can be added as discussed in Section 4. Loops can be implemented through recursive method calls.

Therefore, SIFO only needs a secure method call rule to prevent implicit information flow leaks.

In a method call, information of the method recevier can flow to the return value and mutable

parameters. Thus, the security levels of the return value and mutable parameters have to be

equal or higher than the security level of the receiver. Consider for example the following code:

res=myValue.aOrB(a,b) If the method aOrB returns the first or the second parameter depending on the

dynamic type of myValue, we could use the result to identify information about myValue. Note how

this pattern is very similar to the Church encoding of Booleans. Similarly, if parameter a is typed

low mut and the receiver has a high security level, information of the high receiver can be leaked by

observing the mutations on the parameter a after the method call.

2.3 Examples of Well-Typed and Ill-Typed SIFO Expressions
In Listing 2, we show secure and insecure programming statements to explain the reasoning about

information flow in SIFO.

A class Person contains a low imm String name and two high fields: a mut Password and an imm AccountId.

The Password and AccountId class have a String field to set the actual password/id. When accessing a

field, we consider the security level of both the field and the receiver and determine the least upper

bound of both security levels in the lattice. When an object is initialized, it is created as mutable,

and the initial security level is determined by the constructor invocation. For example, a Person can

be initialized with a low or with a high security level.

Consider the assignments in Listing 2 starting with Line 5 (line numbers are referenced in

parentheses in the following): To ensure confidentiality, the type system prevents the password to
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1 class Person{low imm String name; high mut Password pwd; high imm AccountId id;}

2 class Password{low imm String pwdS;}

3 class AccountId{low imm String idS;}

4

5 low mut Person p =...//a pre existing low Person reference

6 high mut Password pass = p.pwd;//ok, access of high Password

7 high imm String passS = p.pwd.pwdS;//ok, access is typed high

8 low imm String passS = p.pwd.pwdS;//wrong , high assigned to low

9

10 p.pwd.pwdS = highString;//ok, field update with high String

11 p.pwd.pwdS = p.name;//ok, as an imm String can be promoted

12 p.name = highString;//wrong , high String assigned to low p.name

13 high mut Person pHigh =...//a pre existing high Person

14 pHigh.name = highString;//ok, field update with high String

15

16 low mut Password newPass = new low Password("some");//ok

17 p.pwd = newPass;//wrong , mutable secret shared as low and high

18 newPass.pwdS = "password";//ok? Insecure with previous line

19

20 low capsule Password capsPass=new low Password("secret");//ok

21 p.pwd = capsPass;//ok, no alias introduced

22

23 low imm AccountId aid = new low AccountId("secretId");//ok

24 p.id = aid;//ok , aid is imm and can be aliased

25 aid.idS = "0";//wrong , immutable object cannot be updated

26

27 low read Person pRead = p;//ok, assigned to read reference

28 high imm String passS = pRead.pwd.pwdS;//ok, access is high

29 pRead.pwd.pwdS = highString;//wrong , read cannot be updated

30 someMutObject.fieldName = pRead;//wrong; there are no read fields

31 someMutObject.fieldName = pRead.id;//ok if the field has an imm type

Listing 2. SIFO examples

be leaked via a low reference (8), but it can be exposed to another high reference (6, 7). The password

can be updated with another high String (10), or with a low String (11), as we allow to promote the

security level of imm references. The opposite of updating a low field of a low reference with a high

String is forbidden (12), but the assignment is allowed if the reference and the String are high (14).

Until now, we explained assignments of immutable Strings; but the most interesting challenge

to guarantee confidentiality is about assigning mutable objects instead. For example, how can we

update the mutable p.pwd field? When a new Password object is created, it can be initialized as a low

object as the Password is not confidential on its own. The confidentiality is the association between

the Person object and the Password object. SIFO prevents that a low reference to a Password object is

assigned to a Person object (17). The reason is that the variable newPass is still in scope after the field

update, thus if (17) was accepted, (18) could be used to sneak a password change without the need

of any high information.

A secure assignment without aliases is shown in (20, 21). Here, the capsule modifier is utilized.

A reference to a Password object can be assigned to a Person object, if the reference to the Password

object is high. The password is initialized by the programmer as low capsule. The system of type

modifiers is flexible enough to promote the created object from mut to capsule. Since there is no mut
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value in the input, we are sure that an isolated portion of memory is created, as the created object

cannot be accessed from any other mut reference. In (21), the flexible type system can then promote

the variable capsPass to a high capsule, which is assigned to the p.pwd field.

As discussed before, aliases over imm references (24), are allowed to move from lower security to

higher one. The alias does not lead to a security leak because the type system ensures that fields of

AccountId aid cannot be updated (25). Both imm and capsule references are referentially transparent,

and can be used as a controlled way to communicate between different security levels.

Finally, with read references (27), imm fields can still be accessed (28), but no fields can be updated

(29). Here, we present a simplified L42 type system, where fields can only be mut or imm; thus there

is no field that can be updated using a read reference (30). In the full L42, it is possible to have, for

example, read linked lists of read elements, but this has some subtle interaction with promotions, so

we omit it here for simplicity. Of course, imm references reached from read references (31) can be

assigned to imm fields as usual.

For a more compelling example of our system that can promote expressions, consider the

following listing:

1 class PassFactory{

2 ...

3 low imm method low mut Password from(low imm String base){

4 low mut Password res = new low Password(base);

5 if (this.tooSimple(base )){res.pwd = this.complete(base );}

6 return res;

7 }

8 }

9 ...

10 p.pwd = passFactory.from("foo")

The method from is well typed. The method from returns a low mut Password res which could not

be directly assigned in (10) because a high security level is needed, but the system of type modifiers

is flexible enough to promote low mut Password res to a high security level by utilizing the capsule

modifier. Since there is no mut value in the input, we are sure that an isolated portion of memory is

created (a capsule). With controlled aliasing, we can promote the capsule reference to a high security

level (i.e., a low capsule Password can be promoted to a high capsule Password), and then, it can be

assigned to the field in (10). All in all, a mut references can be promoted to a capsule, transferred to

another security level and then reassigned to another mut reference.

Any method that takes a single mut in input, mutates it, and returns it as mut can be called with a

capsule parameter and the result will also be promoted to capsule. This pattern allows great flexibility

when encapsulated mutable objects need to be mutated [Giannini et al. 2019].

3 DEFINITIONS FOR THE SIFO TYPE SYSTEM
In this section, we define well-formedness of the type system and useful helper methods to introduce

typing rules in the following section.

Well-Formedness. A well-formed program respects the following conditions: All classes and

interfaces are uniquely named. All methods in a specific class or interface are uniquely named.

All fields in a specific class are uniquely named. All parameters in a method header are uniquely

named, and there is no explicit method parameter called this. The subtyping graph induced by

implemented interfaces is acyclic (in this simplified language, we do not have class extension).

capsule references can be used at most one time.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.
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• sec(T ) = s, returns the security level s in type T .
• mdf (T ) = mdf , returns the modifier in type T .
• class(T ) = C, returns the class C in the type T .
• fields(𝐶) = T1 𝑓1 . . . T𝑛 𝑓𝑛 , returns the field declarations of class C.
• 𝑝 (𝐶) = class C implements C {𝐹 𝑀}, returns the declaration of class C.
• lub(s0, . . . , s𝑛) = s, returns the least upper bound of the parameters s0, . . . s𝑛 .
• T [s′] = lub(s, s′) mdf C, where 𝑇 = s mdf C, defined only if 𝑠 ′ ≤ 𝑠 or 𝑠 ≤ 𝑠 ′; returns a new

type with security level lub(s, s′)
• mdf ▷mdf ′ = mdf ′′, returns the modifier of an expression when accessing a field.

mut ▷mdf = capsule ▷mdf = mdf
imm ▷mdf = mdf ▷ imm = imm

read ▷ mut = read.

Fig. 2. Helper functions

If 𝑠 mdf method 𝑇 𝑚(𝑇1 𝑥1 . . .𝑇𝑛 𝑥𝑛) is declared in 𝐶 , with 𝑇0 = 𝑠 mdf 𝐶 then

1: 𝑇0 [𝑠 ′] . . .𝑇𝑛 [𝑠 ′] → 𝑇 [𝑠 ′] ∈ methTypes(𝐶,𝑚)
2: (𝑇0 [𝑠 ′] . . .𝑇𝑛 [𝑠 ′] → 𝑇 [𝑠 ′]) [mut\capsule] ∈ methTypes(𝐶,𝑚)
3: (𝑇0 [𝑠 ′] . . .𝑇𝑛 [𝑠 ′] → 𝑇 [𝑠 ′]) [read\imm, mut\capsule] ∈ methTypes(𝐶,𝑚)

Fig. 3. Definition of multiple method types

Helper Functions. In Figure 2, we show some helper functions for our type system. The first

three notations extract the security level, the type modifier, and the class name from a type. The

next two return fields and class declarations. The lub operator is defined to return the least upper

bound of a set of input security levels arranged in a lattice. For example, since low ≤ high, we have

lub(low, high) = high. A lattice of security levels was first introduced by Bell and LaPadula [Bell and

La Padula 1976], and Denning [Denning 1976]. A lattice is a structure ⟨𝐿, ≤, lub,⊤,⊥⟩ where 𝐿 is a

set of security levels and ≤ is a partial order (e.g., low ≤ high). The lattice defines an upper bound

of security levels. A set of elements 𝑋 ⊆ 𝐿 has an upper bound 𝑦 if ∀𝑥 ∈ 𝑋 : 𝑥 ≤ 𝑦. An upper

bound 𝑢 of 𝑋 is the least upper bound (lub) if 𝑢 ≤ 𝑦 for each upper bound 𝑦 of 𝑋 . To form an upper

semi-lattice, a unique least upper bound (lub) for every subset of 𝐿 must exist. Additionally, we

restrict the lattice to be bounded with the greatest element ⊤ and the least element ⊥.
In Figure 2, the function s mdf C [s′] returns a new type whose security level is the least upper

bound of the two. The security level is set to lub(s, s′) and the modifier and class remain the same.

The last function mdf ▷mdf ′ computes a resulting modifier if a field with type modifier mdf ′ is
accessed from some reference with type modifier mdf . For example, if we access a mut field from

a mut reference we get a mut value, but if we access a mut field from a read reference, we get a read

value. If either the reference or the field are imm, then imm is returned; thanks to deep immutability,

the whole reachable object graph is immutable.

Multiple Method Types. Instead of a single method type as in Featherweight Java [Igarashi et al.

2001], we return a set of method types using methTypes(𝐶,𝑚) = {T0 → T0, . . . , T𝑛 → T𝑛}. The
programmer just declares a method with a single type, and the others are deduced by applying

all the transformations shown in Fig. 3. Multiple method types reduce the need of implementing

the same functionality several times, where the same parameter has only different type modifiers

or security levels. The base case, as declared by the programmer, can be transformed in various

ways: (1) A method working on lower security data can be transparently lifted to work on higher
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Immutability and Encapsulation for Sound OO Information Flow Control 11

security data (some security level 𝑠 ′). This means that methods that are not concerned with security

are usually declared as working on a low receiver and low parameters, returning a low result. Note

that the security level remains unchanged when 𝑠 ′ is chosen as low. Thus, we can use 𝑇 [𝑠 ′] with 𝑠 ′
different from low when we are in a context where we need to manipulate secure data. The multiple

method types lift the method as if it was declared with higher receiver, parameters, and return type.

For example, a mathematical method should return the same security level as the security level of

the parameters. In our language, we can just implement this method once with the lowest security

level and reuse it with any other security level of the lattice. As a comparison, the Jif tutorial
4

suggests that a mathematical method should be implemented with a generic security level.

(2) The second case swaps all mut types for capsule ones. If we provide capsule instead of mut in

the input, we can use the method to produce a capsule return value. This corresponds to capsule

recovery/promotion in [Giannini et al. 2019]. By providing all mut parameters as capsule, the method

would not take any mut as input. Any mut object that is returned, is created inside of the method

execution (as we do not have any form of global state/variables) and thus can be seen as a capsule

from outside the scope of the method body. For example, a method declared as

low mut method low mut Person father(low imm String name)

can be also used as if it was declared as

low capsule method low capsule Person father(low imm String name),

where all mut parameters (just the receiver in this example) and the return type are turned into

capsule. (3) The third case swaps all mut types for capsule ones and all read types for imm ones. This is

useful if the method was returning a read value; in this case we can obtain an imm. This corresponds

to immutable recovery/promotion in [Giannini et al. 2019] and can be intuitively understood by

considering that a read reference can point to either an immutable or a mutable object. If it was an

immutable object, it is fine to return it as imm; if it was a mutable object, then for the same reasons

as case (2), we can promote it to capsule, which is a subtype of imm. Note that in all the three cases, a

method working on lower security data can be transparently lifted to work on higher security data.

4 TYPING RULES
The typing rules are presented in Fig. 4.We assume a reduction similar to Featherweight Java [Igarashi

et al. 2001; Pierce 2002]. We have a typing context Γ ::= 𝑥1 : 𝑇1 . . . 𝑥𝑛 : 𝑇𝑛 which assigns types T𝑖 to
variables 𝑥𝑖 .

Sub and Subsumption. We allow traditional subsumption for modifiers and class names.

However, we are invariant on the security level. We assume our interfaces to induce the

standard subtyping between class names.

T-Var. A variable 𝑥 is typed using the context Γ.
Field Access. The result of the field access has the class of the field 𝑓 . The security level is

the least upper bound of the security levels of 𝑒0 and 𝑓 . The resulting modifier is the sum

of the modifiers of 𝑒0 and 𝑓 as defined in Fig. 2. In this way, if we read a low mut Person field

from a high read receiver, we obtain a high read Person result.

Field Assign. The reference resulting from 𝑒0 has to be mut to allow the assignment. The

security level of the assigned expression 𝑒1 is the least upper bound of the security levels of

expression 𝑒0 and the field 𝑓 as declared in 𝐶 . For example, if we assign a high expression 𝑒1,

either the field 𝑓 or the reference resulting from 𝑒0 need to be high.

Call. We allow a method call if there is a method type where all parameters and the return

value are typable. The security levels of the return type and all mut or capsule parameters

have to be greater than or equal to the security level of the receiver. This requirement is

4
https://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html
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𝐶 ≤ 𝐶′ mdf ≤ mdf ′

𝑠 mdf 𝐶 ≤ 𝑠 mdf ′ 𝐶′ (Sub)
Γ ⊢ 𝑒 : 𝑇 ′ 𝑇 ′ ≤ 𝑇

Γ ⊢ 𝑒 : 𝑇
(Subsumption)

Γ ⊢ 𝑥 : Γ (𝑥)
(T-Var)

Γ ⊢ 𝑒0 : 𝑠0 mdf
0
𝐶0 𝑠1 mdf

1
𝐶1 𝑓 ∈ fields (𝐶0)

Γ ⊢ 𝑒0 .𝑓 : lub(𝑠0, 𝑠1) mdf
0
▷mdf

1
𝐶1

(Field Access)

Γ ⊢ 𝑒0 : 𝑠0 mut𝐶0

Γ ⊢ 𝑒1 : lub(𝑠0, 𝑠) mdf 𝐶 𝑠 mdf 𝐶 𝑓 ∈ fields (𝐶0)
Γ ⊢ 𝑒0 .𝑓 = 𝑒1 : lub(𝑠0, 𝑠) mdf 𝐶

(Field Assign)

Γ ⊢ 𝑒0 : 𝑇0 . . . Γ ⊢ 𝑒𝑛 : 𝑇𝑛 sec (𝑇 ) ≥ sec (𝑇0)
if mdf (𝑇𝑖 ) ∈ {mut, capsule} then sec(𝑇𝑖 ) ≥ sec(𝑇0) 𝑇0 . . .𝑇𝑛 → 𝑇 ∈ methTypes (class (𝑇0), 𝑚)

Γ ⊢ 𝑒0 .𝑚 (𝑒1 . . . 𝑒𝑛) : 𝑇
(Call)

Γ ⊢ 𝑒1 : 𝑇1 [𝑠 ] . . . Γ ⊢ 𝑒𝑛 : 𝑇𝑛 [s] fields (𝐶) = 𝑇1 𝑓1 . . .𝑇𝑛 𝑓𝑛

Γ ⊢ new 𝑠 𝐶 (𝑒1 . . . 𝑒𝑛) : s mut C
(New)

Γ [mut\read] ⊢ 𝑒 : s mut C

Γ ⊢ 𝑒 : s capsule C
(Prom)

𝑠′ ≤ 𝑠 Γ ⊢ 𝑒 : s′ mdf 𝐶 mdf ∈ {imm, capsule}
Γ ⊢ 𝑒 : 𝑠 mdf 𝐶

(Sec-Prom)

this : 𝑠 mdf 𝐶, 𝑥1 : 𝑇1 . . . 𝑥𝑛 : 𝑇𝑛 ⊢ 𝑒 : 𝑇

𝐶 ⊢ 𝑠 mdf method𝑇 𝑚 (𝑇1 𝑥1 . . .𝑇𝑛 𝑥𝑛) {return 𝑒 ; }
(M-Ok)

𝐶 ⊢ M1 . . .𝐶 ⊢ 𝑀𝑛 mhs (𝐶) ⊆ mhs (M1 . . . 𝑀𝑛)
class𝐶 implements𝐶 {𝐹 M1 . . . 𝑀𝑛 }

(C-Ok)
mhs (𝐶) ⊆ MH

interface𝐶 extends𝐶 {MH }
(I-Ok)

Fig. 4. Expression typing rules

needed because through dynamic dispatch the receiver may leak information. This is one of

the crucial points of our formalism, as explained in Section 2.2.

New. The newly allocated object is created as a mutable object, and with a specified security

level 𝑠 . This rule checks that the parameter list 𝑒1 . . . 𝑒𝑛 has the same length as the declared

fields. The object of class 𝐶 has a list of fields 𝑓1 . . . 𝑓𝑛 . Each parameter 𝑒𝑖 is assigned to

a field 𝑓𝑖 . This assignment is allowed if the type of parameter 𝑒𝑖 is (a subtype of) 𝑇𝑖 [𝑠].
The programmer can choose 𝑠 to raise the expected security level over the level originally

declared for the fields. In order to use an actual parameter with a higher security level (𝑠)

to initialize a field defined with a lower security level, the newly created object needs to

have this chosen security level 𝑠 . By using rule Sec-prom, we can do the opposite, initializing

higher security fields with lower security imm/capsule values. For example if we have a class

Ex {low Object a; high Object b; topSecret Object c;}, we can create correct objects with

1 new low Ex(lowValue , highValue , topSecretValue)

2 new high Ex(highValue , highValue , topSecretValue)

3 new topSecret Ex(topSecretValue , topSecretValue , topSecretValue)

An object new high Ex(highValue, topSecretValue, topSecretValue) is incorrect because the sec-

ond parameter is topSecret. Accessing a high reference and a high field would return a high

value. This leaks the topSecretValue object.

The object new topSecret Ex(highValue, topSecretValue, topSecretValue) is only correct if the
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Immutability and Encapsulation for Sound OO Information Flow Control 13

Γ ⊢ 𝑒 : 𝑠 imm Bool
Γ [mut (𝑠), final (𝑠) ] ⊢ 𝑒1 : 𝑇 Γ [mut (𝑠), final (𝑠) ] ⊢ 𝑒2 : 𝑇

Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑇
(If)

Γ ⊢ 𝑒 : 𝑠 mdf 𝐶 mdf ∈ {imm, capsule}
Γ ⊢ declassify(𝑒) : ⊥ mdf 𝐶

(Decl)

Fig. 5. Extension: expression typing rules for if and declassify

highValue object can be promoted to topSecret. This is only possible for immutable or encap-

sulated objects.

Prom. Promotion from mut to capsule is possible if all mut references are only seen as read in

the typing context. Since a read cannot be saved into a field of a mut object, we know that

the reachable object graph from those read variables will not be part of the reachable object

graph of the result.

Sec-Prom. Security promotion raises the security level of a capsule or imm expression. This

captures the intuitive idea that a higher security level is allowed to see all data with lower

security levels. However, this is sound only for capsule or imm expression. An immutable object

cannot be modified, so the promotion is secure because no new confidential information

can be injected into its ROG. Also a capsule object can be passed to a new reference with a

higher security level. A leak through the lower capsule reference cannot happen, because a

capsule reference can be used at most one time. Instead, in the case of a mutable object, this

assignment would cause a possible leak: it would allow a high and low alias reference to the

same object; and if the high reference was updated with high data, the low reference would

see such data as well. Also read cannot be promoted: a promoted read object can have a low

mut alias reference to the same object that could now sneakely update the data seen as high.

M-Ok. This rule checks that the definition of a method is well typed. Using the receiver type

and the parameter types, 𝑒 must have the same type as the declared return type.

C-Ok. This rule checks that the definition of a class is well typed. The rule uses a helper

function mhs which returns the method headers declared in a set of classes or interfaces,

or it directly returns the headers of a set of methods. A well typed class 𝐶 implements all

methods that are declared in the interfaces 𝐶 .

I-Ok. A correct interface must contain all method headers of the implemented interfaces 𝐶 .

Implicit Information Flows. The language as presented is minimal but using well-known encodings

it can support imperative update of local variables (use box objects with a single field and field

updates) and conditionals (use any variation of the Smalltalk [Goldberg and Robson 1983] way

to support control structures). However, in Fig. 5, for the sake of a more compelling explanation,

we show how the if construct could be typed if we expand our language with if, Booleans and

updatable local variables.

If. For a conditional statement with a Bool expression in the guard, we define that both branches

𝑒1 and 𝑒2 must have the same type𝑇 . With Γ [mut (𝑠), final(𝑠)], we introduce two restrictions:
with mut (𝑠), we prevent mutation of mut objects with a security level lower than 𝑠 by seeing

them as read, and with final(𝑠), we prevent updating all local variables with a security level

lower than 𝑠 . If 𝑠 is the lowest security level, both functions do not restrict Γ.

Therefore, assignments to less confidential variables or fields in the branches are prohibited

to prevent leaks. This means that if the expression in the guard of a conditional statement has
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1 interface I {

2 low mut method low imm I doIt(low imm I l1, low imm I l2);

3 }

4 class C1 implements I {

5 low mut method low imm I doIt(low imm I l1, low imm I l2) {

6 return l1; }

7 }

8 class C2 implements I {

9 low mut method low imm I doIt(low imm I l1, low imm I l2) {

10 return l2; }

11 }

12 ...

13 high mut C1 c1 = new high C1();

14 high mut C2 c2 = new high C2();

15 low imm C1 l1 = new low C1();

16 low imm C2 l2 = new low C2();

17 high mut I i = c1;//c1 assigned to reference of type I

18 low imm I x = i.doIt(l1,l2);//ILL TYPED in our system

19 //if it was accepted , by observing low variable x = l1

20 //we could deduce the content of the high variable i = c1

21

22 // equivalent behaviour using an if

23 if (i instanceof C1){ x = l1; } else { x = l2; }

Listing 3. Ill-typed example of a method call

a security level that is higher than the lowest security level, only assignments to variables of at

least the security level of the guard are allowed. Additionally, only mutable objects of at least the

security level of the guard can be mutated. In this way, only data whose security level is at least

the one of the guard can be mutated.

Using the Smalltalk-style as discussed above, our pre-existing rules would handle the encoded

code exactly as with the explicit If-rule, Booleans, and local variables. Thus, our system is minimal,

but does not lack expressiveness. The If-rule has a similar constraint as the Call-rule where return

type and mut and capsule parameters have to be greater than or equal to the security level of the

receiver.

The following example, in both OO style and with an explicit if shows the mechanism to prevent

implicit information flow leaks: In Listing 3, we have an interface I that declares a method doIt

that gets two low imm I parameters as input. The classes C1 and C2 implement the interface and the

method. The implemented method of C1 returns the first parameter and the implemented method

of C2 returns the second parameter. We initialize two high variables C1 c1 and C2 c2 and two low

variables C1 l1 and C2 l2. By assigning c1 to i in Line 17, we hide the information of the explicit class

behind the interface. However, if we are allowed to execute Line 18, calling the method doIt, the

class c1 is revealed because l1 is returned. The attacker gets the information about the explicit class

by observing the return value. This example is an object-oriented implementation of a conditional

statement. If we use an if instead of dynamic dispatch, the leak is clearly visible (see Line 23),

as we assign low variables in branches of a high guard. To prevent such leaks, we define that the

security level of the return type is never lower than the security level of the receiver. Information

does not only flow through the method result: also mut or capsule parameters can be used to push

information out of the method; thus also the security level of mut and capsule parameters must never
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be lower than the security level of the receiver. Thus, in both cases with the Call-rule and with

the If-rule the implicit leak is prevented.

Declassification. A mut or read reference can only be assigned to references of the same security

level. However, since imm and capsule references are referentially transparent, it is safe to assign

an imm or capsule object from a lower security level to a higher one. On the other hand, we are

not allowed to assign an object with a higher security level to a reference with a lower security

level. Similar to the if, we consider adding a declassify operator that can be used to manipulate the

security level s of expressions to allow a reverse information flow in appropriate cases. In some

cases, this reverse information flow is needed to develop meaningful programs. For example, if

a confidential password is hashed, the value should be assignable to a public output. With the

declassify expression, the security level of a capsule or imm reference is set to the lowest security

level. In Fig. 5, the Decl rule is shown.

Decl. The declassify rule is used to change the security level of capsule or imm expressions to

the bottom level of the lattice.

declassify should be used with caution because secure information is leaked in the case of

inappropriate use. In this rule, we cannot declassify an expression to a specific security level, but

this is not a limitation, since we can encapsulate declassification statements inside of methods which

directly promote the declassified expression to the desired security level. mut and read references

cannot be declassified because potentially existing aliases are a security hazard. For example, if you

declassify a high mut reference and a high read alias still exists, an attacker could use that now low mut

reference to mutate information visible as high. Declassification is not part of our system to type

check secure programs, and we do not need it to make secure programs, rather it is a mechanism to

break security in a controlled way. That is, when comparing with examples of other papers [Myers

1999], we do not use declassify to encode behavior. We can still use it to print out results to show

that the code is working. In the Decl rule that we present, declassify is just a special expression. In

the full SIFO language embedded in L42, declassification can be flexibly tuned to the user needs

preventing accidental declassification.

5 PROOF OF NONINTERFERENCE
In this section, we aim to ensure noninterference [Goguen and Meseguer 1982] according to our

information flow policy. Noninterference is a central criterion for secure information flow, as we

want to ensure that an attacker cannot deduce confidential data by observing data with lower

security levels. It is based on the indistinguishability of program states. Two program states are

indistinguishable (also referred to as observably similar) up to a certain security level if they agree

on their memory reachable from references with a security level lower than that specific security

level. Using this property, a program satisfies the noninterference Theorem 5.0 if and only if the

following holds: if a program is executed in two observably similar memories up to a certain

security level, then the resulting memories are also observably similar up to the same security level,

but may differ in higher security levels.

Theorem 5.0 (General Noninterference).

If we have expressions 𝑒1 and 𝑒2 without declassification that are well typed and have the same low
values, but possible different high values (𝑒1 lowEqual 𝑒2 see Definition 5.6), M1 and M2 are well typed
memories,M1 andM2 are low observably similar,M1 |𝑒1 →∗ M ′

1 |𝑣1,M2 |𝑒2 →∗ M ′
2 |𝑣2, thenM ′

1 andM
′
2

are low observably similar, and memoriesM ′
1,M

′
2 , values 𝑣1, and 𝑣2 are well typed and 𝑣1 lowEqual 𝑣2.

In this section, we prove noninterference for a lattice with a low and a high security level (low ≤
high) for terminating programs. Nonterminating programs and programs with an arbitrary lattice
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𝑒 ::= 𝑥 | 𝑒.𝑓 | 𝑒.𝑓 = 𝑒 | 𝑒.𝑚(𝑒) | new s C (𝑒) | 𝑣
E𝑣 ::= [] | E𝑣 .𝑓 | E𝑣 .𝑓 = 𝑒 | 𝑣 .𝑓 = E𝑣 | E𝑣 .𝑚(𝑒) | 𝑣 .𝑚(𝑣 E𝑣 𝑒) | new s C (𝑣 E𝑣 𝑒)
E ::= [] | E .𝑓 | E .𝑓 = 𝑒 | 𝑒.𝑓 = E | E .𝑚(𝑒) | 𝑒.𝑚(𝑒 E 𝑒 ′) | new s C (𝑒 E 𝑒 ′)
𝑣 ::= s mdf 𝑜
𝑀 ::= 𝑜1 ↦→ 𝐶1 (𝑜1) . . . 𝑜𝑛 ↦→ 𝐶𝑛 (𝑜𝑛)

Fig. 6. Runtime syntax and values

𝑀 |𝑒 → 𝑀′ |𝑒′

𝑀 |E𝑣 [𝑒 ] → 𝑀′ |E𝑣 [𝑒′]
(Ctx)

𝑣 = 𝑠 mdf 𝑜
𝑜 ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛) ∈ 𝑀 fields (𝐶) = 𝑇1 𝑓1 . . .𝑇𝑛 𝑓𝑛

𝑀 |𝑣.𝑓𝑖 → 𝑀 |lub(𝑠, sec(𝑇𝑖 )) mdf ▷𝑚𝑑𝑓 (𝑇𝑖 ) 𝑜𝑖
(Field Access)

fields (𝐶) = _𝑇0 𝑓0 . . .𝑇𝑛 𝑓𝑛 𝑣1 = 𝑠 𝑚𝑑𝑓 𝑜 𝑣2 = _ _ 𝑜′ 𝑣′
2
= lub(𝑠, sec(𝑇0)) 𝑚𝑑𝑓 (𝑇0) 𝑜′

𝑀,𝑜 ↦→ 𝐶 (𝑜 𝑜0 . . . 𝑜𝑛) |𝑣1 .𝑓0 = 𝑣2 → 𝑀,𝑜 ↦→ 𝐶 (𝑜 𝑜′ 𝑜1 . . . 𝑜𝑛) |𝑣′2
(Field Update)

𝑇 ′
𝑖 = 𝑠′𝑖 𝑚𝑑𝑓 ′𝑖 𝐶𝑖 𝑣𝑖 = 𝑠𝑖 𝑚𝑑𝑓𝑖 𝑜𝑖 𝑣′𝑖 = 𝑠′𝑖 𝑚𝑑𝑓 ′𝑖 𝑜𝑖 𝑜0 ↦→ 𝐶0 (𝑜) ∈ 𝑀

𝑝 (𝐶0) = class𝐶0_{_ 𝑠 𝑚𝑑𝑓 {method𝑇 𝑚 (𝑇1 𝑥1 . . .𝑇𝑛 𝑥𝑛) {return 𝑒 }_}
𝑇 ′
0
. . .𝑇 ′

𝑛 → 𝑇 ′ =𝑚𝑜𝑠𝑡𝑆𝑝𝑒𝑐𝑀𝑒𝑡ℎ𝑇 𝑦𝑝𝑒 (𝐶0,𝑚, 𝑠0 . . . 𝑠𝑛,𝑚𝑑𝑓0 . . .𝑚𝑑𝑓𝑛)
𝑀 |𝑣0 .𝑚 (𝑣1 . . . 𝑣𝑛) → 𝑀 |𝑒 [𝑡ℎ𝑖𝑠\𝑣′

0
, 𝑥1\𝑣′1, . . . , 𝑥𝑛\𝑣′𝑛 ]

(call)

𝑣1 = 𝑠1 𝑚𝑑𝑓1 𝑜1 . . . 𝑣𝑛 = 𝑠𝑛 𝑚𝑑𝑓𝑛 𝑜𝑛

𝑀 |new 𝑠 𝐶 (𝑣1 . . . 𝑣𝑛) → 𝑀,𝑜 ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛) |𝑠 mut 𝑜
(New)

Fig. 7. Reduction rules

do typecheck, and we expect noninterference to work for those too, but our proof technique does

not address those cases. We also do not include the declassify operation because this rule explicitly

allows high data to interfere with data of lower security levels. This means, declassify is only an

explicit mechanism to break security in a controlled way, as we explained in Section 4. In the

section, we use the notation of memory and expression. The meaning of these terms are overloaded.

A memory is often a stack in a while languages, in object-oriented languages, the memory is often

a heap. In our expression-based language, we model a heap (a map from memory locations to

the values stored for each field as defined by the location’s class), and we use the expressions

themselves to track the values that are accessible within each expression (similar to how the stack

achieves this during the execution). This means, memory𝑀 captures the heap and expression 𝑒

captures the stack and any inputs. We cannot model the whole memory without the expression.

5.1 Reduction Rules
SIFO is an additional type system layer and does not influence the language semantics. However,

for the sake of the noninterference proof, we need to instrument the small-step reduction to keep

track of security and modifiers during program execution. To this aim, we define in Fig. 6 values

𝑣 as a location 𝑜 in a store with security level and type modifier. The store is some memory M .

In M , a location points to some class C where each field is again a location 𝑜𝑖 in the memory M .

With the evaluation context E𝑣 , we define the order of evaluation. We assume two well-formedness

properties. The memory is well-formed ifM is a map from 𝑜 to𝐶 (𝑜), thus the locations 𝑜 in domain

of M are unique. The reduction arrow (M |𝑒 → M ′ |𝑒 ′) is well-formed if M and M ′
have no dangling

pointers with respect to 𝑒 and 𝑒 ′ (i.e., every pointer points to a valid object in the memory). In

Figure 7, the following reduction rules are shown.
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Definition 5.1 (mostSpecMethType).
• mostSpecMethType(𝐶,𝑚, 𝑠𝑠,mdfs) = openCapsules(𝑇𝑠 ′ → 𝑇,mdfs)
𝑠 mdf method 𝑇0 𝑚(𝑇1 𝑥1 . . .𝑇𝑛 𝑥𝑛) 𝑖𝑛 𝐶
raiseFormalSecurity(𝑠 mdf 𝐶 𝑇1 . . .𝑇𝑛 → 𝑇0, 𝑠𝑠) = 𝑇𝑠 → 𝑇

raiseActualSecurity(𝑇𝑠, 𝑠𝑠,mdfs) = 𝑇𝑠 ′

• raiseFormalSecurity(𝑇1 . . .𝑇𝑛 → 𝑇0, 𝑠
′
1
. . . 𝑠 ′𝑛) = 𝑇 ′

1
. . .𝑇 ′

𝑛 → 𝑇 ′
0

𝑇𝑖 = 𝑠𝑖 mdf 𝑖 𝐶𝑖

𝑇 ′
𝑖 = lub(𝑠, 𝑠𝑖 ) mdf 𝑖 𝐶𝑖

𝑠 = lub({𝑠 ′𝑖 |𝑠 ′𝑖 > 𝑠𝑖 })

• raiseActualSecurity(𝑇0 . . .𝑇𝑛, 𝑠0 . . . 𝑠𝑛,mdf
0
. . .mdf 𝑛) = 𝑇 ′

0
. . .𝑇 ′

𝑛

𝑇𝑖 = 𝑠 ′′𝑖 mdf 𝑖 𝐶𝑖

𝑇 ′
𝑖 = 𝑠𝑒𝑐 (𝑇𝑖 ) mdf 𝑖 𝐶𝑖

if 𝑠𝑖 < 𝑠𝑒𝑐 (𝑇𝑖 ) 𝑡ℎ𝑒𝑛 mdf 𝑖 ∈ {capsule, imm}

• openCapsules(𝑇1 . . .𝑇𝑛 → 𝑇,mdf ′
1
. . .mdf ′𝑛) = 𝑇 ′

1
. . .𝑇 ′

𝑛 → 𝑇

𝑇𝑖 = 𝑠𝑖 mdf 𝑖 𝐶𝑖

𝑇 ′
𝑖 = 𝑠𝑖 mdf ′𝑖 ▷mdf 𝐶𝑖

𝑀 | (high𝑚𝑑𝑓 𝑜) .𝑚 (𝑣) →+ 𝑀′ | (𝑠 𝑚𝑑𝑓 𝑜′)
𝑀 |E𝑣 [ (high𝑚𝑑𝑓 𝑜) .𝑚 (𝑣) ] →𝑐𝑎𝑙𝑙 𝑀

′ |E𝑣 [ (high𝑚𝑑𝑓 𝑜′) ]
(Hrec)

𝑒 not of form E𝑣 [ (high𝑚𝑑𝑓 𝑜) .𝑚 (𝑣) ] 𝑀 |𝑒 → 𝑀′ |𝑒′

𝑀 |𝑒 →𝑐𝑎𝑙𝑙 𝑀
′ |𝑒′

(Hother)

Fig. 8. Additional reduction rules for the noninterference proof

Ctx. This is the conventional contextual rule, allowing the execution of subexpressions.

Field Access. A field access 𝑓𝑖 of a value 𝑣 is reduced to a location 𝑜𝑖 if the location 𝑜 of 𝑣

points to the suitable class 𝐶 (𝑜1 . . . 𝑜𝑛). The security level is the least upper bound of the

security levels of 𝑣 and 𝑓𝑖 and the modifier is the sum of modifiers of 𝑣 and 𝑓𝑖 .

Field Update. The store 𝑜 ↦→ 𝐶 (𝑜 𝑜0 . . . 𝑜𝑛) is updated with an assignment of 𝑣2 to the field

𝑓0. The location 𝑜0 is replaced with 𝑜 ′. The security level of the resulting value 𝑣 ′
2
is the least

upper bound of the security levels of expression 𝑣0 and the field 𝑓0 as declared in 𝐶 . The type

modifier of 𝑣 ′
2
is equal to the type modifier of the field 𝑓0 as declared in 𝐶 .

Call. We reduce a method call to an expression 𝑒 , where each value 𝑣𝑖 is assigned to a

parameter 𝑥𝑖 . As we use multiple method types, the actual assigned values 𝑣 ′𝑖 can have an

updated security level or type modifier. Additionally, the called method has to be declared in

the class 𝐶0 pointed to by the location in 𝑣0. The concrete calculation of the updated types

𝑇 ′
𝑖 with𝑚𝑜𝑠𝑡𝑆𝑝𝑒𝑐𝑀𝑒𝑡ℎ𝑇𝑦𝑝𝑒 is shown in Definition 5.1. The definition calculates the exact
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method types to support the proof of noninterference. To calculate the types𝑇 ′
𝑖 , the functions

needs as parameters, the class name 𝐶 , the method name𝑚, and the used security levels 𝑠𝑠

and type modifiers mdfs to call this method. First with raiseFormalSecurity, for each formal

parameter type 𝑇𝑖 , the security level can be raised. We collect all security levels 𝑠 ′𝑖 where a
security level higher than declared in the formal parameter is passed. The least upper bound

of the collected security levels is the minimum security level for all actual parameters. It is

allowed that formal parameter have higher security levels than 𝑠 if a current parameter is

passed with the same security level higher than 𝑠 . With raiseActualSecurity, it is checked
that the actual parameters have the same security level as the now raised formal parameters.

Only actual parameters with type modifier imm or capsule can be raised to the needed level. In

the last step, the combined type modifier of the actual and formal parameter is calculated

with the function of Fig. 2.

New. The newly created object is reduced to a location 𝑜 in the memory that points to the

class 𝐶 where each field is again a location 𝑜𝑖 . The reduced value has the same security level

𝑠 as in the expression before the reduction and a mut type modifier. Note that we do not need

to say that a new reference is not in the domain of the old memory. This is implicit by the

well-formedness of the memory.

Hrec, Hother. The two rules in Fig. 8 are added to condense the reduction of methods calls

on high receivers (→𝑐𝑎𝑙𝑙 ). These rules only consider a low ≤ high lattice of security levels and

are needed for our noninterference proof for technical reasons. We will prove noninterference

only for a low ≤ high lattice, but the typing rules work with any security lattice. As you

can see, we condense all execution steps that happen under the control of a high receiver

into a single more abstract step. Here, →+
is the transitive closure. Of course, rule (Hrec)

is not applicable when the reduction of such a method does not terminate; this is why our

proof technique only works on terminating programs: it does not make sense to talk about

noninterference for a program stuck into a non-terminating loop inside of a high method.

This program would never reach again a state where a low attacker may attempt to observe

data.

5.2 Definition of Similarity w.r.t. Security Levels
In this subsection, we define the (observable) similarity of two memories for the proof of non-

interference. Therefore, we need further definitions of reachable object graphs (ROG). We define

mutable, low, and high memories using a notation of reachable object graph. Definition 5.2 defines

the mutable ROG of a memory and the current state of the main expression 𝑒 . Note how this is similar

to ownership work where the stack is used to track the current top level state. In an expression-

based language, the stack is represented as the set of values inside of the main expression. The

MROG contains every location inside of the expression 𝑒 that has a mut or a capsule type modifier.

Additionally, mut fields of locations in the MROG are included. In Definition 5.3, the low ROG contains

every location inside of the expression 𝑒 that has a low security level. Additionally, low fields of

locations in the low ROG are included.
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Definition 5.2. MRog(𝑀, 𝑒)=𝑜
• 𝑜 ∈ MRog(𝑀, 𝑒) if:

𝑒 = E[𝑠 mut 𝑜]
• 𝑜 ∈ MRog(𝑀, 𝑒) if:

𝑒 = E[𝑠 capsule 𝑜]
• 𝑜𝑖 ∈ MRog(𝑀, 𝑒) if:

𝑜 ∈ MRog(𝑀, 𝑒)
𝑜 ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛) 𝑖𝑛 𝑀

{class 𝐶 _ {𝑇1 𝑓1 . . .𝑇𝑛 𝑓𝑛_}
mdf (𝑇𝑖 ) = mut

Definition 5.3. lowRog(𝑀, 𝑒) = 𝑜

• 𝑜 ∈ lowRog(𝑀, 𝑒) if:
𝑒 = E[low _ 𝑜]

• 𝑜𝑖 ∈ lowRog(𝑀, 𝑒) if:
𝑜 ∈ lowRog(𝑀, 𝑒)
𝑜 ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛) 𝑖𝑛 𝑀

class 𝐶 _ {𝑇1 𝑓1 . . .𝑇𝑛 𝑓𝑛_}
sec(𝑇𝑖 ) = low

In Definition 5.4, the high ROG includes locations of high mut values. The high ROG also includes

every mut value that is pointed to by a location in the high ROG. Furthermore, the high mut fields of a

location in the low ROG are included. We exclude high imm values, as imm values can be referenced by

both low and high references.

Definition 5.4. highRog(𝑀, 𝑒) = 𝑜

• 𝑜 ∈ highRog(𝑀, 𝑒) if :

𝑒 = E[high mut 𝑜]
• 𝑜𝑖 ∈ highRog(𝑀, 𝑒) if :

𝑜 ′ ∈ highRog(𝑀, 𝑒)
𝑜 ′ ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛) 𝑖𝑛 𝑀

class 𝐶 _ {𝑇1 𝑓1 . . .𝑇𝑛 𝑓𝑛_}
mdf (𝑇𝑖 ) = mut

• 𝑜𝑖 ∈ highRog(𝑀, 𝑒) if :

𝑜 ′ ∈ lowRog(𝑀, 𝑒)
𝑜 ′ ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛) 𝑖𝑛 𝑀

class 𝐶 _ {𝑇1 𝑓1 . . .𝑇𝑛 𝑓𝑛_}
sec(𝑇𝑖 ) = high

mdf (𝑇𝑖 ) = mut

𝑜𝑖 ∈ 𝑑𝑜𝑚(𝑀)
In Definition 5.5, we define the observable similarity of two memories. Two memories M1 and

M2 are similar given an expression 𝑒 , if and only if the low locations of both memories are equal. As

explained before, the expression 𝑒 is needed to track the top level state. We need a transformation

on the memories to filter high locations and high fields of classes pointed by low locations. As we

are only interested in similarity of low locations for the noninterference proof, these high locations

have to be filtered. The filtering is defined by 𝑀 [𝑜𝑛𝑙𝑦 𝑜]. In the given memory M , each location

𝑜 is removed that is not in the input set 𝑜 . Additionally, for the 𝑜 in the input set 𝑜 , each 𝑜𝑖 in

𝑜 ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛), where the corresponding field in class 𝐶 is defined with a high security level, is

replaced with the location 𝑜 to filter the explicit high location 𝑜𝑖 . Thus, with this transformation

two memories are equal, if they differ only in the high ROG.
Removing the high locations in this way may produce an ill type memory; this is not a problem

since those memories are only used as a device to define _𝑠𝑖𝑚𝑖𝑙𝑎𝑟 (𝑒)_ and not in the reduction.

Definition 5.5.
M1 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 (𝑒) M2 ↔ M1 [𝑜𝑛𝑙𝑦 𝑙𝑜𝑤𝑅𝑜𝑔(M1, 𝑒)] = M2 [𝑜𝑛𝑙𝑦 𝑙𝑜𝑤𝑅𝑜𝑔(M2, 𝑒)]
where𝑀 [𝑜𝑛𝑙𝑦 𝑜] = 𝑀 ′

is defined as:

• (𝑜1 ↦→ 𝐶1 (𝑜1) . . . 𝑜𝑛 ↦→ 𝐶𝑛 (𝑜𝑛)) [𝑜𝑛𝑙𝑦 𝑜] =
𝑜1 ↦→ 𝐶1 (𝑜1) [𝑜𝑛𝑙𝑦 𝑜] . . . 𝑜𝑛 ↦→ 𝐶𝑛 (𝑜𝑛) [𝑜𝑛𝑙𝑦 𝑜]

• (𝑜 ↦→ 𝐶 (_)) [𝑜𝑛𝑙𝑦 𝑜] = 𝑒𝑚𝑝𝑡𝑦 if 𝑜 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑜

• (𝑜 ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛)) [𝑜𝑛𝑙𝑦 𝑜] = 𝑜 ↦→ 𝐶 (𝑜 ′
1
. . . 𝑜 ′𝑛) if 𝑜 𝑖𝑛 𝑜 with:

𝑓 𝑖𝑒𝑙𝑑𝑠 (𝐶) = 𝑇1 𝑓 1 . . .𝑇𝑛 𝑓 𝑛

𝑜 ′𝑖 = 𝑜𝑖 if 𝑠𝑒𝑐 (𝑇𝑖 ) = low

𝑜 ′𝑖 = 𝑜 if 𝑠𝑒𝑐 (𝑇𝑖 ) = high
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The Definition 5.6 compares that two expressions are equal if we only consider the low values. It

is defined as rule induction, where the only interesting case is that high values are ignored. This

means, two expressions are lowEqual if either they are the same low expression, or possibly-different

high locations.

Definition 5.6. 𝑒 lowEqual 𝑒 ′

• 𝑥 lowEqual 𝑥
• 𝑒.𝑓 lowEqual 𝑒 ′.𝑓 iff 𝑒 lowEqual 𝑒 ′

• 𝑒0 .𝑓 = 𝑒 ′
0
lowEqual 𝑒1.𝑓 = 𝑒 ′

1
iff 𝑒0 lowEqual 𝑒1 𝑎𝑛𝑑 𝑒 ′

0
lowEqual 𝑒 ′

1

• 𝑒0 .𝑚(𝑒1 . . . 𝑒𝑛) lowEqual 𝑒 ′0.𝑚(𝑒 ′
1
. . . 𝑒 ′𝑛) iff 𝑒𝑖 lowEqual 𝑒 ′𝑖 for 𝑖 𝑖𝑛 0 . . . 𝑛

• new s C (𝑒1 . . . 𝑒𝑛) lowEqual new s C (𝑒 ′1 . . . 𝑒 ′𝑛) iff 𝑒𝑖 lowEqual 𝑒 ′𝑖 for 𝑖 𝑖𝑛 1 . . . 𝑛

• (low mdf 𝑜) lowEqual (low mdf 𝑜)
• (high mdf 𝑜) lowEqual (high mdf ′ 𝑜 ′)

The Definition 5.7 is essential to constrain reduction: an alternative to our reduction that is

undesirable could trivially preserve security by adding everything to the high memory so that no

low objects remain. The definition of preserves constraints the reduction to only change the high

memory in the few appropriate and necessary cases as follows: In the first trivial case, nothing is

added. In the second case, a new high object is created and added to the high ROG. In the third case,

a low capsule object is promoted to high and added to the high ROG. Here, all options of a promotion

of a capsule object are shown (field assign, method call as receiver and as parameter, and object

construction as a parameter).

Definition 5.7. 𝑀 preserves(e/e′) 𝑀 ′
if one of the three holds:

1) ℎ𝑖𝑔ℎ𝑅𝑜𝑔(𝑀, 𝑒) = ℎ𝑖𝑔ℎ𝑅𝑜𝑔(𝑀 ′, 𝑒 ′)
2) ℎ𝑖𝑔ℎ𝑅𝑜𝑔(𝑀, 𝑒), 𝑜 = ℎ𝑖𝑔ℎ𝑅𝑜𝑔(𝑀 ′, 𝑒 ′) 𝑡ℎ𝑒𝑛

𝑒 = 𝑐𝑡𝑥0 [𝑛𝑒𝑤 ℎ𝑖𝑔ℎ 𝐶 (𝑣)], 𝑒 ′ = 𝑐𝑡𝑥0 [high𝑚𝑑𝑓 𝑜]
3) ℎ𝑖𝑔ℎ𝑅𝑜𝑔(𝑀, 𝑒), 𝑀𝑅𝑂𝐺 (𝑀, high𝑚𝑑𝑓 ′ 𝑜) = ℎ𝑖𝑔ℎ𝑅𝑜𝑔(𝑀 ′, 𝑒 ′) 𝑡ℎ𝑒𝑛

𝑒 = 𝑐𝑡𝑥0 [𝑙𝑜𝑤 𝑐𝑎𝑝𝑠𝑢𝑙𝑒 𝑜], 𝑒 ′ = 𝑐𝑡𝑥1 [high𝑚𝑑𝑓 ′ 𝑜]
𝑎𝑛𝑑 𝑒 is equal to one of the following:

𝑐𝑡𝑥 [𝑣 .𝑓 = 𝑙𝑜𝑤 𝑐𝑎𝑝𝑠𝑢𝑙𝑒 𝑜]
𝑐𝑡𝑥 [(𝑙𝑜𝑤 𝑐𝑎𝑝𝑠𝑢𝑙𝑒 𝑜).𝑚(𝑣)],
𝑐𝑡𝑥 [𝑣 .𝑚(𝑣 (𝑙𝑜𝑤 𝑐𝑎𝑝𝑠𝑢𝑙𝑒 𝑜)𝑣 ′)],
𝑐𝑡𝑥 [𝑛𝑒𝑤 𝐶 (𝑣 (𝑙𝑜𝑤 𝑐𝑎𝑝𝑠𝑢𝑙𝑒 𝑜)𝑣 ′)]

5.3 Noninterference Theorem and Proof
We prove noninterference according to our information flow policy. In literature, there are many

proposed languages (with proofs) that are very similar to the type system proposed in this work [Gi-

annini et al. 2019]. Here, to avoid repeating those same proofs that are already presented in those

other works, we accept two assumptions. (1) Soundness: the reduction does not get stuck. (2) Im-

mutability and encapsulation: In addition to not getting stuck, the reduction also never mutates

the ROG of an immutable object, and the ROG of capsules is always encapsulated (i.e., all mutable

objects can be reached only through the capsule reference). Both assumptions are established and

proved before [Giannini et al. 2019].

To prove noninterference, we first introduce two lemmas that facilitate the proof. We show

that the reduction terminates using →𝑐𝑎𝑙𝑙 and we show that, given two similar memories, each

reduction step results in similar memories.

Call-Reduction Termination. We prove in Lemma 5.8 that the reduction →𝑐𝑎𝑙𝑙 does not interfere

with termination: if we have awell typedmemoryM and an expression 𝑒 and the program terminates
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with the normal reduction, then it also terminates with →𝑐𝑎𝑙𝑙 . The result for both reductions is

also the same.

Lemma 5.8 (→𝑐𝑎𝑙𝑙 Termination). If memoryM and expression 𝑒 are well typed and if the reduction
terminates with →, then it terminates also with the reduction →𝑐𝑎𝑙𝑙 with the same result.

Proof. This can be verified by cases:→𝑐𝑎𝑙𝑙 behaves exactly like→, but has a different granularity

of the steps. Therefore,→𝑐𝑎𝑙𝑙 terminates in every case where→ terminates. □

Bisimulation. To establish noninterference, Lemma 5.9, the bisimulation core, states that two

well typed and similar memories M1 and M2 and expressions 𝑒1 and 𝑒2, where 𝑒1 lowEqual 𝑒2 holds,
reduce toM ′

1 |𝑒 ′1 andM ′
2 |𝑒 ′2 that are also similar, and the reduced expressions 𝑒 ′

1
and 𝑒 ′

2
are lowEqual.

We need property (2) to state that both memories are observably similar, and property (3) that also

the expressions are similar regarding the observable values. Both properties together represent

observably similar memories as in Theorem 5.0. Furthermore, the preservation property of each

memory ensures that the reduction only changes the high memory in necessary cases. With this

lemma, we know that each reduction step from similar memories results in similar memories: each

→𝑐𝑎𝑙𝑙 reduction step ensures noninterference.

Lemma 5.9 (Bisimulation Core).

Given well typed memories and expressions without declassification M1, M2 , 𝑒1, and 𝑒2
where M1 |𝑒1 →∗ _|𝑣1 and M2 |𝑒2 →∗ _|𝑣2.
If the following holds
1) M1 |𝑒1 →𝑐𝑎𝑙𝑙 M ′

1 |𝑒 ′1,
2) M1 similar (e1) M2 ,
3) and 𝑒1 lowEqual 𝑒2,
then:
A) M2 |𝑒2 →𝑐𝑎𝑙𝑙 M ′

2 |𝑒 ′2 and 𝑒 ′1 lowEqual 𝑒 ′2,
B) M ′

1 similar (e′1) M ′
2 ,

C) M1 preserves(e1/e′1) M ′
1,

D) M2 preserves(e2/e′2) M ′
2 ,

E) M ′
1,M

′
2, 𝑒

′
1
, 𝑒 ′

2
are well typed

Proof. We prove that all five conditions A–E are satisfied. For A and B, we prove this theorem
by cases on →𝑐𝑎𝑙𝑙 . We only prove the cases including a context, because the proofs with an empty

context imply the correctness of the rules without a context.

Proof of A and B by cases:

Case Ctx + Call:

If 𝑒1 and 𝑒2 are of form E𝑣 [(high mdf 𝑜).𝑚(𝑜)], the proof is by rule (Hrec).

Proof of A: The only point of non-determinism in this language is the way new object identities

are chosen, and the only way to introduce a new 𝑜 is with the New rule. From assumption (1) and
Lemma 5.8, we know that there is an execution of→𝑐𝑎𝑙𝑙 , containing an arbitrary number of reduction

steps (→). The reduction is of form𝑀 |E𝑣 [(high mdf 𝑜).𝑚(𝑣)] →𝑐𝑎𝑙𝑙 𝑀
′ |E𝑣 [(high mdf 𝑜 ′′)], where

the result is a high value, thus by the definition of lowEqual, E𝑣 [(high _ _)] lowEqual E𝑣 [high _ _)]
holds.

Proof of B: We execute a number of steps on the high receiver. By assumption (1) and Lemma 5.8,

this process terminates and produces a result. By typing rule Call, we know the result is high

and the parameters 𝑣𝑠 must only contain low read/imm/capsule values. By the assumption that the

language satisfies the modifier properties (e.g. immutability), we do not modify the ROG of the low

read/imm parameters. The low capsules are promoted to high in both memories, and thus, will not be
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part of the low ROG anymore.

All the other parameters and the receivers are high, so they will not influence the low values: the

whole ROG of a high object is high, and computation can only influence reachable objects since we

do not have any static variables. So B holds since the (shrunken) low ROG on both memories cannot

be mutated.

If 𝑒1 and 𝑒2 are not of form E𝑣 [(high mdf 𝑜).𝑚(𝑜)], the proof is by rule (Hother).

Proof of A: In this case we are doing a single reduction step→. The only way to introduce non-

determinism is by creating a new object, but this step is a method call. Thus, M1 = M ′
1, M2 = M ′

2
and 𝑒 ′

1
lowEqual 𝑒 ′

2
.

Proof of B: The expressions 𝑒1 and 𝑒2 must be of form E𝑣 [(low mdf 𝑜).𝑚(𝑜)] and the low receiver

is the same on both sides. Moreover, since the original memories are similar, the low 𝑜 is an in-

stance of the same class, thus the method call will resolve to the same body, and the application

of reduction rule (Call) is deterministic and is identically in both cases, so the memories are not

influenced (except for the usual shrinkage on promoted low capsule and low imm objects). Thus, B holds.

Case Ctx + Field Update:

Proof of A: By assumption (1), we know the expression reduces. The only way to introduce a

new 𝑜 is with the (new) rule; thus A holds since we use the same process to get 𝑣 ′
2
(the rule applies

a deterministic procedure).

Proof of B: In this case, if 𝑣2 is low, we know: M1 |E𝑣 [𝑣1.𝑓0 = 𝑣2], M2 |E𝑣 [𝑣1 .𝑓0 = 𝑣2], and
M1 similar (Ev [v1 .f0 = v2]) M2 . Thus, M ′

1 |𝑣 ′2, M ′
2 |𝑣 ′2, and M ′

1 similar (Ev [v ′2]) M ′
2 .

If 𝑣2 is high, then we could have a different value in the second reduction, but this value will also

be high, and thus, not influence similarity. By well typing, this high value will be stored in a high

field. Intuitively, if 𝑣1 is low, we can assign a high only if 𝑓0 is high. In this case, the low ROG did not

contain 𝑣2 and now does not contain 𝑣 ′
2
, so B holds. If 𝑣1 is high, then it was not part of the low ROG

to begin with, so B holds.

However, we need to inspect all possible field update cases to check that all assignments do not

violate our similarity property:

To shorten the writing for all cases, we assume a low reference low1, a high reference high1 with a

low field lowF and a high field highF. The assigned objects can be low low2 or high high2.

• low1.lowF=low2 This is equal in both reduction, so B holds.

• low1.highF=low2 This is ok if low is imm or capsule. If we have removed the last low reference to

’low’, then the result of _[only _] will shrink in the same way in both computations.

• high1.highF=low2 This is ok if low is imm or capsule, and thus, it is absent in the low ROG.
• high1.lowF=low2 This is ok if low is imm or capsule, and thus, it is absent in the low ROG.
Note for the capsule cases: The value 𝑣2 was low capsule in E𝑣 [𝑣1.𝑓0 = 𝑣2], thus it was kept as part
of the low memory by _[only _]. In the next step 𝑣 ′

2
is now high, thus it is not kept as part of the low

memory by _[only _]. Since the only change between the result of the _[only _] memory is the

absence of the low capsule, B holds.

• low1.lowF=high2 This is forbidden by the type system.

• low1.highF=high2 This is ok and irrelevant, since it does not change the low ROG.
• high1.highF=high2 This is ok and irrelevant, since it does not change the low ROG.
• high1.lowF=high2 This is ok and irrelevant, since it does not change the low ROG.

Case Ctx + Field Access:

Proof of A: The only way to introduce non-determinism is the way new objects are created. We

are accessing a location 𝑜 that is equal in both cases or it is a high location. As we are not modifying

the memories, M1 = M ′
1 and M2 = M ′

2 and 𝑒
′
1
lowEqual 𝑒 ′

2
holds.
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Proof of B: The memory is not changed by accessing a field. M1 similar (e) M2 holds before and

M1 = M ′
1 and M2 = M ′

2 , thus B holds.

Case Ctx + New:

In this case, assumption (1) is of form M1 |E𝑣 [new 𝑠 𝐶 (𝑣)] →𝑐𝑎𝑙𝑙 M1, 𝑜 ↦→ 𝐶 (_) | E𝑣 [(𝑠 mut 𝑜)], and
(A) is similar with M2 .

Proof of A: This can be obtained by simply choosing a suitable reference ‘o’ for the New rule.

Proof of B: It holds because the newmemories grow by adding the same exact object on both sides.

Proof of C and D:

To prove the conditionsC andD, we have to show that if𝑀 and 𝑒 are well typed and𝑀 |𝑒 →𝑐𝑎𝑙𝑙 M ′ |𝑒 ′
then𝑀 preserves(e/e′) M ′

. That means, each reduction step ensures the preserve property that the

high memory is only changed in necessary cases. This statement holds by the construction of our

reduction rules. We only promote expressions to high if it is necessary. No unnecessary promotions

are done. The only changes from low to high are explicitly stated in Definition 5.7: creation of a new

high object and the promotion of a low capsule expression. Thus, C and D holds.

Proof of E:

Proving condition E is more complex. From our assumptions we conclude that the well typedness

of the base language is not violated, since the SIFO type system is just stricter than the regular L42

system. However, we need to prove that the→𝑐𝑎𝑙𝑙 reduction preserves the added security typing.

This is quite subtle thanks to multiple method types (Fig. 3): The type system as presented does not

respect preservation; that is, when calling a method that has been typed using multiple method

types, the inlined body of the method may not respect our provided type system. However, we are

using the→𝑐𝑎𝑙𝑙 reduction, and the call reduction skips in a single step to the full method evaluation.

The method body will evaluate to a value; we have not formally specified typing rules for values

and memory; the intuition we present here in our proof sketch is that security is not relevant in

the memory; as you can see from the grammar in Fig. 6, we keep the security level on the value

(outside of the memory), so the result of a high method call with→𝑐𝑎𝑙𝑙 is well typed because it is

only concerned with the non-security aspects of the type system, and the security level is tracked

during reduction. See how, for example, in rule Call of Fig. 4, the security level and modifier of the

parameters can be promoted before inlining the method body. □

To prove the noninterference Theorem 5.10, we use the property that the reduction terminates

(Lemma 5.8) and the bisimulation core that each reduction step meets the requirements of nonin-

terference (Lemma 5.9). We prove, if two memories that are similar and both expressions reduce,

the new memories still have to be similar and the reduced values are equal w.r.t. low values. This

Theorem 5.10 has the same shape as Theorem 5.0, but uses the definitions for similarity of memories

(Def. 5.5) and expressions (Def. 5.6). As we said before, we exclude declassification in the proof.

Therefore, we cannot guarantee security for programs with declassify expressions. Related works

generalize the noninterference property to provide stronger guarantees for programs including

declassification [Sabelfeld and Sands 2009].

Theorem 5.10 (Noninterference).

If we have expressions 𝑒1 and 𝑒2 without declassification that are well typed and 𝑒1 lowEqual 𝑒2, M1
and M2 are well typed memories, M1 similar (e1) M2 , M1 |𝑒1 →∗ M ′

1 |𝑣1, and M2 |𝑒2 →∗ M ′
2 |𝑣2 then

M ′
1 similar (v1) M ′

2 , 𝑣1 lowEqual 𝑣2, and M
′
1, M

′
2 , 𝑣1, and 𝑣2 are well typed.
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Proof. From Lemma 5.8 and M1 |𝑒1 →∗ M ′
1 |𝑣1 and M2 |𝑒2 →∗ M ′

2 |𝑣2, we know that M1 |𝑒1 →𝑐𝑎𝑙𝑙

M ′
1 |𝑣1 and M2 |𝑒2 →𝑐𝑎𝑙𝑙 M ′

2 |𝑣2. Then, by induction on the number of steps of →𝑐𝑎𝑙𝑙 :

Base: 𝑒1 lowEqual 𝑒2 lowEqual 𝑣1 lowEqual 𝑣2, M1 = M ′
1, M2 = M ′

2 . Thus, M
′
1 similar (v1) M ′

2
holds because M1 similar (e1) M2 .

Inductive step: By Lemma 5.9 (bisimulation core) and the inductive hypothesis, each reduction

step establishes similar memories M ′
1 and M ′

2 , computes lowEqual expressions, and preserves that

only necessary values are in the high ROG. □

6 TOOL SUPPORT AND EVALUATION
In this section we present tool support for SIFO and evaluate feasibility of SIFO by implementing

five case studies. Additionally, we benchmark precision and recall of the information flow analysis

by adapting the IFSpec benchmark suite [Hamann et al. 2018] to SIFO.

6.1 Tool Support
We implement SIFO as a pluggable type system for L42 [Giannini et al. 2019]. L42 is a pure object-

oriented language with a rich type system supporting the type modifiers used by SIFO.

Conveniently, L42 allows pluggable type systems [Andreae et al. 2006; Papi et al. 2008] to add an

additional layer of typing. We add rules to support the typing of expressions with security levels.

Both Java and L42 supports pluggable type systems using annotations: type names preceded by the

symbol @. In our SIFO library, these annotations are used to introduce the security levels.
5

Some changes of SIFO are necessary to comply with L42: L42 supports the uniform access

principle [Meyer 1988]; thus there is no dedicated syntax for field assign and field access, but they

are modeled by getters and setters. Additionally, the constructor does not have dedicated syntax,

but it is a static method with return type This. In this way, we only need to type check method

calls. Moreover, this allows more flexibility since multiple method types are now transparently

and consistently applied in all those cases. We also had to extend our type system to support the

features of L42. While adding loops and other conventional constructs was trivial, we had to be

careful while extending our type system to support exceptions, since exceptions constitute yet

another way for a method execution to propagate secret information to an observer. Thus, we

consider exceptions similar to a return type.

Additionally, an exception prevents the execution of the code after it was thrown. Thus, after the

exception is caught, the programmay collect information about when the execution was interrupted

in order to discover what expression raised the exception. This is another option to propagate secret

information to an observer. Our current extension supporting exceptions is quite conservative,

requiring the use of a single security level for all free variables, exceptions, and results of a try-catch

block. In future work, we plan to formalize the extension with exceptions more precisely.

6.2 Feasibility Evaluation
To evaluate the feasibility of SIFO, we implemented four case studies from the literature in SIFO:

Battleship [Stoughton et al. 2014; Zheng et al. 2003], Email [Hall 2005], Banking [Thüm et al. 2012],

and Paycard (http://spl2go.cs.ovgu.de/projects/57). Additionally, we implemented a novel

case study of our own, the Database. The metrics of the case studies are shown in Table 1.

6.2.1 Battleship. Our evaluation is focused on the Battleship case study because this program is

carefully described by Stoughton et al. [Stoughton et al. 2014] as a general benchmark to evaluate

5
You can find a version of L42 with our SIFO library and the case studies at https://l42.is/SifoArtifactLinux.zip and https:

//l42.is/SifoArtifactWin.zip. This also contains more information about the detailed syntax in the readme.
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Name #Security Levels #Security

Annotations

#Lines of Code

Battleship 4 (+2 generic) 21 (208 in Jif) 431 (611 in Jif)

Database 4 6 73

Email 2 20 260

Banking 2 20 127

Paycard 2 15 95

Table 1. Metrics of the case studies

information flow control. Moreover, this case study is also implemented in Jif
6
, thus allowing us to

directly compare their results with our work.

Battleship is the implementation of a two player board game. At the start, each player places a

fixed number of ships of varying length on their private board. The board has a two-dimensional

grid. The players only know the placement on their board and have to guess where the other

player placed the ships. During the game, the players take turns and shoot cells on the board of the

opponent to sink ships. The first player wins the game who sinks all opponent’s ships.

Thanks to our flexible SIFO type system, we implemented most of the code without any security

annotations. We wrote a generic PlayerTrait trait that is parameterized over the security levels SelfL
and OtherL to distinguish both players. Our implementation of Battleship uses many features from

full L42, not just the minimal core presented in this paper. In particular, we rely on L42 traits and

their encoding for generics. We will expand on this in Section 7.

Our ExampleGame class implements a mutually distrustful player scenario [Stoughton et al. 2014].

In this setting, even if one of the two players is replaced with an adversarial player, we ensure that

only a correctly executed game will terminate without exception. This scenario highlights nicely

the properties of our system: we ensure noninterference that an adversarial player is unable to read

the opponent’s board state. In ExampleGame, the two players Player1 and Player2 create the boards
and shoot consecutively. We have to ensure that each player creates a confidential board that the

other player cannot read. In the concrete implementation, we annotate the board with the security

level of one of the players to restrict readability. Deep immutability enforces that the board is not

manipulated during the game. Then, each player gets a reference to the confidential board of the

opponent. Contrast this with the Jif implementation of the same game: Jif uses the concept of label

expressions that specify the allowed readers and writers of objects. In Jif, boards can be read by

only one player, but they are trusted by both players. The first player creates a board, the second

player endorses this board, and the first player then saves this board that is trusted by both players.

Endorsement is the name of downgrading integrity, similar to declassification for confidential data.

The endorsement of the board is implemented in Jif with defensive cloning. A new trusted board is

created, and all ships on the input board are cloned to add them to the trusted board. In SIFO, the

endorsement and defensive cloning is not necessary because we can rely on deep immutability of

the type system that prevents manipulation of the boards.

When a player shoots, it has to be correctly revealed if it was a miss, a hit, or a hit that sunk a

specific ship. The process of one shooting round is shown in Listing 4. The method round has as

parameter which is the opposing player. In Line 2, there is a dynamic check for validity of the game.

6
See [Zheng et al. 2003] found on the Jif website https://www.cs.cornell.edu/jif/
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1 mut method Bool round(mut OtherPlayer other) = (

2 X[this.myRound (); !this.win(this.myShots ()); !this.win(this.otherShots ())]

3 coord = this.fire()

4 @OtherL FireResult res = this.board (). fire(coord=coord ,shots=this.myShots ())

5 ResultSigner s = this.signer ()

6 @OtherL ResultSigner.Signed signed = s(label=coord.toS(),data=res)

7 ResultSigner.Signed freeSigned=other.declassify(signed)

8 X[this.signer (). mine(freeSigned ,label=coord.toS ())]

9 r = freeSigned.data (). answer (). repr()

10 this.myShots (\ myShots.with(row=coord.row(),col=coord.col(),val=r))

11 this.myRound(Bool.false ())

12 this.win(this.myShots ())

13 )

Listing 4. Implementation of one shooting in SIFO

X works like assert in Java. It must be the round of the player, and the game must not be yet won

by any player. The method fire in Line 3 asks for the next coordinates to shoot. These coordinates

are used to check for the result of the shot on the board. As this is the board of the opponent,

the result is labeled with the opponent’s security level (Line 4). We now have to declassify the

result to be able to read it, but only the opponent has the right to declassify the result of such

shot. An adversarial opponent could manipulate the declassified result, we therefore use a signing

mechanism to exclude manipulation. Thus, the confidential result is signed by the shooting player

and send to the opponent (Line 6), so that the opponent declassifies the result (miss, hit, ship sunk)

in Line 7. In Line 8, it is checked that the correct signed result is returned. In our implementation,

we can rule out manipulation as the correct result is immutable and a newly created result by

the opponent cannot have the signature of the shooting player. The shot and the result are then

added to a list for validating subsequent rounds (e.g., in Line 12 to check whether the game is won).

Then, the opponent player takes turn. If a game rule violation is detected during the game (e.g., a

manipulated result of a shot), the game can be aborted by either player.

In Jif, a player must trust that the result of a shot is correctly revealed by the opponent. In Jif,

it would be easy to implement a BadPlayer that returns an incorrect result of a shot, as there is

no check for a manipulation [Stoughton et al. 2014]. Additionally, the Jif implementation uses

defensive cloning when passing the coordinates of a shot to the opposing player.

We now compare both implementation on a more general level. Most classes are written pa-

rameterized with a security level 𝐿 in Jif. In SIFO, we write classes like Ship without any security

annotation, but we are able to use them in secure contexts with our promotion rules. With this

technique, we are able to write only 21 security annotations in the whole implementation. In Jif,

we count 208 annotations.

For the creation of players, we have a similar concept as Jif. While Jif used a generic Player class,

we created a generic PlayerTrait trait with two security levels SelfL and OtherL. This generic trait is
instantiated as PlayerTrait['SelfL=>Player1;'OtherL=>Player2]which can then be used to create object

instances. In Jif, [Player1,Player2] player1 = new Player[Player1,Player2](); is written to create a new

player.

In summary, we implemented Battleship in SIFO by relying on our promotion rules and the

immutability of trustworthy objects. Thanks to preexisting L42 features, we have not needed the

complex expressiveness of Jifs label expression, which is also discussed in Section 7.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.



Immutability and Encapsulation for Sound OO Information Flow Control 27

6.2.2 Database. The Database is a system where two databases are not allowed to interfere.

Through the different security levels, we ensure that a value read from one database cannot be

inserted into the other one. This can be obtained just by annotating the Gui class with six security

annotations, as shown in Listing 5.

1 Gui={

2 mut @Left Database dbLeft

3 mut @Right Database dbRight

4 class method mut This (mut @Left Database dbLeft , mut @Right Database dbRight)

5 class method mut This ()=(

6 capsule @Left Database dbl=Database(name=S"left",rows=Rows ())

7 capsule @Right Database dbr=Database(name=S"right",rows=Rows ())

8 This(dbLeft=dbl , dbRight=dbr)

9 )

10 }

Listing 5. Gui implementation in SIFO

The other classes are implemented without any security level. This is possible because the class

Gui is the only class that uses databases with different security levels. This means that the actual

database code is all free from security annotations; as you can see above different instances of

low capsule Database can be transparently promoted to different security levels Left and Right.

6.2.3 Further case studies. The Email system ensures that encrypted emails are only decrypted if

the public and private key pair used is valid. It also guarantees that private keys are not leaked.

The Email system needed only 20 security annotations in 260 lines of code.

Banking and Paycard are two systems that represent payment systems where it is crucial that

the calculations of new balances are correct and information is not leaked. By setting the balance

to high and checking that the system is typable, we are certain that the balance is not leaked to

attackers. For BankAccount and Paycard 20 and 15 security annotations were needed with 127 and

95 lines of code.

6.2.4 Discussion. Code following a pure object-oriented style is often directly supported by SIFO

without any special adaptation. However, when updates to local variables and statements/condi-

tionals are used, the programmer may have to rely on some simple programming patterns: for

example, in a conditional, we cannot directly update a high field of a low object, as low objects cannot

be manipulated in high conditional statements. This limitation can be circumvented by wrapping

the updatable field into a mutable proxy object (e.g., o.proxy.field instead of o.field). Such a proxy

object can then be saved in a high temporary variable; and such a variable can be used to manipulate

the state. We have to use the high proxy object because our if-rule is slightly conservative. It does

not check if only high fields of a low object are manipulated. This is still easier in comparison to

Jif because in Jif, the object instance has to be cloned so that the user keeps a reference to the low

object and can manipulate the high field data with the cloned instance.

Another insight is that major parts of the case studies could be written without any use of

security levels because the multiple method types promote the parameters of a called method to

the required security levels in necessary cases. This allowed us to write secure programs relying

on libraries and data structures without any security annotation. In our case study, we could reuse

a list implementation and securely promote it to any security level if needed. The type system

then checks that instantiated lists of different security levels did not interfere. For example, a

high list can only contain objects of at least a high security level. Moreover, we were also able to

encode domain-specific data structures and functionality without any security annotation. In Jif,
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this requires generic classes written with security annotations in all cases. Information flow can be

enforced by annotating just the few method bodies that put separate systems into communication.

Major parts of the case studies were implemented without the use of declassify. We only needed

it in Battleship to declassify shot results as intended by the game. Additionally, we declassified

console output at the end of program execution in the other case studies to print results for the

user.

By explicitly typing references as imm or capsule, the code quality increases, because programmers

can rely on properties which are enforced by the type system. Furthermore, the security levels serve

as active documentation for the programmer. In the Database example, we know which database

a value comes from by reading the security level. To reduce the writing effort for programmers,

sensible defaults are useful: if a security level is not specified, low is used.

6.3 Benchmarking with IFSpec
To evaluate precision and recall of SIFO, we applied SIFO to the IFSpec benchmark suite [Hamann

et al. 2018]. IFSpec contains 80 samples to test information flow analysis tools. In addition to

the core samples, 152 samples from the benchmark suite SecuriBench Micro
7
are adapted and

integrated into IFSpec. The samples are all available in Java and Dalvik. To benchmark SIFO,

we translated the 80 core sample when it was possible. Samples that used Java specific features

were not translated. In total 40 samples are implemented in SIFO. For these samples, we compare

SIFO with Cassandra [Lortz et al. 2014], JOANA [Graf et al. 2013], JoDroid [Mohr et al. 2015],

KeY [Ahrendt et al. 2016], and Co-Inflow [Xiang and Chong 2021] (with and without additional

security annotations) which were all evaluated before with IFSpec.

Each sample is labeled as secure or insecure. When a sample contains a leak and a tool reports a

leak, we categorize it as true positive (TP). When a sample contains no leak and a tool reports no

leak, we categorize it as true negative (TN). When a sample contains no leak but a tool reports a

leak, we categorize it as false positive (FP). When a sample contains a leak but a tool reports no leak,

we categorize it as false negative (FN). From these four categories, we can calculate precision and

recall of the tools. The recall is computed as: #𝑇𝑃/(#𝑇𝑃 +#𝐹𝑁 ). Recall determines the percentage of

samples correctly classified as insecure considering all samples containing a leak. The precision is

computed as: #𝑇𝑃/(#𝑇𝑃 + #𝐹𝑃). Precision determines the percentage of samples correctly classified

as insecure considering all samples classified as insecure by the tool.

In Table 2, we show the results of the benchmarking. All six tools found the 18 samples containing

a leak. This results in a recall of 100% for all tools. No tool classified a sample false negative. Regarding

precision, the tools have slight differences. Cassandra and Co-Inflow without additional annotations

have the lowest precision of 54.5%. JOANA has the highest precision of 62.1%, but Co-Inflow has a

higher precision of 81.8% if additional security annotation is given by the programmer. SIFO has a

precision of 58.1%.

Discussion of the False Positive Samples. With SIFO, 13 samples are typed as insecure, which are

labeled as secure by the authors of the benchmark. We will classify these samples into categories

to discuss the result of SIFO. For six samples, the type system of SIFO is not precises enough to

recognize that the sample is secure. For example, if in a conditional expression both branches assign

the same value to a low reference, we pessimistically dismiss this program.

Three samples are constructed to introduce a leak which is overwritten in the end. A simple

example is that a secret value is assigned to a public variable and in the next line, the public variable

is overwritten. We clearly prohibit the first assignment of the secret value. These examples are

constructed for taint analysis tools and are not suitable for type systems.

7
https://github.com/too4words/securibench-micro
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Tool #Samples TP TN FP FN Recall Precision

Cassandra 40 18 7 15 0 100% 54.5%

JOANA 40 18 11 11 0 100% 62.1%

JoDroid 40 18 9 13 0 100% 58.1%

KeY 40 18 8 14 0 100% 56.3%

Co-Inflow 40 18 7 15 0 100% 54.5%

Co-Inflow-

Annotations

40 18 18 4 0 100% 81.8%

SIFO 40 18 9 13 0 100% 58.1%

Table 2. Overview of the benchmark results

One sample is labeled as secure because in the provided code there is no way to access the secret

values. In sample Webstore, a secret and a public value are assigned to a public list and only the

public value is accessed in the code. When a simple getter-method for the secret value is added,

the sample would be insecure. As our type system is modular, we directly prohibit the assignment

of secret values to the public list. We do not check that there is currently no available method to

access the stored value.

For three samples, again the modular reasoning of the type system pessimistically rejects secure

programs. In DeepCall, a chain of method calls is insecure because the first secret value is propagated

through all calls and returned as a public value. In the similar sample DeepCall2, the last call always

returns the same value independent of the secret input value. This sample is considered secure. Our

types system does not check all method calls globally, it just reasons that a secret value is passed to

the next method and that a secret return value is expected. That the secret return value is actually

a public constant in the sample DeepCall2 is outside of the modular reasoning.

Most examples that SIFO rejects are constructed by developers to contain a security problem

which is erased or not accessible in the remaining code of the sample. As our type system prohibits

any introduction of security violations, we reject these samples. To support this statement, we

rewrote eight of the 13 false positive samples to be semantically similar and accepted by SIFO.

7 RELATEDWORK
Static and dynamic program analysis [Austin and Flanagan 2009; Nielson et al. 1999; Russo and

Sabelfeld 2010; Zhang et al. 2015], as well as security type systems [Banerjee and Naumann 2002;

Ferraiuolo et al. 2017; Hunt and Sands 2006; Li and Zhang 2017; Simonet 2003; Volpano et al. 1996]

are used to enforce information flow policies. We refer to Sabelfeld and Myers [2003] for a detailed

overview.

Taint Analysis. Taint analysis [Arzt et al. 2014; Enck et al. 2014; Hedin et al. 2014; Huang et al.

2014, 2012; Milanova and Huang 2013; Roy et al. 2009] is a related analysis technique that detects

direct information flows from tainted sources to secure sinks by analyzing the assignments of

variables and fields. Those taint analysis works do not provide a soundness property, while the

SIFO noninterference proof guarantees the security of type checked code. Except for JSFlow [Hedin

et al. 2014], Cassandra [Lortz et al. 2014], JOANA [Graf et al. 2013], and JoDroid [Mohr et al. 2015],

these related works do not cover implicit information flows through conditionals, loop statements,
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or dynamic dispatch. SIFO also detects implicit information flows through dynamic dispatch

(conditional and loop statements are not in the core language, but included in our implementation).

Crucially, the noninterference proof of SIFO relies on detecting implicit information flow.

Coarse-grained dynamic information flow approaches [Jia et al. 2013; Nadkarni et al. 2016;

Xiang and Chong 2021] track information at the granularity of lexically or dynamically scoped

section of code. Instead of labeling every value individually, coarse-grained approaches label an

entire section with one label. All produced values within this scope implicitly have that same label.

Therefore, the writing effort for developers to annotate programs is reduced. To still obtain good

results of the information flow analysis, for example, Xiang and Chong [Xiang and Chong 2021]

introduce opaque labeled values to permit labeled values where programmers have not provided a

label. If no further annotation is given by the programmer, the precision of the information flow

analysis can be decreased. As the evaluation shows, Co-Inflow [Xiang and Chong 2021] has better

precision when the programmer annotates the program. However, the precision is not a limitation

of coarse-grained approaches compared to fine-grained approaches. Type systems for fine- and

coarse-grained information flow control are equivalent in terms of precision as shown by Rajani et

al. [Rajani et al. 2017; Rajani and Garg 2018]. For dynamic information flow control mechanisms,

Vassena et al. [Vassena et al. 2019] have similar results.

The work by Huang, Milanova et al. [Huang et al. 2014, 2012; Milanova and Huang 2013] is

closely related to our approach because viewpoint adaption with polymorphic types is similar to

our mdf ▷ mdf ′ operator for type modifiers. For field accesses, the type of the accessed object

depends on the reference and the field type. They use read-only references to improve the precision

of their static analysis technique by allowing subtyping if the reference is read-only. In SIFO, we

also use deep immutable and capsule references, extending the expressiveness of our language.

Comparison to Jif. In this work, we explored the specific area of secure type systems for object-

oriented languages [Banerjee and Naumann 2002; Barthe et al. 2007; Barthe and Serpette 1999;

Myers 1999; Sabelfeld and Myers 2003; Strecker 2003; Sun et al. 2004]. The most important work

to compare against is Jif [Myers 1999] (see Section 2). In this paper, we presented a minimal core

of SIFO for the soundness and noninterference proofs. Nonetheless, we compare SIFO with Jif by

discussing their common and different features. A main difference is the handling of aliases: Jif

does not use any kinds of regions or alias analysis to reason about bounded side effects. Therefore,

Jif pessimistically discards many programs introducing aliases (see the example in Section 2.1 that

is not typable in Jif). On the other hand, SIFO restricts the introduction of insecure aliases and is

therefore able to safely type more programs. SIFO’s expressiveness relies on the safe promotion of

imm or capsule references. As shown in Section 2 and in Section 6.2, programs can be typed securely

without defensive cloning [Bloch 2016] because imm and capsule modifiers allow promoting objects

to higher security levels. In Jif, a similar promotion is only allowed for primitive types.

The SIFO type system leverages on a minimalistic syntax of security annotation, where types

contain a security level. Jif offers a much more elaborated syntax: in Jif, a security label is an

expression consisting of a set of policies [Myers and Liskov 2000]. Each policy has an owner 𝑜

and a set of readers 𝑟 . For example, the label 𝑜1 : 𝑟1;𝑜2 : 𝑟1, 𝑟2 states that the policy of 𝑜1 allows 𝑟1
to read the value and 𝑜2 allows 𝑟1 and 𝑟2 to read the value. Hence, 𝑟1 is the only reader to fulfill

both policies. These label expressions get more complicated, the more policies are conjoined, but a

programmer gets more flexibility to express fine-grained access restrictions.

SIFO has a similar expressiveness to Jif, but does not need to resort to such complex label

expressions. To show this, consider the following scenario from Jif [Myers and Liskov 2000]:

A person Bob that wants to create his tax form using an online service. In the scenario, Bob

wants to prevent his information from being leaked to the online service, and the provider of the
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1 class Protected {

2 final label{this} lb;

3 Object {*lb} content;

4 public Protected{LL}( Object {*LL} x, label LL) {

5 lb = LL;

6 super ();

7 content = x;}

8 public Object {*L} get(label L):{L} throws (IllegalAccess) {

9 switch label(content) {

10 case (Object {*L} unwrapped) return unwrapped;

11 else throw new IllegalAccess ();}}

12 public label get_label () {

13 return lb;}}

Listing 6. Class Protected in Jif with security parameterization [Myers 1999]

service does not want its technology and data to be leaked in the process of generating the tax

form. This constraint is related to the mutually distrustful players of the Battleship case study. To

comply with these constraints, Bob labels his data with 𝑏𝑜𝑏 : 𝑏𝑜𝑏 and sends it to the online service

provider. The provider, labels its own data with 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 : 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 , so the calculated tax has the

label 𝑏𝑜𝑏 : 𝑏𝑜𝑏;𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 : 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 . This result cannot be read because the labels disagree on their

reader sets. To release the information to Bob, the provider declassifies the label by removing the

provider policy. As only the final tax form is declassified, the released information from the provider

is limited. The final tax form with the label 𝑏𝑜𝑏 : 𝑏𝑜𝑏 is then sent to Bob.

In SIFO, we can handle the same scenario as follows: Bob wants to protect his private information,

so he can set the security level to bob, but he can also set a type modifier. With read, he ensures

that his data cannot be manipulated and integrated into the provider’s data. With imm, only the

manipulation is prevented. If Bob trust the provider, he can send a capsule object to the provider.

The provider can then manipulate and alias the data, but Bob is sure, that the manipulation is

restricted to only the data reachable from the given reference. In the case of the provider, they get

a reference to the data of Bob with a security level and a type modifier. In the most restricted case

of a read reference, the provider can still use the information and calculate the final tax form, but

a manipulation or aliasing of Bob’s data is prevented. The security level of the result is the least

upper bound of bob and provider. To declassify the results for Bob, the final tax form needs to be imm

or capsule to allow safe sharing or transfer of the confidential data.

With this example, we discuss the secure transfer of data. In SIFO, by using a read, imm, or capsule

modifiers, Bob specifies how the information is usable. In Jif, the label bob:bob does not restrict

the use in the same way. There is no language support to ensure that a unique portion of store

is transferred to the provider. There is also no guarantee that the data is not manipulated, as

with imm. In Jif, if the provider has a read permission for Bob’s data, they can freely manipulate it.

Furthermore, if the provider wants to ensure that they are the current owner of Bob’s tax data, they

have to clone the data (defensive cloning [Bloch 2016]).

To grasp the difference in the annotation burden, consider the Jif example in Listing 6 of a class

that protects data from insecure access. Jif uses a parameterized label system where a class or

methods have a generic label 𝐿. The label 𝐿 can be initialized with any specific security level. This

places a large conceptual burden on the programmer, as the label 𝐿 is used in every field and method

of the class. Additionally, no legacy code can be used that is not parameterized properly.
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SIFO encourages a style where most code is completely clear of any security annotation; in

particular, most algorithms and most common data types like collections does not need any kind

of security annotations at all. Only code that is explicitly and directly involved in the handling of

security-critical data needs to be written with security in mind. Unlabeled classes and methods are

implicitly annotated with the lowest security level. Thanks to the flexibility of multiple method

types, they can be safely promoted to any higher level.

Jif has additional features that are not presented in the core of SIFO. The SIFO core works with a

finite lattice of security levels instead of the complex label expressions in Jif [Myers and Liskov 2000]

with an infinite set of possible labels. Thanks to the embedding in L42, we get label polymorphism

for free by relying on L42 encodings for generics. Thus, on one side SIFO allows to remove the

complexity of having most of the labels generic, on the other side when generic labels are truly

needed (for example to write code that have to work on unknown labels) we can rely on the L42

generics encoding, as we do in the BattleShip example.

Jif has dynamic checks of security labels. See Line 9 in Listing 6 where the security level of the

object content is checked. This feature can be emulated in SIFO with the following programming

pattern. Any is the equivalent of Object in Java.

1 BoxLeft=Data:{ @Left Any left}

2 BoxRight=Data:{ @Right Any right}

3 ...

4 low Any a

5 if a <:BoxRight return a.right ()

In a more concrete example, a Person Bob creates a BoxLeft or BoxRight object with the secure

data in the field. This object is then sent as low Any a to Alice and Alice can discover with instanceof

(<: in L42) if it is a BoxLeft or a BoxRight object. As you can see, by knowing the explicit type, we

know also the security level of the data in the field. Thus, by adding an explicit boxing step, we

enable the users to handle any kind of label and to dynamically check on those.

Jif has robust declassification [Chong and Myers 2006] which means that an attacker is not able to

declassify information, or to influence what information is declassified by the system that is above

the security level that the attacker is allowed to read. In the full embedding in L42, declassification

can be sealed behind the object capability model, as we did in the Battleship case study. The L42

object capability model is flexible and can provide a range of useful guarantees [Miller 2006]. Indeed,

you can see the Battleship case study as an exemplar representation of robust declassification. Even

if we replace one of the player with adversarial code, such code will not be able to declassify the

opposing board; even while holding a reference to such a board.

In future work, we want to extend SIFO to work with any partial order of security levels

as discussed in Section 9. With this feature, we are closer to the expressive power of Jifs label

expressions.

Other Information Flow Techniques. Hoare-style program logics are also used to reason about

information flow. The work of Andrews and Reitman [Andrews and Reitman 1980] encodes infor-

mation flow in a logical form for parallel programs. Amtoft et al. [Amtoft et al. 2006; Amtoft and

Banerjee 2004] use Hoare-style program logic and abstract interpretation to analyze information

flow. This approach is the basis in SPARK Ada for specifying and checking information flow [Amtoft

et al. 2008]. For Java, Beckert et al. [Beckert et al. 2013] formalized the information flow property in

a programming logic using self-composition of programs and an existing program verification tool

to check information flow. Similarly, Barthe et al. [Barthe et al. 2004] and Darvas et al. [Darvas et al.

2005] analyze the information flow by using self-composition of programs and standard software

verification systems. Terauchi and Aiken [Terauchi and Aiken 2005] combined a self-composition
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technique with a type system to profit from both techniques. Küsters et al. [Küsters et al. 2015]

propose a hybrid approach by using JOANA [Graf et al. 2013] and verification with KeY [Ahrendt

et al. 2016] to check the information flow.

The related IFbC approach by Schaefer et al. [Runge et al. 2020; Schaefer et al. 2018] ensures

information flow-by-construction. Here, the information flow policy is ensured by applying a sound

set of refinement rules to a starting specification. Instead of checking the security after program

creation, the programmer is guided by the rules to never violate the policy. Compared to SIFO, their

approach is limited to a while language without objects.

8 CONCLUSION
In this work, we presented a type system of an object-oriented language for secure lattice-based

information flow control using type modifiers that detects direct and implicit information flows.

This language supports secure software development by enforcing noninterference. We leverage

previous work on immutability and encapsulation to greatly increase the expressive power of our

language. Additionally, promotion/multiple method types encourage reusability of secure programs

without burdening the developer. We formalized the secure type system, proved noninterference,

and showed feasibility by implementing SIFO as a pluggable type system for L42, and conducting

an evaluation with several case studies. In the future, we want to formalize exceptions in SIFO

to extend the expressiveness of the language. We also want to generalize the proof to include

declassification.Furthermore, we could reduce the typing effort of programmers by introducing

type inference.

9 FUTUREWORK: INTEGRITY AND CONFIDENTIALITY
As noted by Biba [Biba 1977] integrity can be seen as a dual to confidentiality, which means

that either of them can be checked with the same information flow analysis techniques. For

confidentiality, information must not flow to inappropriate destinations; dually, for integrity,

information must not flow from inappropriate sources. In this work, we made all our discussion

about confidentiality. If a user of SIFO is instead interested in integrity, they can simply use our type

system with any lattice of integrity levels. However, it is also possible to track both properties at

the same time: The trick is to not rely too much on data sources with the lowest or highest security

level (e.g. low and high): since high can see all the information, high offers no integrity. In the same

way, low can write to all the information, thus low data needs to be always intrinsically valid/trusted.

high

low

alice
Confidential

bob
Confidential

alice
Trusted

bob
Trusted

Note that we can still declare low fields and low data

structures, it is sufficient for sensitive data to be stored

somewere nested inside the ROG from a non low reference,

as we shown with the database case study.

In this work, we assumed a lattice of security levels.

However, Logrippo [Logrippo 2018] has proposed that

just a partially ordered set would be appropriate to model

security. If we allowed just a partial order of security lev-

els, SIFO would allow to encode both integrity and con-

fidentiality at the same time instead of using two lattices

for confidentiality levels and integrity levels. Consider

the following example, where Bob and Alice have both

confidential and trusted data. We can define a partially

ordered set as shown on the right.

Integrity: aliceTrusted/bobTrusted is data that Alice/Bob trust to be valid. For example, only low

and bobTrusted can write on bobTrusted data. Confidentiality: aliceConfidential/bobConfidential is data
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that Alice/Bob wants to keep private. For example, low, aliceTrusted, bobTrusted, and bobConfidential

can write on bobConfidential, but bobConfidential can only be read by bobConfidential and high. Those

security levels also imply that bobTrusted can be read by bobTrusted, aliceConfidential, bobConfidential,

and high.

Being able to express integrity and confidentiality at the same time with the same lattice is clearly

a great advantage; however we are still investigating if supporting partially ordered sets instead of

a lattice would have subtle consequences that interfere with our noninterference property.
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