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a b s t r a c t 

When a comparison between time series is required, measurement functions provide meaningful scores 

to characterize similarity between sequences. Quite often, time series appear warped in time, i.e, although 

they may exhibit amplitude and shape similarity, they appear dephased in time. The most common al- 

gorithm to overcome this challenge is the Dynamic Time Warping, which aligns each sequence prior 

establishing distance measurements. However, Dynamic Time Warping takes only into account amplitude 

similarity. A distance which characterizes the degree of time warping between two sequences can deliver 

new insights for applications where the timing factor is essential, such well-defined movements during 

sports or rehabilitation exercises. We propose a novel measurement called Time Alignment Measurement, 

which delivers similarity information on the temporal domain. We demonstrate the potential of our ap- 

proach in measuring performance of time series alignment methodologies and in the characterization of 

synthetic and real time series data acquired during human movement. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

The comparison of time series have existed in the scenario of

sequence matching, subsequence searching, and motif detection.

Those challenges are intrinsically related to time series classifica-

tion applied in several contexts such as pattern recognition [1–4] ,

signal processing [5] , shape detection [6] , bioinformatics [7,8] , hu-

man activity recognition [9] and on-line handwritten signature val-

idation [10] . 

When a comparison of two streams of data with implicit or ex-

plicit time information associated is executed, there is the need for

a measurement function that provides information on the similar-

ity of the two data streams. Time series comparison may be estab-

lished using a wide range of available distance measurement func-

tions. Some of the traditional metrics, such the Euclidean distance

or some modification thereof, assume that the discrete signals are

equidistant points in time and also aligned in the time axis. In

some domains, although time series may present amplitude and
∗ Corresponding author. 

E-mail address: duarte.folgado@fraunhofer.pt (D. Folgado). 

f  

t  

a  

https://doi.org/10.1016/j.patcog.2018.04.003 

0031-3203/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article u
hape similarity, they can be considered to be out-of-phase. There-

ore, similar regions may appear in different instants in time, lead-

ng to different degrees of time distortion, or time warping, among

everal sequences, since they are not aligned in the temporal do-

ain. In those circumstances, traditional distances fail to measure

his distortion since they are very sensitive to small distortions in

ime and typically unable to directly handle unequal length time

eries without some sort of preprocessing [11] . 

In order to overcome these limitations, elastic distances which

ontemplate temporal elastic shifting have been proposed. Dy-

amic Time Warping (DTW) and Longest Common Subsequence

LCSS) compensate non-linear temporal distortions by aligning the

iscrete sequences before establishing amplitude measurements in

he discrete domain [12] . Since those algorithms do not take into

ccount the information between inter-sampling points, [13] pro-

osed the Continuous Dynamic Time Warping (CDTW), which ex-

ends the classic methodology by allowing mapping between in-

tants that may eventually not belong to the original time vector

or each series. The work from [14] uses an optimization approach

o calculate a parametric polynomial warping path reflecting the

lignment between both series. Therefore, the last two alternatives
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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roduce an optimal warping path which translates the alignment

etween two signals in the continuous domain. 

Motivated by the fact that off-the-shelf applications of semi-

upervised learning algorithms do not typically work well

hen applied to time series, the authors from [15] pro-

osed a new distance which tries to minimize this be-

aviour. The proposed distance is called Dynamic Time Warp-

ng Delta (DTW-D) and is the ratio between DTW and Euclidean

istances. 

Inspired by the well-known edit distance for string com-

arison, which calculates the minimum number of insertions,

eletions, and substitution operations to transform a string in

nother, some authors translated the core idea to time se-

ies [16 −18] . In order to generalize the concept from strings

o time series, two elements of each sequence are matched

f the absolute difference between them is bellow a given

olerance value. The common goal of the approaches con-

ists in identifying the smallest number of operations (addi-

ions, deletions and substitutions) to transform a sequence in

nother. 

Prior to establish a similarity measurement between time se-

ies, most of the aforementioned examples perform a previous

lignment between the two sequences. The optimal alignment may

lso be used for summarizing a set of time series, since it allows

o compute a more meaningful average between sequences which

ay exhibit time warping. The work developed by [19] , and more

ecently by [20] , proposes time series averaging methods based on

receding alignments, which demonstrated favourable impacts on

lustering performance. 

However, whilst we observed a multitude of proposed novel

lastic distances over the last years, they are mostly centered in

easuring similarity accounting for amplitude differences [21,22] .

hose facts motivated our work in the development of a novel

ime distance able to measure similarity between time series

n the temporal domain, namely Time Alignment Measurement

TAM). The proposed methodology is able to describe the be-

aviour in time between two signals by measuring the fraction of

ime distortion between them. The distortion may comprise pe-

iods of temporal advance or periods of delay. When signals are

imilar-alike in time they can be considered to be in phase be-

ween each other. This approach can deliver useful information

o domains where information between the temporal misalign-

ent of time series is needed. Examples of such domains in-

lude well-defined human movements executed in sports or re-

abilitation exercises. The authors from [23] investigated the fea-

ibility of biofeedback training applied to therapeutic exercises,

here repetitive movements should follow well-defined timings

o be considered successfully executed. The authors calculated

he mean error of the distance between anatomic segments ex-

cuted by the subject to a previously recorded reference. A dis-

ance able to truly characterize temporal misalignment between

ovements should bring new perspectives for the evaluation of

he correctness of the exercises through the complete movement

xecution. 

The literature review allowed to identify that most of the

ork developed over the last years in the development of

ew distance functions mostly takes into account amplitude

imilarity. The major contribution presented on this work is

ropose a novel distance which measures similarity in time

omain. 

The remaining content of this paper is organized as follows:

n section 2 , a brief overview of DTW algorithm is presented,

ince we use DTW to align two time series prior calculating

AM. Section 3 introduces the TAM distance and presents exam-

les based on synthetic time series to support its potential. In

ection 4 we present two use cases for the proposed distance
ased on real time series data. Finally, section 5 contains the con-

lusions and future work directions. 

. Time series alignment 

In this section, we motivate for the utility of DTW algorithm to

stablish an alignment between two time series in order to calcu-

ate TAM. We start with a brief explanation of DTW algorithm and

xplore some of the challenges arising while aligning signals that

resent amplitude fluctuation. 

.1. Dynamic Time Warping 

The DTW algorithm allows two time-dependent sequences that

re similar, but locally out of phase, to align in time. Its main

bjective consist of identifying an optimal alignment between se-

uences by warping the time axis iteratively. 

In order to align two time series X := ( x 1 , x 2 , …, x N ) and Y := ( y 1 ,

 2 , …, y M 

) of length N and M respectively, a N -by- M cost matrix

s computed. Each ( n th , m 

th ) element of the cost matrix , C ∈ R 

N×M ,

orresponds to the distance between each pair of elements of the

equences X and Y . The Euclidean distance is usually employed as

 distance function to define the cost matrix element as: 

(x n , y m 

) = (x n − y m 

) 2 (1)

The goal of DTW is to find the optimal warping alignment path

etween X and Y having minimum overall cost. A warping path, W ,

s a set of matrix elements that define the relationship between X

nd Y . The k th element of W is defined as w k = (i, j) k , w k ∈ R 

2 : 

 = (w 1 , w 2 , ..., w k , ..., w K ) max (N, M) ≤ K ≤ N + M − 1 (2)

The resulted path should be composed by a set of matrix ele-

ents satisfying the following conditions: 

• Boundary condition : Enforces that the first and the last ele-

ments of X and Y are aligned to each other ∴ w 1 = (1 , 1) and

w K = (N, M) . 
• Monotonicity condition : Forces the points in the warping

path to be monotonically spaced in time ∴ i 1 ≤ i 2 ≤ ... ≤ i N and

j 1 ≤ j 2 ≤ ... ≤ j M 

. 
• Step size condition : Avoids omissions in elements and

replications in the alignment of X and Y ∴ (w k +1 − w k ) ∈
(1 , 0) , (0 , 1) , (1 , 1) for k ∈ [1 : K − 1] . 

The optimal warping path is the path that has the minimum

otal cost among all possible warping paths. One could test every

ncumbent warping path and determine the minimum cost can-

idate, but such method will lead to a exponential computational

omplexity in the lengths of N and M . Using dynamic program-

ing, an accumulated cost matrix, D , is computed in order to find

he path that minimizes the warping cost in an O ( N, M ) complex-

ty [12] . Each accumulated cost matrix element is defined as the

ocal cost measure in the current cell plus the minimum of the lo-

al cost measures in the adjacent cells: 

 (n, m ) = min { D (n − 1 , m − 1) , 

D (n − 1 , m ) , D (n, m − 1) } + c(x n , y m 

) (3) 

here n ∈ [1: N ], m ∈ [1: M ], D is the accumulated cost matrix, and

 ( x n , y n ) is the local cost measure found in the current cell. 

Using this accumulated matrix, the optimal warping path, W 

∗ =
(w 1 , w 2 , ..., w K ) , is computed in reverse order of indices, starting

ith w K = (N, M) , by the following algorithm: 

 k −1 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(1 , m − 1) , if n = 1 

(n − 1 , 1) , if m = 1 

argmin { D (n − 1 , m − 1) , otherwise 
D (n − 1 , m ) , D (n, m − 1) } , 

(4) 
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Fig. 1. Accumulated cost matrix between two time series using the Euclidean dis- 

tance as local cost measure. The resulted optimal warped follows the low cost re- 

gions (represented in white) and avoids high cost regions (represented in dark). 
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In order to compensate the effect of different optimal warping

path lengths, the path-normalized distance is given as: 

DT W (X, Y ) = 

1 

K 

√ 

K ∑ 

k =1 

w 

∗
k 

(5)

Fig. 1 illustrates a typical example of DTW algorithm. The refer-

ence time vector of the lower bottom signal was artificially modi-

fied to result in the time warped signal represented vertically. The

resulting optimal path follows the minimum cost regions on the

accumulated cost matrix and establishes a pairwise relationship

between each point of the discrete series. 

DTW distance yields to a more intuitive information on signal

amplitude by performing a preceding alignment before calculating

the distance between two signals. Additionally, the resulted opti-

mal alignment path settles a pairwise relationship between each

point of the discrete signals. This discrete temporal matching may

be used for signal alignment. In our work, we further explored this

feature by creating a distance to measure time distortions between

two signals. 

2.2. Signal alignment challenges 

Although DTW has been successfully used for many years, it

still encounters some pairwise alignment challenges. In [24] the

authorts reported unintuitive alignments when the algorithm tries

to express amplitude variability in the Y-axis by improper warp-

ing the X-axis. This behaviour leads to situations defined as ”sin-

gularities”, where a single point of a particular signal maps a large

subsection of another time series. In order to overcome the sin-

gularities challenge they presented the Derivative Dynamic Time

Warping (DDTW) approach, which uses the square of the differ-

ences between the estimated signal derivatives as shown on Fig. 2 .

Despite the fact this methodology reduces the number of sin-

gularities and does not completely solve the problem, it has been

successfully used in many fields, including human activity recog-

nition using accelerometer signals [26] and biosignal segmenta-

tion [27] . However, since DDTW uses the first signal derivative it
s also quite susceptible to noise and requires signal smoothing be-

ore applying the algorithm. 

In [28] the authors introduced a DTW penalty based version

alled Weighted Dynamic Time Warping (WDTW). In this ap-

roach, the cost matrix is modified in order to incorporate a mod-

fied logistic weight function that assigns additional weight as a

unction of the phase difference between the reference and test

oints. Thus, time instants with higher phase difference will be

ore penalized than instants near the reference. 

More recently, [29] presented an approach that solely accounts

or the shape of the time series. The similarity measure is per-

ormed by comparing the spatial distribution of the data around

ach point. This modification tends to reduce singularities and pro-

otes feature alignment that may include peaks and valleys. 

Despite the attempts to improve the DTW alignment they are

till dependent of the data’s nature. For instance, time series that

o not comprise higher degree of information on the first deriva-

ive are susceptible not to benefit from an alignment solely based

n the data’s shape. Therefore, an alignment which contemplates a

eighting between the amplitude and derivative domains can con-

titute an added value towards a more versatile application. 

.3. Sliding Window Dynamic Time Warping 

In order to overcome the incorrect alignment generated by

TW and its variants, we outlined an alternative alignment that

hould prevent singularities by reflecting a feature-to-feature simi-

arity. We defined features as notable events on the course of time

eries, which include local minima, maxima or valleys. Therefore,

eatures should always be aligned with the corresponding features

n the other signal. Furthermore, a feature should always corre-

pond to a single point, since by definition they are unique in time.

he proposed approach is called Sliding Window Dynamic Time

arping (SW-DTW). 

The cost measured used by DTW uses an element-to-element

istance. In order to use a ”contextual” distance, which takes into

ccount the neighbourhood surrounding each point, we modified

he cost function to take into account the distance between well-

efined windows of the signals. The modified local cost measure

an be defined as: 

(x n , y m 

) = w (δ) × W (δ) 

W (δ) = α(X [ n − δ
2 : n + δ2 ] − Y [ n − δ

2 : n + δ2 ] ) 
2 

+ (1 − α)(�[ X ] [ m − δ
2 : m + δ2 ] − �[ Y ] [ m − δ

2 : m + δ2 ] ) 
2 (6)

here w ( δ) is a window function with width δ ∈ N , � is the op-

rator for the first discrete derivative, α ∈ R 

+ 
0 

∩ [0 : 1] is a constant

hat defines the weighting between the cost in amplitude and first

rder derivative, n and m are the indexes of the values of X and Y ,

espectively. Using a Hanning window function we can assure that

oints closer to the center of the window have more contribution

o the local cost than points located near the window limits. Since

he first discrete derivative of the signal is calculated, the last ele-

ents of X and Y are discarded to guarantee that both time series

ave the same length. Additionally, signals are prepared by intro-

ucing reflected copies of the each signal (with the window size)

n both ends. This procedures aims to minimize boundary errors on

he first and last elements of each signal. δ and α are free param-

ters and, consequently, must be tuned prior to applying the algo-

ithm. Small windows will tend to similar results compared with

he point-to-point DTW distance and excessive large window size

ill tend to improper feature alignment. 
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Fig. 2. Two time series from Gun Point dataset [25] aligned with the DTW approach (center) and DDTW modification (right). Although a slight improvement can be observed, 

there are still sections of consecutive singularities. 

Fig. 3. An example of an artificial optimal warping path superimposed on an ac- 

cumulated cost matrix containing all the available step directions. The horizontal, 

vertical and diagonal segments represent the advance, delay and phase intervals, 

respectively. 
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. Time Alignment Measurement 

In this section we will start to present a further interpretation

f the optimal warping path from the DTW algorithm. This analy-

is will allow to easily present the TAM formulation. We will finish

his section with illustrative examples to simultaneously consoli-

ate the presentation and support the potential of our proposed

istance. 

.1. DTW optimal alignment path properties 

The optimal warping path establishes a pairwise relationship

etween the indexes of both series. This resemblance allows to

haracterize the transformations on the time axis between them.

hilst there are a multitude of step patterns proposed on the lit-

rature for the warping path calculation, we started by exploring

he basic step pattern which contemplates vertical, horizontal and

iagonal segments that was discussed in section 2.1 . 

Let us consider that the eventual time warping is referenced to

eries X which is plotted on the x-axis. The possible slopes which

re contemplated on the warping are outlined on Fig. 3 . 

orizontal segments. 

An horizontal segment is defined as w k +1 − w k = (1 , 0) . In this

ase, an index of Y is associated to one or more consecutive in-

exes of the reference X . This situation illustrates a temporal ad-

ance as the same time instant is maintained on the Y sequence,

everal time instants are elapsing in the reference series. 
ertical segments. 

A vertical segment can be defined as w k +1 − w k = (0 , 1) . This

ituation arises when an index of X is associated to one or more

onsecutive indexes of the series Y . A temporal delay is therefore

resent since sequence Y is progressing in time and the reference

aintains the same instant. 

iagonal segments. 

A diagonal segment is defined as w k +1 − w k = (1 , 1) . In this cir-

umstance, there is no time warping and the signals can be con-

idered to display phase phenomenon between them. 

.2. Outline 

The idea behind the proposed distance is to measure the cost

etween a given time series to warp in time relative to the other.

sing the optimal alignment path between two time series we can

xtract information in the time domain that allows to characterize

he intervals when the series are in phase, advance or delay. 

Let us consider again two sequences X of length N ∈ N and Y

f length M ∈ N . During the complete length of each sequence, the

ignals may be considered to exhibit phase and out of phase be-

aviours. In case the signals are out of phase, one sequence can be

onsidered to be in advance in relation to the other. This charac-

eristic is reciprocal as if X is in advance in relation to Y, Y can be

onsidered to be delayed in relation to X . 

If we assume that Y is delayed in relation to X , the total time

hich Y is delayed in relation to X is denoted as 
← −
θ xy and the time

hich may be eventually advanced is denoted as 
−→ 

θ xy . Using this

omenclature, we can write the relation between advance, delay,

nd length of both signals as: 

 

−→ 

θxy −
← −
θxy | = | M − N| (7)

The total time when both signals are in phase is represented by

xy . During the complete length of signal Y , the fraction of advance

 

−→ 

ψ ), delay ( 
← −
ψ ), and phase ( ψ ) to X can be calculated as: 

 

ψ = 

−→ 

θxy 

N 

← −
ψ = 

← −
θxy 

M 

ψ = 

θxy 

min { N, M} (8) 

Finally, the TAM distance can be formally defined as: 

= 

−→ 

ψ + 

← −
ψ + (1 − ψ ) , � ∈ { R 

+ 
0 | � ∈ [0 : 3] } (9)

This distance penalizes signals where advance or delay is

resent and benefits series that are in phase between each other.

s the distance increases, the dissimilarity between both signals

lso increases. Thus, in case the signals are constantly in phase,

 = 1 , 
−→ 

θxy = 0 , 
−→ 

ψ = 0 , 
← −
θxy = 0 and 

← −
ψ = 0 . The TAM distance has

he minimum allowed value ( � = 0 ), and the signals can be con-

idered equal in temporal domain. The highest dissimilarity value

s traduced when � = 3 , where 
−→ 

θxy = N ⇒ 

−→ 

ψ = 1 , 
← −
θxy = M ⇒ 

← −
ψ =

 , and consequently ψ = 0 . 

It is important to note some considerations regarding the topol-

gy of the proposed measure: 
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1. The condition of identity of indiscernibles is not satisfied:

�(X, Y ) = 0 � X = Y . In fact, two signals can be equal in time

and possess dissimilarity in amplitude. A trivial application of

our distance to two similar signals in time with an offset on

amplitude proves this assumption. 

2. Symmetry is observed since the concept of advance and de-

lay between two time series is reciprocal: 
−→ 

θ xy = 

← −
θ yx = α

and 

← −
θ xy = 

−→ 

θ yx = β . Furthermore, θxy = θyx = θ . The symmetry

proof is trivial and outlined on Eq. 10 : 

−→ 

θ xy 

N 

+ 

← −
θ xy 

M 

+ 

(
1 − θx,y 

min (N, M) 

)

= 

−→ 

θ yx 

N 

+ 

← −
θ yx 

M 

+ 

(
1 − θyx 

min (N, M) 

)
⇔ 

⇔ 

α

N 

+ 

β

M 

+ 

(
1 − θ

min (N, M) 

)

= 

β

M 

+ 

α

N 

+ 

(
1 − θ

min (N, M) 

)
⇔ 

⇔ �(X, Y ) = �(Y, X ) (10)

The aforementioned considerations reveal that TAM can not be

considered as a metric since it fails to guarantee the identity of

indiscernibles. However, we can state that is a premetric , since it

fully satisfies both the non-negativity and symmetry conditions. It

is important to empathize that in order to calculate the TAM dis-

tance, it is only required to establish a pairwise relation between

the elements of each time series. This pairwise relation provides

the required alignment to compute the delays, advances, and phase

periods between signals. Thus, alternative methods for signal align-

ment to DTW can also be used to compute TAM. 

Calculate TAM from optimal warping path. 

TAM can be calculated directly from the DTW warping path

based on the following assumptions: 

Let �[ W 

∗
k 

] = w 

∗
k +1 

− w 

∗
k 

be the finite difference between two

consecutive coordinates of the optimal warping path at point k

represented as a bidimensional vector. Since the optimal warp-

ing path is restricted to vertical, horizontal and diagonal seg-

ments, �[ W 

∗
k 

] is also rescricted to the values of �[ W 

∗
k 

] ∈
{ (1 , 1) , (1 , 0) , (0 , 1) } . The vertical segments will have a value of

�[ W 

∗
k 

] = (0 , 1) , marked by a temporal delay; the horizontal seg-

ments will have �[ W 

∗
k 

] = (1 , 0) , denoting a temporal advance, and

the diagonal segments will present �[ W 

∗
k 

] = (1 , 1) , denoting phase

among the time series. 

The number of instants in advance, delay, and phase can be di-

rectly calculated from the optimal path accordind to Eq. 11 . 

−→ 

δk = 

{
1 , �[ W 

∗
k 

] = (1 , 0) 
0 , otherwise 

← −
δk = 

{
1 , �[ W 

∗
k 

] = (0 , 1) 
0 , otherwise 

(11)

δk = 

{
1 , �[ W 

∗
k 

] = (1 , 1) 
0 , otherwise 

Hence, TAM can be calculated according to Eq. 12 : 

� = 

1 

N 

K ∑ 

k =1 

−→ 

δk + 

1 

M 

K ∑ 

k =1 

← −
δk + 

( 

1 − 1 

min { N, M} 
K ∑ 

k =1 

δk 

) 

(12)

Returning to the analysis of Fig. 3 we can see that the path

starts within phase, enters in delay during four segments and fin-

ishes in advance during another four segments. We can write the

resultant 
−→ 

δ , 
← −
δ , and δ as: 
→ 

δ = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 } 
 −

δ = { 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 } 
δ = { 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } (13)

.3. Application 

In the following paragraphs we will use artificial signals to ex-

lain the proposed distance and support its potential to character-

ze time series. 

qual length time series. 

When we establish a comparison between two time series, X

nd Y , with equal lengths N = M = L, the duration of the intervals

here X is in advance and delay in comparison to Y must be equal.

his property is a consequence of the fact that both signals have

qual lengths. Therefore, despite an eventual delay, the signal must

ave at least an a posteriori advance to finish at the same instant

s the other sequence and vice-versa. 

Since 
−→ 

θxy = 

← −
θxy = θ, the TAM distance can be directly simplified

o: 

(X, Y ) = 

3 θ

L 
(14)

Fig. 4 represents an example where a set of four artificial sig-

als was generated by distorting the first sequence. Although in

his example the Euclidean distance increases with the increase

f time distortion, it does not reflect a meaningful measurement.

ince it is only sensitive to amplitude similarity, in case a sequence

ossess an offset on the plateau values, it will produce a greater

istance value, independently of the time warping degree. The

TW aligns each pair of signals prior computing the distance and

hus produces equal scores for all examples. However, TAM pro-

uces a meaningful score, which reflects the cost to compress and

ilate in time a specific signal. In fact, the distance increases with

he degree of time distortion present in each sequence. Signal A is

dentical to the reference signal. The plateau from signal B has an

dvance of 10 seconds. In order to finish at the same instant, the

ignal enters in delay at the last segment for another 10 seconds.

ignal C is distorted half of its time as 
−→ 

θxy = 

← −
θxy = 15 ⇒ � = 

3 ·15 
30 .

ignal D represents a significant advance of the plateau, which is

epresented as a single peak, followed by a significant delay until

he end of the signal. Note that in all examples the two first and

ast samples are in phase, which prevents to achieve the maximum

heoretical TAM value. 

nequal length time series. 

Time series with different lengths may present multiple be-

aviours in the way they perform in time. Fig. 5 represents a group

f four signals distorted in time. The signals were generated from

he first sequence by modifying the respective time vectors to sim-

late delays and advances. Signal A shares the same time represen-

ation with the reference signal. Signal B possess an initial delay

f 10 seconds then enters in phase for the rest of its length. The

AM distance of 0.25 reflects this compression. A higher distance is

bserved for signal C since a more significant advance is present.

ignal D reflects a linear delay lag since two instants in the sig-

al are related to a single instant in signal A , producing a distance

alue of 0.5. The Euclidean distance was calculated by linear inter-

olating all signals to share the same length of the reference. This

rocedure assures that signals have equal lengths in order to com-

ute the Euclidean distance. Although signal D is different from the

eference in time domain, the Euclidean distance is zero. 
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Fig. 4. A set of four examples with equal lengths. The first sequence is the reference signal (dashed line). All the signals are compared against the reference signal. An 

annotation is provided with each respective Euclidean, DTW and TAM distances. 

Fig. 5. A group of four signals distorted in time. The signals were generated from the upper signal (dashed line) by artificially modifying the vectors to simulate delays 

and advances. An annotation is provided to show the Euclidean, DTW and TAM distances. The Euclidean distance was calculated by linear interpolating all signals to the 

reference length. 
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pplication notes. 

The previous examples allowed to better describe the nature of

ur main contribution: provide a novel distance measurement able

o characterize the degree of time warping between time series

hich may be similar-alike in amplitude. The DTW-D, proposed
y [15] , consists of the ratio between DTW and the Euclidean dis-

ance. One might potentially argue that such ratio could be an ap-

roximation to measure warping, as it measures the amount of

arping necessary to match a given time series in reference to the

uclidean distance (which requires no warping at all). However,
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DTW-D will eventually fail in the presented application examples.

As the signals are similar-alike in amplitude, DTW will have the

value of 0 and, consequently, DTW-D will also fail to provide a

meaningful score. 

As a final note, a naive approach to compare time series based

on the time domain would be solely compare the length of the

sequences. However, the TAM evaluates the temporal behaviour in

terms of delay, advance and phase along the time of each sequence

and, therefore, it not strictly limited to the endpoints of each se-

quence. Consequently, even for sequences with equal length, tem-

poral information can be extracted which would not be possible if

a direct comparison between signal lengths was performed. 

4. Experimental Evaluation 

In this section two studies will be presented to demonstrate

the applicability and relevance of our approach to characterize real

time series data. As previously mentioned in subsection 3.2 , the

TAM value is calculated based on the previous time series align-

ment. Therefore, the value depends on the preceding alignment

quality. The first study consists of examining the signal alignment

quality using well-known DTW variations and our proposed SW-

DTW modification. Secondly, we will apply the TAM as a local

measure to examine human repetitive motion using inertial data. 

4.1. Simulated time series alignment 

We created a controlled experiment in order to assess the sig-

nal alignment performance across several DTW variations. During

the course of our research, we did not find a dataset whose main

objective is to serve as validation for time series alignment mech-

anisms. In this sense, we implemented a study based upon a com-

parison between a given time series X and a modified time series
ˆ X calculated from an amplitude modification of X . 

A scale vector, S , was generated using a series of random val-

ues from a Gaussian distribution. In order to prevent an excessive

modification between consecutive elements, we used a similar ap-

proach to [30] , where the initial random values were filtered to en-

sure adjacent scales differ by at most 1: S(t + 1) = S(t) + sin (π ×
randn ) . The signal was multiplied by the scale vector in order to

modulate negative and positive fluctuations: ˆ X = X � S. This pro-

cedure results in two time series which are always in phase dur-

ing their entire length, since the unique modification was imple-

mented in the amplitude domain (taking also into account that no

excessive modification was performed in order to prevent signifi-

cant changes in the shape of the two signals). 

When using DTW and its variants, the ideal expected outcome

is an optimal warping path which demonstrates that the signals

are continuously in phase during their complete length. However,

the amplitude fluctuations arising from the multiplication with the

scale vector are susceptible to generate singularities as previously

discussed in subsection 2.2 . 

In order to quantify the alignment quality, the TAM was cal-

culated between each pair of time series. Since the signals are

aligned throughout their complete length, it is expected that � = 0

in circumstances where the alignment was indeed performed cor-

rectly. Given that singularities result in advances and delays that

do not correspond to correct alignments, the value of the TAM will

be incorrectly influenced. Therefore, in the context of this experi-

ment, the TAM value can be used to translate the alignment qual-

ity and establish a comparison among different signal alignment

techniques. 

We used the UCR time series archive [25] to test several DTW

variations by randomly selecting 40 signals from 84 datasets,

which resulted in 3360 different alignments per algorithm varia-

tion. The selected algorithms were the DTW (no warping window),
he DTW with a 5% warping window of signal’s length (DTW_R),

he DDTW, and the SW-DTW with empirical values of α = 0 . 5 and

= 0 . 05 × N. The scale vector, S , was normalized prior the mul-

iplication in order to guarantee that S ∈ [0.5, 1.5]. The results are

ummarized in Table 1 . 

The analysis suggests that SW-DTW reduces the number of

ingularities as it outperforms the other variants in most of the

atasets. The improvement of DTW_R in comparison with DTW is

xplained by the fact the maximum distance of the warping path

o the diagonal is restricted. In the majority of the situations where

he SW-DTW is not the best alignment alternative for a given

ataset, the lowest � is achieved by the DDTW. It is important

o emphasize that the value of α = 0 . 5 was used for all datasets

nd that no individual adjustment was performed in order to re-

uce the complexity of the analysis. Since lower values of α will

ncrease the weight of the first order derivative, we can anticipate

hat it can be used to increase the alignment quality by SW-DTW

n datasets where the DDTW achieved superior performance. This

act also suggests that before applying SW-DTW, proper tuning of

he α and δ parameters is required. 

The different DTW alignment methodologies resulted in differ-

nt alignments for the same dataset and express variability in the

values. Therefore, we can anticipate that these results support

ur claim that TAM is sensitive to the alignment quality and that

W-DTW reduces the singularities in comparison with the other

valuated alternatives. It is worth to mention that despite SW-

TW achieved superior performance on this experiment, it is not

ur main contribution. Since TAM depends on preceding align-

ents, supported by the results of Table 1 , this experiment allowed

o increase our confidence that SW-DTW reduces the number of

ingularities and produces a more correct alignment in compari-

on with the evaluated alternatives. 

A detailed analysis of the UCR dataset also allowed to elaborate

mportant highlights before attempting to proceed with a time se-

ies classification exercise using TAM as a local measurement. The

AM should be used in datasets with significant temporal distor-

ion and similar amplitude between different classes. Additionally,

ach class must also comprise time series which are similar-alike

n the temporal domain. This situation is not present in the major-

ty of the UCR datasets since there are several datasets with minor

emporal differences between classes (e.g. Adiac, OliveOil and Proxi-

alPhalanxOutlineCorrect ). Therefore, we introduced a new time se-

ies dataset that suits the TAM applicability requirements and will

e thoroughly discussed in subsection 4.2 . 

.2. Repetitive upper limb motion 

A base motivation for the development of this new measure

as to describe time warping of human movement. The studied

aradigm included the assessment of repetitive well-defined move-

ents in different temporal distortion contexts. Repetitive mo-

ion is present in several circumstances such rehabilitation exer-

ises, human gait dynamics, and movements that employees exe-

ute during the labor day in certain job activities. 

In this subsection, we will present an experiment based upon

ime series retrieved using inertial sensors during the execution of

epetitive motion. We created a dataset with a total of 240 signals

etrieved by six different subjects that executed ten repetitions of

 well-defined task under four distinct sets. The movements per-

ormed during each task consisted of: grasping a solderless bread-

oard used to build electronic circuits; placing the board on a de-

ned position and welding a single perforation in each repetition;

rasping the welded board and move it to a defined position. The

ifference among each class is based on the temporal criterion

sed by the subjects to perform the task as illustrated on Fig. 6 . 
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Table 1 

Results of � across the UCR archive. The SW-DTW was applied using α = 0 . 5 and δ = 0 . 05 × N. In the DTW_R a 5% warping window was used. Higher values 

translate improper alignments and lower values represent correct alignments. The best alignment value for each dataset among the different DTW alignment 

variations is highlighted in bold font. 

Dataset DTW DTW_R DDTW SW-DTW Dataset DTW DTW_R DDTW SW-DTW 

Adiac 0.900 0.743 1.528 0.517 Meat 1.640 1.164 0.930 0.521 

ArrowHead 1.255 1.042 0.637 0.457 MedicalImages 1.405 0.602 0.694 0.654 

Beef 1.484 1.247 0.684 0.294 MiddlePhalanxOutlineAgeGroup 0.821 0.607 0.676 0.246 

BeetleFly 0.810 0.804 1.088 0.196 MiddlePhalanxOutlineCorrect 0.889 0.627 0.733 0.307 

BirdChicken 1.125 1.084 0.640 0.352 MiddlePhalanxTW 0.817 0.607 0.738 0.278 

Car 1.222 1.067 1.211 0.568 MoteStrain 1.007 0.595 0.532 0.421 

CBF 0.608 0.552 0.021 0.001 NonInvasiveFatalECGThorax1 1.612 1.435 0.445 0.284 

ChlorineConcentration 0.523 0.510 0.103 0.025 NonInvasiveFatalECGThorax2 1.664 1.362 0.544 0.386 

CinCECGtorso 1.640 1.445 0.232 0.266 OliveOil 1.630 1.165 0.978 0.378 

Coffee 1.459 1.176 0.541 0.225 OSULeaf 0.966 0.937 0.937 0.270 

Computers 0.557 0.328 0.0 0 0 0.0 0 0 PhalangesOutlinesCorrect 0.770 0.586 0.713 0.264 

CricketX 1.116 1.033 0.079 0.019 Phoneme 0.707 0.702 0.230 0.006 

CricketY 1.206 1.078 0.097 0.032 Plane 0.827 0.776 0.824 0.253 

CricketZ 1.162 1.018 0.080 0.026 ProximalPhalanxOutlineAgeGroup 0.816 0.608 0.800 0.316 

DiatomSizeReduction 1.0 0 0 0.859 1.426 0.551 ProximalPhalanxOutlineCorrect 0.854 0.564 0.779 0.309 

DistalPhalanxOutlineAgeGroup 0.698 0.544 0.616 0.213 ProximalPhalanxTW 0.803 0.628 0.855 0.323 

DistalPhalanxOutlineCorrect 0.738 0.576 0.602 0.226 RefrigerationDevices 0.588 0.533 0.002 0.0 0 0 

DistalPhalanxTW 0.757 0.581 0.717 0.235 ScreenType 0.546 0.301 0.001 0.0 0 0 

Earthquakes 0.016 0.016 0.0 0 0 0.0 0 0 ShapeletSim 0.084 0.084 0.018 0.0 0 0 

ECG200 0.893 0.658 0.116 0.162 ShapesAll 1.188 1.088 0.724 0.425 

ECG50 0 0 1.235 1.004 0.139 0.117 SmallKitchenAppliances 0.359 0.138 0.0 0 0 0.0 0 0 

ECGFiveDays 0.947 0.758 0.153 0.115 SonyAIBORobotSurface1 0.292 0.242 0.052 0.021 

ElectricDevices 0.210 0.096 0.007 0.002 SonyAIBORobotSurface2 0.120 0.109 0.048 0.005 

FaceAll 0.382 0.373 0.229 0.021 Strawberry 1.525 1.177 0.757 0.433 

FaceFour 0.567 0.559 0.006 0.0 0 0 SwedishLeaf 0.809 0.697 0.679 0.325 

FacesUCR 0.369 0.365 0.216 0.018 Symbols 1.208 0.847 0.980 0.613 

FiftyWords 1.276 0.988 1.081 0.414 SyntheticControl 0.233 0.202 0.030 0.009 

Fish 1.171 0.996 1.755 0.619 ToeSegmentation1 1.249 1.107 0.207 0.086 

FordA 0.683 0.683 0.625 0.0 0 0 ToeSegmentation2 1.399 1.180 0.321 0.152 

FordB 0.658 0.658 0.580 0.0 0 0 Trace 1.926 1.066 0.127 0.292 

GunPoint 1.750 0.643 1.443 0.479 TwoLeadECG 1.037 0.661 0.443 0.484 

Ham 1.134 1.066 0.494 0.042 TwoPatterns 0.044 0.044 0.008 0.0 0 0 

HandOutlines 0.983 0.959 1.214 0.446 UWaveGestureLibraryAll 1.314 1.218 0.517 0.131 

Haptics 1.506 1.339 0.363 0.481 UWaveGestureLibraryX 1.197 0.861 0.784 0.429 

Herring 1.210 1.119 1.112 0.538 UWaveGestureLibraryY 1.367 0.874 0.805 0.573 

InlineSkate 1.786 1.493 0.081 0.575 UWaveGestureLibraryZ 1.330 0.893 0.938 0.563 

InsectWingbeatSound 1.473 1.017 0.876 0.290 Wafer 1.479 0.530 0.990 0.169 

ItalyPowerDemand 0.629 0.0 0 0 0.269 0.111 Wine 1.262 0.978 0.870 0.591 

LargeKitchenAppliances 0.834 0.189 0.001 0.018 WordSynonyms 1.249 0.989 0.992 0.416 

Lightning2 1.202 1.007 0.096 0.010 Worms 1.428 1.324 0.292 0.135 

Lightning7 1.140 0.863 0.068 0.023 WormsTwoClass 1.562 1.478 0.244 0.109 

Mallat 1.523 1.349 1.114 0.324 Yoga 1.148 1.053 1.167 0.465 

Fig. 6. Summary of the proportional timings for task execution. The grasp move- 

ment is depicted by “G” and the soldering process is depicted by “S”. 
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The subjects executed the repetitions under four distinct sets:

ormal , where the subjects executed the movements at standard

peed; Short , where the soldering process duration is approxi-

ately half of Normal speed; Extended , where the soldering process

akes the double of the standard speed; and OverallSlow , where the

ubject completes the entire task taking approximately the double

f time from standard speed. 

Inertial information was retrieved using a custom IMU devel-

ped by Fraunhofer AICOS [31] streaming gyroscope data at 100

z. Since the device was placed on the wrist of each subject, it was

ossible to retrieve data that contained quasi-periodic sequences

orresponding to all the task repetitions performed by the subject.

he signals were manually segmented based on the beginning and

nd of each task and the SW-DTW and TAM were applied for each

egmented window. 
We divided our study in two perspectives: (1) using one of the

ubjects as a reference to establish a comparison between a refer-

nce subject and the group of the remaining subjects. The objective

as to produce a representative distance of how similar the move-

ents were performed against the reference; (2) provide a time

eries classification example, using TAM as a feature. 

.2.1. Reference movement comparison 

In this approach we used a reference subject who recorded the

eference movements that were compared against the group of re-

aining subjects. The reference was recorded by a single subject

xecuting movements at standard and predefined timings which

re described by the Normal set. Since the reference’s model must

t best represent the correct motion with inherent variability, we

rstly interpolated all the tasks performed by the reference volun-

eer to the mean task length duration. Secondly, we computed the

ean signal among all the interpolated signals. Since no previously

ignal alignment was performed, in case we had considered that

he reference signal was the mean of the interpolated signals we

ere introducing artifacts during the process of mean calculation.

n order to overcome this issue, we choose as reference task the

ne with minimum TAM value in comparison with the previously

alculated mean. Therefore, the reference time series consists of

he task repetition of the reference subject which potentially best
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Fig. 7. Alignments between the reference time series (blue) and a repetition performed by a subject during the OverallSlow set (red). A comparison is provided between the 

DTW alignment (left) and the SW-DTW (right) with α = 0 . 05 and δ = 2 seconds. The interval where the grasp movement occurs is depicted by “G” and the interval where 

the soldering process is executed is depicted by “S”. For presentation purposes the alignment lines are not displayed for the entire set of samples. 

Fig. 8. Mean and standard deviation SW-DTW and TAM values of all subjects in different set speeds. 
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corresponds to the minimum temporal misalignment in compari-

son with its own mean. 

Fig. 7 illustrates an example of the alignment established by

the SW-DTW, where the reference time series is compared against

a signal acquired from another subject executing the OverallSlow

set. The signals comprise gyroscope filtered data and the promi-

nent events correspond to the executed movements necessary to

achieve the task. The plateau on both series corresponds to the

moment where the subject is actually placing the iron tip against

the perforation to accomplish the soldering. 

We can observe a misadjustment between peaks corresponding

to the same event. In the OverallSlow example the peaks occur in

different instants and they tend to show a temporal offset to the

right. Therefore, we can declare that they are temporally delayed

relative to the reference time signal. In line with the results from

4.1 , the visual comparison potentially suggests that the alignment

produced by SW-DTW reduces the singularity issues and allows

a more accurate TAM calculation in comparison with the DTW

methodology. In fact, even in the segment which is prone to lead

to singularities, such the plateau, the SW-DTW seems to reason-

ably map the delay among the two series, which is not observed

in the DTW as both an advance and delay are present since two

singularities occur. 

After manually segment all tasks, the distances between the

reference time series and the remaining signals of the dataset ac-

quired in the four contexts were calculated using the SW-DTW and

the TAM. Fig. 8 summarizes the results of the mean and standard

deviation values for the SW-DTW and TAM distances between the

reference and the group of the remaining subjects for each set. 

 

b  
Since the signals are similar-alike in amplitude, the SW-DTW

alues are similar between Normal, Short , and Extend sets. The

verallSlow set produced an higher score since angular accelera-

ion may become attenuated when the subject tries to execute the

ask at a slower pace. The analysis using TAM shows a similar pat-

ern with an exception of the decrease relative distance of the Ex-

ended set. The highest similarity between sets is present between

he Short and Extend , despite the fact they still continue to exhibit

igher values in comparison to the Normal . This result can be ex-

lained since the TAM measures the overall time warping between

eries. Since the ratio of advance in the Short set is similar to the

atio of delay in the Extend set, they end up showing the same ex-

ent of overall warping. 

The advantage of using TAM to complement the analysis lies on

he fact we are still able to retrieve further information if we ex-

mine the ratios of delay and advance for each set. Since the Short

et comprises an advance it is expected that 
−→ 

ψ > 

← −
ψ . On the other

and, as Extend constitutes a delay, one can anticipate 
−→ 

ψ < 

← −
ψ .

hose assumptions are supported by the results outlined in Fig. 9 . 

The ratio between both parameters in the Normal suggests that

lthough the subjects try to follow the predefined reference tim-

ngs for movement execution, there is an inherent variability as-

ociated with the movements required to complete the task. On

he other side, the Short set ratio possesses a significantly higher

eight for advance, in contrast with the Extend , which denotes a

redominant weight of delay, as expected by the nature of how

he task was performed in each respective set. OverallSlow shows

he more significant weight increase for delay. 

This study demonstrated the potential of TAM to discriminate

etween different time warping contexts of the same activity. The



D. Folgado et al. / Pattern Recognition 81 (2018) 268–279 277 

Table 2 

Accuracy (mean ± standard deviation) after k -fold cross validation in comparing distinct distance functions. A total of 20 

folds was evaluated. The best value among the different classifiers is highlighted in bold font. 

Measurement T MSE DTW SW-DTW TAM(DTW) TAM(SW-DTW) 

Accuracy ( μ±σ ) (0.85 ± 0.05) (0.80 ± 0.04) (0.90 ± 0.03) (0.92 ± 0.03) (0.37 ± 0.04) (0.96 ± 0.03) 

Fig. 9. Mean and standard deviation values for 
−→ 

ψ and 
← −
ψ for all subjects in differ- 

ent set activities. 
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ovements performed in all sets to accomplish the task were ex-

ctly the same. However, the timings of the movements executed

ere different and lead to non linear warping between time series,

hich were successfully described by our proposed distance. The

nalysis using TAM is more informative than SW-DTW as it is po-

entially able to discriminate the results from Short and Extended ,

hich shown similar distance values using the SW-DTW. 

In this approach we were able to demonstrate the ability to

roduce meaningful scores using TAM in a scenario where a group

f subjects were compared against a previously recorded reference.

n the next subsection we will present a classification example us-

ng our proposed measurement. 

.2.2. Time series classification 

In this approach we merged the data from all subjects into 4

lasses that correspond to each set ( Normal, Short, Extended , and

verallSlow ). We implemented a 1-NN classifier using the follow-

ng distance functions: the absolute distance between the length of

wo series T ; Mean Square Error (MSE), which corresponds to the

uclidean distance after interpolating both sequences to the length

f the longest sequence; DTW; SW-DTW with α = 0 . 25 and δ = 4 s ;

AM(DTW), which corresponds to the TAM value calculated using

he DTW alignment and TAM(SW-DTW), which corresponds to the

AM value calculated using the SW-DTW alignment. 

We divided the subjects into training and testing sets with an

qual number of elements and used a k -fold cross validation to

over the entire group of possibilities between the distribution of

he subjects in the training and testing sets. The results are pre-

ented in Table 2 . 

The highest accuracy was achieved by the TAM calculated us-

ng the SW-DTW alignment. However, a significant difference is

resent when using the DTW alignment. These results reinforce

he fact that the quality of the previous time series alignment

s crucial to achieve representative performance when using our

roposed measurement. The DTW is prone to produce singulari-

ies more often than SW-DTW and they will tend to increase the

ariability of the distance between time series of the same class

hich downgrades the classifier’s performance. We can also ob-
erve a performance increase when using TAM in comparison with

 . This fact suggests that for a given set, there is inherent variabil-

ty among subjects associated to the total time spent in each task.

he TAM performs a description during the complete signal length

nd, consequently, detects the temporal pattern associated for each

et and not strictly the difference between the signal lengths. 

On the amplitude domain, we were also able to achieve good

erformance. The similarity between the DTW and SW-DTW ac-

uracies suggest that even with singularities, the DTW was able

o distinguish the 4 classes. It is worth to mention that DTW and

AM measure different realities (amplitude and time, respectively).

his fact explains how both DTW and SW-DTW achieved good per-

ormance while a different behaviour was present in the TAM cal-

ulation based on DTW and SW-DTW alignments, since there was

 significant difference between accuracies calculated. Finally, the

SE achieved the lower performance on the amplitude based fea-

ures as the linear interpolation between the sequences is not able

o model the non linear warping that is present between differ-

nt sets. This non linear warping is correctly modelled using DTW

ased algorithms as they produce a more intuitive distance as dis-

ussed in subsection 2.1 . 

. Conclusions and Future Work 

One of the most important topics in the context of the study

f time series is the development of novel measures able to char-

cterize each signal. As most of the distances are based in ampli-

ude, a true time distance able to characterize the degree of time

arping between two sequences can be useful in a wide range of

omains. We believe that this distance can be applied in several

ontexts, such as human movement analysis and electrophysiolog-

cal data. 

This paper presents two relevant contributions to the aforemen-

ioned domain. The alignment between time series can provide a

airwise relationship between elements which translates informa-

ion on the time domain. One of the state-of-the-art techniques to

erform the alignment is based on DTW algorithm. There are how-

ver some circumstances, arising when the algorithm tries to ex-

ress amplitude variability in the Y-axis by improper warping the

-axis, where incorrect alignments may eventually be present. The

istance function used in the DTW only uses a point-to-point dis-

ance and does not assess the context where a particular time in-

tant is inserted. One of our contributions was the development

f a new local cost distance for the DTW algorithm. Using a win-

ow instead of an element-to-element approach potentially allows

o prevent singularities by looking in a region which takes into ac-

ount a weighting between the amplitude and the first discrete

erivative of both signals. Despite the achieved results showed a

ignificant decrease of singularities, our approach is computation-

lly demanding and may require detailed optimization for real-

ime usage. 

The major contribution of our work is a comprehensive tech-

ique to characterize the degree of warping between time se-

ies. In this paper we started by presenting a detailed analysis

f DTW optimal warping path. The vertical, horizontal and diag-

nal segments can deliver information related to the delay, ad-

ance and phase, respectively, between two given time series. Our

pproach tries to measure the cost that one sequence must per-

orm to match the temporal requirements of a given reference se-
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quence. A limitation of the TAM is that relies on the alignment

quality between two series in order to use the optimal alignment

path. Therefore, an improved alignment was achieved using the

SW-DTW approach. The TAM distance was successfully applied to

both artificial and real time series data. We demonstrated two ex-

amples of applicability to this novel measurement: the TAM can

be used as quality index to establish an comparison between dif-

ferent signal alignment methodologies. Our results show that SW-

DTW is prone to reduce singularities in comparison with the evalu-

ated alternatives; we also demonstrated the possibility to discrim-

inate time warping differences of human repetitive movement. In

this case, although time series demonstrated amplitude similarity

as the movements being executed were equal, they show different

degrees of non-linear warping according to the nature of each set. 

It is important to emphasize that in this paper we do not intend

to achieve a generic higher performance of TAM in comparison

with DTW. The two approaches measure different realities: SW-

DTW measures distance in the amplitude domain and it will be

more suitable for classification in datasets with amplitude variabil-

ity among classes; TAM express distance in the temporal domain

and it is more suitable to classify datasets with minor amplitude

deviation and high temporal variability. Being two measurements

of different nature they will be applied according to different real-

ities. 

The results obtained also suggested that TAM is sensible to the

previous pairwise alignment and, therefore, a correct adjustment

of the α and δ parameters is required when using SW-DTW. While

we based our study in empirical derivation of the best values for

each parameter, in future it will be required a detailed analysis of

their influence in the alignment quality and ultimately in the TAM

calculation. In the present work we analysed the optimal warp-

ing path from a discrete perspective. By using the pairwise align-

ment provided by DTW, the warping path segments follow discrete

slopes. The future work of this approach will consist in general-

izing the TAM calculation from the optimal warping path to the

continuous domain. 
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