
VARCORC: Developing Object-Oriented
Software Product Lines Using
Correctness-by-Construction

Tabea Bordis1(B), Maximilian Kodetzki2, Tobias Runge1, and Ina Schaefer1

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{tabea.bordis,tobias.runge,ina.schaefer}@kit.edu

2 TU Braunschweig, Braunschweig, Germany
m.kodetzki@tu-bs.de

Abstract. Functional correctness is an important concern, especially in
the field of safety-critical systems. Correctness-by-Construction (CbC)
is an incremental software development technique to create functionally
correct programs guided by a formal specification. The specification is
defined first, and then the program is incrementally created using a small
set of refinement rules that define side conditions preserving the correct-
ness. CbC is mostly used to create small algorithms. However, software
in-field is often larger and more complex to meet the requirements of
today’s life. Therefore, our vision is to scale the applicability of CbC to
larger scale software systems, like software product lines (SPLs). SPLs
are one way to implement a whole product family by managed reuse.
Advanced implementation techniques for SPLs rely on object-orientation
and variability realization mechanisms on the source code level.

In this tool paper, we present our tool VarCorC which supports
the development of correct SPLs using CbC including object-orientation
and feature-oriented programming. We describe VarCorC from user-
perspective and explain how it works internally. Additionally, we provide
a feasibility evaluation of VarCorC on three case studies that are used
as benchmarks in the field of product line verification.

Keywords: Correctness-by-Construction · Software product lines ·
Object-oriented programming · Program verification

1 Introduction

The demand for software in electronic devices is rapidly increasing, also including
safety-critical applications like in the automotive, medical, or avionic field [13].
Correctness-by-Construction (CbC) as proposed by Dijkstra [9], Gries [10], or
Kourie and Watson [12] gives a guarantee for functionally correct software which
is crucial for safety-critical applications. CbC follows an incremental approach of
program construction based on a formal specification in form of pre- and post-
condition pairs. The specification is refined into an implementation using a set
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Masci et al. (Eds.): SEFM 2022 Collocated Workshops, LNCS 13765, pp. 156–163, 2023.
https://doi.org/10.1007/978-3-031-26236-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26236-4_13&domain=pdf
https://doi.org/10.1007/978-3-031-26236-4_13


VarCorC: Developing Object-Oriented SPLs Using CbC 157

of refinement rules. To guarantee the correctness of these refinement steps, each
rule defines specific side conditions for its applicability. In comparison to CbC,
classical post-hoc verification offers an approach where a program is specified
and verified after implementation. As a result, when using CbC errors are likely
to be detected earlier in the design process [14]. CorC [18] is a tool that sup-
ports CbC to develop single algorithms. First evaluation results show decreased
verification effort compared to post-hoc verification [6,18].

Our long-term vision is to make the construction of correct software using
CbC applicable for large-scale systems, such as software product lines (SPLs).
SPLs [17] enable the implementation of product families that share a common
code base by managed reuse [8], therefore lowering costs and effort in producing
custom-tailored software. The common and varying parts of an SPL are called
features. The relationship of these features are modeled in feature models and
variability realization mechanisms are used to implement their functionality. In
the end, software variants can be created according to a certain selection of fea-
tures. Many implementation techniques for SPLs, such as FeatureHouse [4] or
DeltaJ [11], rely on object-oriented design since it is well suited to model large
software systems. However, object-orientation poses some challenges for verifica-
tion as fields can be globally accessed and concepts like inheritance increase the
complexity of dependencies between classes. The complexity even increases for
SPLs since variability is added to the code by variability realization mechanisms.
Besides CbC as we pursue it, there are also other tools that implement different
refinement-based approaches, such as Event-B [1] and its platform Rodin [2],
ArcAngel [15], and SOCOS [5]. However, Event-B works on automata-based
systems rather than on code and specifications and they all do not support the
development of SPLs.

In this tool paper, we present VarCorC as an extension of CorC to develop
object-oriented SPLs using CbC. In previous work, VarCorC has been devel-
oped from single variational methods [6], to feature-oriented SPLs with methods
as simple procedures [7]. In this tool paper, we focus on the integration of object-
orientation into VarCorC to enable the development of large-scale SPLs, since
object-orientation allows for more complex projects and feature interactions over
fields and objects. As specification, we use pre- and postconditions for methods
and class invariants. Besides technical details of VarCorC, we also provide a
workflow description from user-perspective to highlight VarCorC’s usability
features. Lastly, we present a short feasibility evaluation on three case studies.

2 The Development Process with VARCORC

In this section, we describe the development process in VarCorC as shown
in Fig. 1 from the perspective of developer Alice. Alice develops an SPL that
implements a bank account system and has already created a feature model 1©.
A feature model defines all features and their relationships in a tree structure.
For the BankAccount SPL, Alice defined the features BankAccount (provides a
base implementation of an account), DailyLimit (adds a limit that can be with-
drawn from the account per day), and Interest (adds an interest to the account).



158 T. Bordis et al.

Transaction.java
Account.java

Account.cbcclass
Update.cbcmethod
UndoUpdate.cbcmethod

Transaction
Fields

Class Invariants

private Account src
private Account dest

src != dest

Transfer
public boolean 
transfer(int amt)
Pre: <precondition>
Post: <postcondition>
Mod: dest.balance

Lock
private static boolean lock()
Pre: <precondition>
Post: <postconditio>
Mod: src.lock, dest.lock

Transaction
Fields

Class Invariants

private Account src
private Account dest

src != dest

Transfer
public boolean 
transfer(int amt)
Pre: <precondition>
Post: <postcondition>
Mod: dest.balance

Lock
private static boolean lock()
Pre: <precondition>
Post: <postconditio>
Mod: src.lock, dest.lock

{P} S {Q}

selection

method call (a.update()) composition

assignment

{P} S {Q}

selection

method call (a.update()) composition

assignment assignment

Account.cbcclass
Update.cbcmethod
UndoUpdate.cbcmethod

Transaction.cbcclass
Transfer.cbcmethod
Lock.cbcmethod

Da
ily

Li
m

it

Product Genera�on during Verifica�on

BankAccount

DailyLimit Interest Transaction

new

In
te

re
st

1

2

2

2

3

4

5

6

Fig. 1. Development process in VarCorC

Apart from the root feature BankAccount, all of the features are optional, which
means that the user can select them individually. A valid selection of features
is also called feature configuration and is used to form a software variant. Alice
already implemented the features BankAccount, Interest, and DailyLimit in sep-
arate feature modules using feature-oriented programming (FOP) 2©. A feature
can add new classes or extend already existing classes by adding fields, class
invariants, and methods or by refining existing methods. When a method is
refined, its implementation is overridden with the option for reuse by using the
FOP-specific keyword original to call the implementation of that method in
another feature. Analogously, the specification of a method is overridden and the
predicates original_pre and original_post can be used. In previous work [7],
we already proposed an extension of CbC for original calls to implement methods
in an SPL.

Alice now wants to add feature Transaction to enable a transfer of money
between accounts 3©. Therefore, she inserts a new class called Transaction
which is displayed as UML-like class diagram in VarCorC 4©. She defines the
fields src and dest of type Account, a class invariant, and methods transfer
and lock to transfer money between two accounts and to lock an account such
that the balance is unmodifiable. She defines these two methods with a signature
and a method contract consisting of a first-order logic pre- and postcondition.
Afterwards, she implements method transfer in the corresponding cbcmethod
file 5© starting with the defined pre- and postcondition from the method con-
tract. For the implementation, she uses the basic set of CbC refinement rules as
defined by Kourie and Watson [12] and our refinement rules for method calls and
original calls [7] which we display in Fig. 2. For example, to apply the assign-
ment refinement rule a Hoare triple of the form {P} S {Q} with precondition



VarCorC: Developing Object-Oriented SPLs Using CbC 159

Fig. 2. List of refinement rules in correctness-by-construction [12] and method call and
original call refinement rule [7]

P, postcondition Q and abstract statement S can be refined to an assignment
x := E with x being a variable and E an expression of the same type or subtype if
and only if the side condition that precondition P implies postcondition Q where
variable x has been replaced by expression is fulfilled. All of the listed refine-
ment rules are implemented in VarCorC. For each applied refinement rule, the
side condition is checked in the background by generating a proof file which
is (semi)-automatically proven by the program verifier KeY [3]. Therefore, the
method under development is guaranteed to be correct.

During this verification process, all variants of a method according to the
feature model are generated into Java classes 6©. This has the advantage that
(1) Alice can export correct code developed with VarCorC into other projects
and (2) Alice can call externally implemented code in VarCorC when placed
in these classes. As a result, Alice can decide about the degree of using CbC as
opposed to using Java verified with a different tool or checked with testing.

One of VarCorC’s main usability features provides Alice with an overview
on the verification status of all methods in the SPL and the traceability of errors



160 T. Bordis et al.

Fig. 3. Screenshot of VarCorC with class Account in feature DailyLimit

down to one refinement step. The first is enhanced by the class view where Alice
can see the verification status of all methods of a class with red and green borders.
The latter is naturally supported by the refinement-based approach of CbC
and displayed with red and green borders for refinement steps in cbcmethods.
Additionally, Alice is notified by a change tracking mechanism that updates
the verification status of single refinement steps that depend on the contract
of other methods, such as method calls and original calls. For example, Alice
calls method update to implement method transfer from class Account 5©. To
guarantee the correctness of this refinement step, the specification of method
update is checked to comply with the specification used in this refinement step.
However, if Alice changes the specification of method update in another feature,
the refinement step in method transfer has to be re-verified. VarCorC checks
for these dependencies in the background and marks corresponding verification
steps as “not verified” and notifies Alice about affected parts.

3 Object-Oriented Software Product Lines in VARCORC

In this section, we give implementation details for our tool VarCorC1 which
is an open-source Eclipse plug-in supporting the development of object-oriented
SPLs using CbC and FOP. VarCorC captures the CbC structure of methods
and classes through a meta-model modeled with Eclipse Modeling Framework.2
The graphical editor visualizes the underlying meta-model in a tree-like structure
for methods and UML-like class diagrams.

In Fig. 3, we show a screenshot of VarCorC with class Account in fea-
ture DailyLimit. The project structure consists of a feature model, feature

1 VarCorC implements SPL development using CbC and is part of the tool CorC:
https://github.com/TUBS-ISF/CorC.

2 https://eclipse.org/emf/.

https://github.com/TUBS-ISF/CorC
https://eclipse.org/emf/


VarCorC: Developing Object-Oriented SPLs Using CbC 161

Table 1. Metrics of the case studies

Case study Features Classes Methods Original calls

BankAccount [21] 4 3 10 5
IntegerList [19] 5 1 5 2
Elevator [16] 5 4 35 5

modules, and class folders. The cbcclass and cbcmethod files are split into
a <methodName>\<classname>.diagram file, which contains the graphi-
cal information, and a <methodName>.cbcmodel\<classname>.cbcclass file
which is an instance of the corresponding meta-model. The src-gen folder con-
tains generated Java classes, which store composed software variants for the
proofs.

In the bottom properties view, we show SPL information, such as all valid
feature configurations or accessible fields and methods. The information dis-
played differs for classes and methods. In this case, we provide an overview on
class invariants, fields, and methods of class Account in other features.

In the center of Fig. 3, class Account in feature DailyLimit adds two fields
(DAILY_LIMIT and withdraw) and two methods (update and undoUpdate). As
displayed in the properties view, both methods have already been defined for
this class in feature BankAccount, which means that they are refined and can
use an original call to call their implementation in feature BankAccount.

To guarantee the correctness of a whole SPL, every variant has to be correct.
In FOP, each variant can have a different set of classes, classes can have a different
sets of fields, class invariants, and methods, and methods can have different
implementations and specifications. We use a product-based approach [20] for
showing correctness. Once the verification of a refinement step in a method is
triggered, all valid feature configurations are calculated such that original calls
can be resolved. For each configuration, the corresponding variant in form of
Java classes is generated. At the same time, a proof file is created which contains
the side condition of the CbC refinement step. If all proofs are successful, the
statement is considered to be correct.

Evaluation. We evaluate VarCorC regarding feasibility by implementing three
case studies, namely BankAccount [21], IntegerList [19], and Elevator [16]. All
case studies have already been used as benchmarks in SPL verification.3 In
Table 1, we show metrics for the case studies. The BankAccount SPL imple-
ments basic functions of a bank account and has been used throughout this
paper as an example. The IntegerList SPL implements a list of integers with
add and sort operations. The third case study, Elevator, implements basic func-
tions of an elevator, such as the movement and entering and leaving of persons.
We transferred the case studies into the object-oriented structure as introduced
in this paper. For every class, we created cbcclass files with fields and class invari-
ants. All methods are verified individually for all valid feature configurations in
VarCorC, therefore showing correctness of the whole SPL.
3 Case studies and VarCorC: https://github.com/TUBS-ISF/CorC.

https://github.com/TUBS-ISF/CorC


162 T. Bordis et al.

4 Conclusion

We believe that the specification-first, refinement-based approach of CbC
increases the awareness of correctness when developing safety-critical software
in today’s engineered world. Until recently, CbC has only been used for inde-
pendent algorithms. Therefore, we presented our tool VarCorC which enables
program development with CbC for object-oriented SPLs. We showed, how we
include object-orientation into CbC and highlighted usability features of Var-
CorC that streamline the development of SPLs. Currently, VarCorC relies
on a product-based approach limiting its scalability. Therefore, in future work
we want to experiment with more efficient approaches, such as family-based
verification.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transfer 12(6), 447–466 (2010). https://doi.org/10.1007/s10009-010-0145-y

3. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification - The KeY Book. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49812-6

4. Apel, S., Kästner, C., Lengauer, C.: Language-independent and automated soft-
ware composition: the FeatureHouse experience. IEEE Trans. Softw. Eng. 39(1),
63–79 (2013)

5. Back, R.-J., Eriksson, J., Myreen, M.: Testing and verifying invariant based pro-
grams in the SOCOS environment. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007.
LNCS, vol. 4454, pp. 61–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73770-4_4

6. Bordis, T., Runge, T., Knüppel, A., Thüm, T., Schaefer, I.: Variational correctness-
by-construction. In: Proceedings of the 14th International Working Conference on
Variability Modelling of Software-Intensive Systems, pp. 1–9 (2020)

7. Bordis, T., Runge, T., Schaefer, I.: Correctness-by-construction for feature-oriented
software product lines. In: International Conference on Generative Programming:
Concepts and Experiences, pp. 22–34 (2020)

8. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and
Applications. Citeseer (2000)

9. Dijkstra, E.W.: A Discipline of Programming, 1st edn. Prentice Hall PTR (1976)
10. Gries, D.: The Science of Programming, 1st edn. Springer, New York (1981).

https://doi.org/10.1007/978-1-4612-5983-1
11. Koscielny, J., Holthusen, S., Schaefer, I., Schulze, S., Bettini, L., Damiani, F.:

DeltaJ 1.5: delta-oriented programming for Java 1.5. In: International Conference
on Principles and Practices of Programming on the Java Platform, pp. 63–74 (2014)

12. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to
Programming. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
27919-5

https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-540-73770-4_4
https://doi.org/10.1007/978-3-540-73770-4_4
https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1007/978-3-642-27919-5
https://doi.org/10.1007/978-3-642-27919-5


VarCorC: Developing Object-Oriented SPLs Using CbC 163

13. Liu, J., Dehlinger, J., Lutz, R.: Safety analysis of software product lines using
state-based modeling. J. Syst. Softw. 80(11), 1879–1892 (2007)

14. Meyer, B.: Applying design by contract. Computer 25(10), 40–51 (1992)
15. Oliveira, M., Cavalcanti, A., Woodcock, J.: ArcAngel: a tactic language for refine-

ment. Formal Aspects Comput. 15, 28–47 (2003). https://doi.org/10.1007/s00165-
003-0003-8

16. Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput.
Program. 41(1), 53–84 (2001)

17. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-28901-1

18. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool
support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6_2

19. Scholz, W., Thüm, T., Apel, S., Lengauer, C.: Automatic detection of feature inter-
actions using the Java modeling language: an experience report. In: International
Software Product Line Conference (2011)

20. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 1–45
(2014)

21. Thüm, T., Schaefer, I., Apel, S., Hentschel, M.: Family-based deductive verification
of software product lines. In: International Conference on Generative Programming
and Component Engineering (2012)

https://doi.org/10.1007/s00165-003-0003-8
https://doi.org/10.1007/s00165-003-0003-8
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-16722-6_2

	VarCorC: Developing Object-Oriented Software Product Lines Using Correctness-by-Construction
	1 Introduction
	2 The Development Process with VarCorC 
	3 Object-Oriented Software Product Lines in VarCorC 
	4 Conclusion
	References




