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Abstract: This article presents an overview of methodologies for spatial prediction of functional data,
focusing on both stationary and non-stationary conditions. A significant aspect of the functional
random fields analysis is evaluating stationarity to characterize the stability of statistical properties
across the spatial domain. The article explores methodologies from the literature, providing insights
into the challenges and advancements in functional geostatistics. This work is relevant from theoreti-
cal and practical perspectives, offering an integrated view of methodologies tailored to the specific
stationarity conditions of the functional processes under study. The practical implications of our
work span across fields like environmental monitoring, geosciences, and biomedical research. This
overview encourages advancements in functional geostatistics, paving the way for the development
of innovative techniques for analyzing and predicting spatially correlated functional data. It lays the
groundwork for future research, enhancing our understanding of spatial statistics and its applications.
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1. Introduction

The functional data analysis (FDA) plays a critical role in various fields, as it involves
data depicted as curves, surfaces, or high-dimensional objects. The broad applicability
of the FDA across diverse domains, emphasizing its capacity to discern complex data
patterns, was illustrated in [1]. Geostatistics, as detailed in [2] and foundational works
like [3], is an area known for providing a comprehensive framework in the modeling of
spatial dependence structure of data [4]. Geostatistics facilitates estimation, prediction,
and uncertainty quantification of this type of data. The core concepts of geostatistics were
outlined in [5], while the concept of geostatistical functional data analysis (GFDA) has its
roots in early studies that aimed to combine geostatistics with FDA [6–9]. It was further
formalized and refined in [10], highlighting its application in merging the spatial data
domain with geostatistical techniques and FDA.

In light of the emphasis on geostatistics, it is essential to acknowledge the foundational
works that have shaped the understanding of spatio-temporal geostatistical frameworks [11–13].
This understanding is evident when we consider the exploration of the physical geometry
concept, which is pivotal for spatio-temporal geostatistical hydrology [14]. There are
also advanced perspectives on environmental health modeling [15]. These insights have
played a crucial role in refining geostatistical methodologies, especially when analyzing
environmental variables [16]. Significant contributions include the integration of innovative
approaches, such as the analysis of neural network residual data in unique environmental
contexts [17]. Moreover, the recent fusion of quantitative analyses with spatio-temporal
considerations highlights the evolving nature of geostatistical studies [18].
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Practical implications of the GFDA span various sectors such as climate science [19],
agriculture [20,21], oceanology [22], environmental monitoring [23], geology [24], epidemi-
ology [25], and pollution [26], among others. Through the GFDA, we seek to enhance our
comprehension of spatial patterns and relationships, leading to informed decision-making
and increased understanding of complex spatial phenomena. The GFDA aligns with the
kriging methods used for spatial modeling as outlined in [27,28], by extending traditional
geostatistical methods, primarily designed for uni-and-multivariate data, to accommodate
functional observations. In [29], it was postulated a proposition for a wavelet regression
stemming from FDA based on spatial correlation. In [30], a conditional structure based on
stationary functional processes [31] employing a random sampling design was presented,
whereas in [32], the robustness for spatio-temporal data was discussed.

As the geostatistical field continues to evolve, recent advancements have addressed
nuanced statistical aspects and their real-world applications. The intricacies of spatial
autocorrelation, particularly concerning unorthodox random variables, have been explored,
emphasizing their broader implications [33]. In the era of expansive datasets, the need
for robust estimation techniques has become paramount, leading to the development of
methods tailored for reduced rank models to accommodate large spatial data [34]. This ex-
tends into practical applications, as showcased by the integration of the spatial eigenvector
methodology in regularized regression, enhancing predictive precision in domains such
as property valuation [35]. The contemporary relevance of geostatistical tools is further
underscored by their application in global challenges, such as the COVID-19 pandemic,
where both Bayesian and nonparametric geostatistical models have been employed for
data analysis [36].

The intent of this article is to furnish an exhaustive overview concerning the tech-
niques utilized for spatial estimation via kriging and cokriging techniques in the realm
of geospatially cohesive functional data. We aim to extend the analysis presented in [10]
by exploring the breadth and depth of applicability of these techniques across numerous
disciplines and their potential in enhancing the understanding of spatial patterns and
relationships. Therefore, our primary objective is to deepen the GFDA framework, with a
special emphasis on its synergy with kriging techniques, building on and expanding the
foundational study presented in [10]. Our work aims to clearly convey this emphasis. In
pursuit of our objective, we present a detailed review of various methods for kriging and
cokriging prediction based on stationary and non-stationary functional random fields.

After this introduction, in Section 2, we expand on the investigation presented in [5],
discussing the methodologies for stationary functional data, including ordinary kriging
and continuous time-varying kriging. We also delve into cokriging prediction based on
observations of stationary functional random fields and the functional kriging total model.
In Section 3, we shift our focus to the prediction of non-stationary functional random fields.
Here, we specifically discuss on universal kriging and residual kriging with external drift,
areas that remain less explored in the literature.

Our comprehensive overview of interpolative and co-interpolative techniques for
geospatial estimation of functional data represents a significant contribution to the advance-
ment of GFDA. By enhancing the integration of the FDA and geostatistics, we hope to
open new avenues for research and applications across a variety of fields. The methodolo-
gies presented here may provide a better understanding of spatial processes and patterns,
leading to improved decision-making and management of spatially referenced functional
observations [27,28].

This article unfolds under the following structure. Section 2 is dedicated to a rig-
orous exploration of kriging and cokriging predictions tailored for stationary functional
random fields. We delve into the foundational methodologies and elucidate their broader
implications. In Section 3, we pivot our attention towards kriging predictions designed for
non-stationary functional random fields. Concluding our discussion, Section 4 serves as a
platform for reflective synthesis of our findings, leading us to propose recommendations
that might guide future research in the domain of GFDA.
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2. Kriging and Cokriging Prediction for Stationary Functional Random Fields

In this section, we provide background on the GFDA under the assumption of sta-
tionarity [27]. This section provides a detailed exploration of how kriging and cokriging
can be applied to stationary functional random fields. By examining several variations of
the GFDA, it contributes to a nuanced understanding of how this analysis can adapt to
different circumstances and requirements. It offers valuable insight into both the practical
implementation of the GFDA and the theoretical considerations that drive its use.

2.1. Context

Consider the stochastic functional process ςs(t), where s belongs to a domain D ⊆ Rd

(commonly, d = 2). This process is indexed by time t within T. For each specific s in D,
ςs(t) acts as a functional variable. Observations are made at locations s1, . . . , sn within D,
represented as ςs1(t), . . . , ςsn(t). The goal is to estimate the functional variable ςs0(t) at an
unsampled location s0.

For every t ∈ T, we operate under the assumption of a second-order stationary
and isotropic process, ensuring consistent statistical properties throughout the domain.
Specifically, for the process ςs(t), its expected value is E(ςs(t)) = µ(t), for all t ∈ T and
s ∈ D; its variance is Var(ςs(t)) = σ2(t); and its covariance is Cov(ςsi (t), ςsj(t) = Cov(h; t),
which is a function of the distance h = ‖si − sj‖, for any locations si, sj ∈ D. Then, its
semi-variogram is defined by (1/2)Var(ςsi (t)− ςsj(t)) and denoted by $(h; t) = $sisj(t).

2.2. Standard Kriging for Spatially Correlated Functional Data

The kriging estimator for ςs0 is given in vectorial notation as [27]

ς̂s0(t) = η> · ς(t), (1)

where η = (η1, . . . , ηn)> represents the coefficient vector and ς(t) = (ςs1(t), . . . , ςsn(t))
>

denotes the vector of observed values. The symbol “·” used in (1) indicates the scalar prod-
uct between the vectors η and ς(t). Optimal values for η as defined in (1) are determined
by solving the subsequent system presented as

∫
T $s1s1(t)dt . . .

∫
T $s1sn(t)dt 1

...
. . .

...
...∫

T $sns1(t)dt . . .
∫

T $snsn(t)dt 1
1 . . . 1 0




η1
...

ηn
−ν

 =


∫

T $s0s1(t)dt
...∫

T $s0sn(t)dt
1

, (2)

where ν is the Lagrange multiplier corresponding to the unbiasness constraint.
The integral representation $(h) =

∫
T $sisj(t)dt stated in (2), with h = ‖si − sj‖, is

known as the trace-semi-variogram [27]. For the existence of this integral, certain conditions
are vital. Specifically, T should be bounded, and the corresponding stochastic functional
process ς must be compactly-supported. Holding these conditions ensures that the trace-
semi-variogram provides an accurate representation of the spatial dependence structure.

Given the pairwise function stated as Fij(t) = (ςsi (t)− ςsj(t))
2, defined over the time

domain T, and the set expressed as n(h) = {(si, sj): ‖si − sj‖ = h}, the function related to
the semi-variogram can be formulated as

$̂(h) =
1

2|n(h)| ∑
(i,j)∈n(h)

∫
T

Fij(t)dt,

where |n(h)| represents the total number of distinct pairs in n(h). This formulation of the
semi-variogram emphasizes the significance of spatial relationships within the data. By
integrating over the time domain and considering pairwise differences, we gain a more
comprehensive insight into the spatial dependencies inherent in the dataset.
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2.3. Continuous Temporal Fluctuating Interpolation for Functional Data

We provide an overview of the theoretical framework based on [28], considering
functional parameters depicted as ηi(t), where i spans the set from 1 to n. This leads to

ς̂s0(t) = η(t)> · ς(t) (3)

with η(t) = (η1(t), . . . , ηn(t))> being the time-dependent coefficients and the vector of
observed values being ς(t) = (ςs1(t), . . . , ςsn(t))

>.
Thus, the time-varying nature of the coefficient vector η(t) arises from the functional

character of the data. As the observed data vary over the time domain T, the weight
or importance assigned to each observation must be flexible, adjusting over time. This
variation captures the continuous shifts in data behavior across the domain.

In contrast, traditional ordinary kriging primarily deals with scalar spatial data, where
each spatial location s has a static value. Our approach, focused on functional data, captures
intrinsic variability over time, distinguishing it from traditional methods.

The functional weights, ηi(t) namely, change over T, denoting a dynamic weighting
approach different from the traditional method where weights remain constant. The
concept of minimizing the integrand term-by-term might seem similar to minimizing the
overall integral, but this is not always the case in FDA. Given potential interdependencies of
functions over T, our approach explicitly addresses the inherent integrated characteristics
of functional data, rather than analyzing each temporal instance in isolation.

Having established the nature of functional weights, we next consider the problem
of determining these weights mathematically. State the functional parameters ηi(t) as
mentioned in (3) by solving the minimization problem formulated as

minimize
η1(t),...,ηn(t)

{∫
T

Var(ς̂s0(t)− ςs0(t))dt
}

.

Suppose that we can represent each observed function with a combination of K
basis functions, Bl , for l ∈ {1, . . . , K}, assuggested in [1]. This representation can be
mathematically articulated as

ςsj(t) = a>j B(t)

=
K

∑
l=1

ajl Bl(t), ∀j ∈ {1, . . . , n}. (4)

The assumptions concerning stationarity are:

(i) The expected value of aj is consistent across locations. In more specific terms, we have
E(aj) = υj for every location j, where υj is a location-independent constant vector.

(ii) The covariance matrix Σij depends solely on the relative distance or difference between
locations i and j, rather than their absolute positions.

To ensure stationarity within our framework, the linear model of co-regionalization is
subject to certain restrictions. Specifically, this model assumes that the covariances between
different components of the multivariate field depend on the spatial difference only through
a set of shared univariate functions.

Given the premise that ςsj(t), for each j within the set {1, . . . , n}, represents spatially
dependent stochastic functions, the assumption is that matrix A, constituted by coefficients
denoted ajl , is characterized as

A =

 a11 . . . a1K
...

. . .
...

an1 . . . anK

 = (a1, . . . , aK).



Mathematics 2023, 11, 3425 5 of 22

Note that A constitutes a K-variate random field [37] of mean E(al) = υl and matrix
of covariance Σ defined as

Σ =

 Σ11 . . . Σ1K
...

. . .
...

ΣK1 . . . ΣKK

, (5)

where Σlr = Cov(al , ar). Here, alr are assumed to be samples from the spatial random
field al , for l in the set {1, . . . , K}. We employ the framework of a co-regionalization linear
model, as detailed in [37,38], for the estimation of the matrix presented in (5).

When stating unbiasedness for making a prediction using (3), each parameter ηi(t) is
represented as a linear combination of the basis functions Bl with coefficients bil . Mathe-
matically, we have that

ηi(t) =
K

∑
l=1

bil Bl(t) = b>i B(t), i ∈ {1, . . . , n}. (6)

By using the formulas defined in (4) and (6), the predictor stated in (3) is now formu-
lated as

ς̂s0(t) =
n

∑
i=1

b>i B(t)a>i B(t) =
n

∑
i=1

b>i B(t)B>(t)ai.

The constraint of unbiasedness, expanded using the constant equal to one, is stated as

K

∑
l=1

cl Bl(t) = c>B(t) = 1.

In this context, c is a coefficient vector ensuring that the unbiasedness constraint is
satisfied for all values of t by making sure the linear combination of the basis functions
Bl(t) yields a constant value equal to one. This constraint may be presented by

n

∑
i=1

b>i B(t) = c>B(t), ∀ t ∈ T,

which is analogous to ∑n
i=1 bi = c, or to ∑n

i=1 bi1 = c1, . . . , ∑n
i=1 biK = cK.

While constructing the dispersion of the objective function, it is pertinent to note
that the coefficient vector a0 corresponds to the functional expansion of ςs0(t), where
ςs0(t) = a>0 B(t) = ∑K

l=1 a0l Bl(t). Thus, we have that

Var(ς̂s0(t)− ςs0(t)) = Var
( n

∑
i=1

b>i B(t)B>(t)ai

)
+ B>(t)Var(a0)B(t) (7)

− 2
n

∑
i=1

b>i B(t)B>(t)Cov(ai, a0)B(t)

=
n

∑
i=1

b>i B(t)B>(t)Var(ai)B(t)B>(t)bi

+ 2 ∑
i<j

b>i B(t)B>(t)Cov(ai, aj)B(t)B>(t)bj

+ B>(t)Var(a0)B(t)

− 2
n

∑
i=1

b>i B(t)B>(t)Cov(a0, ai)B(t).
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From the expression given in (7), for i < j, with i, j in the set {1, . . . , n}, we get

Cov(ai, aj) =

Cov(ai1, aj1) . . . Cov(ai1, ajK)
...

. . .
...

Cov(aiK, aj1) . . . Cov(aiK, ajK)

, i, j ∈ {1, . . . , n}. (8)

For i = j, the expression given in (8) denotes a matrix associated with ai, wherein the
diagonal components correspond to the variances of the components ai.

Consider the definitions, for i, j ∈ {1, . . . , n}, stated as

Qi =
∫

T
B(t)B>(t)Var(ai)B(t)B>(t)dt,

Qij =
∫

T
B(t)B>(t)Cov(ai, aj)B(t)B>(t)dt,

D =
∫

T
B>(t)Var(a0)B(t)dt,

Ji =
∫

T
B(t)B>(t)Cov(a0, ai)B(t)dt.

where the matrix D is determined through V̂ar(a0), which stems from the established linear
model of co-regionalization.

Taking into account K Lagrange constraints represented as ν> = (ν1, . . . , νK), the
objective function to be optimized is articulated as

minimize
b1,...,bn

{
n

∑
i=1

b>i Qibi + 2 ∑
i<j

b>i Qijbj + D− 2
n

∑
i=1

b>i Ji + 2ν>
n

∑
i=1

(bi − c)

}
. (9)

By defining β = (b>1 , . . . , b>n , ν>)>, the expression established in (9) is reframed as

minimize
β

{
β>Qβ + D− 2β> J

}
, (10)

with a structure presented by

Q =


Q1 . . . Q1n I

...
...

. . .
...

Qn1 . . . Qnn I
I . . . I 0

, J =


J1
...

Jn
c

. (11)

The unit matrix I given in (11) has rank K. When optimizing the formulation stated in
(10) in terms of β, one obtains 2Qβ− 2J = 0, which implies

J = Qβ, Q−1 J = β̂.

The plug-in estimate for the integrated prediction variance is represented as

σ̂2
s0
=
∫

T
Var(ς̂s0(t)− ςs0(t))dt.

The consolidated predictive variance σ̂2
s0

offers insight into the variability associated with
forecasting a complete curve.
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2.4. Cokriging Prediction Based on Observations of Stationary Functional Random Fields

This subsection is based on [23]. Let {Z(s), s ∈ D} be a multivariate random field,
where Z(s) ∈ Rp and D ⊂ Rd. Assume we have an observation {Z(s1), . . . , Z(sn)} and that

Z(si) =

 Z1(si)
...

Zp(si)

 =

 µ1(si)
...

µp(si)

+

 ε1(si)
...

εp(si)

, i ∈ {1, . . . , n}.

Let µj(s) denote the mean of variable j, which is considered to be constant across all
s ∈ D, and let ε j(s) represent the random error. The cokriging predictor of variable j at
location s0 is expressed as

Ẑj(s0) =
n

∑
i=1

ηi1Z1(si) + · · ·+
n

∑
i=1

ηipZp(si) =
n

∑
i=1

p

∑
j=1

ηijZj(si).

Now, let us shift our attention to a stochastic process with functional outputs, defined
as {ςs(t), s ∈ D, t ∈ T ⊂ R}. With the available observations {ςs1(t), . . . , ςsn(t)}, we
estimate the value of the transformation at the specific pair (s0 ∈ D, v ∈ T).

The challenge in this context is to adapt the traditional cokriging predictor for these
curves (functional data). This adaptation involves utilizing functional analogs in place of
the usual parameters and shifting from random variables to a series of functional variables,
like ςsi (t), with i spanning from 1 to n. Details of the adaptation are elaborated in the
expressions stated in (12) and (13) and presented next.

• Parameters

Multivariate cokriging Cokriging employing curves
η11 . . . η1p ⇒ ηv

1(t), t ∈ T
...

...
...

ηn1 . . . ηnp ⇒ ηv
n(t), t ∈ T

(12)

• Variables

Multivariate cokriging Cokriging employing curves
Z1(s1) . . . Zp(s1) ⇒ ςs1(t), t ∈ T

...
...

...
Z1(sn) . . . Zp(sn) ⇒ ςsn(t), t ∈ T

(13)

Hence, within the realm of functional data, the cokriging predictor for ςs0(v) is de-
picted by

ς̂s0(v) =
n

∑
i=1

∫
T

ηv
i (t)ςsi (t)dt. (14)

For each v ∈ T, the functional coefficients ηv
i (t) given in (14) adhere to traditional

geostatistical requirements like unbiasedness and minimal prediction variance.
In addressing the complexities of our functional data, we adopt a strategy rooted

in basis functions. This involves representing both variables and coefficients through
expansions, for i ∈ {1, . . . , n}, given by

ςsi (t) =
K

∑
l=1

ail Bl(t) = a>i B(t), (15)

ηv
i (t) =

K

∑
l=1

bilvBl(t) = b>ivB(t), (16)
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where K denotes the total number of basis functions. The choice of an optimal K is data-
dependent and can be determined using cross-validation techniques. By utilizing the
expansions given by (15) and (16), the predictor stated in (14) undergoes a transforma-
tion, yielding

ς̂s0(v) =
n

∑
i=1

∫
T

b>ivB(t)B>(t)aidt =
n

∑
i=1

b>ivWai. (17)

The integral product is defined as

W =
∫

T
B(t)B>(t)dt. (18)

For commonly adopted orthonormal bases, like the Fourier series, the Gram matrix
W stated in (18) is recognized to be the identity matrix as referenced in (18). Conversely,
for bases like B-splines, the determination of W requires numerical integration. Assuming
stationary behavior in the random functions, we deduce that

A =

a11 . . . a1K
...

. . .
...

an1 . . . anK

 =
(
a1, . . . , aK

)
.

This establishes a K-variate random field with its mean and covariance matrix respectively
expressed as

E(al) =

E(a1j)
...

E(anl)

 =

ϑl
...

ϑl

, l ∈ {1, . . . , K}, (19)

and

Σ =

Σ11 . . . Σ1K
...

. . .
...

ΣK1 . . . ΣKK

, (20)

where Σlr = Cov(al , ar) depicts the covariance between al and ar. Consequently, employ-
ing the formula given in (19), we derive

E(ai) =

E(ai1)
...

E(aiK)

 =

ϑ1
...

ϑK

 = ϑ, i ∈ {1, . . . , n}.

Hence, the mean predictor presented in (17) is characterized as

E(ς̂s0(v)) =
n

∑
i=1

b>ivWE(ai) =
n

∑
i=1

b>ivWϑ.

Moreover, the mean unobserved function at s0 (location) and v (time) is formulated by

E(ςs0(v)) =
K

∑
l=1

E(a0l)Bl(v) = B>(v)E(a0) = B>(v)ϑ.
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Therefore, the suggested predictor holds with the unbiasedness condition if

n

∑
i=1

b>iv = B>(v)W−1. (21)

While Gram matrices are generally positive semi-definite, ensuring their strict positive
definiteness can be challenging. However, in the context of our specific Gram matrix W
defined in (18), its positive definiteness is guaranteed. This arises from the fact that the
functions Bl(t), for l ∈ {1, . . . , K}, constitute a basis set and are linearly independent. As a
direct consequence, the inverse matrix W−1 exists, ensuring the well-defined nature of the
expression presented in (21).

To identify the optimal linear unbiased estimator, the functional parameters within
our proposed predictor are obtained by addressing the optimization problem stated as

minimize
ηv

1 ,...,ηv
n

{
Var(ς̂s0(v)− ςs0(v))

}
, (22)

subject to E(ς̂s0(v)) = E(ςs0(v)).
Obtaining the variance from the objective function formulated in (22), we find that

Var(ς̂s0(v)− ςs0(v)) = Var(ς̂s0(v)) + Var(ςs0(v))− 2Cov(ς̂s0(v), ςs0(v))

=
n

∑
i=1

b>ivWVar(ai)W>biv + 2 ∑
i<j

b>ivWCov(ai, aj)W>bjv (23)

+ B>(v)Var(a0)B(v)− 2
n

∑
i=1

b>ivWCov(a0, ai)B(v).

In this context, Var(ai) and Var(a0) denote the variances of ai and a0, respectively. Similarly,
Cov(ai, aj) signifies the covariance between ai and aj, while Cov(a0, ai) represents the
covariance of a0 with ai. These metrics can be computed from Σ given in (20) such as
previously determined. However, multivariate geostatistics [37], and specifically a linear
model of co-regionalization [37], can be employed to estimate these matrices. It should be
noted that, due to the stationary random functions in A, Var(ai) and Var(a0) are identical.
Furthermore, Cov(a0, ai) is solely dependent on the distances and not on their locations.
As a result, they may be directly obtained using Σ. Defining

Mi =
(

W Var(ai)W>
)

, Mij =
(

W Cov(ai, aj)W>
)

, Ni(v) = (W Cov(a0, ai)B(v)), D(v) = B>(v)Var(a0)B(v),

the expression given in (23) may be presented as

Var(ς̂s0(v)− ςs0(v)) =
n

∑
i=1

b>iv Mibiv + 2 ∑
i<j

b>iv Mijbjv + D(v) − 2
n

∑
i=1

b>iv Ni(v). (24)

From the expression formulated in (24) and assuming the Lagrange multipliers ν>v =
(ν1v, . . . , νKv), the optimization problem formulated in (22) may be stated as

minimize
b1v ,...,bnv ,νv

{
n

∑
i=1

b>iv Mibiv + 2 ∑
i<j

b>iv Mijbjv + D(v)− 2
n

∑
i=1

b>iv Ni(v) + 2ν>v

( n

∑
i=1

biv −W−1B(v)
)}

.

Considering βv =
(
b>1v, . . . , b>nv, ν>v

)>
, we have

minimize
βv

{
β>v Mβv + D(v) − 2β>v N(v)

}
, (25)
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with

M =


M1 . . . M1n I

...
. . .

...
...

Mn1 . . . Mnn I
I . . . I 0

, N(v) =


N1(v)

...
Nn(v)

W−1B(v)

.

Solving the equation given in (25) for βv, we find 2Mβv − 2N(v) = 0, which implies
that Mβv = N(v) and then β̂v = M−1N(v).

For the prediction variance, we use the notation established as

σ2
s0
(v) = Var(ς̂s0(v)− ςs0(v)),

with its plug-in estimate being given by

σ̂2
s0
(v) = β̂>v M β̂v + D(v)− 2β̂>v N(v),

where the matrix D(v) is derived from an estimated value of V̂ar(a0) via the fitted linear
model of co-regionalization.

2.5. Holistic Functional Kriging Approach

Next, we synthesize the findings presented in [39]. The predictor is delineated by

ς̂s0(t) =
n

∑
i=1

∫
T

ηi(v, t)ςsi (v)dv. (26)

This formulation extends the predictor introduced in (14). The functional parameter ηi(v, t)
gauges the effect of i-th location at v on an unsampled function at location t. The formulation
is in harmony with the linear framework designed for responses with functional structure,
often denoted as the holistic model detailed in [1].

In the realm of geostatistical analyses, we present two distinct cokriging methodolo-
gies: the traditional multivariate cokriging and the more nuanced functional cokriging
based on curves. The pivotal distinction between these methodologies hinges upon their
treatment of parameters. In the traditional multivariate approach, each spatial location
is associated with a set of fixed cokriging coefficients, representing the influence of each
observed variable on the prediction. Conversely, in the functional cokriging model, these
fixed coefficients evolve into functions, varying across a specified domain t. This introduces
an element of flexibility, enabling the model to capture more intricate spatial relationships.
While the former model operates directly upon observed variables, the latter delves into
a functional setting, emphasizing the impact of each observed function over a domain.
The functional cokriging provides an enhanced analytical perspective, aligning closely
with the model tailored to functional data. This pivotal distinction between functional
cokriging and other methods merits heightened attention to deepen the understanding
of the model structures and implications. To delineate functional variables, we employ
the basis functions denoted as B(v). These are instrumental for expanding our variables
and parameters into known terms. Mathematically, the functional variable ςsi (v) and the
functional parameter ηi(v, t) can be articulated using these basis functions as

ςsi (v) =
K

∑
l=1

ail Bl(v) = B>(v)ai, (27)

ηi(v, t) =
K

∑
j=1

K

∑
l=1

ci
jl Bj(v)Bl(t) = B>(t)CiB(v), i ∈ {1, . . . , n}. (28)
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The coefficients ci
jl in Ci allow us to model interactions between various basis functions,

pivotal to capturing the data intricacy. The matrix Ci is structured as

Ci =

 ci
11 . . . ci

K1
...

. . .
...

ci
1K . . . ci

KK

, i ∈ {1, . . . , n}.

Now, considering the prediction, ς̂s0(t) namely, which estimates the expected function
value at point t, we can express it as

ς̂s0(t) =
n

∑
i=1

∫
T

B>(t)CiB(v)B>(v)aidv

=
n

∑
i=1

B>(t)CiFai = B>(t)
n

∑
i=1

CiFai, (29)

where

F =


∫

T B2
1(v)dv . . .

∫
T B1(v)BK(v)dv

...
. . .

...∫
T BK(v)B1(v)dv . . .

∫
T B2

K(v)dv

.

The matrix F encapsulates the inner products of the basis functions, playing a pivotal
role in merging the basis functions and the coefficients in the model. In the case of an
orthogonal basis, such as the Fourier basis, the matrix F reduces to an identity matrix. For
alternative basis functions, like B-spline, it becomes necessary to compute F potentially
through the application of numerical integration methods.

Leveraging the vec operator, which vectorizes a matrix by stacking its columns into a
single column vector, the formulation presented in (28) can be articulated as

ηi(v, t) = (vec(Ci))
>D(t)B(v), i ∈ {1, . . . , n},

with

D(t) =


B(t) 0 . . . 0

0 B(t) . . . 0
...

...
. . .

...
0 0 . . . B(t)

.

Therefore, the predictor stated in (29) can be also expressed as

ς̂s0(t) =
n

∑
i=1

∫
T
(vec(Ci))

>D(t)B(v)B>(v)aidv

=
n

∑
i=1

(vec(Ci))
>D(t)Fai.

(30)

Next, unbiasedness is addressed. Assuming that the coefficients, as delineated in the
formula presented in (27), for i ∈ {1, . . . , n} and j ∈ {1, . . . , K}, are structured in matrix
form as

A =

 a11 . . . a1K
...

. . .
...

an1 . . . anK


= (a1, . . . , aK).
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We can consider A as emanating from a K multivariate random field. In this context,
the expected value of aj is E(aj) = E(a1j, . . . , anj)

> = (ϑj, . . . , ϑj)
>, for all j in the set

{1, . . . , K}. The covariance matrix is then presented as

Σ =

 Σ11 . . . Σ1K
...

. . . . . .
ΣK1 . . . ΣKK

, (31)

where Σij = Cov(ai, aj). If ai is a K× 1 vector with elements ai1, . . . , aiK, its expected value
is defined as

E(a>i ) = ϑ> = (ϑ1, . . . , ϑK).

Thus, the expected function value at an unsampled location s0 is defined as

E(ςs0(t)) = E

(
K

∑
j=1

a0l Bl(t)

)
= E(B>(t)a0)

= B>(t)E(a0)B>(t)ϑ. (32)

By obtaining the expectation of the formula detailed in (29), we obtain

E(ς̂s0(t)) = B>(t)
n

∑
i=1

CoviFE(ai)

= B>(t)
n

∑
i=1

CoviFϑ. (33)

Note that Covi is the covariance matrix of observation i in the estimation process. From the
expressions given in (32) and (33), the predictor presented in (26) is unbiased if and only if

B>(t)
n

∑
i=1

CoviFϑ = B>(t)ϑ

and
n

∑
i=1

CoviFϑ = ϑ.

Assuming both F and ∑n
i=1 Covi hold the condition of being full rank matrices, such

a condition is analogous to ∑n
i=1 Covi = F−1, or, by introducing the vec operation which

linearly maps a matrix into a column vector by stacking its columns, the above can be
equivalently stated as

n

∑
i=1

vec(Covi) = vec(F−1).

Next, minimum variance and parameters estimation is discussed. Given the expres-
sions presented in (27) and (30), the functional parameters within the proposed predictor
are calculated (estimated) by optimizing the problem established as

minimize
Cov1,...,Covn

{∫
T

Var

(
n

∑
i=1

(vec(Covi))
>D(t)Fai − B>(t)a0

)
dt

}
, (34)

subject to ∑n
i=1 vec(Covi) = vec(F−1).
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By expanding the variance established in (34), we obtain

Var
( n

∑
i=1

(vec(Covi))
>D(t)Fai − B>(t)a0

)
=

n

∑
i=1

(
(vec(Covi))

>D(t)F
)

Var(ai)
(
(vec(Covi))

>D(t)F
)>

+2 ∑
i<j

(
(vec(Covi))

>D(t)F
)

Cov(ai, aj)

((
vec(Covj)

)>
D(t)F

)>
+B>(t)Var(a0)B(t)

−2
n

∑
i=1

(
(vec(Covi))

>D(t)F
)

Cov(ai, a0)B(t). (35)

In the expression provided in (35), for i < j where i, j ∈ {1, . . . , n}, the covariance
matrix between vectors ai and aj is defined as

Cov(ai, aj) =

 Cov(ai1, aj1) . . . Cov(ai1, ajK)
...

. . .
...

Cov(aiK, aj1) . . . Cov(aiK, ajK)

.

Moreover, it is noteworthy that the variance-covariance matrix of vector ai can be
directly obtained as a special case of the above matrix by setting i = j.

Observe that Var(ai) = Var(a•), for all i. This is due to the stationarity assumption,
which implies that the variance does not vary with location. Similarly, the covariance
Cov(ai, aj) = Cov(aj, ai) is symmetric and does not depend on the order of i and j. If Σ

presented in (31) has been previously estimated, then Var(ai) and Cov(ai, aj) are known.
Now, we can utilize multivariate geostatistics [37]. Specifically, we employ a linear

co-regionalization framework to estimate these matrices. From (23) and defining

Q• =
∫

T
D(t)FVar(a•)F>D>(t)dt =

(
FVar(a•)F> ⊗ F

)
,

Qij =
∫

T
D(t)FCov(ai, aj)F>D>(t)dt =

(
FCov(ai, aj)F> ⊗ F

)
,

K =

(∫
T

φ>(t)Var(a•)φ(t)dt
)

,

Ji =
∫

T
D(t)FCov(ai, a0)φ(t)dt = vec(FCov(ai, a0)F)>,

where ⊗ is the Kronecker product of matrices, the objective function presented in (34) can
be rewritten as

minimize
C1,...,Cn ,ν

{ n

∑
i=1

(vec(Ci))
>Q•vec(Ci) + 2 ∑

i<j
(vec(Ci))

>Qijvec(Cj) + K − 2
n

∑
i=1

(vec(Ci))
> Ji + 2ν>

( n

∑
i=1

vec(Ci)− vec(F−1)

)}
. (36)

Then, we define β = (vec(C1)
>, . . . , vec(Cn)>, ν>)>. By substituting β into the

expression stated in (36), it simplifies to the expression given by

minimize
β̂

{
β̂>Qβ̂ + K − 2β̂> J

}
, (37)

where

Q =


Q• . . . Q1n I

...
. . .

...
...

Qn1 . . . Q• I
I . . . I 0

, J =


J1
...

Jn
vec(F−1)

. (38)
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By considering the formula presented in (37), we obtain that

2Qβ− 2J = 0, (39)

which implies that Qβ = J and then β̂ = Q−1 J.
Empirically, we begin by evaluating a linear co-regionalization scheme for the multi-

variate random field A. This provides an estimate for the matrix outlined in (31), leading
directly to estimators for the matrices Var(ai) and Cov(ai, aj). After obtaining Q and J
as stated in (38), we can use these matrices in conjunction with the formula given in (39)
to estimate C1, . . . , Cn. This, in turn, allows us to determine the functional parameters as
described in (28). Alternatively, the cumulative prediction variance, denoted as σ2

s0
, can

be directly estimated using the expression formulated as σ2
s0

=
∫

T Var(ς̂s0(t)− ςs0(t))dt.
This estimation is expressed as σ̂2

s0
= β̂>Qβ̂ + K− 2β̂> J, with the matrix K derived using

V̂ar(a•), which, in turn, can be sourced from a co-regionalization linear model. The cu-
mulative prediction variance, σ2

s0
namely, serves as a holistic measure of the uncertainty

associated with approximating the entire curve. Utilizing the estimated parameters and
drawing from the equation outlined in (23), we can derive a variance function for individual
prediction points.

3. Kriging Prediction for Non-Stationary Functional Random Fields

Non-stationarity in functional data poses unique challenges in geostatistical analysis.
To address this type of non-stationarity, various kriging methods have been proposed and
refined over the years. In this section, we focus on two core methodologies: universal krig-
ing and residual kriging for functional data [40,41]. By understanding the underpinnings
of these approaches, we aim to provide researchers and practitioners with a robust toolkit
to address the intricacies posed by non-stationary functional random fields.

3.1. Formulation for Kriging of Geospatial Functional Observations

Let us begin by defining the formulation for kriging of geospatial functional data.
Consider the n× 1 functional vector ςs(t) = (ςs1(t), . . . , ςsn(t))

>, in which every compo-
nent is a data point of a functional stochastic variable ςs(t) within a given region D ⊂ Rd,
where d is typically either 2 or 3. Let us denote Σ = Var(ςs(t)), σ2

0 = Var(ςs0(t)), and
c = Cov(ςs(t), ςs0(t)), where c ∈ Rn and t ∈ (0, ∞).

Assuming a linear geospatial trend, we can write

ςs(t) = α(t) + β1(t)x(s) + β2(t)y(s) + εs(t) = X(s)β(t) + ε(t),

where α(t) is the functional intercept, while β1(t) and β2(t) are functional coefficients
corresponding to the spatial coordinates x(s) and y(s), respectively, for every s ∈ D and
t ∈ (0, ∞). Additionally, E(εs(t)) = 0 and Var(εs(t)) = σ2(t). The functional kriging
estimator for ςs0(t) is then given by

ς̂s0(t) =
n

∑
i=1

ηiςsi (t) = η>ςs(t). (40)

The elements of the weight vector η are chosen so that the resulting estimator is both
unbiased and minimizes its variance. The estimator stated in (40) remains unbiased under
the conditions presented as

E(ς̂s0(t)) = E(ςs0(t)),

η>X(s)β(t) = X>(s0)β(t),

η>X(s) = X>(s0).
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To determine the values of ηi, for i ∈ {1, . . . , n}, we consider the formulation stated as

minimize
η1,...,ηn

{MSE(s0)},

subject to η>X(s) = X>(s0), where MSE(s0) =
∫

T Var(ς̂s0(t)− ςs0(t))dt represents the
mean squared error (MSE).

In the stationary scenario, the variance is expressed as

Var(ς̂s0(t)− ςs0(t)) = η>Var(ς(t))η− 2η>Cov(ς(t), ςs0(t)) + σ2
0 (t)

= η>Ση− 2η>c(t) + σ2
0 (t).

Consider the formula given by

φ(η, v) =
∫

T

(
η>Ση

)
(t)dt− 2

∫
T

η>c(t)dt +
∫

T
σ2

0 (t)dt− 2
(

η>X(s)− X>(s0)
)

v,

where v denotes the Lagrange multipliers associated with the unbiasedness constraint. The
optimal values of φ are achieved when the partial derivatives ∂φ/∂η and ∂φ/∂v vanish.

Taking derivatives with respect to η, we obtain

∂φ

∂η
= −2

∫
T

c(t)dt + 2
∫

T
Σηdt− 2X(s)v

= −2
∫

T
c(t)dt + 2

(∫
T

Σdt
)

η− 2X(s)v.

Equating to zero the above expression, we have(∫
T

Σdt
)

η+ X(s)v =
∫

T
c(t)dt. (41)

Analogously, taking partial derivatives with respect to v and equating them to zero,
we reach the unbiasedness established as

X>(s)η+ 0 v = X(s0). (42)

From the formulations presented in (41) and (42), we reach[∫
T Σdt X(s)

X>(s) 0

][
η
v

]
=

[∫
T c(t)dt
X(s0)

]
.

Given that the matrix presented on the left-hand side of the expression is positive
definite, we can conclude that[

η
v

]
=

[∫
T Σdt X(s)

X>(s) 0

]−1[∫
T c(t)dt
X(s0)

]
. (43)

From the formulation stated in (43), we attain at

η =

(∫
T

Σdt
)−1(∫

T
c(t)dt + X(s)v

)
.
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Then, we get

X>(s0) =

((∫
T

Σdt
)−1(∫

T
c(t)dt + X(s)v

))>
X(s),

X>(s0) =
∫

T
c>(t)dt

(∫
T

Σdt
)−1

X(s) + v>X>(s)
(∫

T
Σdt

)−1
X(s),

v> =

(
X>(s0)−

∫
T

c>(t)dt
(∫

T
Σdt

)−1
X(s)

)(
X>(s)

(∫
T

Σdt
)−1

X(s)

)−1

,

v = W−1(X(s0)− Y), W = X>(s)
(∫

T
Σdt

)−1
X(s),

Y = X>(s)
(∫

T
Σdt

)−1 ∫
T

c(t)dt,

η =

(∫
T

Σdt
)−1(∫

T
c(t)dt

)
+

(∫
T

Σdt
)−1

X(s)W−1(X(s0)− Y).

Thus, the predictor given in (40) and the MSE are obtained as

ς̂s0(t) =

((∫
T

c>(t)dt
)(∫

T
Σdt

)−1
+ (X(s0)− Y)>W−1X>(s)

(∫
T

Σdt
)−1

)
ς(t),

MSE(s0) =
∫ (

η>Ση
)
(t)dt− 2η>

∫
T

c(t)dt +
∫

T
σ2

0 (t)dt.

The value of the prediction variance is consequently reached as

σ2
s0
=
∫

T
σ2

0 (t)dt−
(∫

T
c(t)dt

)>(∫
T

Σdt
)−1(∫

T
c(t)dt

)
+ (X(s0)− Y)>W−1(X(s0)− Y).

To solve the matrix equation system presented in (43), it is necessary to estimate the spatial
autocorrelation matrix Σ = (Covsisj) with Covsisj(t) = Cov(εsi (t), εsj(t)).

Utilizing the trace-variogram function, we get

$sisj(t) = $
(

ςsi (t), ςsj(t)
)
=

1
2

Var
(

ςsi (t)− ςsj(t)
)
= σ2(t)−Covsisj(t).

Incorporating this most recent relation from (41), we derive(∫
T

$dt
)

η− X(s)v =
∫

T
$s0dt,

where $s0 = ($sis0). Therefore, the matrix system defined in (43) may be formulated as[∫
T $dt X(s)

X>(s) 0

][
η
−v

]
=

[∫
T $s0dt
X(s0)

]
.

Consequently, solving this system yields the weights η and the Lagrange multipliers v.

3.2. Residual Kriging and External Drift for Spatially Correlated Functional Data

Next, we present a review on residual kriging for functional data [40]. Assume that
the residuals of a linear spatial trend are given by

esi (t) = ςsi (t)− ς̂si (t) = ςsi (t)−
(

α̂(t) + β̂1(t)xi + β̂2(t)yi

)
, i ∈ {1, . . . , n}, (44)

where (xi, yi) are the spatial coordinates.
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While multiple regression can serve as an alternative, various models are available for
detrending the mean of functional process.

Detrending plays a pivotal role in spatial analysis, particularly in identifying structures
in the residuals. However, detrending may introduce bias in the experimental covariances
or variograms of residuals [3]. It is essential for readers to tackle this step carefully, ensur-
ing the advantages of detrending surpass potential drawbacks. Though this formulation
highlights the 2D spatial coordinates xi and yi, it is mainly for illustrative purposes. The
methodology is adaptable beyond 2D and can extend to higher-dimensional spaces, re-
quiring additional spatial coordinates and associated drift terms. Building on the residuals
outlined in (44), the estimation of a residual curve at unsampled locations can be achieved
utilizing our discussion of Section 2. Specifically, a residual function can be predicted using

ês0(t) =
n

∑
i=1

ηiesi (t), (45)

ês0(t) =
n

∑
i=1

ηi(t)esi (t), (46)

ês0(t) =
n

∑
i=1

∫
T

ηi(t, v)esi (t)dt. (47)

When predicting the functional variable at a non-sampled site s0, we get

ς̂s0(t) = α̂(t) + β̂1(t)x0 + β̂2(t)y0 + ês0(t),

where ês0(t) is defined in (45), (46), or (47).
Another approach involves using explanatory variables distinct from the spatial

coordinates to estimate the spatial trend. In that case, consider the model formulated as

ςsi (t) = α(t) +
Q

∑
q=1

$q(t)cq,i +
R

∑
r=1

βr(t)xr,i(t) + εsi (t), i ∈ {1, . . . , n}. (48)

In this model, α(t) acts as a functional intercept, cp,i is the value of a scalar explanatory
variable, and xq,i(t) is the value of an explanatory variable at functional location si. The
terms $p(t) and βq(t) represent their respective regression parameters. The drift, as detailed
in (48), incorporates both scalar and functional explanatory variables. Moreover, the
parameters $p(t) and βq(t) are in functional form, allowing estimation of the nonlinear
effects in the explanatory variables. Thus, the resulting residuals can be expressed as

esi (t) = ςsi (t)− ς̂si (t) = ςsi (t)−
(

α̂(t) +
Q

∑
q=1

$̂q(t)cq,i +
R

∑
r=1

β̂r(t)xr,i(t)

)
, i ∈ {1, . . . , n}.

Using the relations described in (45), (46), or (47), a prediction for the error ês0(t) at a
non-sampled location s0 can be derived. Then, the prediction of the functional variable is
given as

ς̂s0(t) = α̂(t) +
Q

∑
q=1

$̂q(t)cq,0 +
R

∑
r=1

β̂r(t)xr,0(t) + ês0(t).

3.3. R Software and Packages of Spatial Statistics

In the geostatistical framework, particularly when addressing kriging and cokriging
for stationary and non-stationary functional random fields, the computational tools we
employ are of paramount importance. The R software, an unparalleled open-source envi-
ronment for statistical computing, stands as a cornerstone in this domain, primarily due to
its rich and ever-growing ecosystem of packages dedicated to spatial statistics [42].
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Among the myriad of packages available, sp serves as a linchpin, offering classes
and methods dedicated to spatial data. This package essentially acts as the bedrock upon
which many subsequent spatial packages have been developed [43]. The gstat package
enriches this foundation, extending capabilities specifically for geostatistical analysis. Its
offerings, especially concerning variogram estimation and various kriging methods, have
been elucidated earlier in this section and in Section 2. These methods are deeply rooted
in seminal works, particularly those presented in [23,27,28,39], among other pioneers in
the field [40,41]. Importantly, gstat acts as a bridge, allowing the seamless translation of
theoretical underpinnings into tangible computational solutions [44].

For those at the intersection of FDA and spatial statistics, the fda package is highly
relevant. It provides tools for FDA, complementing our discussion on functionally-coherent
spatial data and continuous time-varying kriging [45]. Beyond these foundational tools,
spdep addresses the need for complex spatial regression, encapsulating both linear and
nonlinear models. With capabilities such as defining spatial weights and analyzing spatial
autocorrelation, it proves indispensable, especially when navigating the intricacies of
multifaceted spatial structures [46]. The recent expansion in R geostatistical tools further
underscores its stature. For instance, the EpiGeostats package enhances visualization
capacities, making interpretation of geostatistical disease risk maps intuitive [47].

Additionally, the GeoSim package fills a niche by focusing on pluri-Gaussian simula-
tion, bridging gaps between categorical and continuous variables [48]. For researchers in
soil science, the insights from [49] provide invaluable guidance on merging linear mixed
models with geostatistics [49]. The covatest package simplifies the selection of space-time
covariance functions, a task pivotal to many geostatistical analyses [50]. And for those
working with compositional data, the work presented in [51] serves as a comprehensive
guide, detailing geostatistical methods in R language.

Confronted with the complexities that riddle our study, especially in deciphering krig-
ing predictions for stationary and non-stationary functional random fields, a multifaceted
approach becomes imperative. This entails harnessing methods from the aforementioned
packages, often in synergy, and crafting custom scripts that address distinct challenges. This
adaptability underscores the R environment’s unmatched versatility in tackling advanced
spatial statistical problems. For those poised on the brink of deeper exploration, package
vignettes remain an invaluable primer. Additionally, the breadth and depth of tutorials and
applications available serve as a testament to the boundless possibilities that R offers for
spatial data analysis [52]. Another noteworthy contribution to the R spatial statistics toolkit
is a comparative case study on R packages designed for analyzing areal data.

This study offers insights into the optimal use-cases and advantages of various spatial
packages, assisting practitioners in making informed decisions [53]. In the ever-evolving
domain of mixed-effects models with spatial considerations, the sdmTMB package stands
out. This package provides swift and versatile solutions, particularly suited for integrated
linear models with random effects that address both geospatial and space-time variations.
Such capabilities underscore its importance for detailed spatial analyses [54].

4. Discussion and Conclusions

The analysis of spatially correlated functional data has gained prominence in contem-
porary data analysis, notably in the big data era. Functional geostatistics, as a result, serves
as a linchpin in deepening our grasp and modeling of intricate spatial processes. A pivotal
factor in this analysis is the assessment of stationarity. This property, which underpins
the stability of statistical characteristics over the spatial domain, guides the choice of the
suitable kriging method for functional data. Table 1 summarizes the main results and
contributions of our work.
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Table 1. Summary of main results and contributions.

Aspect/Concept Description/Details Significance Challenges Addressed
Stationarity evaluation It assesses stability across the

spatial domain
It is essential for the right
kriging method selection

Accurate assessment of func-
tional processes’ stationarity

Spatial prediction methodologies It gives a comprehensive
review of methods under
both stationary and non-
stationary conditions

It provides integrated view
tailored to stationarity condi-
tions

Challenges posed by differ-
ent stationarity conditions

Applications It ranges from environmental
monitoring to biomedical re-
search

It facilitates informed deci-
sions in various domains

Capturing accurate spatial
dependence and functional
variability

Practical implications It facilitates informed deci-
sions in environmental man-
agement and resource alloca-
tion

It enhances practical applica-
tions

Promoting the understand-
ing of space-time-functional
variability interplay

Further advancements It stimulates innovative tech-
niques and approaches

It broadens the scope of func-
tional geostatistics

Complex spatial patterns and
functional variations

Contribution to spatial statistics It gives broader implications
beyond functional geostatis-
tics

It filters understanding of
spatial statistics

Interplay between space,
time, and functionality

Delving into this topic, the present article offered a detailed review of methodologies
tailored for the spatial prediction of functional geostatistical data, encompassing both
stationarity and non-stationarity scenarios. Through an exploration of various scholarly
proposals, this study shed light on the prevailing challenges and breakthroughs in this
realm. The significance of our findings spans both theoretical and applied dimensions.

The real-world implications of our exploration are expansive, influencing domains
like environmental monitoring, geosciences, and even biomedical research. By fostering
an accurate modeling paradigm for spatial dependence and functional variability, the
groundwork is laid for experts to make insightful decisions in these arenas, particularly in
spheres like environmental stewardship, resource allocation, and risk appraisal. Moreover,
this article acts as a catalyst for innovative strides in functional geostatistics, spotlighting
the hurdles brought about stationarity contexts. This beckons the genesis of avant-garde
techniques to analyze and predict spatially intertwined functional data—a contribution
benefiting not just functional geostatistics but also enriching spatial statistics at large.

In summation, the contributions herein fortify the foundational aspects of analyzing,
modeling, and predicting spatially dependent functional data. By weaving in consider-
ations of diverse stationarity contexts, we amplify our prowess in deciphering intricate
spatial patterns and functional idiosyncrasies typical of real-world datasets. Harness-
ing these methodologies promises heightened prediction accuracy, fostering judicious
decision-making. This not only augments realms like environmental governance and re-
source distribution but also heralds a new dawn of research and novelty in the domain,
broadening the horizons of spatial statistics and its multifaceted applications.

In the setting of spatial data exhibiting non-symmetric distributions, several schol-
arly investigations have been undertaken [55–58], as well as in quantile regression with
spatial data [59], and diagnostic analysis in regression models [21,60]. However, much
investigation on this field must be explored still, even in traditional spatial models [61].
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