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Abstract: In capital-intensive organizations, decisions regarding capital costs play an important role
due to the significant amount of investment required and the expected return on investment. Spare
parts management is crucial to those ends, as spare parts management can constitute a significant
portion of OPEX. Companies must implement a trade-off analysis between stock levels and assets’
availability. Decision-making supports mechanisms such as the Level of Repair Analysis (LORA),
Integrated Logistics Systems (ILS), and life-cycle costing (LCC) models have been developed to aid in
equipment selection, implementation, and decommissioning. Nowadays, these mechanisms appear
to be integrated with risk-management models and standards. This paper proposes a long-term
costing model that integrates a capacity analysis, reliability functions, and risk considerations for
the cost management of logistics activities, particularly in MRO structures. The model is built upon
Time-Driven Activity-Based Costing (TD-ABC) and incorporates the volume of activities generated
by MRO needs. It also addresses uncertainty through the integration of a cost-at-risk model. By
integrating spare parts, activity-based cost models, and risk measurement through Monte Carlo
simulation, this study offers powerful insights into optimizing spare parts logistics activities. The
proposed model is a novel approach to include the risk of cost in spare parts management, and
its matrix-activity-based structure makes possible the development of sophisticated mathematical
models for costing and optimization purposes in different domains.

Keywords: costing systems; TD-ABC; spare parts; reliability; uncertainty; risk

MSC: 91B32

1. Introduction

In capital-intensive organizations, decisions regarding capital costs play an important
role due to the significant amount of investment required and the expected return on
investment. The availability and operational efficiency of these capital assets throughout
their life cycles are essential. To achieve maximum availability, organizations implement
complex maintenance and support activities, including maintenance, repair, and overhaul
(MRO) structures, as well as preventive procedures and logistics for components. These
activities incur both in capital costs (CAPEX) and operational costs (OPEX), necessitating
the use of cost breakdown structures (CBSs).

In capital-intensive organizations, the costs of ownership occupy a relevant position in
decision-making processes [1]. This is mainly due to the high cost that these assets have and
the expected return on investment that they must generate or are expected to generate. Fur-
thermore, it is expected that these capital assets will be available and maintain operational
efficiency throughout their extended life cycles. This means that organizations must deploy
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intense efforts so that the availability of these assets is as close to 100% as possible. That
is why these organizations establish a complex set of maintenance and support activities
in order to guarantee operational continuity, namely maintenance, repair, and overhaul
(MRO) structures [2]. Moreover, careful prevention procedures are established. In addition,
forecasting procedures and logistics of components mechanisms that lead to important
investments, expenses, and costs have to be implemented in such organizations. These
costs are usually subdivided into capital costs (CAPEX) and operational costs (OPEX). As a
consequence, the need arises for cost breakdown structures (CBSs) that incorporate a com-
plete and complex list of cost elements [1]. Within the cost elements of the aforementioned
structure, and specifically within the OPEX, spare parts (SPs) costs are indicated [3].

At the beginning, organizations would simply react to failures in their maintenance
approach. They waited for issues to arise before acting and making repairs. The support
structures were minimal, and the processes showed great instability. Over time, strategies
have changed to incorporate preventive actions and efforts to predict the moment and
magnitude of failure. In recent years, these strategies have been incorporating learning ca-
pabilities based on machine-learning techniques, aiming to establish and develop intelligent
maintenance systems with prescriptive capabilities within the context of cyber–physical
systems [3–5]. This brought with it an increase, both in number and complexity, of support
and maintenance structures for these organizations, bringing, in certain cases, the settle-
ment of heavy and costly approaches and strategies. This situation brought with it the
need to look at the physical assets management (PAM) from a long-term perspective and
focused on the concept of value adding. That is why the creation, development, and appli-
cation of decision-making support mechanisms that facilitate the selection, construction,
implementation, maintenance, and decommissioning of equipment are necessary. Among
these mechanisms, there is the Level of Repair Analysis (LORA), the Integrated Logistics
Systems (ILS), and the life-cycle costing models [6]. More recently, those mechanisms have
been integrated into risk management models (ISO 31000) [7] and ISO 55000 [8].

It is known that, within the cost breakdown structures of the plant life-cycle cost,
it is observed that operational and maintenance support costs make up over 60% of the
total, with spare parts’ costs representing approximately 25% to 30% of such costs [9].
This is why organizations approach this issue as a trade-off analysis between components’
stock levels and the company’s capabilities to achieve high levels of availability. Another
important situation to consider is the high number of items that companies must manage
to support maintenance activities. These elements (stock-keeping units, SKUs) can reach
tens or hundreds of thousands of items inside the warehouses. This leads to the existence
of heavy organizational structures to provide adequate management of the aforementioned
items. Nonetheless, it is essential to manage these elements with a meticulous sense of
prioritization or hierarchy [10,11].

For this reason, holding-cost-management models have lately come to be seen as value
aggregation analysis models [12]. Despite the fact that the ISO 55000 [13] standard declares
relevant the management of costs related to the components’ logistics, the level of detail that
these models have does not allow for the correct management of activities related to MRO
structures in the long term. However, increasingly, some companies have sophisticated data
structures and information processing (Industry 4.0, big data, etc.) for these ends.

This paper proposes a long-term costing model for management logistics activities
which integrates a capacity analysis and reliability functions as a means of incorporating the
risk associated with the management of physical assets (e.g., spare parts), as is fundamental
in modern logistics. The proposed model is based on the Time-Driven Activity-Based
Costing (TD-ABC [14]) and captures the volume of activities that are executed according to
the needs generated by the MRO activities.

Furthermore, this article includes the uncertainty of carrying out maintenance activities
that create variability in the estimation of total costs. In addition, this paper presents a cost
at risk model (CaR [15]) and also includes the time value of money to calculate the present
value of such costs.



Mathematics 2023, 11, 3316 3 of 23

In this article, three fields of knowledge are integrated: spare parts, activity-based cost
models, and risk measurement through the Monte Carlo simulation. This work is organized
as follows: in the next section, a brief review of the related literature is made. In Section 3, the
model is presented; in Section 4, an application case is provided; and in Section 5, the results
are discussed, along with future developments. Finally, the conclusions are discussed.

2. Theoretical Background

The two approaches aimed at the long-term economic evaluation of the holding and
management costs of physical assets recurrently cited in the literature are life-cycle costing
(LCC) [16] and total cost of ownership (TCO) [17]. Life-cycle cost (LCC) is a comprehensive
method for assessing the total cost of an asset, as it includes all of the costs associated with
the asset over its lifespan. TCO can be viewed as a simpler method that can be used to
compare the costs of different suppliers of assets, materials, products, or services.

According to Maisenbacher et al. [18], these methodologies have proven to be highly
reliable, enabling an accurate and comprehensive evaluation of all capital and operation
costs of different types of investments in production systems. As a result, a range of
models have been proposed to estimate life-cycle costs in complex industrial facilities.
Some models, such as the work of Woodhouse [19], are characterized by the assumption of
a constant failure rate over the useful life of the asset. Other models have been proposed
for specific installations or systems, however, in general terms.

Even so, there are several standards that define the guidelines for estimating life-cycle
costs, including the IEC60300-3-3 standard [20]. Additional standards for specific types of
installations are as follows: ISO 15663-2 [21] for oil and gas; SEMI E35-0618 (2018) [22] for the
semiconductor industry; ASTM E917-17 (2017) [23], ISO 15686-5 (2017) [24], and APPA 1000-1
(2018) [25] in the construction sector; and NATO-ALCCP-1 (2018) [26] for the military sector.

Every estimation model of the LCC or TCO type assumes different assumptions re-
garding the costs and behavior of the system or organization at different moments in time.
Consequently, it is necessary to create and apply costing techniques that simplify the costing
and allocation processes without significantly affecting the accuracy of the results. Among
these techniques, we can highlight those based on Activity-Based Costing (ABC) [27].

Despite being recognized as a useful tool for calculating life-cycle costs (for exam-
ple, [28,29]) ABC presents, as a main disadvantage, difficulties in its implementation. The
excessive number of activities and drivers makes it difficult to obtain satisfactory results in
its implementation and use. Thus, the Time-Based ABC (TD-ABC [14]) is a good alternative
to estimate the costs of processes and cost objects. In this new approach, a single driver is
used: the time required for the execution of each activity. Through the use of this driver,
the specific characteristics among the different cost objects are captured more accurately.

Although the economic impact of ownership and managing costs of critical spare parts
is still significant and increasing [30], no Total Cost of Ownership (TCO) model currently
incorporates or appropriately evaluates the influence of spare parts logistics costs on the
overall ownership costs.

Another important variable for decision-making has to do with variability, whether
internal or external to production processes. Variability is related to uncertainty and risk
in decision-making [31]. Uncertainty in a phenomenon can arise from various conditions,
including limited and complex information; human errors; and external factors such
economic, political, and social changes [32–34]; Nachtmann and Needy [35] state that
uncertainty is linked to the potential for errors resulting from incomplete information about
a phenomenon and its environment. Therefore, there exists a direct relationship between
information complexity and the level of uncertainty in a phenomenon.

The term “risk” is used in a variety of settings and can convey different meanings.
Generally, risk refers to the effect of uncertainty on objectives—where an effect is a deviation
from the expected outcome (positive and/or negative) [36].

By quantifying the variability of costs, it is possible to address questions such as the
following: What is the level of cost risk associated with contracts and projects? Which
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variables, products, processes, or services contribute most to cost variability and should
therefore be subject to tighter control? How can we define measures and implement risk
mitigation actions, as well as evaluate the impact of such interventions? Traditionally,
both researchers and practitioners have primarily relied on deterministic costing models,
neglecting to properly acknowledge and manage cost uncertainty.

Several techniques are employed to capture uncertainty, including decision trees,
Markov modeling, fuzzy logic, discrete event simulation (DES), and Monte Carlo simulation
(MCS) [37–41]. The choice of an appropriate method for modeling uncertainty depends on
the specific problem being addressed.

Notably, the two prominent methods to address the challenge of uncertainty in mathe-
matical models are the Monte Carlo simulation and fuzzy methods [42]. In the context of
costing systems, several authors have explored the topic of uncertainty using either the
Monte Carlo Simulation or fuzzy methods [28,43–47].

The Monte Carlo simulation, as an approach for managing uncertainty and quantifying
risk, has been used in several fields of knowledge, including risk quantification in costing
systems [48]. Among the advantages of the Monte Carlo simulation are the ability to
include probability distributions of variables, the ability to include correlations of variables,
and the ability to obtain solutions in reasonable computational times.

Fuzzy logic, introduced in the 1960s, aims to quantify imprecision and uncertainty [49].
In fuzzy sets, the primary objective is to measure inaccurate information [50]. In terms
of variability, costs, and measurement of various risks, Reference [35] studied different
methodologies to quantify uncertainty in Activity-Based Costing models. Other authors
have related variability, uncertainty, and risk in cost systems through fuzzy logic [39,51,52].
The field of fuzzy theory includes the analysis of theory, sets and fuzzy numbers. Fuzzy
sets allow for uncertainty based on the judgment of experts [53].

Some other commonly used methods include interval mathematics, probability theo-
ries, approximate set theory, and theory of evidence, which propose mathematical models
to handle and measure uncertainty. Interval mathematics offers a straightforward rep-
resentation of uncertainty by defining lower and upper limits but it does not consider
probabilities into the model [29,49].

A generic risk management process includes the following steps: (1) context establish-
ment, (2) risks identification, (3) risk assessment (the process of measuring the level of risk,
expressed in terms of the combination of consequences and likelihood), (4) risk evaluation,
and (5) risk treatment/control [36].

In this paper, we propose a matrix-based Activity-Based Costing (ABC) model for LCC
estimation and include inherent variability in processes through Monte Carlo simulation,
allowing us to obtain financial metrics for short-, medium-, and long-term decision-making.
Monte Carlo simulation is a quantitative technique that utilizes statistics and computers to
simulate, through mathematical models, the random behavior of real systems [54].

The key to the Monte Carlo simulation is to create a mathematical model of the system,
process, or activity under analysis, identifying those variables—model inputs—whose random
behavior determines the overall system’s behavior. Then, random samples are generated for
these inputs, and the system’s behavior is analyzed based on these generated values. After
repeating the event n times, n observations about the system’s behavior are available [55].

The Monte Carlo simulation has been applied in numerous fields as an alternative to
exact mathematical models or even as the only means of estimating solutions for complex
problems. Therefore, nowadays, it is possible to find models that use the Monte Carlo
simulation in areas such as information technology, the energy sector, business, economics,
industry, and even social contexts [55–59]. The Monte Carlo simulation can be used in all
fields where behavior is random or probabilistic.

3. Materials and Methods

In the previous section, we described the main theoretical foundations of this research,
and in this section, we describe the methodological aspects on which our proposal is based.
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In this research project, a Design Science Research (DSR) approach was followed [60]. In
DSR, the goals of research are very pragmatic; therefore, it can be used in specific projects
with characteristics and, although generalization is not one of the strengths of this method,
the results can be extrapolated to projects with similar characteristics. The approach of
DSR generally requires the creation of an artifact, theory, model, or design as a means of
presenting, understanding, and/or improving a reality [54,61,62]. This paper proposes a
TD-ABC model to tackle the complexity of spare parts logistics and captures the volume
of activities that are executed according to the needs generated by the MRO activities and
spare parts management in a long-term approach. In addition, the proposed model admits
the uncertainty using a cost-at-risk (CaR) model considering the time value of money to
calculate the present value of such costs.

The model presented below is based on the following fundamental elements.
There is a set of activities related to logistics and spare parts management processes.

These activities are carried out to meet the consumption needs of customers and are made
up of stages in a logistics chain that begins with the arrival of items at the warehouse and
concludes with the activities of providing components to customers (e.g., maintainers).
These relationships are represented based on a TD-ABC matrix model [63].

On the other hand, Weibull reliability functions [64] are included for each type of
component that allow for the estimation of component failure rates and, therefore, the
number of activities that are or will be performed by the spare parts logistics system. One
of the most notable aspects of this research is the use of matrices for the representation
of the costs. The most important elements of this methodology are described in the next
section. Figure 1 shows the global process of the spare parts ownership costing model. The
use of reliability information in the TDABC system improves the method of estimating
parameters of consumption of the spare parts throughout time. Using this model enables us
to consider the inherent variability of the quantity of consumed spare parts and to examine
the effects of inherent uncertainties in a risk analysis.
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3.1. Matrix Model for TD-ABC

Suppose the organization identifies a set of j resources, which have a cost, Cj, for
a given period. A set of m activities performed by the organization is also considered.
On the other hand, there is a set of k components (spare parts) that are managed by
the organization.

The calculation of the capacity cost rate ($/time unit) corresponds to the quotient
between the costs of resources used in a given period (Cj) and the practical capacity
available (P′j ) for the period under analysis.

Vj =
Cj

P′j
(1)

The product between the unit time that each activity m consumes each resource
j (UTmj) and the capacity cost rate (Vj) allows us to obtain a vector with the values of the
resources effectively used by the activities during the given period (R′).

R′ = UTmj Vj (2)

Qkm corresponds to quotient between the number of times that the activity m is
executed to serve the component k, divided by the total times activity m is executed. These
quantities depend on the necessary or forecasted logistical transactions during the life cycle
for each spare part (k). Those numbers of transactions can be estimated through a reliability
model, as is explained later in this paper.

Finally, the total effective cost of the logistical and SP management processes for each
component k (CTk) is given by the following product:

CTk = QkmUTmd
Cj

P′j
(3)

3.2. Concept of Life Cycle in Time Equations

The concept of life cycle, from a multiperiod approach, was incorporated into the time
equations of the TD-ABC model. Using time equations, the time consumed by an activity
can be expressed as a function of different characteristics of the components. These are
called time drivers. The general equation of time used in the overall formulation of the
TD-ABC is as follows:

tm = β0 + β1 ∗ x1 + . . . + βp ∗ Xp (4)

where we have the following:

tm = Time required to execute the activity m considering different components or particu-
larities of them.
βo = Base time consumed by activity m, regardless of the characteristics of cost object k.
βi = Unit time additionally consumed by due to specific characteristics of the cost object k.
p = Number of time drivers or differentiating characteristics for activity m.
x1 = The quantity consumed of a given SP (or family of SPs).

The cost of each activity is calculated as the product of the time required by the activity
and the cost per unit of time. From the life-cycle cost point of view, the composition of the
time equations should reflect the variation over the periods (y) of the considered life cycle
(y = 1,. . ., cv). This occurs as a function of the behavior dynamics of the drivers throughout
the lifecycle of a physical asset or a set of assets. This can be represented by the quantities
of components that have different characteristics (different time drivers), as follows.

tl jy = β0y + β1y ∗
λky1

qky1
∗ x1y + β2y ∗

λky2

qky2
∗ x2y + . . . + βpy ∗

λkyp

qkyp
∗ xpy (5)
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where xiy represents the quantity consumed of a given SP (or family of SPs) in a period y,
and which corresponds to a given characteristic p. On the other hand, qkyp corresponds to
the lot size of the spare part k, in year y, considering driver (characteristics) p. Moreover,
λkyp, represents the failure rate of the spare part k, considering its p characteristic, during
the period y.

3.3. Reliability Model

The most direct and accurate way to obtain failure rates throughout the life of a
component is by using models based on component reliability. In this section, it is explained
how these rates were obtained using Weibull functions.

All equipment must be maintained when used because, during use, it undergoes
deterioration processes that lead to loss of efficiency and/or failures. These failures will
affect the availability of the equipment. Along with this, many (non-repairable) components
will have to be replaced. Usually all equipment, throughout its life cycle, presents different
behaviors in terms of its failure rate. As an example of this, there is a model widely cited
in the literature, the so-called “bathtub curve model” [65]. This model establishes a life
cycle composed of three phases: beginning of life (BOL), middle of life (MOL), and end of
life (EOL). During these phases, the equipment presents different levels of reliability and
failure rates. In the first phase, the equipment generally behaves according to the so-called
infant mortality. Here, the failure rate decreases as time progresses. In the second phase,
called useful life, the failure rate behaves in a constant manner. Finally, in the final phase,
usually called the wear phase, the failure rate (λ) has a noticeable ascending behavior.

The Weibull function is one of the statistical distributions commonly used to represent
the reliability behavior over the useful life of a piece of equipment. Therefore, the reliability
of a component can be represented by the following equation:

R(t) = e−(t− t0/η)β

(6)

where we have the following:

β = Shape factor that characterizes the failure pattern.
η = Scale parameter, which represents the characteristic life of the equipment. The charac-
teristic life is given by the time when the failure probability is 63.2%.
t0 = Location parameter that represents the beginning of the deterioration process. It is also
considered as the first moment in which a failure can occur (estimate).

Therefore, by knowing or estimating the Weibull parameters, it will be possible to
estimate the failure rate and, therefore, the requirements or needs for components to replace
in the future. This relationship is given by the following equation:

λ(t) =
β

η

(
t
η

)β−1
(7)

The failure rate of a component and, consequently, the demand rate for a new non-
repairable part in the warehouse can be represented by specific combinations of Weibull
parameters. By changing the values of the Weibull parameters over the lifetime of a
given piece of equipment, it is possible to model the behavior of different drivers in the
costing system.

3.4. Integration of Both Models and Computation of Risk Measures

As mentioned above, the matrix Qkm represents the consumption of activities m per
component k in the spare parts warehouse. Therefore, the number of executions of activities
in a certain period, also called transactions, is considered to be proportional to the number
of units of spare part k needed in the same period y. In turn, and as already mentioned, the
units of component k that are required in the warehouse will correspond to the units that



Mathematics 2023, 11, 3316 8 of 23

suffer failures during a certain period y, plus a fraction of units attributable to preventive
replacements in the same period. The total of those units is represented by λky.

It is worth noting that certain activities are carried out while considering a certain
batch size. This means, for example, that when a component enters the warehouse and it
is purchased in batches of specific sizes (EOQ, for example), the execution time must be
subdivided into the number of units that make up that batch. This batch size will be called
Qkm. According to the previous section, the matrix Qkm must be redefined to incorporate
the batch size of components k in relation to which each activity m is performed:

Qkm =


λ11
q11

. . λ1m
q1m

λ21
q21

. . λ2m
q2m

. . . .
λk1
qk1

. . λkm
qkm

 (8)

In summary, Equation (3) can be redefined as follows:


CT1y

.

.

.
CTny

 =


λ11
q11

. . λ1m
q1m

λ21
q21

. . λ2m
q2m

. . . .
λk1
qk1

. . λkm
qkm




UT11 UT12 . . UT1d
UT21 UT22 . . UT2d

. . . . .

. . . . .
UTm1 UTm2 . . UTmd





C1
P′1
C2
P′2
.
.

Cd
P′j


(9)

Once the deterministic model has been built, it is possible to identify which parameters
of the model show variation, and using statistical tests of goodness or focus groups with
specialists, it is possible to estimate the empirical probability distributions of the param-
eters that show variability. Thousands of possible scenarios are created considering the
probability distribution function of the input parameters, which, in this case, are related to
failure rates and resource consumption by activities. These scenarios allow us to obtain the
probability function of the total cost. An important aspect is that this model considers the
possible correlations that may exist between the different parameters of the model.

With the probability distribution of the cost, measures such as the cost at risk (CaR)
can be calculated, which would be the maximum expected cost with a certain level of
confidence for each of the analysis periods; and the present cost value at risk (PVCaR),
which would be the present value of cost at risk, which includes the risk measurement and
the time value of money.

4. Case Study

The proposed model, based on a matrix representation for TD-ABC, and incorporating
reliability functions as a means of sizing the elements of the timing equations, was applied
in a real industrial context.

The case study is a distribution center (DC) for components of a well-known Japanese
manufacturer of heavy equipment for construction and mining. This DC is located in
Northern Chile and has 2000 m2 of a covered area, plus 2350 m2 of outdoor area where large
components are stored. The organizational structure is made up of four main areas, namely
reception of domestic components and fungibles, reception of imported components,
consolidation and dispatch, and inventory management area. This center is responsible
for the distribution of SPs that are requested by a series of consumption units, which are
mainly mining operations. There are about 11,000 components on the DC that are divided
into three main categories: large (A), medium (B), and small (C). For these, there are three
types of storage positions available, which are defined below:

Storage zones: Intended for large components. Most type A spare parts are in
those zones.
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Storage racks: Which can be found both, in the covered part of the property and in the
outdoor. These shelves contain most of the type B spare parts.

Storage boxes: They are small shelves. These boxes are used to store mainly C-type parts.
The DC operates with three categories of consumption units:

– Contracts with mining companies: The DC’s owner maintains contracts with several
mining companies. In this case, SP units are prepared and shipped from the DC to the
specific mining location.

– Sales: The DC also provides component sales to customers who own the equipment
manufactured by the company.

– Imports: The company has several branches throughout the world, including in
Mexico, Australia, and Peru, among others. If the center does not have the necessary
parts, it requests the nearest branch to have the item available, so as not to jeopardize
customer-service levels.

The components undergo the following processes as they pass through the warehouse.

A. Reception: Once the transport arrives at the warehouse, the reception process is
carried out as follows:

– Verify purchase order: This is the process in which the person in charge verifies
the quantity of units which are received.

– Registration in the ERP system: Input into the information system for the inven-
tory to be updated.

– Quality Control: It is verified that the items are in optimal condition, to be used
without any type of inconvenience.

– Quantity checking: Verifying that the quantities described are exactly those
declared by the purchase order. Checking the quantity of components in some
cases is very stressful because there are occasions when the components are very
small and come in large quantities, such as washers, nuts, small screws, etc.

B. Storage: Once unpacked, the components are transported to storage areas. The type
of transport used to bring components to their location depends on their dimensions.
The types of transport are as follows:

– Collection service order: For most cases, it is used for C-type spare parts.
– Transfer by 3-ton crane: Used for components categorized as type B.
– Crane transfer of up to 10 tons: Used for type-B and type-A components.

C. Picking and shipment of spare parts. This process is carried out through the follow-
ing phases:

– Picking: This activity consists of gathering all the SPs of the purchase order in a
specific place for verification and preparation, together with the document called
the “pick service order”. Usually, this activity is also called kitting.

– Item-by-item verification: The “pick service order” is verified by a person in
charge; if the necessary stock does not exist, the warehouse manager is informed.

– Inventory reduction: Consequently, after confirming the entire purchase order,
the inventory is discounted by updating the warehouse stock in the informa-
tion system.

– Packaging: Performed to protect each SP before shipping.
– Consolidation: Consists of leaving the package ready for transport at the place

indicated by the company in order for it to be collected by the transport firm. At
the end of consolidation, it is registered that the order is ready to be withdrawn.

For this case study, we considered a set of orders in the warehouse, covering the last
7 years. In order to streamline the analysis, a decision was made to select a representative
component from each category (A, B, and C) that accurately reflects the behavior of the
components within that category.

For each of the three selected components, it was assumed that the time between orders
would be considered the mean time between failures (MTBFs) of the reference component
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of each category, in such a way that each component reorder request corresponds to a failure
of a component in the field (corrective replacements only). From the failure history, the
reliability parameters, using the Weibull distribution, were calculated. Subsequently, using
such parameters, consumption projections were made for each period of the components’
life cycle (cv), considering, separately, each of the three categories of SPs under study.

Table 1 presents the values of the Weibull parameters together with the parameters of
the adjustment tests by the Kolmogorov–Smirnov method.

Table 1. Reliability parameters using Weibull’s distribution for each spare part category.

SP Categories Failures/Year β η γ λ MTBF (h)

Small SPs 36 0.6568 7.812 0 3 10.552
Medium SPs 15 0.755 4.102 0 4 4.858

Big SPs 31 0.9204 2.438 0 4 2.535

Figure 2a–c shows the reliability curves for each of the three categories of components.
Those figures illustrate reliability over time and demonstrate how reliably the compo-
nents operate or remain functional throughout the utilization time. The lines indicate the
percentage of time they remain functional or available for utilization. By analyzing the
reliability graphs, one can gain insights into the overall performance and availability of
each component and assess or estimate the future replaceable components needed.
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Figure 2. Behavior of reliability over time for the three categories of spare parts: (a) small, (b) medium,
and (c) large.

By using the obtained Weibull parameters and Equation (7) (λ), it was possible to
estimate the corresponding failure rates and future consumption of each of the three
categories of spare parts. Bear in mind that each category of component is made up of a
different number of components. Therefore, the number of consumptions for each period,
according to each category, corresponds to the product between the corresponding failure
rate and the quantity of components in each category (A, B, or C). Next, we present the
details of the application of the proposed model in the previously described case.
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5. Time-Driven Activity-Based Costing Model with Component Reliability

For the application of the Time-Driven Activity-Based Costing model, in the first
place, the processes and activities needed for managing the spare parts warehouse must
be established. Table 2 shows the list of activities which were described in Section 2. In
the second place, the resources needed to perform the activities must be defined. In the
third place, the times allocated to each of the activities must be estimated, considering each
type of SP category. That estimation was carried out by a set of the DC’s supervisors and a
group of direct workers in a succession of several meetings.

Table 2. Activities and sub-activities.

Activities Sub-Activities

1 Reception

1.1 Check purchase order
1.2 Quality review
1.3 Quantity review
1.4 Determine if the location matches the size

2 Storage parts
2.1 Print and pick up stamps
2.2 Transfer to the storage place
2.3 Confirm if the SP is in the warehouse

3 Collection and dispatch of spare parts

3.1 Collection of items for dispatch
3.2 Reduce inventory
3.3 Pack order
3.4 Deliver picking to issue dispatch guide

The warehouse was constructed in a rented location. For its appropriate operation,
16 workers are needed. Two sizes of forklift trucks are used to move the materials, that is,
according to the different dimensions and weights of the SP. The summary of the resources
needed to perform the activities on the DC is presented in Table 3. The information was
obtained from the organization’s enterprise resource planning system.

Table 3. Amounts of resources consumed (per month).

Resources Amount

1 Rent $15,000,000
2 Salaries $19,500,000
3 Electricity $1,513,300
4 Water $1,620,360
5 Telephone $500,000
6 Food $5,546,590
7 Security services $5,581,535
8 Cleaning services $4,028,288
9 Waste removal $355,000
10 Minor maintenance $1,080,000
11 Corrective system maintenance $1,150,000
12 Green areas maintenance $402,048
13 Pest control $150,000
14 Purified water supply $90,250
15 Air-conditioning maintenance $1,204,800
16 Personnel transportation $2,698,427
17 Supplies $300,000

18
Machinery, 3 tons $4,753,760
Machinery, 10 ton $5,038,986

Total (month) $70,513,344

According to the objectives of obtaining the number of spare parts units requested
and moved in the warehouse, and thus projecting the utilization of existing capacities (re-
sources), an estimation was made from year 1 considering 12 months (resources costs equal
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to those in Table 3). For this reason, based on the value during the first year, resource values
were projected for the next five years, considering estimated inflation values (Table 4).

Table 4. Estimation of resources consumed per year.

Year Inflation Resources

1 2.30% $846,160,123
2 2.60% $868,160,286
3 2.90% $893,336,935
4 3.20% $921,923,717
5 3.50% $954,191,047
6 3.80% $990,450,306

The warehouse’s working hours correspond to 8 h a day, and it works 22 days a
month, for 12 months a year. This warehouse has 16 workers who carry out the activities,
corresponding to approximately 33,792 man hours (HH). This capacity corresponds to
the theoretical capacity; to obtain the available practical capacity, we consider an efficient
factor equal to 80%. Thus, the available practical capacity will be 27,033, 6 h per year. The
practical capacity rate corresponds to the value in ($/time unit) obtained through the ratio
between the value of projected resources per year (Table 5) and the effective or practical
capacity available.

Table 5. Activities’ execution times for SPs in the warehouse (in min/batch).

Activities Big Spare Parts Mid. Spare Parts Small Spare Parts

1. Check purchase order 10 15 30
2. Quality inspection 20 10 5
3. Quantity verification 15 15 25

4. Verify if location corresponds
to size 10 10 10

5. Print and affix corresponding
labels 5 5 5

6. Transfer to storage location 10 10 10

7. Confirm item by item in system
if the SP is in stock 10 10 10

8. Collect spare parts for dispatch 15 10 5
9. Deduct from inventory 5 5 5
10. Pack order 20 10 5

11. Provide picking for subsequent
dispatch guide 10 10 10

As already mentioned, the execution times of the activities were obtained directly
from the company through interviews with the supervisors and workers responsible for
each of the processes and activities. These times are shown in Table 5.

5.1. Time Equations

The time equations correspond to each activity performed in the warehouse. Therefore,
we have here 11 time equations, corresponding to each of the 11 activities, as shown in
Table 5. Each time equation (Ti) considers that the time consumed by the sub-activity
depends on the SP category. In this case, and as mentioned earlier, the SP categories are
large (L), medium (M), and small (S). Therefore, Xnp corresponds to the number of lots (set
of SPs of the same type and category that pass through each activity). The values of Xnp
correspond to the component failure rate, λkm, divided by the number of units per batch,
Qkm. The projected values of failure rates for each spare part category in each year (λkm)



Mathematics 2023, 11, 3316 13 of 23

are obtained from Equation (7), using the Weibull parameters for each category (Table 1).
Therefore, and considering the values in Table 5, the equations are as follows:

T1 = 10 ∗ X11 + 15 ∗ X12 + 30 ∗ X13 (10)

T2 = 20 ∗ X21 + 10 ∗ X22 + 5 ∗ X23 (11)

T3 = 15 ∗ X31 + 15 ∗ X32 + 25 ∗ X33 (12)

T4 = 10 ∗ X41 + 10 ∗ X42 + 10 ∗ X43 (13)

T5 = 5 ∗ X51 + 5 ∗ X52 + 5 ∗ X53 (14)

T6 = 10 ∗ X61 + 10 ∗ X62 + 10 ∗ X63 (15)

T7 = 10 ∗ X71 + 10 ∗ X72 + 10 ∗ X73 (16)

T8 = 15 ∗ X81 + 10 ∗ X82 + 5 ∗ X83 (17)

T9 = 5 ∗ X91 + 5 ∗ X92 + 5 ∗ X93 (18)

T10 = 20 ∗ X101 + 10 ∗ X102 + 5 ∗ X103 (19)

T11 = 10 ∗ X111 + 10 ∗ X112 + 10 ∗ X113 (20)

To test two possible scenarios, we consider two possible situations in the behavior of
failure rates for each category of components:

1. Considering constant rate values for the next 6 years;
2. Considering that rates in the future will tend to increase, that is, a Weibull β value > 1,

which corresponds to the wear phase of the bathtub curve.

Table 6 represents the estimated future failure rates for large, medium, and large
spare parts.

Table 6. Failure rates and number of large, medium, and small SPs.

Constant Failure Rate Increasing Failure Rate

Year Large SPs Medium SPs Small SPs Large SPs Medium SPs Small SPs

1 1200 2850 11,000 1200 2850 11,000
2 1200 2850 11,000 1200 2850 11,000
3 1200 2850 11,000 1800 5700 13,200
4 1200 2850 11,000 3600 7600 16,500
5 1200 2850 11,000 4200 8550 18,700
6 1200 2850 11,000 5400 9500 20,900

Therefore, substituting in the 11 time equations corresponding to each sub-activity, we
obtain the total time for each sub-activity, considering the three categories of spare parts, as
shown in Table 7.
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Table 7. Sub-activities (in minutes), considering constant and increasing failure rates.

Constant Failure Rate Increasing Failure Rate

1 2 3 4 5 6 1 2 3 4 5 6

Equation (10) 384,750 384,750 384,750 384,750 384,750 384,750 384,750 384,750 499,500 645,000 731,250 823,500
Equation (11) 107,500 107,500 107,500 107,500 107,500 107,500 107,500 107,500 159,000 230,500 263,000 307,500

Equation (12) 88,500 88,500 88,500 88,500 88,500 88,500 88,500 88,500 140,300 195,875 219,175 251,475

Equation (13) 150,500 150,500 150,500 150,500 150,500 150,500 150,500 150,500 207,000 277,000 314,500 358,000

Equation (14) 75,250 75,250 75,250 75,250 75,250 75,250 75,250 75,250 103,500 138,500 157,250 179,000

Equation (15) 138,500 138,500 138,500 138,500 138,500 138,500 138,500 138,500 189,000 241,000 272,500 304,000

Equation (16) 150,500 150,500 150,500 150,500 150,500 150,500 150,500 150,500 207,000 277,000 314,500 358,000

Equation (17) 101,500 101,500 101,500 101,500 101,500 101,500 101,500 101,500 150,000 212,500 242,000 280,500

Equation (18) 75,250 75,250 75,250 75,250 75,250 75,250 75,250 75,250 103,500 138,500 157,250 179,000

Equation (19) 107,500 107,500 107,500 107,500 107,500 107,500 107,500 107,500 159,000 230,500 263,000 307,500

Equation (20) 150,500 150,500 150,500 150,500 150,500 150,500 150,500 150,500 207,000 277,000 314,500 358,000

Once the total times of each sub-activity have been obtained, the costs of each of them
can be estimated by multiplying the times by the cost capacity rates of each year. Moreover,
the idle capacity of the workers is also obtained by dividing the sub-activities’ total cost
values by the amount of resources available for the year. For the scenario with a constant
failure rate, the idle capacities exhibit a consistent value of 5.7%. Table 8 presents the
expected patterns of capacity utilization in the scenario where the failure rate increases
annually. It can be observed that, considering the trend in failure rates, the current capacity
will be insufficient starting from year 3 if it remains constant. This highlights the need
for improved treatment of component reliability during year 3 in order to address the
growing demand.

Table 8. Total cost of sub-activities for λit values, estimation for 6 years.

Period Cost Resources Idleness

1 $798,288,382 $846,160,123 5.7%
2 $819,043,880 $868,160,286 5.7%
3 $1,170,248,825 $893,336,935 −31.0%
4 $1,627,489,077 $921,923,717 −76.5%
5 $1,911,260,522 $954,191,047 −100.3%
6 $2,263,281,805 $990,450,306 −128.5%

5.2. Cost at Risk (CaR)

After implementing the deterministic TD-ABC model, certain parameters that exhibit
variability and present significance for the analysis process can be identified. These are
mainly related to the time equations for each of the activities according to Table 9. For each
of the times, its probability distribution was identified, these being uniform (U), triangular
(T), and normal (N).

In addition to these variables, an effective work capacity with a uniform distribution
between 78% and 92.5% is taken into account.

With this information, the probability distribution of the costs per year and the proba-
bility distribution of the present value per year are estimated. The statistics for the constant
failure rate are shown in Table 10, as well as the estimation of the CaR for each of the years
and the Present Value Cost at Risk (PVCaR) for the analysis period with a 95% confidence.
Table 11 shows the CaR and PVCaR results for an increasing failure rate. For the so-called
constant rate, it can be said, considering the variation in activity times and the variation in
effective work capacity, that the maximum expected cost for year one is $782,312,415, and
the maximum expected cost expressed in the present value for the six years of analysis is
$3,641,917,108. For the increasing rate, the maximum expected cost per year one is equal
to the constant rate of $782,312,415, which remains the same during the first two years.
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However, starting from year 3, the cost increases significantly compared to the constant
failure due to the growth in the failure rate. The maximum expected cost expressed in
the present value (PVCaR) for the increasing failure rate for the six years of analysis is
$5,721,665,780.

Table 9. Probability distribution for each activity: uniform (U), triangular (T), and normal (N).

Large (Min/Batch) Median (Min/Batch) Small (Min/Batch)

Verify purchase order U(8, 12) U(13, 17) U(28, 32)
Quality control T(16, 20, 23) T(8, 10, 15) T(3, 5, 7)
Quantity control U(14, 16) U(14, 16) U(22, 28)
Localization verification N(10, 1) N(10, 1) N(10, 1)
Print and labeling T(2, 5, 6) T(2, 5, 6) T(2, 5, 6)
Transfer U(5, 11) U(5, 11) U(5, 11)
Physical revision T(8, 10, 11) T(8, 10, 11) T(8, 10, 11)
Picking for dispatch U(8, 17) U(6, 12) U(3, 6)
Discount inventory N(5, 1) N(5, 1) N(5, 1)
Packaging ordering U(17, 22) U(5, 12) U(2, 7)
Deliver for later dispatch
ordering U(7, 12) U(7, 12) U(7, 12)

Table 10. Total costs when considering a constant failure rate.

Years 1 2 3 4 5 6 NPV

Mean 714,027,189 732,591,896 753,837,061 777,959,847 805,188,441 835,785,602 3,324,027,313
Median 712,350,328 730,871,437 752,066,708 776,132,843 803,297,493 833,822,797 3,316,220,986
Range 263,153,204 269,995,188 277,825,048 286,715,450 296,750,490 308,027,009 1,225,063,209

Minimum 587,578,059 602,855,088 620,337,886 640,188,698 662,595,303 687,773,924 2,735,365,749
Maximum 850,731,263 872,850,276 898,162,934 926,904,148 959,345,793 995,800,933 3,960,428,958

Car or NPCaR 782,312,415 802,652,537 825,929,461 852,359,204 882,191,776 915,715,063 3,641,917,108

Table 11. Total costs when considering an increasing failure rate.

Years 1 2 3 4 5 6 Present Value

Mean 714,027,189 732,591,896 1,046,048,642 1,452,978,196 1,706,077,989 2,019,377,841 5,232,105,307
Median 712,350,328 730,871,437 1,043,516,838 1,449,621,174 1,702,153,722 2,014,513,807 5,219,903,622
Range 263,153,204 269,995,188 375,282,511 504,883,334 591,899,675 693,220,520 1,838,097,289

Minimum 587,578,059 602,855,088 863,991,366 1,209,778,215 1,421,212,366 1,687,218,081 4,342,714,542
Maximum 850,731,263 872,850,276 1,239,273,877 1,714,661,550 2,013,112,041 2,380,438,601 6,180,811,831

Car or PVCaR 782,312,415 802,652,537 1,144,221,697 1,587,819,659 1,864,342,794 2,206,523,961 5,721,668,780

Figure 3 shows the probability distribution of cost and the calculation of CaR for
constant failure. As can be seen in Figure 3, the highest expected total cost for the first year,
given the variability in task execution times with a 95% confidence level, is 716,902,244,
which is lower than the annual maintenance budget, indicating that the maintenance
needs for the first year can be met within the organization’s budget. Figure 4 presents the
probability distribution of the present value of cost and the calculation of PVCaR. Figure 4
shows the present value of the cost during a 6-year analysis period, taking into account the
time value of money. The maximum expected present value with a 95% confidence level
is 4,409,061,788. This is an important value, as it indicates the maximum amount that the
company should have in present value to meet the long-term maintenance needs of the
organization. The probability distributions of cost for years 2 to 6 with constant failure and
the calculation of CaR per year are presented in Appendix Figures A1–A5, respectively.
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Furthermore, the probability of allocating maintenance work can be calculated accord-
ing to the resources available in each of the periods (Table 12). As can be seen, in years 1
and 2, the organization can compress more; and in year 3, there is only a 7.9% probability
of committing to the works according to the budget. As for years 4, 5, and 6, the company
could not carry out the activities according to the budget, so in year 3, the company should
take actions to guarantee the continuity of the operation.
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Table 12. Budget compliance (%) included the considered variability.

% Budget Fulfillment

Year 1 100.0%
Year 2 100.0%
Year 3 7.9%
Year 4 0.0%
Year 5 0.0%
Year 6 0.0%

6. Discussion and Conclusions

Due to the limitations encountered in the design, implementation, and use of effective
costing systems within complex organizations, more sophisticated and alternative costing
systems are required. The application and development of TDABC in the field of logistics,
particularly in spare parts depots, proved to be straightforward. Moreover, it can emerge
as a vital tool for accurately assessing the actual costs linked to every spare parts logistics
operation. Simultaneously, it proves to be well-suited for companies in the sector, as it
offers the convenience of cost allocation based only on time. Therefore, adopting this
methodology presents itself as a highly advantageous option.

The utilization of time equations presents itself as a considerably attractive option
because it simplifies the generation of information about the efficiency of departments,
processes, and activities and makes possible the development of sophisticated mathematical
models and optimization approaches.

In our costing model, the set of activities related to logistics and spare parts manage-
ment processes are represented within the TD-ABC matrix model, and we consider the
Weibull reliability functions for each type of component, allowing for the estimation of
component failure rates. By using this model, it is possible to account for the inherent
variability of the costs in order to perform a proper risk analysis.

The general model and set of equations can be easily adapted to different situations
and for different types of analysis. The case study presented here is particularly interesting
because it offers a typical situation in spare parts management processes, highlighting the
main costs and cost drivers.

After the design of the activity-based cost model linking resources, activities, and cost
objects, we should consider the variability of the most relevant variables. For the analysis
of the variability, we considered uniform, triangular, and normal probability distributions.

The implementation of the TDABC method for a real spare parts DC provided several
managerial insights.

From the time required to carry out the activities of each spare part and the costs of
the warehouse, it can be concluded that the company does not use 100% of the resources
allocated to the warehouse. Through the model, it can be observed that there is a percentage
of resources that are not used. It is estimated that there is a level of idle resources which
approaches 19% of the capacity.

On the other hand, if we consider that component failure rates tend to increase over
time, idle capacities will tend to decrease, and it will be necessary to increase resources
to meet the needs of increasing volumes of activities in future years. This constitutes a
predictive tool, which, when considering the reliability model, allows us to project the
future behavior of costs and behavior of idle capacities.

It is important for companies to understand the need to identify, quantify, and manage
the risk inherent in their activities. Proper risk management allows the company to focus
on profitability objectives, guaranteeing the company’s stability and solvency. In this article,
a methodology for measuring risk based on the Monte Carlo simulation was proposed
which allows us to obtain the results related to the maximum cost that the organization
can have given its productive factors, highlighting the CaR calculation, which is a measure
in the short and medium term, and PVCaR, which is a long-term measure that considers
the time value of money. The proposed methodology is cost-effective, as it allows us to
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obtain good results at low costs in reasonable and understandable computational times for
decision-makers.

We believe that the main limitation of the study is the requirement of having infor-
mation on historical-failure records. Despite the advent of intelligent technologies and
cyber–physical systems, many organizations possess a significant amount of data regarding
the condition of equipment and its components, from which obtaining Weibull reliability
coefficients can be relatively straightforward.

Further research should include the analysis of correlations between variables in
indicators such as CaR and PVCaR. Additionally, there is a consideration to integrate the
model with different techniques for calculating risk indicators, techniques such as fuzzy
logic, decision trees, Markov modeling, and heuristic techniques such as genetic algorithms.
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reliability coefficients can be relatively straightforward. 

Further research should include the analysis of correlations between variables in 

indicators such as CaR and PVCaR. Additionally, there is a consideration to integrate the 

model with different techniques for calculating risk indicators, techniques such as fuzzy 

logic, decision trees, Markov modeling, and heuristic techniques such as genetic 

algorithms. 

Author Contributions: Methodology, O.D. and P.A.; Formal analysis, P.A.; Investigation, O.D., V.J. 

and K.C.; Data curation, V.J. and K.C.; Writing—original draft, O.D.; Writing—review & editing, 

P.A. and V.J. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: The data are not publicly available due to privacy restrictions. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 

Figure A1. Total cost behavior for year 2 and CaR. (Mean = 6.73 × 108; Std. Dev. = 38,389,653.34; N = 

10,000). 

Figure A1. Total cost behavior for year 2 and CaR. (Mean = 6.73 × 108; Std. Dev. = 38,389,653.34;
N = 10,000).



Mathematics 2023, 11, 3316 19 of 23Mathematics 2023, 11, x FOR PEER REVIEW 20 of 23 
 

 

 

Figure A2. Total cost behavior for year 3 and CaR. (Mean = 9.63 × 108; Std. Dev. = 49,230,554.601; N 

= 10,000). 

 

Figure A3. Total cost behavior for year 4 and CaR. (Mean = 1.34 × 109; Std. Dev. = 64,680,670.304; N 

= 10,000). 

Figure A2. Total cost behavior for year 3 and CaR. (Mean = 9.63 × 108; Std. Dev. = 49,230,554.601;
N = 10,000).

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 23 
 

 

 

Figure A2. Total cost behavior for year 3 and CaR. (Mean = 9.63 × 108; Std. Dev. = 49,230,554.601; N 

= 10,000). 

 

Figure A3. Total cost behavior for year 4 and CaR. (Mean = 1.34 × 109; Std. Dev. = 64,680,670.304; N 

= 10,000). 
Figure A3. Total cost behavior for year 4 and CaR. (Mean = 1.34 × 109; Std. Dev. = 64,680,670.304;
N = 10,000).



Mathematics 2023, 11, 3316 20 of 23
Mathematics 2023, 11, x FOR PEER REVIEW 21 of 23 
 

 

 

Figure A4. Total cost behavior for year 5 and CaR. (Mean = 1.58 × 109; Std. Dev. = 75,884,798.384; N 

= 10,000). 

 

Figure A5. Total cost behavior for year 6 and CaR. (Mean = 1.87 × 109; Std. Dev. = 88,505,258.373; N 

= 10,000). 

References 

1. Roda, I.; Garetti, M. Application of a performance-driven total cost of ownership (TCO) evaluation model for physical asset 

management. In Value Based and Intelligent Asset Management; Lecture Notes in Mechanical Engineering; Springer: Cham, 

Switzerland, 2015. ISBN 9783319155357. 

2. Franciosi, C.; Iung, B.; Miranda, S.; Riemma, S. Maintenance for Sustainability in the Industry 4.0 context : A Scoping Literature 

Review. IFAC-PapersOnLine 2018, 51, 903–908. 

3. Duran, O.; Roda, I.; Macchi, M. Linking the spare parts management with the total costs of ownership: An agenda for future 

research. J. Ind. Eng. Manag. 2016, 9, 991–1002. 

Figure A4. Total cost behavior for year 5 and CaR. (Mean = 1.58 × 109; Std. Dev. = 75,884,798.384;
N = 10,000).

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 23 
 

 

 

Figure A4. Total cost behavior for year 5 and CaR. (Mean = 1.58 × 109; Std. Dev. = 75,884,798.384; N 

= 10,000). 

 

Figure A5. Total cost behavior for year 6 and CaR. (Mean = 1.87 × 109; Std. Dev. = 88,505,258.373; N 

= 10,000). 

References 

1. Roda, I.; Garetti, M. Application of a performance-driven total cost of ownership (TCO) evaluation model for physical asset 

management. In Value Based and Intelligent Asset Management; Lecture Notes in Mechanical Engineering; Springer: Cham, 

Switzerland, 2015. ISBN 9783319155357. 

2. Franciosi, C.; Iung, B.; Miranda, S.; Riemma, S. Maintenance for Sustainability in the Industry 4.0 context : A Scoping Literature 

Review. IFAC-PapersOnLine 2018, 51, 903–908. 

3. Duran, O.; Roda, I.; Macchi, M. Linking the spare parts management with the total costs of ownership: An agenda for future 

research. J. Ind. Eng. Manag. 2016, 9, 991–1002. 

Figure A5. Total cost behavior for year 6 and CaR. (Mean = 1.87 × 109; Std. Dev. = 88,505,258.373;
N = 10,000).

References
1. Roda, I.; Garetti, M. Application of a performance-driven total cost of ownership (TCO) evaluation model for physical asset

management. In Value Based and Intelligent Asset Management; Lecture Notes in Mechanical Engineering; Springer: Cham,
Switzerland, 2015; ISBN 9783319155357.

2. Franciosi, C.; Iung, B.; Miranda, S.; Riemma, S. Maintenance for Sustainability in the Industry 4.0 context: A Scoping Literature
Review. IFAC-PapersOnLine 2018, 51, 903–908. [CrossRef]

https://doi.org/10.1016/j.ifacol.2018.08.459


Mathematics 2023, 11, 3316 21 of 23

3. Duran, O.; Roda, I.; Macchi, M. Linking the spare parts management with the total costs of ownership: An agenda for future
research. J. Ind. Eng. Manag. 2016, 9, 991–1002. [CrossRef]

4. Elbasheer, M.; Longo, F.; Mirabelli, G.; Padovano, A.; Solina, V.; Talarico, S. Integrated Prescriptive Maintenance and Production
Planning: A Machine Learning Approach for the Development of an Autonomous Decision Support Agent. IFAC-PapersOnLine
2022, 10, 2605–2610. [CrossRef]

5. Ansari, F.; Glawar, R.; Nemeth, T. PriMa: A prescriptive maintenance model for cyber-physical production systems. International.
J. Comput. Integr. Manuf. 2019, 32, 482–503. [CrossRef]

6. Harding, A. Reliability, Maintenance and Logistic Support: A Life Cycle Approach; Springer Science & Business Media: Berlin,
Germany, 2002; Volume 53, ISBN 9781461371069.

7. ISO 31000:2018; I(en) Risk Management—Guidelines. Online Browsing Platform (OBP): London, UK, 2018.
8. van den Honert, A.F.; Schoeman, J.S.; Vlok, P.J. Correlating the content and context of PAS 55 with the ISO 55000 series. S. Afr. J.

Ind. Eng. 2013, 24, 24–32. [CrossRef]
9. Hu, Q.; Bai, Y.; Zhao, J.; Cao, W. Modeling spare parts demands forecast under two-dimensional preventive maintenance policy.

Math. Probl. Eng. 2015, 2015, 728241. [CrossRef]
10. Durán, O. Spare parts criticality analysis using a fuzzy AHP approach. Tech. Gaz. 2015, 22, 899–905. [CrossRef]
11. Durán, O.; Durán, P.A. Prioritization of Physical Assets for Maintenance and Production Sustainability. Sustainability 2019,

11, 4296. [CrossRef]
12. Márquez, A.C.; Macchi, M.; Parlikad, A.K. (Eds.) Value Based and Intelligent Asset Management: Mastering the Asset Management

Transformation in Industrial Plants and Infrastructures; Springer: Berlin/Heidelberg, Germany, 2019.
13. ISO 55000:2014; Asset Management—Overview, Principles and Terminology. International Organization of Standardisation:

Geneva, Switzerland, 2014.
14. Kaplan, R.S. Improving value with TDABC. Healthc. Financ. Manag. 2014, 68, 76–84.
15. Jiménez, V.; Afonso, P. Risk Assessment in Costing Systems Using Costing at Risk (CaR): An Application to the Coffee Production

Cost. In Proceedings of the 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM),
Bali, Indonesia, 4–7 December 2016; pp. 1315–1319.

16. Korpi, E.; Ala-Risku, T. Life cycle costing: A review of published case studies. Manag. Audit. J. 2008, 23, 240–261.
17. Zachariassen, F.; Arlbjørn, J.S. Exploring a differentiated approach to total cost of ownership. Ind. Manag. Data Syst. 2011, 111,

448–469. [CrossRef]
18. Maisenbacher, S.; Klöppel, M.; Laubmann, J.; Behncke, F.; Mörtl, M. Integrated Value Engineering: Consideration of Total Cost

of Ownership for Better Concept Decision. In Proceedings of the 2016 Portland International Conference on Management of
Engineering and Technology (PICMET), Honolulu, HI, USA, 4–8 September 2016; pp. 623–632.

19. Woodhouse, J. What is the value of asset management? Infrastruct. Asset Manag. 2019, 6, 102–108. [CrossRef]
20. IEC 60300–3-3:2017; Dependability Management–Part 3–3: Application Guide–Life Cycle Costing. International Electrotechnical

Commission: Geneva, Switzerland, 2017.
21. ISO 15663-1:2000; International Standard Petroleum and Natural Gas Industries-Life Cycle Costing Part 1: Methodology. ISO:

London, UK, 2000.
22. SEMI E35-0618; SEMI International Standards. Guide to Calculate Cost of Ownership (COO) Metrics for Semiconductor

Manufacturing Equipment. SEMI International Standard Brussels: Brussels, Belgium, 2018.
23. ICS Code: 91.010.20; Standard Practice for Measuring Life-Cycle Costs of Buildings and Building Systems. ASTM: West Consheho-

ken, PA, USA, 2017; p. 23. [CrossRef]
24. ISO 15686:2008; Buildings and Constructed Assets—Service-Life Planning—Part 5: Life Cycle Costing. International Organization

for Standardization: Geneva, Switzerland, 2008.
25. APPA 1000-1; Total Cost of Ownership for Facilities Asset Management (TCO)—Part 1: Key Principles. APPA: Stanford, CT, USA,

December 2017; p. 100, ISBN 1-890956-97-X.
26. AC/327; NATO Guidance on Life Cycle Costs. ALCCP1: Brussels, Belgium, 2018.
27. Cooper, R.; Kaplan, R.S. Profit Priorities from Aotivity-Based Costing. Harv. Bus. Rev. 1991, 69, 130–135.
28. Rodriguez Rivero, E.J.; Emblemsvag, J. Activity-based life-cycle costing in long-range planning. Rev. Account. Financ. 2007, 6,

370–390. [CrossRef]
29. Emblemsvag, J.; Emblemsva, J. Activity-based life-cycle costing. Manag. Audit. J. 2007, 16, 17–27. [CrossRef]
30. Knights, P.F. Best-In-Class maintenance benchmarks in Chilean open—Pit mines. CIM Bull. 2005, 98, 93.
31. March, S.T.; Smith, G.F. Design and natural science research on information technology. Decis. Support Syst. 1995, 15, 251–266.

[CrossRef]
32. Mo, J.; Wang, L.; Qiu, Z.; Shi, Q. A nonprobabilistic structural damage identification approach based on orthogonal polynomial

expansion and interval mathematics. Struct. Control Health Monit. 2019, 26, e2378. [CrossRef]
33. Hazır, Ö.; Ulusoy, G. A classification and review of approaches and methods for modeling uncertainty in projects. Int. J. Prod.

Econ. 2020, 223, 107522. [CrossRef]
34. Oehmen, J.; Locatelli, G.; Wied, M.; Willumsen, P. Risk, uncertainty, ignorance and myopia: Their managerial implications for B2B

firms. Ind. Mark. Manag. 2020, 88, 330–338. [CrossRef]

https://doi.org/10.3926/jiem.2083
https://doi.org/10.1016/j.ifacol.2022.10.102
https://doi.org/10.1080/0951192X.2019.1571236
https://doi.org/10.7166/24-2-585
https://doi.org/10.1155/2015/728241
https://doi.org/10.17559/TV-20140507002318
https://doi.org/10.3390/su11164296
https://doi.org/10.1108/02635571111118305
https://doi.org/10.1680/jinam.17.00040
https://doi.org/10.1520/E0917-17E01
https://doi.org/10.1108/14757700710835041
https://doi.org/10.1108/02686900110363447
https://doi.org/10.1016/0167-9236(94)00041-2
https://doi.org/10.1002/stc.2378
https://doi.org/10.1016/j.ijpe.2019.107522
https://doi.org/10.1016/j.indmarman.2020.05.018


Mathematics 2023, 11, 3316 22 of 23

35. Nachtmann, H.; Needy, K.L. Methods for handling uncertainty in activity based costing systems. Eng. Econ. 2003, 48, 259–282.
[CrossRef]

36. Bi, H.; Lu, F.; Duan, S.; Huang, M.; Zhu, J.; Liu, M. Two-level principal–agent model for schedule risk control of IT outsourcing
project based on genetic algorithm. Eng. Appl. Artif. Intell. 2020, 91, 103584. [CrossRef]

37. Jiang, C.; Xu, R.; Wang, P. Measuring effectiveness of movement-based three-way decision using fuzzy Markov model. Int. J.
Approx. Reason. 2023, 152, 456–469. [CrossRef]

38. Jiao, L.; Yang, H.; Liu, Z.G.; Pan, Q. Interpretable fuzzy clustering using unsupervised fuzzy decision trees. Inf. Sci. 2022, 611,
540–563. [CrossRef]

39. Liu, W.; Lai, Z.; Bacsa, K.; Chatzi, E. Physics-guided Deep Markov Models for learning nonlinear dynamical systems with
uncertainty. Mech. Syst. Signal Process. 2022, 178, 109276. [CrossRef]

40. Nguyen, T.; Duong, Q.H.; Nguyen, T.; Van Zhu, Y.; Zhou, L. Knowledge mapping of digital twin and physical internet in Supply
Chain Management: A systematic literature review. Int. J. Prod. Econ. 2022, 244, 108381. [CrossRef]

41. Wang, J.; Wang, Y.; Zhang, Y.; Liu, Y.; Shi, C. Life cycle dynamic sustainability maintenance strategy optimization of fly ash RC
beam based on Monte Carlo simulation. J. Clean. Prod. 2022, 351, 131337. [CrossRef]

42. Díaz, H.; Teixeira, A.P.; Soares, C. Application of Monte Carlo and Fuzzy Analytic Hierarchy Processes for ranking floating wind
farm locations. Ocean Eng. 2022, 245, 110453. [CrossRef]

43. Durán, O.; Afonso, P. Physical Asset Risk Management. In Risk Management: An Overview; Nova Science Publishers, Inc.:
Hauppauge, NY, USA, 2021; pp. 45–82.

44. Durán, O.; Afonso, P.S.; Durán, P.A. Spare parts cost management for long-term economic sustainability: Using fuzzy activity
based LCC. Sustainability 2019, 11, 1835. [CrossRef]

45. Jiménez, V.; Duarte, C.; Afonso, P. Cost System Under Uncertainty: A Case Study in the Imaging Area of a Hospital. In Enhancing
Synergies in a Collaborative Environment; Springer: Berlin/Heidelberg, Germany, 2015; pp. 325–333.

46. Kropivšek, J.; Jošt, M.; Grošelj, P.; Kitek Kuzman, M.; Kariž, M.; Merela, M.; Gornik Bučar, D. Innovative model of the cost price
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