Dermal extracellular matrix extracts for wound healing: a pleiotropic trigger

D. P. Reis^{1,2}, M. D. Malta^{1,2}, L. Gasperini^{1,2}, A. P. Marques^{1,2}

¹ 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal ² ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal

TERMIS Manchester 2023 March 31st, 2023

Extracellular Matrix in Tissue Homeostasis & Repair

Tissue multifunctionality ascribed to the combination of <u>structural elements</u> decorated with a myriad of dwelling <u>soluble factors</u>

Panacean Approach

• <u>3</u>B

Two-fraction method allows the retainment of components usually rinsed through extraction processes

`5 ••••

Principal Component Analysis (PCA) score plot of protein composition (n=3)

PCA grouping indicates:

- Low batch-to-batch variability (Native)
- Robustness of extraction process (strECM & sECM)

Heatmap revealed complementarity in protein composition between strECM & sECM

Low High

Heatmap of relative protein abundances in: Native (Source material), sECM and strECM

sECM role as a Biological Trigger

Top 10 GO Biological Functions

Fold Enrichment of Major Biological Functions of Proteins enriched in sECM and strECM

Re-epithelialization-related processes

Gap-closure assay, Human Keratinocytes (hKCs), 24h timelapse hKCs hKCs + sECM

Migration Kinetics

Migration Rate

- hKCs + sECM: 6.2 ± 2.1%/h
- hKCs: 3.0 ± 0.5%/h

sECM enhances hKCs Migration

• **.**38's::::::

Human Keratinocytes (hKCs), 3 days in culture

hKCs

Ki67+ : 10.8 ± 2.4%

hKCs + sECM

Ki67+ : 22.9 ± 3.7 %

Fluorescence Staining Images of : **hKCs**: in culture of KSFM; **hKCs + sECM**: in culture of 10% (v/v) in KSFM. Scale bar, 200 μ m.

hKCs cultured with sECM have enhanced proliferative phenotype

Proliferative stage-related processes: Fibroblast Adhesion

Human Dermal Fibroblasts (hDFbs), 30 min sECM incubation, 2h seeding in basal medium (w/o Fetal Bovine Serum), Non-adhesive plates

hDFbs

hDFbs + sECM

Pre-seeding **SECM** incubation period did not influence cell adhesion

Human Dermal Fibroblasts (hDFbs), 2h seeding in sECM-supplemented medium (w/o Fetal Bovine Serum), Non-adhesive plates

hDFbs

hDFbs + sECM

M supplemented media enhanced cell adhesion

Proliferative stage-related processes: Fibroblast Migration & Proliferation

• **B**'s

Remodeling stage-related processes

Human Dermal Fibroblasts (hDFbs), 5 days in culture

ECM Production

Quantification of DNA, total protein, collagen and elastin: **hDFbs**: cells cultured in basal α -MEM; **hDFbs + sECM**: cells cultured in 10% v/v in basal α -MEM; N/D: non-detected

ECM Degradation

Quantification of MMP-1 content: **hDFbs**: cells cultured in basal α-MEM; **hDFbs + sECM**: cells cultured in 10% v/v in basal α-MEM; N/D: non-detected.

Presence of sECM boosts production of collagen and ECM-degradation enzymes

Angiogenic potential

Quantification of angiogenic factors VEGF & FGF detected in sECM by ELISA. Grid range represents reference values for endothelial cell culture media supplementation (2-10µg/mL)

• **3**B's:::::

sECM enriched in angiogenic factors enhances hDMECs sprouting

Endothelial Cell Sprouting

ECM extraction protocol was capable of retaining most of the complex composition of Dermal ECM:

• Yielded extracts with distinct Proteomic Profiles: Structural Features (strECM) and Functional Cues (sECM)

sECM acts, *in vitro*, as an enhancer in several key biological processes involved in wound healing:

- Keratinocyte Migration & Basal Phenotype <u>Re-epithelialization</u>
- Fibroblast Adhesion Migration & ECM Remodeling <u>Pro-repairing microenvironment</u>
- Endothelial Cell Tube formation & sprouting <u>Angiogenic Potential</u>

ERC Consolidator Grant – ECM_INK (ERC-2016-COG-726061) Alexandra P Marques

FCT individual grant PD/BD/143041/2018 Daniel P Reis

Thank you all for your attention!

