

Progress in the cryogenics work package / March 2023

InnovEEA Project Meeting, 08.03.2023 Jonas Arnsberg, Steffen Grohmann

Motivation

Motivation

Comparison of cryostat designs for compact accelerator systems (CompactLight design study)
 Cryocooler-cooled design:

• LHe-cooled design:

Institute of Beam Physics and Technology (IBPT)

Motivation

Ħ

- Heat load estimation for both cryostat designs
 - Cryocooler-cooled design
 - LHe-cooled design
- Comparison of required power input for cooling
- Cryocooler-cooling especially interesting for compact and/or stand-alone cryostats

Need for optimization!

J. Arnsberg, S. Grohmann – Progress in the cryogenics work package 08.03.2023 5

Institute of Beam Physics and Technology (IBPT)

[1] Shabagin, 2022.

Ĉ

Motivation

arises from current leads

High potential for optimization!

Current leads cooled by mixed-refrigerant cycles promise reduction of power demand by ²/₃^[1]

- (Novel) mixed-refrigerant cooled current leads with continous heat absorption
- absorption at the cold end
- Comparison of current lead cooling designs (Classical) conduction cooled current leads with heat
- Heat load estimation shows **75 %** of cryogenic heat load

Compact Accelerator Systems Test Stand (COMPASS)

COMPASS – General Overview

- Dedicated experimental facility to study components of compact accelerators
 - Microstructured mixed-refrigerant cooled current leads (MSCL)
 - Superconducting magnets and coils
 - Conduction-cooled SC-cavities

COMPASS – General Overview

Project finalization in 03/2024

- Dedicated experimental facility to study components of compact accelerators
 - Microstructured mixed-refrigerant cooled current leads (MSCL)
 - Superconducting magnets and coils
 - Conduction-cooled SC-cavities
- Cooling power in the temperature range between 4 K and 300 K
 - Cryomech PT425 cryocooler
 - Two mixed-refrigerant cycles

Fabrication of test stand by Bilfinger Noell GmbH

COMPASS – Schematic Overview

COMPASS – Cryostat Design

- Cryostat vessel of 1300 mm diameter
- Two thermal shields cooled by Cryomech PT425 cryocooler (2.7 W @ 4.2 K^[3])
- Field measurements in LTS-magnets or conduction cooled cavities possible
 - Installation space for cold mass 50x50x50 cm³
 - Current supply via two seperate circuits
 - CMRC-cooled and classical conduction cooled current leads possible
 - Optical access from four sides

[3] www.cryomech.com.

COMPASS – Cryostat Design

- Cryostat vessel of 1300 mm diameter
- Two thermal shields cooled by Cryomech PT425 cryocooler (2.7 W @ 4.2 K^[3])
- Field measurements in LTS-magnets or conduction cooled cavities possible
 - Installation space for cold mass 50x50x50 cm³
 - Current supply via two seperate circuits
 - CMRC-cooled and classical conduction cooled current leads possible
 - Optical access from four sides

[3] www.cryomech.com.

COMPASS – Cryostat Design

- Cryostat in hanging setup
 - Lid attached on frame
 - Cryostat vessel to be attached and detached from below
 - > No movement of the lid needed
 - Permanently installed wiring and piping
- COMPASS frame dimensioned for total load of 2500 kg
- Working platforms for access to cryostat lid

Cryogenic mixed-refrigerant cycles (CMRC)

CMRC – Basic process layout

CMRC – Cooling of current leads

CMRC – Direct cooling of HTS

CMRC – Filling & Sampling

- Filling directly from gas cylinder cabinet via leakage-proof pipe connections
- Bronkhorst mass flow controller for precise dosing of single components
- Manual valves for sampling in sample cylinders
- Offline composition analysis via in-house gas chromatogrophy

Exactly determined mixture compositions

Ē

Summary & Outlook

Summary

- Current leads cooled by mixed-refrigerant cycles promise reduction of power demand by ²/₃
- Mechanical prototype of microstructured CMRC-cooled current lead available
- COMPASS test stand as unique platform for testing compact accelerator components cooled by cryogenic mixed-refrigerant cycles
 - Cryogenic installation space for conduction cooled accelerator components
 - Cryocooler providing cooling power of 2.7 W @ 4.2 K
 - Two mixed-refrigerant cycles providing between 100 W and 500 W at T < 80 K</p>

Outlook

- Realization of COMPASS in cooperation with Bilfinger Noell GmbH in 03/2024
- Development of thermally optimized MSCLs with numerical tools in 2023
- **Experimental investigation** of MSCLs in COMPASS
- Experimental investigation of thermal behaviour of sc magnets and cavities in COMPASS

[5] David Saez de Jauregui, 2022.

Thank you for your attention! Questions?

Literature

[1] E. Shabagin, "Development of a CMRC cooled 10 kA current lead for HTS applications, PhD thesis, Karlsruhe Institute of Technology, Karlsruhe, 2022.

[2] T. Kochenburger, "Kryogene Gemischkältekreisläufe für hochtemperatursupraleitende Anwendungen", PhD thesis, Karlsruhe Institute of Technology, Karlsruhe, 2019.

[3] https://www.cryomech.com/products/pt425/, called 07.03.2023.

[4] https://www.agilent.com/en/product/gas-chromatography/gc-analyzers/energy-chemical-gc-analyzers/liquefied-petroleum-gas-analyzers, called 03.11.2020.

[5] David Saez de Jauregui, personal communication, 2022.