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Decades of research
Multitude of congestion control approaches exist 
(Cubic, Vegas, BBR, Copa, …)

Operate in an end-to-end (E2E) fashion

Distributed algorithm for each sender/flow

Knowledge only implicit (estimated) 

No distinction between long- & short-lived flows

After flow ends: 80.27 % of flows still in Slow Start [1]
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Limits of Classical Congestion Controls

Long-lived flows

Slow convergence

and oscillations

Short-lived flows

Longer flow 

completion times

[1] Nie, Xiaohui, et al. "Dynamic TCP initial windows and congestion control schemes through reinforcement learning." IEEE Journal on Selected Areas in Communications 37.6 (2019): 1231-1247.
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Approach
Online-

Training
View

Flow Type 

Distinction
Remarks

Remy [1], PCC-Allegro/-Vivace, … ❌ Global ❌ “First” ML-based approach

Aurora/PCC-RL [2] ✓ E2E ❌ Continuation of PCC

MVFST-RL [3] ✓ E2E ❌ Delayed actions: Usage of action history

AUTO [4] ✓ E2E ❌ Preferences for different objectives

Orca [5] ✓ E2E ❌ Two combined control loops

Eagle [6] ✓ E2E ❌ Synthesizes behavior of BBRv1

Iroko [7] ✓ Global ❌ Only static & manually specified topologies

TCP-RL [8] ✓ Group ✓ Determine initial CWND and CCA

IW-DRL [9] ✓ E2E (✓) Determine initial CWND
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Related ML-based Congestion Controls

[1] Winstein, Keith, and Hari Balakrishnan. "Tcp ex machina: Computer-generated congestion control." ACM SIGCOMM Computer Communication Review 43.4 (2013): 123-134.
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“Congestion Control with SDN-like global view and actions”

Use global knowledge to compute 

coordinated control decisions for multiple senders

Guide the still active end-to-end congestion control

Coarse steering intervals – no per-packet control

QUIC as transport protocol

Deep Reinforcement Learning 

to compute control decisions

Many input parameters (large state space)

Many possible solutions (large action space)

Exploitation of unknown connections

Example reward function
maximize:

Reward R = α*throughput - β*delay + γ*fairness
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Concept of C³

Reduced flow completion times (FCT)

Faster flow start-up via default parameters

Better resource utilization

Virtually instant convergence

No oscillations
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1. Data Collection

Global view of the network domain

2. Coordination

Establish global and explicit network state

Compute coordinated control decisions
(via Reinforcement Learning)

3. Flow Parametrization

Coordinated steering of multiple senders

Coarse steering intervals – no per-packet control

Setting Min/Max/Current cWnd

Providing pro-actively suitable default parameters

Setting cWndinitial
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Basic Architecture of C³
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Combine input from multiple entities:

Senders
Round trip times

Loss rates

...

Intermediate Systems
Link bandwidths

Buffer sizes and 
queue utilizations

...

Receivers
Delivery rates

Receive buffer sizes

...
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1. Data Collection

Directly from 
senders

Data Collection
(external monitoring)

A

B

C
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Merge global and explicit network state

Compute coordinated control decisions
for multiple senders to ensure

High Throughput

Low Delay

Fairness

Via DRL-Agent 
with suitable reward function
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2. Coordination
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Fine-tuned parametrization
of multiple senders and flows

Coordinated steering (not control) 
for long-lived flows

Flow 1: cWnd = 42 MSS

Flow 2: cWnd = 80 MSS

Providing default parameters 
(especially relevant for short-lived flows)

Sender 3: cWndinitial = 20 MSS
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3. Flow Parametrization
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Non-ML Baseline: Conceptional Evaluation C³

Goal: Demonstrate C³’s advantages

Two senders:

Sender 1: (Modified) TCP Cubic as C³ stand-in

Sender 2: Periodic cross traffic via UDP

Evaluated in cloud environment (bwCloud)
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Better resource utilization 
(higher average throughput/goodput)

Better flow completion times (FCT) 
for short-lived flows

Better performance for environments with 
non-congestion based packet losses
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Conceptional Evaluation C³

Flow Completion Times
(RTT 50 ms & 50 KiB flows)

Cubic Modified Cubic Improvement

59.0 Mbit/s 82.3 Mbit/s 39.5 %

Average Goodput
(Bottleneck link 100 Mbit/s 

with 70 Mbit/s of periodic UDP cross traffic)

Cubic Modified Cubic Improvement

204 ms 106 ms 51.9 %

Modified Cubic = C³ concepts mapped to existing TCP Cubic. 
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Setup for Reinforcement Learning
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Three components

Environment

OpenAI Gym Interface

Agent

Agent

Based on PyTorch, RLlib, Ray

Simple neural network

Several learning algorithms considered 
(PPO, DQN, DDPG, A2C, …)

Agent and Environment 
separated by OpenAI Gym interface
(ns3-gym [1])
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Major Components

[1] Gawłowicz, Piotr, and Anatolij Zubow. "ns3-gym: Extending openai gym for networking research." arXiv preprint arXiv:1810.03943 (2018).
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Simple initial NN-model

Fully-connected neural network

Input layer depends on state space

Currently 6 features

2 hidden layers 

256 neurons each

Output layer depends on sender systems

Relative bottleneck send rate 
(total “budget” per host)

KuVS MALENE13

Neural Network Model
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NS-3 (simulation)

Mininet (emulation)

Initially simple scenarios

Topologies

Line

Dumbbell

…

Traffic

1 single flow

2 competing flows

…
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Network Realization
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Periodical collection of information 
about the network’s entities
(observed metrics)

Throughput

Bandwidths

Queue lengths

Packet drops

…

Communication: out-of-band
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Monitoring
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In each time step

Transfer of observed metrics 

Derivation of current reward

Computation of next action
(relative send rate raterel for each host)

KuVS MALENE16

Learning Process
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Receives actions from agent

Relative send rate raterel

(relative to bottleneck bandwidth)

Computes absolute send rate rateabs

Sets rateabs for each sender

“Host-budget” distributed between all sender’s flows

Communication: out-of-band

KuVS MALENE17

Coordination



Michael König — Towards a Coordinated Congestion Control (C³) 
Institute of Telematics

Research Group Prof. Zitterbart

Sender receive rateabs

Calculates rateflow = rateabs / #flows

Calculates cWndflow = rateflow * RTTmin

Adapted QUIC [1]
as end-to-end transport protocol

cWnd-modifying functions adapted

onAck()

onDupAck()

onLoss()

New externally callable functions 

Set fixed cWnd

Set initial cWnd

Set bounded cWnd (min/max)

KuVS MALENE18

C³-enabled Sender

[1] De Biasio, Alvise, et al. "A QUIC Implementation for ns-3." Proceedings of the 2019 Workshop on ns-3. 2019.
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Reward Function

Throughput of each sender interface 

(normalized to maximum interface bandwidth)

→ Rewards high bandwidth utilization

Queue length of each interface

(normalized to maximum interface queue length)

→ Penalizes long queues

Signal indicating packets dropped at interface

→ Penalizes packet drops

→ Penalizes host budget for 

hosts without active flows

Standard deviation of the send rates

→ Penalizes unfairness
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First Attempt: Mininet

No convergence / no upwards trend
(most likely due to micro-bursts caused by scheduling artefacts in Mininet) 
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One agent gets trained in three scenarios 
(ns3 simulation environment)

Scenario 1: Single flow

Agent learns to set send rate (cwnd) = bottleneck bandwidth

Keep CWND steady

Scenario 2: Two competing flows (parallel start)

Agent learns to set send rate (cwnd) = bottleneck bandwidth / 2

Keep CWND steady

Scenario 3: Two competing flows (staggered start)

Agent learns to set send rate (cwnd) = bottleneck bandwidth 

When second sender starts: set send rate (cwnd) = bottleneck bandwidth / 2

Keep CWND steady

KuVS MALENE21

Preliminary Evaluation Results
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Preliminary Results of Scenario 1 – NS-3

PPO: Proximal Policy Optimzation
➜ Reward converges
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Learning Progress of Send Rate Behavior 

in Episode 10 in Episode 50 in Episode 100

➜ Agent successfully learns



Michael König — Towards a Coordinated Congestion Control (C³) 
Institute of Telematics

Research Group Prof. Zitterbart

More sophisticated Neural Network Models
Best practices: Dropout and/or normalization layers 
Handling of delayed actions: 

RNN , LSTM, GRN, …

History of actions

Explicitly preserve knowledge about topology: 
Representation as a (T)GNN

Tweaking
Hyperparameters
Composition of reward functions components

Scalability
Minimize amount of communication
Split domain in sub-domains -> Multi-Agent RL?

Influences of in-band communication
Delayed monitoring data
Competition between data and control traffic

KuVS MALENE24

Outlook

RNN: Recurrent Neural Network

LSTM: Long Short-Term Memory

GRN: Gated Recurrent Network

(T)GNN: (Temporal) Graph Neural Network
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Spectrum of Use Cases

Real-time Online Control
Increased control (beyond steering)
of selected key services

Default Parameters
Broad defaults for 
many (similar) services

Coordinated Congestion Control
Steering of multiple senders
based on combined knowledge

Update Frequency & Granularity
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Congestion Manager [1]
“Coordination” of multiple flows within one system – not multiple senders

OTCP [2]
Distribution of default parameters – no steering

Bandwidth Enforcer [3]
Focus on limiting max. throughput
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Related Work: Non-ML-based Centralized Control

[1] Balakrishnan, Hari, and Srinivasan Seshan. The congestion manager. RFC3124. 2001.

[2] Jouet, Simon, Colin Perkins, and Dimitrios Pezaros. "OTCP: SDN-managed congestion control for data center networks." NOMS 2016-2016 

IEEE/IFIP Network Operations and Management Symposium. IEEE, 2016.

[3] Kumar, Alok, et al. "BwE: Flexible, hierarchical bandwidth allocation for WAN distributed computing." Proceedings of the 2015 ACM Conference on 

Special Interest Group on Data Communication. 2015.


