

End-to-End is Not Enough: Towards a Coordinated Congestion Control (C³)

Michael König, Martina Zitterbart

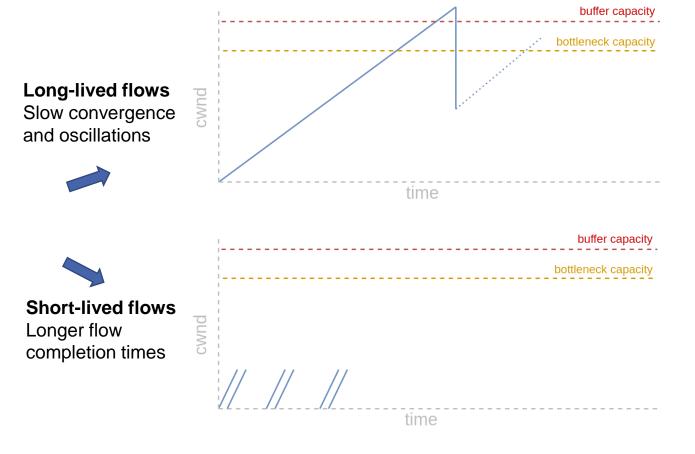
Limits of Classical Congestion Controls

Decades of research

Multitude of congestion control approaches exist (Cubic, Vegas, BBR, Copa, ...)

Operate in an end-to-end (E2E) fashion

- Distributed algorithm for each sender/flow
- Knowledge only implicit (estimated)
- No distinction between long- & short-lived flows
 - After flow ends: 80.27 % of flows still in Slow Start [1]



[1] Nie, Xiaohui, et al. "Dynamic TCP initial windows and congestion control schemes through reinforcement learning." IEEE Journal on Selected Areas in Communications 37.6 (2019): 1231-1247.

Related ML-based Congestion Controls

Approach	Online- Training	View	Flow Type Distinction	Remarks
Remy [1], PCC-Allegro/-Vivace,	×	Global	×	"First" ML-based approach
Aurora/PCC-RL [2]	\checkmark	E2E	×	Continuation of PCC
MVFST-RL [3]	\checkmark	E2E	×	Delayed actions: Usage of action history
AUTO [4]	\checkmark	E2E	×	Preferences for different objectives
Orca [5]	\checkmark	E2E	×	Two combined control loops
Eagle [6]	\checkmark	E2E	×	Synthesizes behavior of BBRv1
Iroko [7]	\checkmark	Global	×	Only static & manually specified topologies
TCP-RL [8]	\checkmark	Group	\checkmark	Determine initial CWND and CCA
IW-DRL [9]	\checkmark	E2E	(√)	Determine initial CWND

[1] Winstein, Keith, and Hari Balakrishnan. "Tcp ex machina: Computer-generated congestion control." ACM SIGCOMM Computer Communication Review 43.4 (2013): 123-134.
[2] Jay, Nathan, et al. "A deep reinforcement learning perspective on internet congestion control." International Conference on Machine Learning. PMLR, 2019.
[3] Sivakumar, Viswanath, et al. "Mvfst-rl: An asynchronous rl framework for congestion control with delayed actions." arXiv preprint arXiv:1910.04054 (2019).
[4] Li, Xu, et al. "{AUTO}: Adaptive Congestion Control Based on {Multi-Objective} Reinforcement Learning for the {Satellite-Ground} Integrated Network." 2021 USENIX Annual Technical Conference
[5] Abbasloo, Soheil, et al. "Classic meets modern: A pragmatic learning-based congestion control for the internet." Proceedings ACM Special Interest Group on Data Communication 2020.
[6] Emara, Salma, Baochun Li, and Yanjiao Chen. "Eagle: Refining congestion control by learning from the experts." IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 2020.

[7] Ruffy, Fabian, Michael Przystupa, and Ivan Beschastnikh. "Iroko: A framework to prototype reinforcement learning for data center traffic control." arXiv preprint arXiv:1812.09975 (2018).

[8] Nie, Xiaohui, et al. "Dynamic TCP initial windows and congestion control schemes through reinforcement learning." IEEE Journal on Selected Areas in Communications 37.6 (2019): 1231-1247.

[9] Xie, Ruitaoe, et al. "Adaptive online decision method for initial congestion window in 5G mobile edge computing using deep reinforcement learning." IEEE Journal on Selected Areas in Communications 2019

Use global knowledge to compute coordinated control decisions for multiple senders

Guide the still active end-to-end congestion control

"Congestion Control with SDN-like global view and actions"

- Coarse steering intervals no per-packet control
- QUIC as transport protocol

Concept of C³

- Deep Reinforcement Learning to compute control decisions
 - Many input parameters (large state space)
 - Many possible solutions (large action space)
 - Exploitation of unknown connections
 - Example reward function maximize: Reward R = α*throughput - β*delay + γ*fairness

Reduced flow completion times (FCT)

Faster flow start-up via default parameters

Better resource utilization

- Virtually instant convergence
- No oscillations

direct jump to target window based on received steering command

increased initial window based on provided default parameters

cwnd

time

buffer capacity

bottleneck capacity

Karlsruhe Institute of Technology

Basic Architecture of C³

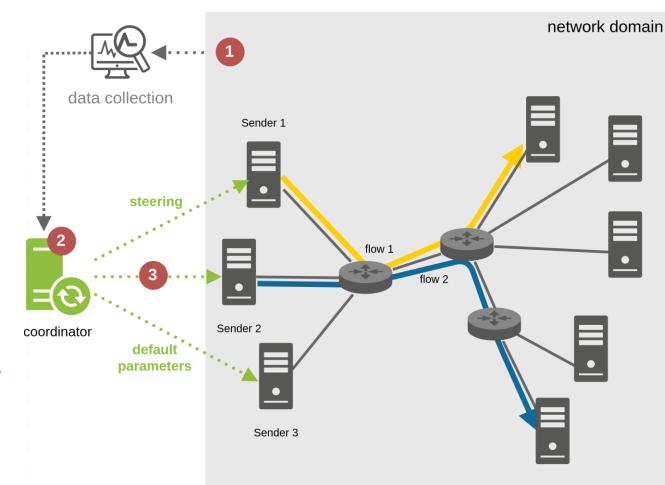
- 1. Data Collection
 - Global view of the network domain

2. Coordination

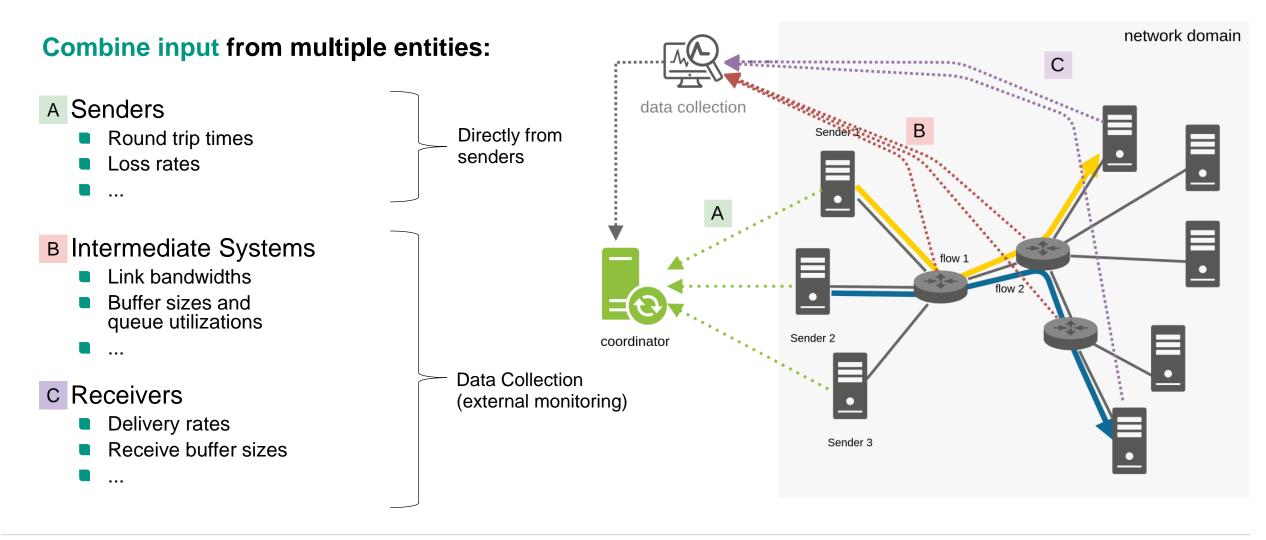
- Establish global and explicit network state
- Compute coordinated control decisions (via Reinforcement Learning)

3. Flow Parametrization

- Coordinated steering of multiple senders
 - Coarse steering intervals no per-packet control
 - Setting Min/Max/Current cWnd
- Providing pro-actively suitable default parameters
 - Setting cWnd_{initial}



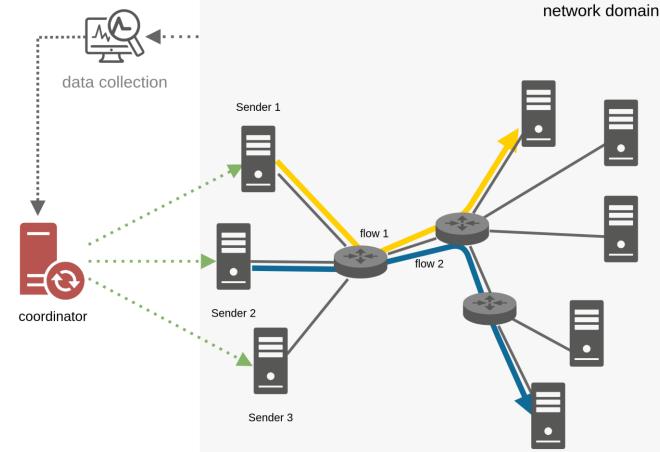
1. Data Collection



Institute of Telematics Research Group Prof. Zitterbart

2. Coordination

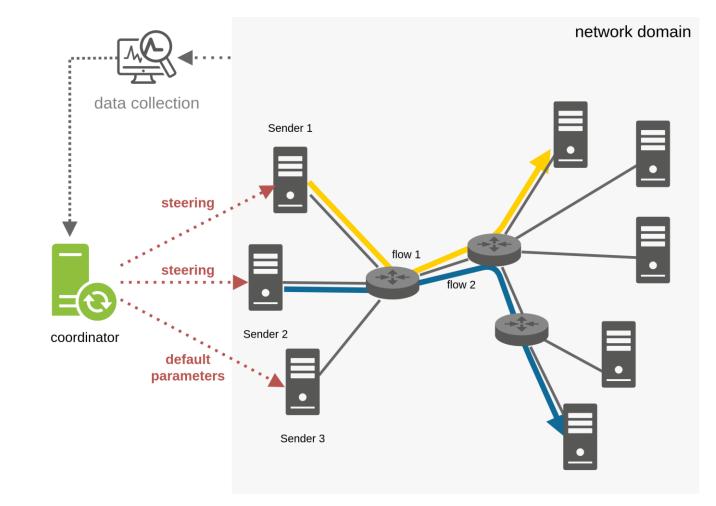
- Merge global and explicit network state
- Compute coordinated control decisions for multiple senders to ensure
 - High Throughput
 - Low Delay
 - Fairness
- Via DRL-Agent with suitable reward function



3. Flow Parametrization

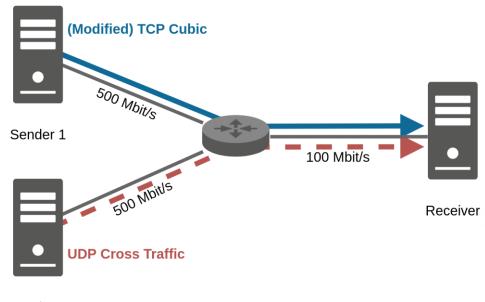
Fine-tuned parametrization of multiple senders and flows

- Coordinated steering (not control) for long-lived flows
 - Flow 1: cWnd = 42 MSS
 - Flow 2: cWnd = 80 MSS
- Providing default parameters (especially relevant for short-lived flows)
 - Sender 3: cWnd_{initial} = 20 MSS



Non-ML Baseline: Conceptional Evaluation C³

- Goal: Demonstrate C³'s advantages
- Two senders:
 - Sender 1: (Modified) TCP Cubic as C³ stand-in
 - Sender 2: Periodic cross traffic via UDP
- Evaluated in cloud environment (bwCloud)



Sender 2

Conceptional Evaluation C³

Better resource utilization (higher average throughput/goodput)

Better flow completion times (FCT) for short-lived flows

Better performance for environments with non-congestion based packet losses

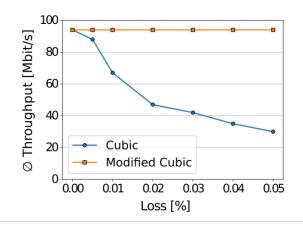
Modified Cubic = C^3 concepts mapped to existing TCP Cubic.

Cubic	Modified Cubic	Improvement
59.0 Mbit/s	82.3 Mbit/s	39.5 %

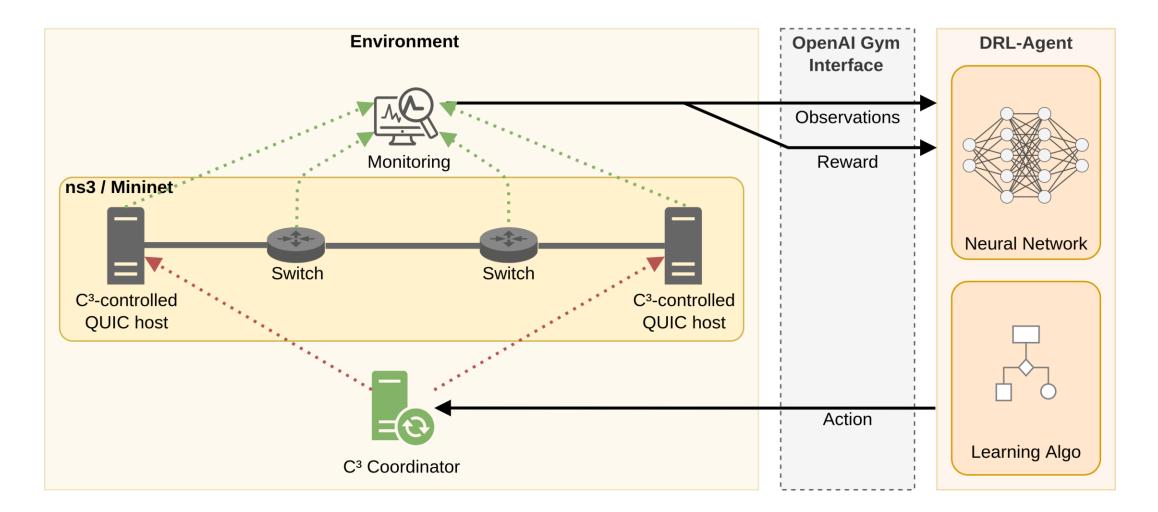
Average Goodput (Bottleneck link 100 Mbit/s with 70 Mbit/s of periodic UDP cross traffic)

Cubic	Modified Cubic	Improvement
204 ms	106 ms	51.9 %

Flow Completion Times (RTT 50 ms & 50 KiB flows)



Setup for Reinforcement Learning



Major Components

- Three components
 - Environment
 - OpenAl Gym Interface
 - Agent

KuVS MALENE

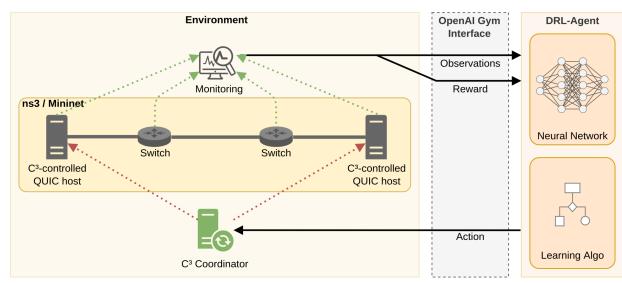
Agent

12

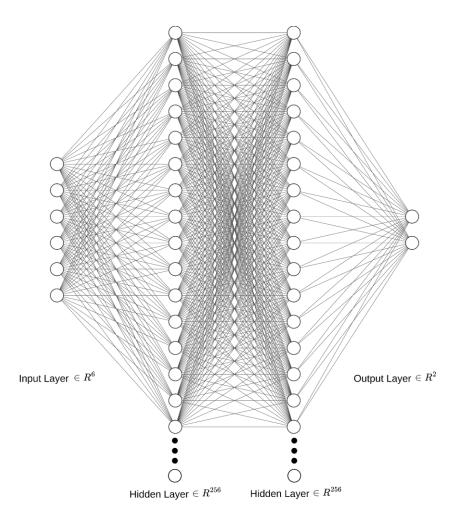
- Based on PyTorch, RLlib, Ray
- Simple neural network
- Several learning algorithms considered (PPO, DQN, DDPG, A2C, ...)

[1] Gawłowicz, Piotr, and Anatolij Zubow. "ns3-gym: Extending openai gym for networking research." arXiv preprint arXiv:1810.03943 (2018).

 Agent and Environment separated by OpenAI Gym interface (ns3-gym [1])



Neural Network Model



- Simple initial NN-model
 - Fully-connected neural network
- Input layer depends on state space
 - Currently 6 features
- 2 hidden layers
 - 256 neurons each
- Output layer depends on sender systems
 - Relative bottleneck send rate (total "budget" per host)

Network Realization

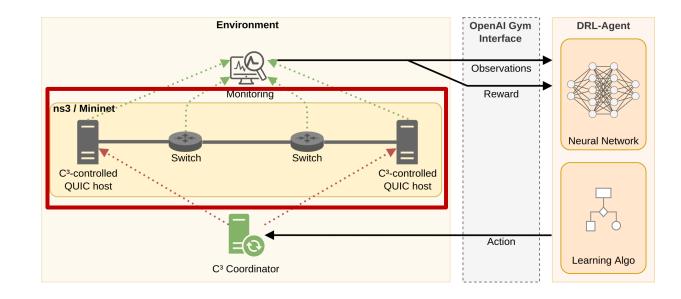
NS-3 (simulation)Mininet (emulation)

Initially simple scenarios

- Topologies
 - Line

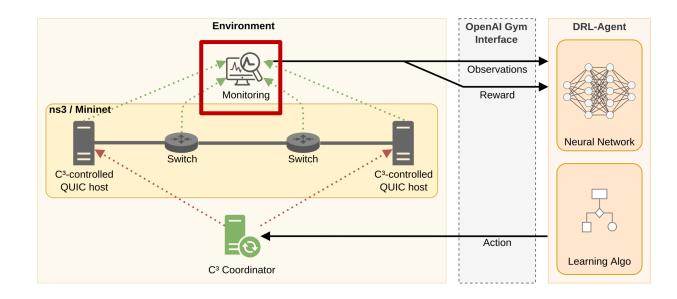
. . .

- Dumbbell
- **•** ...
- Traffic
 - 1 single flow
 - 2 competing flows



Monitoring

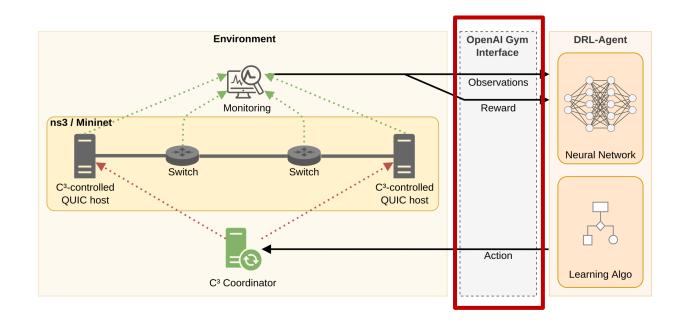
- Periodical collection of information about the network's entities (observed metrics)
 - Throughput
 - Bandwidths
 - Queue lengths
 - Packet drops
 - **•** ...
- Communication: out-of-band



Learning Process

In each time step

- Transfer of observed metrics
- Derivation of current reward
- Computation of next action (relative send rate rate_{rel} for each host)



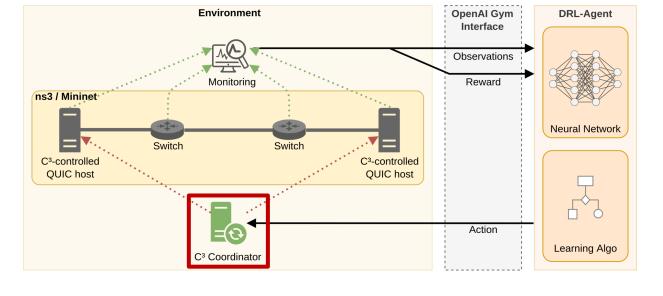
Receives actions from agent

- Relative send rate rate_{rel} (relative to bottleneck bandwidth)
- Computes absolute send rate rate_{abs}
- Sets rate_{abs} for each sender

Coordination

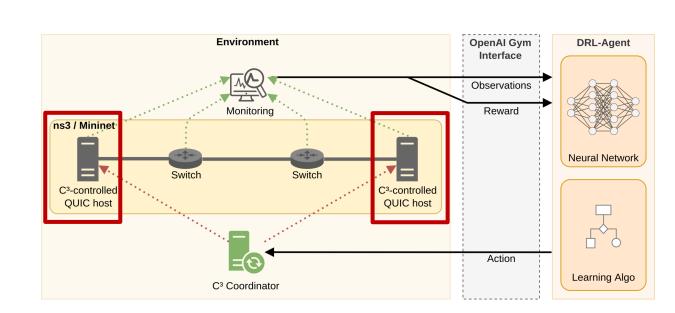
- "Host-budget" distributed between all sender's flows
- Communication: out-of-band



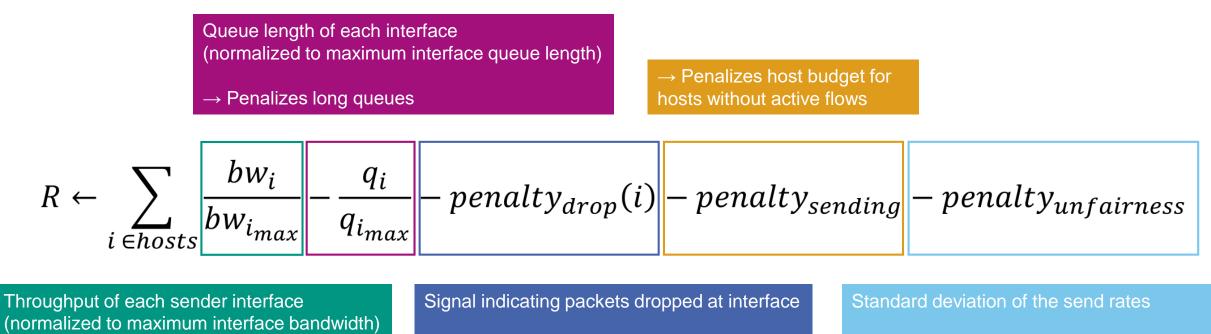


C³-enabled Sender

- Sender receive rate_{abs}
- Calculates rate_{flow} = rate_{abs} / #flows
- Calculates cWnd_{flow} = rate_{flow} * RTT_{min}
- Adapted QUIC [1] as end-to-end transport protocol
 - cWnd-modifying functions adapted
 - onAck()
 - onDupAck()
 - onLoss()
 - New externally callable functions
 - Set fixed cWnd
 - Set initial cWnd
 - Set bounded cWnd (min/max)



Reward Function

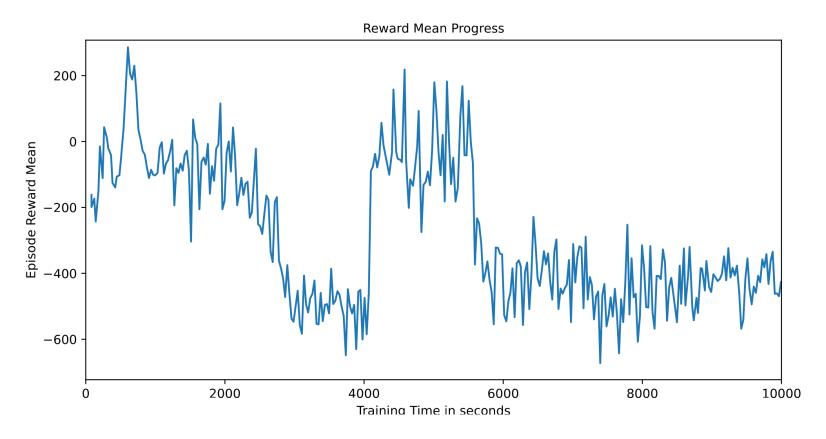


 \rightarrow Rewards high bandwidth utilization

 \rightarrow Penalizes packet drops

 \rightarrow Penalizes unfairness

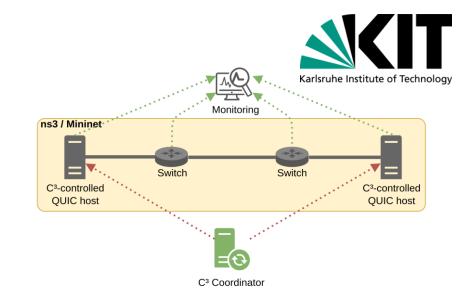
First Attempt: Mininet



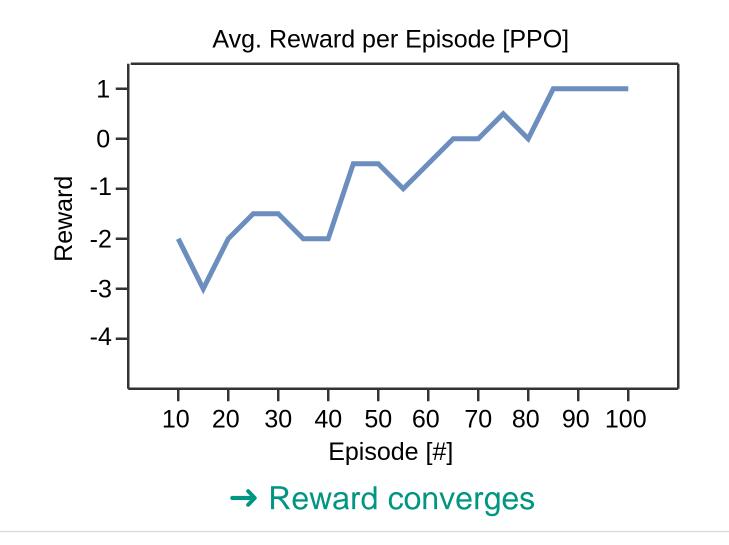
20 KuVS MALENE Michael König — Towards a Coordinated Congestion Control (C³)

Preliminary Evaluation Results

- One agent gets trained in three scenarios (ns3 simulation environment)
- Scenario 1: Single flow
 - Agent learns to set send rate (cwnd) = bottleneck bandwidth
 - Keep CWND steady
- Scenario 2: Two competing flows (parallel start)
 - Agent learns to set send rate (cwnd) = bottleneck bandwidth / 2
 - Keep CWND steady
- Scenario 3: Two competing flows (staggered start)
 - Agent learns to set send rate (cwnd) = bottleneck bandwidth
 - When second sender starts: set send rate (cwnd) = bottleneck bandwidth / 2
 - Keep CWND steady



Preliminary Results of Scenario 1 – NS-3

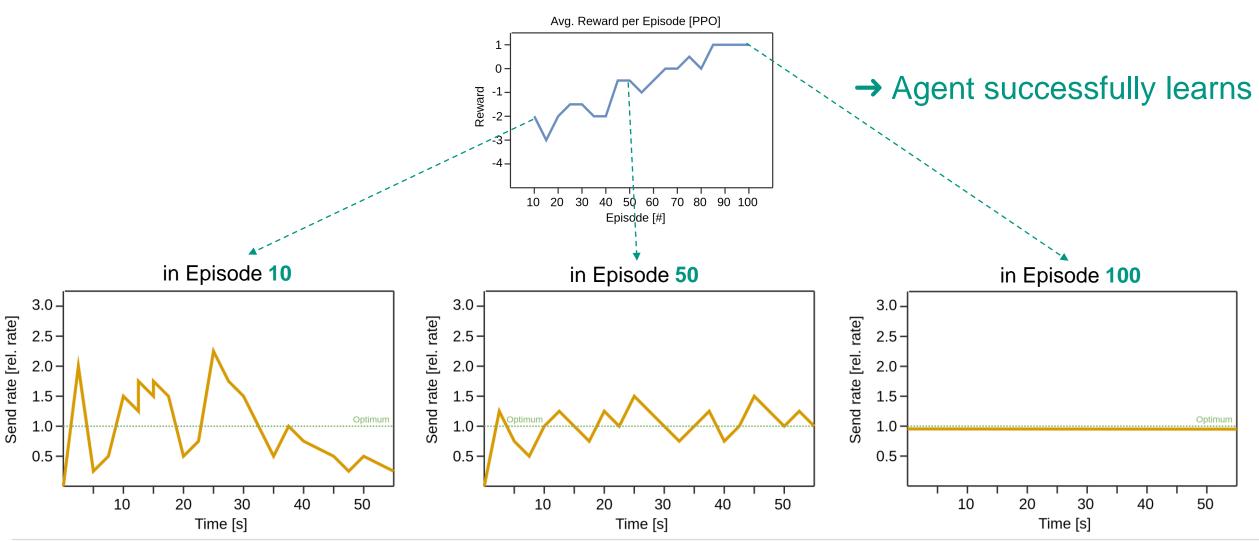


PPO: Proximal Policy Optimzation

Institute of Telematics Research Group Prof. Zitterbart

22 KuVS MALENE Michael König — Towards a Coordinated Congestion Control (C³)

Learning Progress of Send Rate Behavior



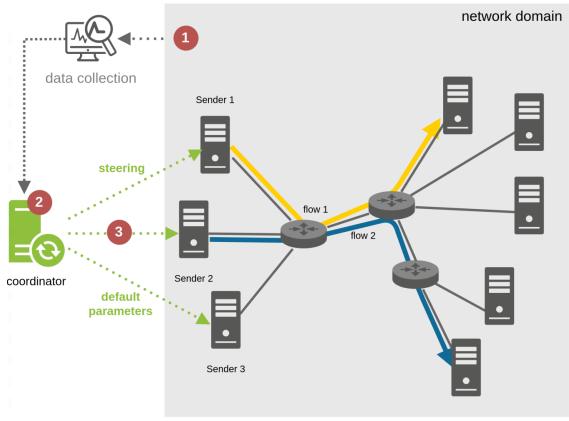
Institute of Telematics Research Group Prof. Zitterbart

IT

Karlsruhe Institute of Technology

Outlook

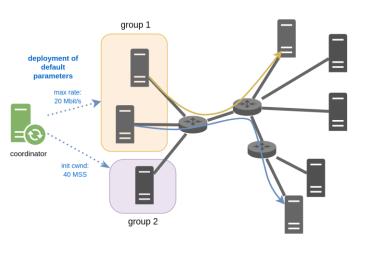
- More sophisticated Neural Network Models
 - Best practices: Dropout and/or normalization layers
 - Handling of delayed actions:
 - RNN , LSTM, GRN, ...
 - History of actions
 - Explicitly preserve knowledge about topology: Representation as a (T)GNN
- Tweaking
 - Hyperparameters
 - Composition of reward functions components
- Scalability
 - Minimize amount of communication
 - Split domain in sub-domains -> Multi-Agent RL?
- Influences of in-band communication
 - Delayed monitoring data
 - Competition between data and control traffic



RNN: Recurrent Neural Network LSTM: Long Short-Term Memory GRN: Gated Recurrent Network (T)GNN: (Temporal) Graph Neural Network

Spectrum of Use Cases

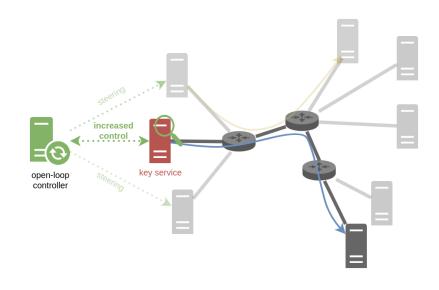
Default Parameters Broad defaults for many (similar) services



Coordinated Congestion Control Steering of multiple senders based on combined knowledge

Real-time Online Control

Increased control (beyond steering) of selected key services



Update Frequency & Granularity

Related Work: Non-ML-based Centralized Control

- Congestion Manager [1]
 - "Coordination" of multiple flows within one system not multiple senders
- OTCP [2]
 - Distribution of default parameters no steering
- Bandwidth Enforcer [3]
 - Focus on limiting max. throughput

[1] Balakrishnan, Hari, and Srinivasan Seshan. The congestion manager. RFC3124. 2001.

[2] Jouet, Simon, Colin Perkins, and Dimitrios Pezaros. "OTCP: SDN-managed congestion control for data center networks." NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2016.

[3] Kumar, Alok, et al. "BwE: Flexible, hierarchical bandwidth allocation for WAN distributed computing." Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. 2015.