

The Breeding Blanket: The Core of a Thermonuclear Fusion Reactor. Technology, EU Concepts and Perspective

Dr.-Ing. Francisco A. Hernández, INR-KIT francisco.hernandez@kit.edu

Outline

1

1. Breeding Blankets: Introduction

- The Tritium Issue
- Conceptual architecture

2. Breeding Blankets for the EU DEMO

- Concepts
- Near term architectures
- The HCPB Blanket
- The WCLL Blanket
- **3.** Summary and Outlook

Fusion Reactor Thermonuclear Core

KIT Design for a DEMO (Demonstration Fusion Reactor Plant)

What is the Breeding Blanket?

- "The blanket is one of the key components of a future fusion reactor"
- Functions
 - 1. Transforming fusion power into high grade heat and collection of the heat for electricity production
 - 2. Tritium production (breeding) and extraction
 - 3. Contribute to neutron shielding of sensitive elements behind it (VV, TFC).
- This component will be present for the first time in a DEMO reactor.
- ITER has no Breeding blanket only a Shielding Blanket. The breeding function is tested in small scale with Test Blanket Modules (TBM).

ITER	vs.	DEMO
No electricity generation	VS.	few 100s MW _{net}
No tritium production	VS.	tritium self-sufficiency
Low lifetime (~3 dpa)	VS.	20+50 dpa

The TBM programme

Tokamak Complex

 Blue
 Helium-Cooled Lithium-Lead (HCLL) proposed by EU

 Blue
 Helium-Cooled Pebble Bed (HCPB) proposed by EU

 Green
 Water-Cooled Ceramic Breeder (WCCB) proposed by JAPAN

 Orange
 Helium-Cooled Ceramic Reflector (HCCR) proposed by KOREA

 Brown
 Helium-Cooled Ceramic Breeder (HCCB) proposed by CHINA

 Lithium-Lead Ceramic Breeder (LLCB) proposed by INDIA

 Violet
 . Common systems

F.A. Hernández – Symposium "30 years of TLK" 24th May 2023 KIT, Campus Nord

Deuterium-Tritium Fusion

 Kinetic energy (½ m v²) of α-particles (⁴He) and neutrons = **17.6 MeV**

- α -particles and neutrons shall have the **same impulse** $(m \times v) \rightarrow$ neutron 4x faster than Helium
- → kinetic energy distributed by inv. mass ratio $\frac{m_{\alpha}}{m_{n}} = \frac{4}{1} = \frac{14.1}{3.5}$
- 80% of energy in kinetic neutron energy

Fuel Consumption

For a prototypical 2700 MW_{fusion} (i.e. ~1000 MW_{e}) reactor:

Note: $1eV = 1.602 \ 10^{-19} \ As^*V = 1.602 \ 10^{-19} \ Joule$

1. Energy per fused tritium atom (17.6 MeV fusion energy in Joule): $17.6^{*}10^{6} * 1.602^{*}10^{-19} = 2.82^{*}10^{-12} \text{ J};$

2. Fusion frequency = $P/E = 2700*10^6$ J/s / 2.82*10⁻¹² J = 9.57 10²⁰ 1/s;

3. Tritium mass flow = 3 * mass of proton (neutron) * frequency = $3 * 1.67*10^{-27} \text{ kg} * 9.57*10^{20} * 24 * 60 * 60 * 1/\text{day} = 0.41 \text{ kg/day}$

 Tritium T (³H):
 ~ 0.41 kg/day
 ~ 150 kg/fpy

 Deuterium D (²H):
 ~ 0.27 kg/day
 ~ 100 kg/fpy

fpy = full power year

To compare:1000MW coal plant @ η =40% requires 2.16Mt coal and produce 5Mt CO₂

D: Deuterium

 ${}^{2}_{1}H$

D₂O (Heavy water)	H₂O (Light water)
3.82	0.0
101.4	100.0
1.1056	0.9982
11.6	4.0
1.25	1.005
7.193	7.197
1515	1436
10864	10515
	D₂O (Heavy water) 3.82 101.4 1.1056 11.6 1.25 7.193 1515 10864

Can be found: in ocean water at a H/D ratio of ~6500 (~150 ppm)

Used: in nuclear energy (e.g. D₂O in CANDU reactors)

Production methods (D₂O):

e.g. Girdler-Sulfid-Proces (isotopical exchange) + vacuum distillation

Extimated earth availability: 5*10¹⁶ kg (in oceans)

Sufficient for several billion years !!

7

F.A. Hernández – Symposium "30 years of TLK"

24th May 2023 K

T: Tritium

8

Can be found in nature:

in neglegible amount as product of cosmical rays ${}^{14}N + n \rightarrow {}^{12}C + {}^{3}T$

Production as waste of nuclear D_2O reactors (e.g. CANDU): $D + n \rightarrow T \sim 2 \text{ kg/year}$

Radioctive with a half life of 12.33y

No available production to support fusion reactors as external sources.

 $T \rightarrow {}^{3}\text{He} + e^{-} + 18.6 \text{ keV}$

ITER will consume less than 20 kg in its whole life.

Tritium availability

Tritium availability remains a very critical issues for each reactor or test machine that esploits the D-T reaction:

- For a T self-sufficient machine (like DEMO and a FPP) for the necessity of few kgs of T for the start-up
 - For a test reactor (like ITER or Fusion Test Devices) that doesn't produce T or only a fraction of the need to fuel the operations

Scenario developed in ITER (S. Willms)

F.A. Hernández – Symposium "30 years of TLK"

24th May 2023

KIT, Campus Nord

Tritium Production in a reactor: Li reactions

Li together with D are the ultimate *fuels* of the D-T fusion reactor:

 $^{6}Li + n = T + {}^{4}He + 4.8 \text{ MeV}.$

 $^{7}Li + n = T + {}^{4}He + n - 2.466 \text{ MeV}$

Natural Li: 92.5 at.% ⁷Li, 7.5 at.% ⁶Li • ≈10¹¹ kg Li in landmass: ok for 3 · 10⁴ y

• $\approx 10^{14}$ kg Li in oceans: ok for $30 \cdot 10^{6}$ y

F.A. Hernández – Symposium "30 years of TLK"

Neutron Multiplication

Required (n,2n) reactions with high σ in Energy range up to 14MeV

Li(nat):

- Sufficient only with very low n-abs materials
- Strong reaction with water and air
- Getter for T (difficult recovery)

Beryllium (Be):

- Iow E threshold for (n,2n)
- good moderator (shielding)
- exothermal reaction with H2O beyond 600°C
- Be dust toxic + small resources: high costs

Lead (Pb):

- high availability, low cost
- can be used as coolant
- corrosion with material (e.g. steels)
- weight
- activation through Po formation
- Melting point ~235°C
- (moderate) reaction with water

Possible strategies:

- Li(nat) with V as structural material.
- Better => Adding a more effective multiplier (Be or Pb) and increasing the ⁶Li enrichment (40%-90%) to use efficiently low energy n

Fuel Cycle: Inner and outer cycle

Outline

13

1. Breeding Blankets: Introduction

- The Tritium Issue
- Conceptual architecture

2. Breeding Blankets for the EU DEMO

- Concepts
- Near term architectures
- The HCPB Blanket
- The WCLL Blanket

3. Summary and Outlook

Possible Blanket Concepts

Classification according to:

- Maturity level (near term->Very Advanced)
- Structural material (e,g. steel, SiC_f/SiC or V-alloy)
- Breeder / multiplier (solid and liquid breeder)
- Coolant (water, gas, liquid metal, molten salt)
- Heat and T extraction (e.g. Self Cooled, Dual Coolant)

Not exhaustive

Architecture of the near term blankets

- "Near term": breeder and coolant contained in 2 separate circuits, separate functions.
- Coolant loop function: remove heat, to be transported to PCS through PHTS for electricity production. Coolants: high pressure helium or water (8-15.5 MPa, @ T>300°C).
- **Breeder loop function:** has to produce T and allow its transport outside the vessel. To be pre-treated in the TER and delivered to the Fuel Cycle. Negligible heat extraction.

Advantages:

- T can be concentrated in the T carrier (easier extracted/removed).
- Coolant is less contaminated by T: T extraction from coolant is not economic and the safety case better (less probable that large T inventory reaches the environment after leak into the secondary circuit through a SG.

Drawbacks:

- Complex design of the breeding zone (~13,000 m² interface)
- Large quantity of steel (e.g. => TBR & mechanical design issues)
- Issues of T permeation from the breeder to the coolant loop.

Blanket architecture: conclusive remarks

- Despite of the differences (material combinations), these blankets share a very similar architecture.
- The main architecture of three of these systems (HCPB, WCCB, HCLL and WCLL) foresees a strict division among coolant and T breeder zone
- The coolant at high pressure (water or He) cools directly the steel structure flowing mainly in small channels
- A T carrier (a purge gas for the solid or the breeder PbLi itself in liquid breeder concepts) fills the breeder zone and flows in independent loops at low pressure transporting T outside the reactor.
- Also if PbLi is used as carrier, its recirculation rate (10-20 inventories pro day in WCLL and HCLL, respectively) is so slow that no significant heat is removed in these loops; the same is for the He purge in the HCPB.

The EU DEMO: plant configuration

- EU DEMO BL2017: R₀=9m, A=3.1, P_{fus} 2GW
- Pulsed machine: flat top ~2 h, dwell time ~10 m
- Electricity production: few 100s MW_{net}

- Reactor availability: >30%
- Lifetime: ~70 dpa (i.e. ~7 fpy @NWL~1MW/m²)
- To facilitate the transition between ITER and FPP

The EU DEMO: segmentation

What is a HCPB Blanket?

F.A. Hernández – Symposium "30 years of TLK"

19

24th May 2023 K

KIT, Campus Nord

The HCPB Blanket

HCPB "fuel-breeder pin" design (BL2017)

F. Hernández, et al., Advancements in the Helium-Cooled Pebble Bed Breeding Blanket for the EU DEMO: Holistic Design Approach and Lessons Learned, Fusion Science and Technology, 75:5 (2018) 352-364.

- Arrangement of fuel-breeder pins containing T breeder material
- Pins inserted into hexagonal prismatic blocks of neutron multiplier
- Structural steel: EUROFER97

24th May 2023

F.A. Hernández – Symposium "30 years of TLK" 24th May 2023 KIT, Campus Nord

The HCPB Blanket: Functional materials

Functional materials

F.A. Hernández – Symposium "30 years of TLK"

24th May 2023

KIT, Campus Nord

The HCPB Blanket: Tritium extraction

Karlsruhe Institute of Technology

- T breeding and extraction: Purge gas function
 - T is formed in the Li ceramics (pebbles) and it is already extracted at the BB in form of HTO, HT
 - A purge gas flow through the pebble beds collects HTO, HT and transports it out of the BB
 - Purge gas chemistry: carrier (He) + doping agent (H₂/H₂O) to favour isotopic exchange reactions
 - **T** transport mechanisms at pebble bed level:

Use of Li ceramic pebbles: Minimize temperature gradients in ceramics and the *T* residence time

The HCPB Blanket: T-Extraction and Removal

- Reference: T removal based on trapping/adsorption processes.
- Developed in the 90-ties based on a well established cryogenic industrial process.
- FP8: studies to substitute the cryogenic process with Getter Beds at RT. If successful it opens a way to reduce the energy consumption and 8 Mpa operation
- Issue of T permeation: study to increase the steam content in the purge gas to minimize the T permeation from purge gas into the coolant.

What is a WCLL Blanket?

25

24th May 2023 KIT,

The WCLL Blanket

A. Del Nevo et al., Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project, Fusion Engineering and Design, 146 (2019) 1805-1809, DOI:<u>10.1016/j.fusengdes.2019.03.040</u>

F.A. Hernández – Symposium "30 years of TLK"

24th May 2023

KIT, Campus Nord

The WCLL Blanket: Cooling system.

Coolant thermo-hydraulic parameters:

- Water 155 bar, T_{in} = 295°C, T_{out} = 328°C, PWR-like conditions
- FW and BZ cooling loops in parallel, separated (design choice, impact in PHTS architecture)

The WCLL Blanket: PbLi circulation

Karlsruhe Institute of Technology

- Functional material parameters:
 - Material: PbLi, liquid metal eutectic alloy, 90% ⁶Li, T_{in}= 330°C, T_{out}= 500°C
 - T is bred in PbLi, PbLi transports the molecular T bred in the BZ, however in order to avoid large pressure drops due to MHD, PbLi flows very slowly (mm/s) => T permeation issue
 - T is therefore extracted from the functional material (PbLi) outside the BB, in the TER

F.A. Hernández – Symposium "30 years of TLK"

24th May 2023

The WCLL Blanket: T-Extraction and Removal

- Selection of a reference technology not yet possible:
 - Uncertainties are still present on the scaling of these technology to DEMO.
- Concurrent systems under selection for the T extraction
 - PAV (Permeator Against Vacuum):
 - Large permeation surface, high T diffusivity in membrane materials (e.g. V, Nb).
 - Present R&D: a) membrane performances (critical is the surface condition); b) vacuum technology; c) manufacturing; d) process efficiency in view of DEMO-scale
 - GLC (Gas Liquid Contactor)
 - He bubble flow in counter-current respect to the PbLi flow. T concentrates in the gas bubbles.
 - Present R&D: a) materials of the packed bed at PbLi exposition; b) purging technolgy of tritium extraction; d) extraction efficiency in view to design DEMO-scale systems
 - LVC (Liquid Vacuum Contactor)
 - PbLi is exposed to vacuum without membranes. E.g. Vacuum Sieves: droplets fall in a vacuum chamber and T is extracted.
 - Less mature technology: a) vacuum technology; c) manufacturing;
 d) process efficiency in view to design DEMO scale systems

GLC

24th May 2023

Outline

30

1. Breeding Blankets: Introduction

- The Tritium Issue
- Conceptual architecture
- **2.** Breeding Blankets for the EU DEMO
 - Concepts
 - Near term architectures
 - The HCPB Blanket
 - The WCLL Blanket
- **3.** Summary and Outlook

Summary and Outlook

- The Breeding Blanket is a key component for DEMO and the first generation of fusion power plant: energy production, T-self-sufficiency and lifetime.
- BB requires new technologies that are never been demonstrated before.
- Several concepts of blankets with different combinations of materials (structural, breeder, coolant, etc.) have been proposed in the past.
- At the present some near term technologies have been selected and further developed for DEMO-reactors.
- In EU, two BB concepts have been extensively investigated: the HCPB and the WCLL, each with their own TER system.

