
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

The Kconfig Variability Framework as a
Feature Model

Bachelor thesis of

Kaan Berk Yaman

at the Department of Informatics
KASTEL – Institute of Information Security and Dependability

Reviewer: Prof. Dr. Ralf Reussner
Second reviewer: Prof. Dr.-Ing. Anne Koziolek
Advisor: M.Sc. Jan Wittler
Second advisor: Dr. Christopher Gerking

13.12.2022 – 13.04.2023

I declare that I have developed and written the enclosed thesis completely by myself. I
have submitted neither parts of nor the complete thesis as an examination elsewhere. I
have not used any other than the aids that I have mentioned. I have marked all parts of
the thesis that I have included from referenced literature, either in their original wording
or paraphrasing their contents. This also applies to figures, sketches, images and similar
depictions, as well as sources from the internet.

Karlsruhe, 31.03.2023

. .
(Kaan Berk Yaman)

Abstract

Variability in software is often managed using external tools. One such tool is Kconfig,
which is utilised by the Linux kernel, a highly variable software project. Kconfigworks with
plain-text files that define the variability structure of the underlying software project. These
plain-text files are called Kconfig files. Analysis of Kconfig files can provide meaningful
insights for developers. Feature-oriented programming (FOP) is also used to manage
variability in software. The variability structure of a software project is defined using
feature models in FOP. There are tools for analysing feature models. However, it is not
possible to use these tools for the analysis of Kconfig files, as currently no transformation
between Kconfig files and feature models exist. In this thesis, we present a method to
correctly transform Kconfig files into feature models, so that Kconfig files can be analysed
with tools meant for feature models. We verify the correctness of our transformation
by automatic and manual means. Our method transforms selected Kconfig files with
non-trivial structure successfully into semantically equivalent feature models.

i

Zusammenfassung

Zur einfachen Handhabung von Softwarevariabilität werden oft externe Werkzeuge ein-
gesetzt. Ein solches Werkzeug ist Kconfig, welches vom Linux-Kernel zur Erstellung
von konkreten Softwarekonfigurationen benutzt wird. Kconfig arbeitet mit Textdatei-
en, in denen die Variabilitätsstruktur des zugehörigen Softwareprojekts definiert wird.
Diese Dateien werden oft als Kconfig-Dateien bezeichnet. Kconfig-Dateien können analy-
siert werden, um Probleme in der Variabilitätsstruktur festzustellen. Feature-orientierte
Programmierung (FOP) wird auch zur besseren Handhabung von Softwarevariabilität
eingesetzt. Die Variabilitätsstruktur eines Softwareprojekts wird im Umfang von FOP in
einem sogenannten Feature-Modell dargestellt. Es gibt Werkzeuge, welche zur Analyse von
Feature-Modellen verwendet werden können. Diese kann man jedoch nicht zur Analyse
von Kconfig-Dateien nutzen, da bisher eine Transformation zwischen Kconfig-Dateien und
Feature-Modellen fehlt. In dieser Arbeit stellen wir eine Methodik zur korrekten Trans-
formation von Kconfig-Dateien in Feature-Modelle vor, sodass Werkzeuge zur Feature-
Modell-Analyse auch auf Kconfig-Dateien angewandt werden können. Wir evaluieren die
Korrektheit unserer Transformation mit automatischen und manuellen Vorgehen. Unsere
Methodik kann ausgewählte Kconfig-Dateien mit nichttrivialer Struktur erfolgreich in
semantisch äquivalente Feature-Modelle überführen.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. Foundations 3
2.1. Kconfig . 3
2.2. Feature-oriented programming . 5

3. Related Work 9
3.1. Tools that transform Kconfig files . 9
3.2. Feature-oriented programming and Kconfig 9

4. Concept 11
4.1. Scope of the transformations . 11
4.2. Transformation rules . 13

4.2.1. Boolean symbols . 13
4.2.2. Tristate symbols . 16
4.2.3. Mixed-type dependencies . 18
4.2.4. Reverse dependencies . 21
4.2.5. Choice blocks . 21
4.2.6. Menus . 25

5. Implementation 31
5.1. Implementation details . 31
5.2. Challenges during implementation . 31

6. Evaluation 33
6.1. Methods of evaluation . 33
6.2. Human readability of the created feature models 34
6.3. Converting feature model configurations to Kconfig configurations . . . 34
6.4. Results . 35
6.5. Interpretation . 38
6.6. Threats to validity . 38

6.6.1. External validity . 38
6.6.2. Internal validity . 38

v

Contents

7. Conclusion 41
7.1. Benefits . 41
7.2. Future Work . 41

Bibliography 45

A. Appendix 51

vi

1. Introduction

Variability in software is becoming increasingly more important as computers become
more ubiquitous. Different target platforms have different constraints for software develop-
ers to work around and moreover to consider whilst implementing new functionality [13].
External tools are often utilised to manage software variability [7].

The Kconfig framework has been initially developed for the Linux kernel but it has since
then become a generic tool for managing software variability [16], being used in projects
such as ZephyrOS [41] and NuttX [1]. Kconfig manages variability over preprocessor
variables, also called configuration symbols, which are used to exclude or include source
code whilst building software [35, 26]. A Kconfig file contains definitions of configuration
symbols that occur in the underlying source code and how these configuration symbols are
related to each other, such as dependencies between configuration symbols. The Kconfig
framework additionally offers many different graphical and non-graphical interfaces [22]
for the end user to utilise for the creation of concrete software configurations. The main
feat of Kconfig is the fact that software configurations created using any of the front-
ends offered by Kconfig are valid, as the framework considers the dependencies between
configuration symbols and ensures that all selected configuration symbols have their
dependencies properly resolved [21].

Because Kconfig files can get very complex, many tools have been developed to analyse
Kconfig files and detect configuration defects. Examples to this are undertaker and the
Linux Variability Analysis Tools [31].
Another tool, or so to say methodology, to manage software variability is the use

of feature-oriented programming (FOP). In FOP, concrete software products are seen
as a group of software features. The dependencies and relations between the features
that are provided by a certain software project are described in a feature model [2]. A
feature model implies a software product line (SPL), a set of software products that share a
common set of managed features, these features being those that are defined in the feature
model. If a concrete software product in a software product line is composed according
to the underlying feature model, it will be valid, assuming the correctness of the feature
model [19].

There are already many well-established tools for feature model analysis and manipula-
tion [11]. One such tool is FeatureIDE [25, 39], which can be used to detect inconsistencies
in feature models.
Although there is no mention of feature-oriented design in the official Kconfig docu-

mentation [21], the similarities between the Kconfig framework and the feature-oriented
approach are clear; there are many works that argue that the Kconfig framework allows the
definition of software product lines [29, 36] and Kconfig modules effectively correspond
to features within a feature model [34, 10]. There is currently no way to use tools that

1

1. Introduction

work with FOP feature models (e.g. FeatureIDE) to analyse Kconfig files, as a correct and
well-defined transformation of Kconfig files to such feature models does not exist.

We want to close the gap between Kconfig files and feature models so that the tools that
are used for analysing feature models can be also used on Kconfig files. Analysis of Kconfig
files through automated tools is a hot topic in Linux kernel development and bringing
feature models and Kconfig files together with a correct transformation of Kconfig files
into feature models would allow developers using the Kconfig framework to seamlessly
integrate feature model analysis tools into their workflow.

Our thesis aims to presents a method to transform Kconfig files into feature models so
that the resulting feature models and the underlying Kconfig files are logically equivalent,
i.e. every non-solution to the feature model corresponds to an invalid configuration of the
Kconfig file, whilst every solution to the feature model corresponds to a valid configuration
for the Kconfig file. We also aim to make the menu structure present in a Kconfig file,
which we describe in detail in the next chapter, recognizable in the resulting feature model;
hence it is our goal to develop a transformation scheme for Kconfig files that ensures
preservation of semantics and structure.

This thesis is structured as follows: In the second chapter, we introduce the terminology
around Kconfig and feature-oriented programming. In the third chapter, we give an
overview of related work; not only papers but also various open-source projects that have
relevancy for our thesis. Chapter 4 introduces the aforementioned method: In this chapter,
we talk about important design decisions and present many working examples to showcase
different transformation rules we have established. In chapter 5, we talk about Kfeature, a
tool we have developed that implements the transformations introduced in chapter 4. The
fifth chapter also discusses certain problems that have arisen during the implementation
of the Kfeature tool. In chapter 6, we evaluate the correctness of our transformation rules.
Chapter 7 concludes the thesis, with references to future work that may build upon our
contribution.

2

2. Foundations

In this chapter, we give a brief overview of the Kconfig variability framework and introduce
the basics of feature-oriented design/programming, with specific focus on what a feature
model is and what structure a feature model has.

2.1. Kconfig

The Kconfig framework was initially designed and developed to manage variability in the
Linux kernel: Over time, many different optional features and modules were added to
the Linux code tree, and it was no longer meaningful to compile and include every single
module whilst building the kernel [15]. Instead of compiling all modules, users can use
one of the many graphical interfaces offered by Kconfig to select the modules and features
they want to compile and include in the built kernel.

Because the Linux kernel is written in C, including and excluding of modules/features is
done over preprocessor variables [35]: Code that belongs to a certain module is excluded
if the preprocessor variable that corresponds this module is not set. An example of this
can be seen in figure 1, the preprocessor variable CONFIG_IP_PNP_DHCP decides if the field
dhcp_client_identifier gets initialized or not.
The Kconfig tool can parse and process Kconfig files, which contain definitions of

configuration symbols. A configuration symbol is a preprocessor variable that excludes or
includes a certain feature or module (as already shown in figure 1). Configuration symbols
can depend on other configuration symbols; this is relevant for cases where a module or
feature utilises another module or feature, so that these must also be built if the latter is
included in the kernel [21]. For the example given in figure 1, the configuration symbol
IP_PNP_DHCP depends on IP_PNP.

The syntax used in Kconfig files is not formally defined (there is a parser grammar [30]
that is offered as-is without any analysis of the syntax itself), but certain code constructs
are described in the official Linux kernel documentation [21]:

• Configuration symbols. These are defined with the config keyword. The header
of a configuration symbol may contain multiple options, such as depends on, for
defining dependencies between configuration symbols. Configuration symbols have
types, such as string, tristate and boolean, although 95% of configuration symbols
in the Linux kernel are either of tristate or boolean type [28]. tristate configu-
ration symbols can assume three different values: t, f and m. In the Linux kernel,
such tristate configuration symbols are used to manage features/modules that can
be included in the built kernel without being explicitly active (m stands for module,
i.e. build module but do not activate it) [9]. Example configuration symbol definitions
with dependencies can be seen in figure 28.

3

2. Foundations

1 #if defined(CONFIG_IP_PNP_DHCP)

2 static char dhcp_client_identifier[253] __initdata;

3 #endif

Listing 1: Extract from [17]

1 config IP_PNP_DHCP

2 bool "IP: DHCP support"

3 depends on IP_PNP

4 help

5 If you want your Linux box to mount its whole root file system (the

6 one containing the directory /) from some other computer over the

7 net via NFS and you want the IP address of your computer to be

8 discovered automatically at boot time using the DHCP protocol (a

9 special protocol designed for doing this job), say Y here. In case

10 the boot ROM of your network card was designed for booting Linux and

11 does DHCP itself, providing all necessary information on the kernel

12 command line, you can say N here.

13

14 If unsure, say Y. Note that if you want to use DHCP, a DHCP server

15 must be operating on your network. Read

16 <file:Documentation/admin-guide/nfs/nfsroot.rst> for details.

Listing 2: Extract from [20]

Figure 1.: A preprocessor directive with the configuration symbol IP_PNP_DHCP.
IP_PNP_DHCP is also defined in the respective Kconfig file. The CONFIG_ pre-
fix is used to discern between regular variables and configuration symbols [22].

• Menu blocks. A menu block is effectively a nested Kconfig file. The header of a
menu block definition may contain dependencies, in this case the menu block is only
visible when its dependencies are satisfied. An example for a menu block can be
seen in figure 34: “Menu block M” depends on SYMBOL_A and a choice block and a
tristate configuration symbol.

• Choice blocks. Configuration symbols contained within a choice block are mutually
exclusive. Choice blocks may depend on other configuration symbols. An example of
a choice block can be seen in figure 30: CHOICE_D contains two configuration symbols
and depends on SYMBOL_Y.

• If blocks. The condition of the if block is appended as a dependency to all configu-
ration symbols that are in the aforementioned if block.

• Combining multiple Kconfig files. The source keyword can be used to refer to
external Kconfig files whilst parsing.

The list above is not exhaustive; the specifics of the individual constructs are further
explored in chapter 4.

4

2.2. Feature-oriented programming

End users and developers can use the various interfaces [22] provided by Kconfig to
construct configurations in accordance with the constaints defined in the underlying
Kconfig file. One of these interfaces is menuconfig, which generates a graphical menu
interface with the configuration symbols defined in the Kconfig file it was called on. How
this menu is structured depends on multiple factors:

• The structure of the menu can be defined explicitly with menu blocks. In this case,
everything contained in the menu block is hidden behind a submenu (see figure 2).

• Beyond normal configuration symbols, there exists so-called menuconfig symbols.
Configuration symbols that depend on a menuconfig symbol are hidden behind the
menu entry of the menuconfig symbol (see figure 3).

• If a configuration symbol depends on another configuration symbol, the menu entry
of the depender is only visible when the dependee is selected (see figure 4).

1 menu "Menu block M"

2

3 config SYMBOL_B

4 bool "Configuration symbol B"

5

6 config SYMBOL_C

7 bool "Configuration symbol C"

8 endmenu

Figure 2.: The configuration symbols contained in the menu block are shown when the
submenu is entered. The submenu itself appears as an entry in the main menu.

Once a configuration is generated, the resulting .config file (a plain textfile containing
variable assignments) is processed further by Kbuild. Kbuild is an adapted version of GNU
make [8]. We will not explain in detail how Kbuild works, as the focus of this thesis is
exclusively on Kconfig.

2.2. Feature-oriented programming

Feature-oriented programming considers the feature as the fundamental building block of
software. A concrete software product is a certain combination of features. What a feature
exactly is, is not always well-defined, but in this thesis, we take the definition used by Kun
Chen et al. [24] as reference:

“A feature describes a product characteristic from user or customer views.”

5

2. Foundations

1 menuconfig SYMBOL_A

2 bool "Configuration symbol A"

3

4 config SYMBOL_B

5 bool "Configuration symbol B"

6 depends on SYMBOL_A

7

8 config SYMBOL_C

9 bool "Configuration symbol C"

10 depends on SYMBOL_A

Figure 3.: Dependers of a menuconfig symbol are contained in a submenu hidden behind
the menu entry of the menuconfig symbol.

The relationships between features are defined in a feature model [19]: A selection of
features represent a valid software product if they fulfil the constraints presented by the
feature model. The structure of a feature model is not standardized; although it is clear that
feature models should have a tree-like structure. In this thesis, we will restrict ourselves
to feature models as defined and used by Leich et al. [25]. Several authors [6, 5] call this
family or “tradition” of feature models “FODA-like” or “FODA feature models”, wherein
FODA refers to Feature-Oriented Domain Analysis [18], a predecessor of FOP.

With this consideration, we would like to introduce some structures that occur in feature
models:

• Root feature. Every feature model must have a root feature.

• Parent-child relationships. A child feature can only be selected if its parent feature
is also selected. A feature can only have one parent feature.

• Or groups. The children of a feature may be put in an or group. In this case, at least
one of the children must be selected if the parent feature is selected.

• Alt groups. The children of a feature may be put in an alt (alternative) group. In
this case, exactly one of the children must be selected if the parent feature is selected.

• Feature options. Features may be optional, mandatory or abstract. Abstract features
are used to bring the feature model in a certain structure or form, but they have no
relevancy in the implementation level [38].

• Cross-tree constraints. A cross-tree constraint is a logical expression containing
feature names as variables. A valid software product (= selection of features) must
satisfy all cross-tree constraints.

6

2.2. Feature-oriented programming

1 config SYMBOL_A

2 bool "Configuration symbol A"

3

4 config SYMBOL_B

5 bool "Configuration symbol B"

6 depends on SYMBOL_A

7

8 config SYMBOL_C

9 bool "Configuration symbol C"

Figure 4.: The menu entry of the depender is only visible when the dependee is selected.
Additionally the entry of the depender is placed right below the entry of the
dependee; indented, graphically hinting a hierarchy between the two configura-
tion symbols.

All of the constructs listed above were used in the feature model given in figure 5.
Here, 𝐶𝑎𝑟 is the root feature. The feature𝑀𝑜𝑡𝑜𝑟 is mandatory and the children of𝑀𝑜𝑡𝑜𝑟

are in an or group, so that a car can have either an 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑀𝑜𝑡𝑜𝑟 or a 𝐺𝑎𝑠𝑀𝑜𝑡𝑜𝑟 (or
both, in that case, it is an hybrid car). The feature 𝐺𝑒𝑎𝑟𝑏𝑜𝑥 is also mandatory but the
children of𝐺𝑒𝑎𝑟𝑏𝑜𝑥 are in an alt group, so that a car can either have𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 or𝑀𝑎𝑛𝑢𝑎𝑙

transmission, but not both. Additionally, there is a cross-tree constraint: If 𝑇𝑜𝑤𝐻𝑖𝑡𝑐ℎ is
selected, 𝐺𝑎𝑠𝑀𝑜𝑡𝑜𝑟 must also be selected. A possible solution to this feature model would
be [𝐶𝑎𝑟,𝑀𝑜𝑡𝑜𝑟, 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑀𝑜𝑡𝑜𝑟,𝐺𝑒𝑎𝑟𝑏𝑜𝑥,𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐,𝐶ℎ𝑎𝑠𝑠𝑖𝑠], as this selection of features
fulfil all the constraints given by the feature model.

Figure 5.: A feature model for cars. Example adapted from Apel and Kästner [2]. Graphic
generated with FeatureIDE.

7

3. Related Work

In this chapter, we give an overview of related work in areas relevant to this thesis. These
works are the literary fundament that we will build upon going forward.

3.1. Tools that transform Kconfig files

Due to the lack of a formal language definition and a Kconfig ABI, tools that work with
Kconfig files usually transform the Kconfig files they want to process. Seldom a Kconfig
file is used as-is.

One such tool that transforms the Kconfig files it processes is undertaker [37]. undertaker
parses Kconfig files and generates SAT problems using the Linux kernel source code to
find “dead” code blocks (code blocks that can never appear in a valid kernel configuration)
and “undead” code blocks (code blocks that appear in all valid kernel configurations) in
the kernel code tree (hence the name undertaker). The results returned by undertaker

can then be used to remove unnecessary configuration symbols and cut out redundant
preprocessor directives in source code. undertaker utilises a well-defined formal transfor-
mation of Kconfig files to expressions in propositional logic. A similar transformation is
done with the preprocessor directives in the source code and then the resulting logical
expressions are compared to detect differences between the constraints defined in the
Kconfig file and the constraints inferred by the preprocessor directives in code. Tartler
et al. [37] define the approach used by undertaker as follows: “The variability constraints
defined by both spaces are extracted separately into propositional formulas, which are
then examined against each other to find inconsistencies we call configurability defects.”
Fernandez-Amoros et al. [12] provide a method for Kconfig-to-logic translation: This

translation is general-purpose, the paper’s goal is similiar to ours: To bridge the gap
between “logic engines” and Kconfig files. Oh et al. [28] use a related transformation
and additionally introduce the tool kmax, which uses the expressions that are generated
through the transformation to find out if the Kconfig file contains (or moreover defines)
unsatisfiable constraints by invoking an external SAT solver. Transformation of tristate
symbols seems to be a challenge for both: Aforementioned Fernandez-Amoros et al. [12]
ignore tristate symbols and give no translation for these. Oh et al. [28] underapproximate
tristate symbols by reducing them two states (m and t); prioritising tool performance over
semantic correctness.

3.2. Feature-oriented programming and Kconfig

Many authors [28, 29, 27, 6] have already described (moreover recognized) the Linux
kernel and its variants as a software product line, hence the link between Kconfig and

9

3. Related Work

feature models is not new; although the official Kconfig documentation does not use any
FOP terminology.
Sincero and Schröder-Preikschat [34] define a set of rudimentary mappings that can

be used to transform certain feature models structures into Kconfig code. The semantic
equivalence of the resulting Kconfig code and the initial feature model isn’t verified
within the scope of [34], although it is implied that the mappings can be used inversely to
transform Kconfig code into feature models. Ultimately, Sincero and Schröder-Preikschat
[34] argue that the Kconfig framework can be used as a feature modelling tool. She et al.
[32] also suggest several “simplified mappings” between Kconfig and FOP concepts and
even transform a small Kconfig file snippet to an equivalent feature model, but they do
not give any instructions to reproduce this transformation for arbitrary Kconfig files.
The mappings provided by [34, 32] can however be utilised whilst we develop our own
transformation rules.
Dintzner, Deursen, and Pinzger [10] introduce the tool fmdiff: fmdiff can be used to

compute or detect the effects of changing Kconfig files (eg. adding, removing andmodifying
of configuration symbols) on individual kernel variants. fmdiff does by this transforming
the initial and the changed Kconfig file into feature models and then comparing the
created feature models (using the Eclipse Modelling Framework and the EMF Compare
tool). The paper unfortunately does not describe the transformation process in detail,
and additionally, it uses a feature model structure/definition that greatly differs from the
typical FODA-like notation, so that we cannot build upon the transformations used by
fmdiff whilst working out our own transformation rules.

10

4. Concept

In this chapter, we document the considerations we had during the conception of this
thesis and constructively introduce the transformation rules we have concieved.

4.1. Scope of the transformations

This thesis aims to present a method for the transformation of Kconfig files into feature
models. The word “method” here refers to a group of atomic transformations that can
be applied respectively to create a feature model that corresponds to the source Kconfig
file. But what does “correspond” mean here exactly? Before we go further, we would like
present a three-layer decomposition of Kconfig files:

• The structural layer. These are the Kconfig constructs that affect themenu interface
generated by menuconfig.

• The constraint layer. These are the Kconfig constructs that define the constraints
that need to be fulfilled by the configurations that are generated using a given
Kconfig file. This is so to say the semantic content of the Kconfig file. All constructs
in the constraint layer are also in the structural layer, but this does not apply in the
other direction (eg. menu blocks without dependencies, help text in configuration
symbols).

• The template/default value layer. These are the Kconfig constructs that suggest
a certain default configuration for a given Kconfig file. Examples to such constructs:
imply and default options in configuration symbols (both described in detail later
in this section).

Our transformations will attempt to preserve the semantic and the structural content of
Kconfig files, so that:

1. The resulting feature model contains the configuration constraints defined in the
Kconfig file we have transformed.

2. The menu structure implied by the Kconfig file should be recognizable in the resulting
feature model, as in, the feature model should be human-readable; we do not aim to
model all the semantics of a Kconfig file via cross-tree constraints.

Before we give in-depth descriptions of the transformation rules, it is important to talk
about what we aim to transform. There are certain aspects of a Kconfig file that we have
decided to ignore; as in, we do not see these aspects of the Kconfig language relevant for

11

4. Concept

the transformation rules (in accordance to the two goals we have stated above) and/or due
to time constraints, we have chosen to make certain assumptions about the Kconfig files
we aim to transform:

• Kconfig allows configuration symbols to have default values [21]: This is done using
the default keyword within symbol definitions. When the Kconfig configuration
interface (e.g. menuconfig) is invoked, the default values of the configuration symbols
are assumed, but this does not restrict the user from changing these values. The
default value for a configuration symbol is to be understood as a suggestion. Default
values do not contribute to the constraints defined by a Kconfig file. Hence our
transformation rules ignore default values.

• In the Kconfig files found in the Linux kernel, there exists a configuration symbol
called MODULES which controls module support: Tristate symbols can assume the
value m only when MODULES is set to true, i.e. setting MODULES to f converts all tristate
symbols into boolean symbols. For ease of transformation, we assume that module
support is always given.

• The dependency type imply, which corresponds to a weak reverse dependency [21],
is ignored. imply effectively defines a conditional default value, and we have already
made the decision to ignore default values.

• The help keyword in configuration symbol definitions is ignored. Help text has no
relevancy for the semantic content of a Kconfig file.

• Configuration symbols that are not of boolean or tristate type are ignored. This
means we will ignore string, hex and int configuration symbols. These configura-
tion symbols (if no range is set) can assume infinitely many different values. The
naive approach of representing every state of such a configuration symbol as a seper-
ate feature does not work, as that would create an infinitely large feature model. We
would suggest that there is no possibility to transform such configuration symbols
into features, but we cannot formally prove our statement. Due to time constraints,
we choose to focus more on transformations we deem possible. Beyond this, as
already mentioned in the foundations chapter, boolean and tristate configuration
symbols make up the vast majority (about 95%) of all configuration symbols (in case
of the Linux kernel), so that limiting ourselves to these two types does not (greatly)
endanger the external validity of our transformations.

• Composite dependencies (dependencies expression that are not single symbols)
are limited to true multiple dependencies (multiple non-composite dependency
options in a configuration symbol definition). This is done to limit the scope of this
thesis. Initially, we have attempted to work out a transformation rule for arbitrary
dependency expressions, but ultimately the rule could not be implemented, nor be
subsequently evaluated, so that we have scrapped it.

• We do not provide a transformation rule for if blocks. if blocks are used to group
up dependencies, e.g. when two configuration symbols 𝐴, 𝐵 depend on the same

12

4.2. Transformation rules

configuration symbol 𝐶 , they can be put in an if block, i.e. if C ... endif. Such
an if block is more of a syntactical shorthand, so that the absence of a transformation
rule for if blocks shouldn’t limit the extent of our method.

Now that we have defined the scope of our transformations, we continue with the
transformation rules we have developed in the next section.

4.2. Transformation rules

In this section, we introduce the eight transformation rules we have developed in extent of
this thesis. For each rule, we first document the considerations we had whilst establishing
the respective rule and motivate the transformation in a constructive manner, so that
the reader can better understand the design decisions we have made in scope of each
transformation rule.

4.2.1. Boolean symbols

Individual boolean symbols can be set to true or false. Hence boolean configuration
symbols are transformed to features. This is one of the mappings already suggested by She
et al. [32].
A feature model must however have a single root feature [2]. We have come up with

two different approaches to ensure that a root feature is always present:

• Each transformation rule assumes that a mandatory feature called “Kconfig” already
exists in the target feature model. Every feature (before considering dependencies)
depends on “Kconfig”, consequently configuration symbols without any further
dependencies are child features of “Kconfig”.

• Some Kconfig files might contain a mainmenu entry [21]. This can be seen as the root
of a Kconfig file. This mainmenu entry is hence transformed to a mandatory feature
that acts as the root of the resulting feature model.

Because not all Kconfig files have a mainmenu entry, we have chosen the first approach
going forward: All transformation rules presented in the following subsections make the
assumption that a mandatory root feature called “Kconfig” exists in the target feature
model.

4.2.1.1. Dependencies between boolean symbols

In the official Kconfig documentation, a dependency between two configuration symbols
is described as an “upper bound on the depender” [21]. Within the context of two boolean
symbols, when symbol 𝐴 depends on 𝐵, the value of 𝐴 is bounded above by the value of
B. As boolean symbols can only assume the values t and f, this dependency implies the
following value matrix:

13

4. Concept

Value of symbol A Value of symbol B Dependency satisified?
f f yes
f t yes
t f no
t t yes

This value matrix corresponds to the truth table of the logical expression 𝐴 =⇒ 𝐵. In
this case, a dependency between two boolean symbols is transformed to a child-parent
relationship between the features that correspond to the boolean symbols: Feature A

is an optional child of feature B. The reverse transformation (from an optional parent-
child relationship between two features to two configuration symbols with a dependency
between them) has already been proposed by Sincero and Schröder-Preikschat [34].

4.2.1.2. Multiple dependencies between boolean symbols

In case of multiple dependencies, it is important to mention that we must preserve the
tree structure of the feature model. A feature cannot have multiple parents, hence the
transformation we have described in the previous paragraph cannot be used for boolean
configuration symbols with multiple dependencies. If 𝐴 depends on 𝐵 and 𝐶 , there are
several approaches to modelling this dependency within the context of the target feature
model:

• The multiple dependency can be transformed to a cross-tree constraint. In this case,
no structural changes must be done to the feature model to represent the dependency.

• The multiple dependency can be broken up into individual dependencies. In this case,
one of the dependencies is structurally represented (as in, one of the dependencies is
transformed into a child-parent relation in the feature model) whilst the remaining
dependencies are represented as cross-tree constraints.

Both of these approaches have their advantages and disadvantages:

• One of the goals of our transformation is human-readability. Making the assumption
that dependencies that are structurally represented are easier to comprehend than
those that are “hidden” behind cross-tree constraints, it is preferable to transform
dependencies to structural relationships as much as it is possible to do so. With this
consideration, it is not feasible to transform a multiple dependency into a cross-tree
constraint without further inspection of the dependency.

• When a composite dependency is broken up into its individual dependencies (which
should be always possible in case of true multiple dependencies), a heuristic must be
used to decide which of these sub-dependencies should be transformed to a structural
relationship.

We have hence decided to break up multiple dependencies into their atomic parts and
use an heuristic that prioritizes human-readability to choose the partial dependency we
should represent structurally. In this case we have chosen to use a heuristic that attempts

14

4.2. Transformation rules

to avoid branch dominance, so that the sub-dependency with the dependee with the
least depth is represented structurally; i.e. the depender becomes the child feature of the
dependee with the least depth. This heuristic should help increase human-readability by
distributing nodes evenly, which is often proposed as a metric of graph readability [4].
Another metric of human-readability, or moreover a graphical property that should

increase the readability of a graph, is the clustering of related nodes [4]. In this case, if
a certain feature has many children, this makes it evident to the observer of the graph
that this feature is a gateway feature. This same argument can be presented for branch
depth: If a certain branch is particularly deep, this makes it evident to the observer that
the root feature of this branch is a gateway feature, so to say, this branch represents many
transitive dependencies.
In this case, we make a compromise: We allow clusters to be formed naturally in

breadth, but we try distribute nodes evenly in depth by making the depender the child
of the dependee with the least depth, representing further dependencies as cross-tree
constraints. This heuristic is affected by menus, this is discussed in-depth in section 4.2.6.

The rule for transforming boolean symbols is as follows:

Rule 1: Whilst transforming Kconfig files into feature models, transform a boolean
symbol 𝐴 as follows:

1. Create a feature called A and add this as a child of the root feature of the feature
model.

2. See respective sub-rules if 𝐴 has a dependency.

Rule 1.1: If 𝐴 depends on another boolean symbol 𝐵:

1. Transform 𝐵 according to rule 1. If 𝐴 needs to transformed during the trans-
formation of 𝐵, abort transformation; the Kconfig file contains a dependency
loop.

2. Make feature A child of feature B.

Rule 1.2: If 𝐴 depends on multiple boolean symbols 𝐵1, . . . , 𝐵𝑖 :

1. Transform 𝐵1, . . . , 𝐵𝑖 according to rule 1. If 𝐴 needs to be transformed during
any of these transformations, abort transformation; the Kconfig file contains
a dependency loop.

2. Find 𝐵 𝑗 with 𝐵 𝑗 =𝑚𝑖𝑛(𝑑 (𝐵𝑘)), 𝑘 ∈ {1, . . . , 𝑖}. 𝑑 here is the depth function. If
𝐵 𝑗 isn’t unique, choose the 𝐵 𝑗 with the lowest index.

3. Make feature A child of feature Bj, which corresponds to the aforementioned
boolean symbol 𝐵 𝑗 (see rule 1).

4. For all 𝐵𝑙 with 𝑙 ≠ 𝑗, 𝑙 ∈ {1, . . . , 𝑗}, add a cross-tree constraint: A implies Bl.

An example transformation using this rule is given in figure 6.

15

4. Concept

4.2.2. Tristate symbols

A tristate configuration symbol can assume three different values: If the tristate symbol is
not selected, it assumes the value f. A tristate symbol can be selected as a module (which
corresponds to the value m) or can be selected as an active module (this corresponds to the
value t).

Features in a feature model have a strictly two-state nature: A feature is either selected
or not selected. Hence in the case of tristate symbols we cannot simply replicate the
transformation we have used for boolean symbols. The transformation rule for tristate
symbols must be a one-to-many mapping.

It is important to mention that the transformation rule for tristate symbols will directly
affect the transformation rules involving dependencies with tristate symbols. Hence we
try a conformist approach: We first investigate the structure of dependencies with tristate
symbols and try to find an adequate transformation rule for tristate symbols themselves
in a way that the transformation rules for the dependencies are correct.

We have already established the fact that a dependency is an upper bound relationship
between two configuration symbols. A dependency between two tristate symbols A and B
(A depends on B) has the following value matrix:

Value of symbol A Value of symbol B Dependency satisified?
f f yes
f m yes
f t yes
m f no
m m yes
m t yes
t f no
t m no
t t yes

Let us define this dependency formally using second-order logic:
Considering two predicate variables 𝐴 and 𝐵, we define the unary relations 𝐹 ,𝑀 and

𝑇 . The predicate variables 𝐴 and 𝐵 are in these relations when the tristate symbols that
correspond to them assume the values f, m and t respectively. We additionally define the
binary relation 𝐷 , which holds true for 𝐷 (𝐴, 𝐵) when the tristate symbol corresponding
to the predicate variable 𝐴 depends on the tristate symbol corresponding to the predicate
variable 𝐵. The following formulae must hence hold true:

∀𝐴, 𝐵 : 𝐷 (𝐴, 𝐵) =⇒ (𝑀 (𝐴) =⇒ 𝑀 (𝐵) ∨𝑇 (𝐵)) (I)
(if 𝐴 is set to m, 𝐵 has to be either set to t or m)

∀𝐴, 𝐵 : 𝐷 (𝐴, 𝐵) =⇒ (𝑇 (𝐴) =⇒ 𝑇 (𝐵)) (II)
(if 𝐴 is set to t, 𝐵 has to be set to t as well)

We can take these formulas as the fundament of our transformation. For a tristate symbol
𝐴, let us introduce two features in our target feature model: A_m, which corresponds to

16

4.2. Transformation rules

1 config SYMBOL_A

2 bool "Config symbol A"

3

4 config SYMBOL_B

5 bool "Config symbol B"

6 depends on SYMBOL_A

7

8 config SYMBOL_C

9 bool "Config symbol C"

10 depends on SYMBOL_B

11

12 config SYMBOL_X

13 bool "Config symbol X"

14

15 config SYMBOL_Y

16 bool "Config symbol Y"

17 depends on SYMBOL_X

18 depends on SYMBOL_C

Figure 6.: Example transformation of the given Kconfig file. All configuration symbols
were transformed using rule 1. The multiple dependency of SYMBOL_Y was
handled by rule 1.2; SYMBOL_Y is here the child feature SYMBOL_X as it has less
depth than SYMBOL_C, which was recognized correctly according to the heuristic
we have defined in the respective sub-rule. All other (singular) dependencies
were handled according to rule 1.1 (SYMBOL_B, SYMBOL_C).

17

4. Concept

the formula𝑀 (𝐴); when A_m is selected, symbol A assumes the value m, and A_t, which
corresponds to the formula 𝑇 (𝐴). It is important that A_t and A_m are not selected at the
same time, as a tristate symbol can either assume the value m or t. There are two ways to
model this exclusivity:

• We introduce an abstract parent feature A and add A_m and A_t as the children of this
parent feature, so that if A is selected, either A_m or A_t must be selected (but not
both). This is done with a mandatory XOR relation (alt group) between the parent
and the children features. If this approach is used, (I) can be modelled as a cross-tree
constraint between A_m and B. It is important that A is an abstract feature, as A itself
does not correspond to a configuration symbol.

• We add a cross-tree constraint between A_m and A_t, i.e. A_m excludes A_t and
vice versa. If this approach is used, (I) must be modelled as a composite cross-tree
constraint, i.e. A_m implies B_t or B_m.

Preferring the approach that minimises the amount of semantics hidden behind cross-
tree constraints, we end up with the following rule:

Rule 2: Whilst transforming Kconfig files into feature models, transform a tristate
symbol 𝐴 as follows:

1. First, create a new abstract feature called A and add this to the root feature of
the feature model.

2. Now add two features as children to A: A_m and A_t. Set the children of A as
mandatory alternatives (alt group), so that selecting A implies A_m xor A_t.

Rule 2.1: If 𝐴 depends on another tristate symbol 𝐵:

1. Transform 𝐵 according to rule 2. If𝐴 needs to be transformed during the trans-
formation of 𝐵, abort transformation; the Kconfig file contains a dependency
loop.

2. Add a cross-tree constraint: A_m implies B.

3. Add a cross-tree constraint: A_t implies B_t.

Rule 2.2: If 𝐴 depends on multiple tristate symbols 𝐵1, . . . , 𝐵𝑖 :

1. Process every pair (𝐴, 𝐵𝑙), 𝑙 ∈ {1, . . . , 𝑖} according to rule 2.1, considering
every dependency of its own regard.

An example transformation using this rule is given in figure 7.

4.2.3. Mixed-type dependencies

Boolean configuration symbols can depend on tristate configuration symbols and vice
versa. For this case, we introduce a further rule:

18

4.2. Transformation rules

1 config SYMBOL_A

2 tristate "Configuration symbol A"

3

4 config SYMBOL_B

5 tristate "Configuration symbol B"

6

7 config SYMBOL_C

8 tristate "Configuration symbol C"

9 depends on SYMBOL_B

10 depends on SYMBOL_A

11

12 config SYMBOL_D

13 tristate "Configuration symbol D"

14

15 config SYMBOL_E

16 tristate "Configuration symbol E"

17 depends on SYMBOL_D

Figure 7.: Example transformation of the given Kconfig file. All configuration symbols
were transformed using rule 2. The multiple dependency of SYMBOL_C and the
single dependency of SYMBOL_E were handled by rule 2.2 and 2.1, respectively.

19

4. Concept

1 config SYMBOL_A

2 tristate "Configuration symbol A"

3

4 config SYMBOL_B

5 boolean "Configuration symbol B"

6

7 config SYMBOL_C

8 boolean "Configuration symbol C"

9

10 config SYMBOL_D

11 boolean "Configuration symbol D"

12 depends on SYMBOL_C

13

14 config SYMBOL_E

15 tristate "Configuration symbol C"

16 depends on SYMBOL_A

17 depends on SYMBOL_B

18 depends on SYMBOL_D

Figure 8.: Example transformation of the given Kconfig file. SYMBOL_E was transformed
using rule 3. SYMBOL_E is the child of SYMBOL_B and not SYMBOL_D as SYMBOL_B
has less depth; this is the case as we explicitly mentioned that we should use the
heuristic from rule 1.2 whilst processing boolean dependees of tristate dependers.

Rule 1.3: If a boolean symbol 𝐴 depends on a tristate symbol 𝐵:

1. Add a cross-tree constraint: A implies B.

Rule 2.3: If a tristate symbol 𝐴 depends on a boolean symbol 𝐵:

1. Make feature A child of feature B.

Rule 3: If a configuration symbol 𝐴 has a mixed-type multiple dependency:

1. If 𝐴 is a tristate symbol, for each other tristate symbol 𝐵 𝑗 which 𝐴 depends
on, process every pair according to rule 2.1. If 𝐴 also depends on boolean
configuration symbols, see rule 2.3 and use the heuristic from rule 1.2.

2. If 𝐴 is a boolean symbol, see rule 1.2 and 1.3.

An example transformation using this rule is given in figure 8.

In case of boolean symbols depending on tristate symbols, it is sufficient for the dependee
to assume the value m for the depender to assume the value t. Thismight seem contradictory
to the truth table for dependencies between tristate symbols (as m and t are understood as
distinct values) but experimenting with menuconfig shows that boolean dependers do not
differentiate between m and t.

20

4.2. Transformation rules

The dependency between a boolean depender 𝐴 and a tristate dependee 𝐵 cannot
be represented as a child-parent feature relation because alt groups cannot be defined
selectively. All children of A (A_m and A_t) are in an alt group and if Bwas then made a child
feature of B, the transformation would have been semantically incorrect, as B would have
been in an alt group with A_m and A_t. Ergo we use a cross-tree constraint to transform
such a dependency.

4.2.4. Reverse dependencies

The select option in configuration symbols can be used to set a “lower bound” on another
symbol, i.e. the dependee.
If 𝐴 selects 𝐵, the following value matrix is to be considered (assuming 𝐴 and 𝐵 are

boolean configuration symbols):

Value of symbol A Value of symbol B Dependency satisified?
f f yes
f t yes
t f no
t t yes

This value matrix is identical to the value matrix of “𝐴 depends on 𝐵”. We can hence
process reverse dependencies as we process regular dependencies.

Rule 4: If a configuration symbol 𝐴 selects another configuration symbol 𝐵:

1. Process this relation as “𝐴 depends on 𝐵” according to the respective rules.

Process multiple selections in similar manner.

It might not be evident why the select keyword exists considering that is (logically)
equivalent to an ordinary dependency. The official Kconfig documentation warns: “select
should be used with care. select will force a symbol to a value without visiting the
dependencies. By abusing select you are able to select a symbol FOO even if FOO
depends on BAR that is not set.” Kconfig handles select a bit differently than depends;
there is no transitive dependency resolution. This should however not be an issue if select
is only used with configuration symbols that have no dependencies; in that case select is
no different than depends, hence our rule should hold.

4.2.5. Choice blocks

Choice blocks consist of multiple configuration symbols that are mutually exclusive: If the
choice block is selected, only one of the configuration symbols might be set to t. In case of
tristate choice blocks, if the choice block is set to m, an arbitrary amount of the contained
configuration symbols might be set to m, however setting the choice block to t forces one
of the contained symbols to be set to t and all others to be set to f, hence the m option is
disabled when the choice block is set to t.

21

4. Concept

A reverse transformation of alt feature groups into boolean choice blocks has already
been proposed by [34]. We build upon this transformation with certain considerations:

• Although choice blocks can be named, they may not occur as dependees [31]. At
this instance they are similar to menu blocks.

• Choices are, by default, mandatory. A mandatory choice block must have a value set
if all of its dependencies are satisfied.

• The Kconfig language specification is unclear about mixed choice blocks (e.g. tristate
choice blocks containing boolean configuration symbols) [31]. We will assume
that boolean and tristate choice blocks only contain configuration symbols of their
respective types.

Modelling the mandatory nature of choice blocks may first seem trivial due to the
presence of mandatory features in feature models, but this is unfortunately only the case
if a choice block depends on a single boolean symbol: Only child-parent relationships
can be defined as mandatory. Because we have already established that only one of the
dependencies may be represented structurally in case of multiple dependencies (see rule 3),
we need to work with cross-tree constraints to ensure that our transformation semantically
preserves mandatory choice blocks. Without any consideration of syntax, the following
logical formula must be true for a mandatory choice block 𝐶 that depends on multiple
other configuration symbols 𝐴 𝑗 with 𝑗 ∈ {1, . . . , 𝑖}:

𝐴1 ∧ . . . ∧𝐴𝑖 =⇒ 𝐶 (III)
(If all dependencies of 𝐶 are selected/true, 𝐶 must be selected/true)

Because 𝐶 =⇒ 𝐴 𝑗 , 𝑗 ∈ {1, . . . , 𝑖} is already implied through the dependency between
𝐶 and 𝐴 𝑗 , (III) but as a bi-implication should also hold true for a mandatory choice block
𝐶 . The bi-implication might however be redundant if 𝐶 =⇒ 𝐴 𝑗 already occurs for any
𝑗 ∈ {1, . . . , 𝑖} as a cross-tree constraint. Additionally, it is important to mention that the
formula above is not equivalent to multiple individual implications for each dependency
(𝐴1 =⇒ 𝐶 , 𝐴2 =⇒ 𝐶 and so forth): A mandatory choice 𝐶 should only be selected
when all of its dependencies are satisfied. If 𝐶 is a boolean choice block, rule 1.3 applies,
so that if any of the 𝐴 𝑗 in (III) are tristate configuration symbols, the expression 𝐴 𝑗 for the
respective configuration symbol should be replaced by𝑀 (𝐴 𝑗) ∨𝑇 (𝐴 𝑗), i.e. it is sufficient
for the dependee to be set to any value but f. This should however not be an issue
whilst transforming, as in rule 2 the abstract parent feature Aj of Aj_m and Aj_t exactly
corresponds to this expression.
With these considerations, we propose the following rules for the transformation of

tristate and boolean choice blocks:

Rule 5: Whilst transforming a Kconfig file into a feature model, process a boolean
choice block 𝐶 as follows:

1. Create an abstract feature C.

22

4.2. Transformation rules

2. If the choice block depends on another configuration symbol 𝐵, first process
that dependency as if𝐶 is a boolean configuration symbol. If𝐶 doesn’t depend
on anything, make C child of the root feature of the feature model.

3. If 𝐶 is not optional:
• If 𝐶 depends on multiple configuration symbols 𝐴 𝑗 (𝑗 ∈ {1, . . . , 𝑖}): Add
cross-tree constraint: A1 AND ... AND Ai IMPLIES C.

• If𝐶 depends on a single configuration symbol 𝐴: If 𝐴 is a tristate symbol,
add cross-tree constraint A IMPLIES C. If 𝐴 is a boolean symbol, make C
a mandatory child feature of A.

• If 𝐶 does not have any dependencies, make C a mandatory child of the
root feature.

4. Process all configuration symbols 𝐴 𝑗 contained in the choice block 𝐶 , but
ignore their dependencies.

5. Make all features corresponding to the contained configuration symbols of 𝐶
children of feature C.

6. Make the children of C mandatory alternatives (alt group).

7. Now process the dependencies of all 𝐴 𝑗 contained in 𝐶 . Ensure that features
corresponding to 𝐴 𝑗 remain children of C, i.e., do not represent any of these
dependencies structurally.

An example transformation using this rule is given in figure 9.

In case of tristate choice blocks, we effectively build upon rule 2: We want tristate choice
blocks to have the same structure tristate configuration symbols have: Three features for
the three states. A tristate choice block assumes the value m when one or more tristate
configuration symbols contained in the choice block are set to m: Here “one or more” calls
for an or group. When the choice block is set to t, exactly one of the enclosed configuration
symbols must be set to t: This calls for an alt group.
We can describe this constraint in second-order logic (using the relations 𝑇 and𝑀 we

have used for rule 2). For a choice block 𝐶 with enclosed tristate symbols 𝐴1, . . . , 𝐴 𝑗 , the
following should hold true:

𝑇 (𝐶) =⇒ ((𝑇 (𝐴1) ⊕ . . . ⊕ 𝑇 (𝐴 𝑗)) ∧ ¬(𝑀 (𝐴1) ∨ . . . ∨𝑀 (𝐴 𝑗))) (IV)

𝑀 (𝐶) =⇒ ((𝑀 (𝐴1) ∨ . . . ∨𝑀 (𝐴 𝑗)) ∧ ¬(𝑇 (𝐴1) ∨ . . . ∨𝑇 (𝐴 𝑗))) (V)

We ensure that these expressions hold true by making the features corresponding to
𝑀 (𝐴𝑖) for 𝑖 ∈ 1, . . . , 𝑗 children of C_m. These features are in an or group. We do the same
for the features corresponding to 𝑇 (𝐴𝑖) for 𝑖 ∈ 1, . . . , 𝑗 ; these features become children of
C_t and are in an alt group. The second term in (IV) and (V) are already modelled through

23

4. Concept

1 config SYMBOL_A

2 boolean "Configuration symbol A"

3

4 config SYMBOL_B

5 tristate "Configuration symbol B"

6

7 choice CHOICE_C

8 boolean "Choice block C"

9 depends on SYMBOL_A

10 depends on SYMBOL_B

11

12 config SYMBOL_D

13 boolean "Configuration symbol D"

14 depends on SYMBOL_X

15

16 config SYMBOL_E

17 boolean "Configuration symbol E"

18 depends on SYMBOL_Y

19

20 endchoice

21

22 config SYMBOL_Y

23 boolean "Configuration symbol Y"

24

25 config SYMBOL_X

26 tristate "Configuration symbol X"

Figure 9.: Example transformation of the given Kconfig file. CHOICE_C was transformed
using rule 5. As defined in the rule, the dependency between SYMBOL_E and
SYMBOL_Y is not represented structurally, so that SYMBOL_D remained a child
feature of CHOICE_C. Because CHOICE_C is not an optional choice, a cross-tree
constraint with a conjunction over all dependees of CHOICE_C was added to the
feature model.

24

4.2. Transformation rules

the mutually exclusive nature of C_t and C_m. Breaking up the enclosed tristate symbols
means that we omit the abstract parent feature Ai which we normally create whilst using
rule 2. This is however not an issue: Ai can be replaced by Ai_m OR Ai_t in cross-tree
constraints so that all rules also work for tristate symbols enclosed in choice blocks.

Ergo we end up with the following transformation steps:

Rule 6: Tristate choice blocks are to be processed differently; given the tristate
choice block 𝐶:

1. Process𝐶 as if it was a tristate symbol: Create the features C, C_t, C_m. Resolve
𝐶’s dependencies according to rule 2.
" Due to a Kconfig implementation bug, tristate choice blocks are always
optional (see figure 11).

2. For each tristate configuration symbol 𝐴 𝑗 within 𝐶 , create a feature Aj_m and
Aj_t. Make these features children of C_m and C_t, respectively.

3. Whilst resolving the dependencies of the configuration symbols within the
choice block, follow rule 2, but avoid structural changes; model all dependen-
cies as cross-tree constraints. Because for a given 𝐴 𝑗 in 𝐶 there is no abstract
parent feature Aj, substitute Aj with Aj_m OR Aj_t:

Type of dependency Cross-tree constraint(s) to add
𝐴 𝑗 depends on a boolean symbol 𝐵 Aj_m OR Aj_t IMPLIES B

𝐴 𝑗 depends on a tristate symbol 𝐵 Aj_m IMPLIES B and Aj_t IMPLIES B_t

4. Make the children of C_t an alt group.

5. Make the children of C_m an or group.

6. If configuration symbols contained within𝐶 appear as dependees of other con-
figuration symbols, process these dependencies as defined in their respective
rules, but work around the missing abstract parent feature of tristate symbols
contained within a choice block:

Type of dependency Cross-tree constraint(s) to add
Boolean symbol 𝐵 depends on 𝐴 𝑗 B IMPLIES Aj_m OR Aj_t

Tristate symbol 𝐵 depends on 𝐴 𝑗 B IMPLIES Aj_m OR Aj_t and B_t IMPLIES Aj_t

An example transformation using this rule is given in figure 10.

4.2.6. Menus

A hierarchy between configuration symbols is already implied through the dependencies of
these symbols, but the Kconfig language also allows the definition of menus, which group
up the enclosed configuration symbols in a submenu. A menu may occur as a depender;
in that case, all the configuration symbols contained within the menu transitively inherit

25

4. Concept

1 config SYMBOL_A

2 boolean "Configuration symbol A"

3

4 config SYMBOL_B

5 tristate "Configuration symbol B"

6

7 choice CHOICE_C

8 tristate "Choice block C"

9 depends on SYMBOL_A

10

11 config SYMBOL_D

12 tristate "Configuration symbol D"

13 depends on SYMBOL_B

14

15 config SYMBOL_E

16 tristate "Configuration symbol E"

17

18 endchoice

19

20 config SYMBOL_F

21 tristate "Configuration symbol F"

22 depends on SYMBOL_E

23

24 config SYMBOL_G

25 boolean "Configuration symbol G"

26 depends on SYMBOL_D

Figure 10.: Example transformation of the given Kconfig file. CHOICE_C was transformed
using rule 6. CHOICE_C itself was processed like a regular tristate configuration
symbol, the tristate symbols within CHOICE_C were broken apart; references to
the missing abstract parent feature have been replaced by an OR expression of
the two state features of the respective tristate symbol.

26

4.2. Transformation rules

1 config MODULES

2 bool

3 modules

4 default y

5

6 config SYMBOL_D

7 bool "Configuration symbol D"

8

9 choice CHOICE_C

10 tristate "Choice block C"

11 depends on SYMBOL_D

12

13 config SYMBOL_A

14 tristate "Configuration symbol A"

15

16 config SYMBOL_B

17 tristate "Configuration symbol B"

18

19 endchoice

1 #

2 # Automatically generated file; DO NOT EDIT.

3 # Main menu

4 #

5 CONFIG_MODULES=y

6 CONFIG_SYMBOL_D=y

7 # CONFIG_SYMBOL_A is not set

8 # CONFIG_SYMBOL_B is not set

Figure 11.: Despite CHOICE_C being mandatory, the following menuconfig state could be
saved; in the resulting .config file (bottom listing) is neither SYMBOL_A nor
SYMBOL_B set.

27

4. Concept

these dependencies. Menus may contain further menus, but they may not occur within
choice blocks.

There are also so-called menuconfig configuration symbols, which are (boolean) configu-
ration symbols themselves but also imply a menu structure: All configuration symbols that
depend on a menuconfig configuration symbol are placed in a submenu “hidden” under
the respective menuconfig symbol (see image below).
We process menu blocks like a group of symbols that all depend on the same boolean

symbol, so to say the boolean symbol that corresponds to the menu header. As menu
blocks explicitly define a hierarchy (compared to dependencies which do the same but
implicitly), we ensure that menus are structurally recognizable in the resulting feature
model. For this we ignore the heuristic introduced in rule 1.
This “menu header” feature must be abstract, as it does not correspond to an actual

configuration symbol contained in the source Kconfig file. In case of menuconfig, the
menu header itself is a valid configuration symbol, so that the “header” feature should not
be abstract.
Ultimately, we propose the following two rules for transforming menu blocks and

menuconfig configuration symbols:

Rule 7: Transform a menu block𝑀 as follows:

1. Process the menu block itself like a boolean configuration symbol, see rule 1.

2. Make M an abstract and mandatory feature.

3. For all configuration symbols 𝐴 𝑗 contained within 𝑀 , process the symbols
according to their respective rules, but additionally consider the dependency
on 𝑀 and ensure that the features corresponding to 𝐴 𝑗 remain immediate
children of M (i.e. ignore the heuristic used for transforming boolean symbols).

Rule 8: For a menuconfig configuration symbol𝑀 , do the following:

1. Process𝑀 like a boolean configuration symbol, see rule 1.

2. For all configuration symbols depend on 𝑀 , ensure that the features corre-
sponding to these configuration symbols remain immediate children of M

(i.e. ignore the heuristic used for transforming boolean symbols).

An example transformation using the rules 7 and 8 is given in figure 12.

28

4.2. Transformation rules

1 config SYMBOL_A

2 boolean "Configuration symbol A"

3

4 menu "Menu block M"

5 depends on SYMBOL_A

6

7 menuconfig SYMBOL_B

8 boolean "Menuconfig B"

9

10 config SYMBOL_C

11 boolean "Configuration symbol C"

12

13 endmenu

14

15 config SYMBOL_D

16 boolean "Configuration symbol D"

17 depends on SYMBOL_C

18 depends on SYMBOL_B

Figure 12.: Example transformation of the given Kconfig file. Menu block 𝑀 was trans-
formed using rule 7, SYMBOL_B was transformed using rule 8. In accordance to
rule 8, SYMBOL_D is a child of SYMBOL_B, although the dependency to SYMBOL_C

was defined first and both possible parents had equal depth; SYMBOL_B was
however preferred as a menuconfig symbol.

29

5. Implementation

In this chapter, we aim to give an overview of the implementation of the transformation
rules we have defined in the previous chapter in scope of a tool to transform Kconfig files
into feature models.

5.1. Implementation details

We have implemented the transformations in Java using the Eclipse Modelling Framework
(EMF), ANTLR3 and FeatureIDE. We have named the resulting tool “Kfeature”, inspired by
the K-prefixed names of utility scripts in the Linux kernel. We use ANTLR3 to parse Kconfig
files, for this we use the ANTLR grammar developed by She [33]. Once an abstract syntax
tree (AST) is created, we traverse this AST and bring the Kconfig file in an intermediate
graph form: Configuration symbols are processed as nodes and the dependencies between
configuration symbols are processed as edges. To deal with menu and choice blocks,
we use so-called enclosing nodes, so that encapsulated nodes can be recognized during
transformation.

Once the Kconfig file is brought to the intermediary graph form, we process this graph
and apply the transformations introduced in the previous section. Instead of working with
XML tags directly, we use the metamodel developed by Ateş [3], which corresponds to
the XML schema used by FeatureIDE to represent feature models: We build the feature
model corresponding to the transformed Kconfig file initially as a ECore model (with the
automatically generated classes/objects corresponding to the FeatureIDE XML schema
metamodel) and then serialize this model into an XML file to ultimately create a feature
model that can be viewed with FeatureIDE.

We have chosen the FeatureIDE XML format as our transformation target as FeatureIDE
is a gateway tool to feature-oriented programming/design; it allows the exporting of feature
models into many different formats. This increases the impact of our contribution greatly.
Our decision to use EMF and metamodels for the implementation of the transformation
rules was mostly pragmatic: As there was already a tested metamodel for the FeatureIDE
XML schema, implementation of an own metamodel or class hierarchy to model the
structrure of FeatureIDE XML files would have endangered the internal validity of our
implementation.

5.2. Challenges during implementation

The parser was a constant source of problems during implementation. There is an official
Kconfig grammar that is also used by the Kconfig tool itself, but this grammar is to be used

31

5. Implementation

with the parser generator Bison, which generates parser code in C/C++. Because Kfeature
had to be developed in Java (as FeatureIDE only offers Java libraries), it was not possible to
bind the parser created by Bison into Kfeature (Bison should also be able to generate Java
code, but the official Kconfig grammar contains multiple custom functions in C, which
Bison cannot translate). Creation of a correct and complete translation of the official
Yacc/Bison grammar was unrealistic, as the author of this thesis had no prior experience
with these parser generators and even if such a translation was to be done within the
scope of this thesis, there would be no possibility to test the correctness of the resulting
ANTLR grammar, as there is no other official grammar that is complete other than the
Yacc/Bison grammar contained in the Linux source tree; building upon a self-translated and
unverified parser grammar would have limit the scope of the implementation immensely
and moreover reduce the validity of evaluation results. Hence the plan to implement an
own parser grammar was scrapped early on during the development of Kfeature.

Due to the lack of Java software projects that work with Kconfig files, it was not possible
to simply adapt the parsing infrastructure of an already existing software tool. Because
the absence of a parser was blocking the further development of Kfeature, we have made
the decision to use She’s ANTLR3 grammar, despite it having its shortcomings.
Because FeatureIDE feature models are FODA-like, implementation of the transfor-

mation rules was rather straight-forward: The main hinderance whilst implementing
the transformation rules was the lack of EMF documentation, which meant we had to
experiment with the EMF API to reach the wished results.

Kfeature has a few limitations:

• source blocks are not supported due missing parser rules.

• When a mandatory boolean choice block only has one dependency, the feature
corresponding to the choice block is not made a mandatory feature, it is instead
processed as if it has multiple dependencies (see rule 5, step 3).

• The official Kconfig tool does not differentiate between spaces and tabs for inden-
tation, but Kfeature only supports tabs due to shortcomings of the used ANTLR3
grammar.

32

6. Evaluation

In this chapter, we discuss the evaluation of transformation rules we have introduced in
chapter 4. In the first section, we introduce the methods of evaluation we have used. In
the second section, we discuss the metric of human-readability. In the third section, we
argue for the adequacy of the evaluation methods we have introduced in the first section.
Finally, we report the results of our evaluation and mention few risks to validity that we
have detected during the conception of this thesis.

6.1. Methods of evaluation

It is important to define when we consider a transformation “correct”. We made clear in
chapter 4 that wewant our transformation rules to preserve the semantics of the underlying
Kconfig file, i.e. the constraints defined in a Kconfig file should also be present in the
corresponding feature model. To evaluate how well our transformation rules accomplish
this, we can check for logical equivalency of a Kconfig file and its transformed feature
model counterpart:

A Kconfig file and a feature model are equivalent when every invalid configuration
of the feature model corresponds to an invalid configuration of the Kconfig file.
Additionally every valid configuration of the feature module must correspond to a
valid configuration of Kconfig file.

This process can be automated using the FeatureIDE API: FeatureIDE can generate
all solutions (i.e. configurations that fulfil the constraints of a feature model) for a given
feature model [23]. Each solution must then be fed to a tool that checks if the given
configuration is valid for the underlying Kconfig file. The remaining configurations of
the feature model are hence non-solutions, these should correspond to invalid Kconfig
configurations. The set of all possible configurations of a feature model corresponds
to the power set of features that are found in this feature model (it is important these
configurations are possible, but not necessarily valid).
If automated validation is not possible, one can manually check for equivalency by

attempting to reconstruct a given solution/non-solution for a feature model in the Kconfig
menu interface (menuconfig). Every configuration that can be reconstructed within the
Kconfig menu interface is valid (as every such configuration can be saved and used
whilst building the underlying software project). In this case, a Kconfig file and a feature
model should be equivalent if every solution of the feature model can be reconstructed
in menuconfig. Additionally it should be impossible to reconstruct a non-solution of the
feature model in menuconfig.

33

6. Evaluation

6.2. Human readability of the created feature models

Another goal that we have mentioned in the concept chapter of this thesis was human
readability. We want the explicit menu structure of the Kconfig file we are transforming to
be visible in the resulting feature model, i.e. menu and choice blocks should be recognizable.
No evaluation of this property is necessary, as it is ensured directly by definition of the
respective rules (see rules 1, 5, 6, 7 and 8 in chapter 4). We can check if this is the case in the
feature models created by Kfeature to see if the aforementioned rules were implemented
correctly in Kfeature. For this, we introduce the following metric:

A transformed feature model fulfils the human-readability metric if the following
requirements are met:

1. All configuration symbols (or moreover the features they are transformed
into) that are contained within a menu block are immediate children of the
abstract feature that corresponds to the aforementioned menu block in the
resulting feature model.

2. If a configuration symbol depends on a menuconfig symbol, the feature that
corresponds to the configuration symbol should be a child feature of the
feature that corresponds to the menuconfig symbol. If multiple menuconfig

dependees occur, this requirement applies for the menuconfig symbol with
the least depth.

3. The tristate structure with the abstract parent feature (as defined in rule 2)
should remain intact, with the exception of tristate symbols in choice blocks
(see rule 7).

4. In case of multiple dependencies, ensure that the heuristic defined in rule 1.2
was applied correctly.

6.3. Converting feature model configurations to Kconfig
configurations

In multiple transformation rules, we have marked certain features as abstract. These were
features that did not have a corresponding configuration symbol in the underlying Kconfig
file, ex. choice blocks themselves cannot be set to t or f, because they are not configuration
symbols in the conventional sense. Configurations created by menuconfig reinforce this
notion, see figure 13. Even when a choice block is selected in menuconfig, the resulting
.config file does not contain an assignment for the variable that corresponds to the choice
block, as no such variable exists in the first place. “Selection” of such menu entries is fully
cosmetic.
Because abstract features do not correspond to specific configuration symbols, they

must be ignored whilst converting feature model configurations into respective Kconfig

34

6.4. Results

configurations. Additionally they may cause incorrect feature model configurations to
correspond valid Kconfig configurations, see figure 14.

In case of tristate configuration symbols, the configuration symbol 𝐶 should be set to m

if the corresponding feature C_m is selected, and respectively set to t if C_t is selected. A
configuration where both of these features are selected is necessarily incorrect (see rule 2)
but moreover it cannot be converted into a respective Kconfig configuration, as a tristate
configuration symbol cannot be set to both t and m within the same configuration file. In
this case we assume that the validator would reject the configuration due to invalid syntax
and say that the validator has correctly recognized the invalidity of the underlying feature
model configuration.

6.4. Results

Five Kconfig files were transformed and validated automatically according to the method
described in the first section of this chapter. We have used the klocalizer tool from
the kmax tool suite [14] to check if a given configuration is valid or not. klocalizer

returns non-zero for a configuration that is invalid (a configuration that does not satisfy
the constraints defined in the underlying Kconfig file), and zero for a configuration that
is valid. Results of the automatic verification can be seen in figure 15. “Used rules”
refers to rules that were utilised by Kfeature while transforming the given Kconfig file.
“Validity rate” is the ratio of correctly transformed configurations to the total number
of configurations (when abstract features are omitted). “Human-readability metric” is
checked if the conditions given in 6.2 are fulfilled by the resulting feature model.

The klocalizer tool however does not support tristate configuration symbols (or at least
not in full scope, see issue #230 in [14]). This made the automated validation of Kconfig files
with tristate configuration symbols impossible. In this case, we transformed four Kconfig
files with tristate configuration symbols using Kfeature and sampled 60 configurations
from each generated feature model and checked the equivalency to their menuconfig

counterparts. Sampling was done using FeatureIDE. To ensure that both solutions and
non-solutions are represented in the set of sampled configurations, we have ensured that
at least half of the sampled configurations are solutions (for cases where there were less
than 30 solutions, we have sampled more non-solutions to reach 60 configurations in total).
Results of the manual vertification of the aforementioned four Kconfig files can be seen in
figure 16. Sample validity rate refers to the percentage of sampled configurations that were
respectively solutions and non-solutions for both the feature model and the underlying
Kconfig file. Sampling details for the individual Kconfig files can be found in the appendix.

The respective Kconfig files and the corresponding feature models can be found in the
appendix. Raw data containing the configurations that were sampled can be found on
Zenodo [40].

35

6. Evaluation

1 config MODULES

2 bool

3 modules

4 default y

5

6 config D

7 bool "Configuration symbol D"

8

9 choice C

10 bool "Choice block C"

11 depends on D

12

13 config A

14 bool "Configuration symbol A"

15

16 config B

17 bool "Configuration symbol B"

18

19 endchoice

1 #

2 # Automatically generated file; DO NOT EDIT.

3 # Main menu

4 #

5 CONFIG_MODULES=y

6 CONFIG_D=y

7 CONFIG_A=y

8 # CONFIG_B is not set

Figure 13.: For the given Kconfig file above, the shown menuconfig state (image in the
middle) is represented with the given configuration file. There is no CONFIG_C

entry in the configuration file (bottom listing).

36

6.4. Results

1 menu "Menu block M"

2

3 config SYMBOL_A

4 boolean "Configuration symbol A"

5

6 endmenu

7

8 config SYMBOL_B

9 boolean "Configuration symbol B"

Figure 14.: The configuration SYMBOL_A=y is valid for the given Kconfig file, but the config-
uration [SYMBOL_A] is not a solution for the resulting feature model, due to the
abstract feature Menu block M.

Name Used rules Number of solutions Validity rate Human-readability metric
Kconfig1 1 6 16/16 ✓
Kconfig2 1, 5, 7 11 64/64 ✓
Kconfig3 1, 7, 8 64 128/128 ✓
Kconfig4 1, 4, 5, 7 9 64/64 ✓
Kconfig5 1, 8 15 128/128 ✓

Figure 15.: Results of the automatic verification for the chosen five Kconfig files.

Name Used rules Sample validity rate Human-readability metric
Kconfig6 1, 2, 3 100% ✓
Kconfig7 1, 3, 4, 5, 6 100% ✓
Kconfig8 3, 7, 8 100% ✓
Kconfig9 all rules 100% ✓

Figure 16.: Results of the manual verification of the chosen four Kconfig files.

37

6. Evaluation

6.5. Interpretation

With 100% validity rate for both manually and automatically verified Kconfig files, we can
say that our transformations map most Kconfig files onto semantically equivalent feature
models, given that the Kconfig file only contains constructs which we have transformation
rules for. Additionally, the human-readability metric is satisfied by all the generated
feature models, this is a strong argument for the correct implementation of the concerning
transformation rules in Kfeature.

6.6. Threats to validity

In this section, we will shortly discuss the possible threats to internal and external validity.

6.6.1. External validity

In case of our thesis, external validity refers to the question: Is the correct transformation
of these nine Kconfig files sufficient to argument for the correct transformation of all
Kconfig files that exclusively consist of Kconfig structures that we have transformation
rules for, i.e. to what degree can we scale up the results of our evaluation?

The Kconfig files we have used for evaluation were tailored specifically to contain many
different combinations of constructs (ex. choice blocks in menu blocks, nested menu blocks,
multiple dependencies), however the number of configuration symbols had to be limited
due to the fact that automated verification of feature models can take very long (due to the
sheer number of possible configurations to process). Manual verification of such feature
models is possible, however the sample size of 60 becomes meaninglessly small for feature
models with 20+ features, and larger sample sizes make manual verification error-prone.
Hence it is possible that the 100% validity rate falsely implies the total correctness of
the proposed transformation rules. We would nevertheless argue that 100% validity for
a selection of smaller Kconfig files with many combinations of constructs implies some
validity for the transformation of larger Kconfig files, as larger Kconfig files tend to consist
of separate parts that can be their own Kconfig files (this is why the Linux kernel utilises the
source keyword very often). Beyond this, the size of a Kconfig file does not always mean
a challenge for transformation, ex. the transformation of a Kconfig file with 1000 boolean
configuration symbols without any dependencies is trivial, wherein the transformation of
a Kconfig file with 5 configuration symbols in choice blocks and mixed-type dependencies
is not.

6.6.2. Internal validity

Internal validity in this instance refers to the correctness of the evaluation methods we
have chosen to utilise for the verification of the correctness of our transformation rules.

Manual verification is always error-prone, it is possible that we have deemed a config-
uration invalid assuming that it cannot be built with menuconfig, but it is possible that
we have overseen a certain configuration symbol or somehow failed to recognize that

38

6.6. Threats to validity

the configuration can be actually built. We have attempted to minimize the possibility of
such an occurrence by prioritising rule coverage over the net number of configuration
symbols: The Kconfig files that we analysed are small but complex, so that many different
transformation rules must be utilised for a full transformation.

The tools that we have used for verification, FeatureIDE and kmax, are mature software
projects that have been already been utilised in scope of other research papers. It is
nevertheless possible that e.g. klocalizer has returned zero for an invalid configuration
due to an implementation bug.

39

7. Conclusion

The goal of this thesis was to develop and present a method for the semantics-preserving
transformation of Kconfig files in feature models.

Before making any considerations about the transformation rules themselves, we have
first set a scope for our transformations; we have chosen what we want to transform. We
have set transformation goals: total semantic equivalency and preservation of the explicit
menu structure.

The results of the evaluation of the transformation rules we have developed offer a strong
argument for the accomplishment of our first goal. Additionally, we have documented the
considerations we had whilst developing the transformation rules, so that any future work
that aims to develop a method for transforming Kconfig files to another target format can
use our approach to Kconfig as a starting point for their own work.

The Kconfig framework has rather rudimentary documentation and there is no formal
definition of the Kconfig language. Beyond introducing a transformation, this thesis can
additionally be seen as an exploration of the Kconfig framework, with all the undefined
behaviour and/or peculiarities we have discovered whilst developing the transformation
rules. These occurrences are documented in this thesis.

7.1. Benefits

We have stated in the introduction chapter that we aim to close the gap between Kconfig
files and feature model analysis tools through the implementation of a transformation
between Kconfig files and feature models. We have accomplished this. Feature models that
are created by Kfeature can be loaded into FeatureIDE and FeatureIDE can even deliver
ad-hoc insights on Kconfig files. Figure 17 shows an example of a redundant dependency
being detected by FeatureIDE.
This is only one example how the generated feature models can be processed further.

Our contribution lays the groundwork of studies and surveys that can be done on software
projects that utilise the Kconfig framework with the use of feature model analysis tools.

7.2. Future Work

In extent of the evaluation chapter of this thesis, we have shown the logical equivalence
of five Kconfig files to their generated feature models. We have shown logical equivalence
over model exhaustion; effectively, we have checked if both the Kconfig file and the feature
model deliver the same truth value (solution/not a solution) for every model, models being
possible (but not necessarily valid) configurations of the generated feature model. Another

41

7. Conclusion

1 config SYMBOL_A

2 bool "Configuration symbol A"

3

4 menu "Menu block M"

5 depends on SYMBOL_A

6

7 config SYMBOL_B

8 bool "Configuration symbol B"

9 depends on SYMBOL_A

10

11 endmenu

Figure 17.: FeatureIDE marks the cross-tree constraint SYMBOL_B IMPLIES SYMBOL_A as
redundant. This was detected correctly: The respective dependency in the
given Kconfig file is redundant.

42

7.2. Future Work

and most probably more robust approach would have been transforming the Kconfig file
into expressions in propositional logic (e.g. with undertaker) and doing the same with
the feature model. Then the generated expressions could have been analysed for logical
equivalency, through the use of a SAT solver. This might be the fundament of a future
work aiming to further evaluate the transformation rules we have presented in this thesis.

Implementation of a reverse transformation (transformation of feature models into
Kconfig files) would allow researchers and developers of projects that utilise Kconfig to
apply the modifications done on the feature models on the corresponding Kconfig files.
This would allow the automatic application of feature model optimisations on Kconfig
files.

A comparative study of what insights feature model tools can deliver compared to the
already existing Kconfig analysis tools such as undertaker, fmdiff and LVAT would allow
us the measure the impact of our work in comparison to other work in this area of interest.

43

Bibliography

[1] APACHE NUTTX. original-date: 2019-12-14T23:27:55Z. Mar. 2023. url: https://
github.com/apache/nuttx (visited on 03/28/2023).

[2] Sven Apel and Christian Kästner. “An Overview of Feature-Oriented Software
Development.” en. In: The Journal of Object Technology 8.5 (2009), p. 49. issn: 1660-
1769. doi: 10.5381/jot.2009.8.5.c5. url: http://www.jot.fm/contents/issue_
2009_07/column5.html (visited on 12/01/2022).

[3] Atilla Ateş. “Konsistenzerhaltung von Feature-Modellen durch externe Sichten”.
de. In: (2022). Medium: PDF Publisher: Karlsruher Institut für Technologie (KIT).
doi: 10.5445/IR/1000143212. url: https://publikationen.bibliothek.kit.edu/
1000143212 (visited on 12/22/2022).

[4] Chris Bennett et al. “The Aesthetics of Graph Visualization”. en. In: Computa-
tional Aesthetics in Graphics Visualization (2007). Artwork Size: 8 pages ISBN:
9783905673432 Publisher: The Eurographics Association, 8 pages. issn: 1816-0859.
doi: 10.2312/COMPAESTH/COMPAESTH07/057-064. url: http://diglib.eg.org/
handle/10.2312/COMPAESTH.COMPAESTH07.057-064 (visited on 03/29/2023).

[5] Thorsten Berger et al. “A Study of Variability Models and Languages in the Systems
Software Domain”. In: IEEE Transactions on Software Engineering 39.12 (Dec. 2013),
pp. 1611–1640. issn: 0098-5589, 1939-3520. doi: 10.1109/TSE.2013.34. url: http:
//ieeexplore.ieee.org/document/6572787/ (visited on 11/29/2022).

[6] Thorsten Berger et al. “Variability modeling in the real: a perspective from the
operating systems domain”. en. In: Proceedings of the IEEE/ACM international confer-
ence on Automated software engineering - ASE ’10. Antwerp, Belgium: ACM Press,
2010, p. 73. isbn: 978-1-4503-0116-9. doi: 10.1145/1858996.1859010. url: http:
//portal.acm.org/citation.cfm?doid=1858996.1859010 (visited on 11/29/2022).

[7] Danilo Beuche, Holger Papajewski, and Wolfgang Schröder-Preikschat. “Variability
management with feature models”. en. In: Science of Computer Programming 53.3
(Dec. 2004), pp. 333–352. issn: 01676423. doi: 10.1016/j.scico.2003.04.005. url:
https://linkinghub.elsevier.com/retrieve/pii/S0167642304000954 (visited
on 03/28/2023).

[8] Jin Cao. Exploring the Linux kernel: The secrets of Kconfig/kbuild. en. Oct. 2018.
url: https://opensource.com/article/18/10/kbuild-and-kconfig (visited on
03/28/2023).

45

https://github.com/apache/nuttx
https://github.com/apache/nuttx
https://doi.org/10.5381/jot.2009.8.5.c5
http://www.jot.fm/contents/issue_2009_07/column5.html
http://www.jot.fm/contents/issue_2009_07/column5.html
https://doi.org/10.5445/IR/1000143212
https://publikationen.bibliothek.kit.edu/1000143212
https://publikationen.bibliothek.kit.edu/1000143212
https://doi.org/10.2312/COMPAESTH/COMPAESTH07/057-064
http://diglib.eg.org/handle/10.2312/COMPAESTH.COMPAESTH07.057-064
http://diglib.eg.org/handle/10.2312/COMPAESTH.COMPAESTH07.057-064
https://doi.org/10.1109/TSE.2013.34
http://ieeexplore.ieee.org/document/6572787/
http://ieeexplore.ieee.org/document/6572787/
https://doi.org/10.1145/1858996.1859010
http://portal.acm.org/citation.cfm?doid=1858996.1859010
http://portal.acm.org/citation.cfm?doid=1858996.1859010
https://doi.org/10.1016/j.scico.2003.04.005
https://linkinghub.elsevier.com/retrieve/pii/S0167642304000954
https://opensource.com/article/18/10/kbuild-and-kconfig

Bibliography

[9] Christian Dietrich et al. “A robust approach for variability extraction from the Linux
build system”. en. In: Proceedings of the 16th International Software Product Line
Conference on - SPLC ’12 -volume 1. Salvador, Brazil: ACM Press, 2012, p. 21. isbn:
978-1-4503-1094-9. doi: 10.1145/2362536.2362544. url: http://dl.acm.org/
citation.cfm?doid=2362536.2362544 (visited on 12/05/2022).

[10] Nicolas Dintzner, Arie vanDeursen, andMartin Pinzger. “Analysing the Linux kernel
feature model changes using FMDiff”. en. In: Software & Systems Modeling 16.1 (Feb.
2017), pp. 55–76. issn: 1619-1366, 1619-1374. doi: 10.1007/s10270-015-0472-2. url:
http://link.springer.com/10.1007/s10270-015-0472-2 (visited on 11/29/2022).

[11] Mohammed El Dammagh and Olga De Troyer. “Feature Modeling Tools: Evaluation
and Lessons Learned”. In: Advances in Conceptual Modeling. Recent Developments and
New Directions. Ed. by Olga De Troyer et al. Vol. 6999. Series Title: Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 120–129.
isbn: 978-3-642-24573-2 978-3-642-24574-9. doi: 10.1007/978-3-642-24574-9_17.
url: http://link.springer.com/10.1007/978-3-642-24574-9_17 (visited on
03/28/2023).

[12] David Fernandez-Amoros et al. “A Kconfig Translation to Logic with One-Way
Validation System”. en. In: Proceedings of the 23rd International Systems and Software
Product Line Conference - Volume A. Paris France: ACM, Sept. 2019, pp. 303–308.
isbn: 978-1-4503-7138-4. doi: 10.1145/3336294.3336313. url: https://dl.acm.
org/doi/10.1145/3336294.3336313 (visited on 11/29/2022).

[13] Matthias Galster et al. “Variability in software architecture: current practice and
challenges”. en. In: ACM SIGSOFT Software Engineering Notes 36.5 (Sept. 2011),
pp. 30–32. issn: 0163-5948. doi: 10.1145/2020976.2020978. url: https://dl.acm.
org/doi/10.1145/2020976.2020978 (visited on 03/28/2023).

[14] Paul Gazzillo. The kmax tool suite. original-date: 2017-06-30T16:25:48Z. Mar. 2023.
url: https://github.com/paulgazz/kmax (visited on 03/28/2023).

[15] Stefan Hengelein. “Analyzing the Internal Consistency of the Linux KConfig Model”.
en. MA thesis. University of Erlangen, Dept. of Computer Science, July 2015. url:
https://www4.cs.fau.de/Ausarbeitung/MA-I4-2015-04-Hengelein.pdf.

[16] init-kconfig - easy way to embrace Linux’s kconfig [LWN.net]. url: https://lwn.net/
Articles/767691/ (visited on 03/28/2023).

[17] ipconfig.c « ipv4 « net - kernel/git/torvalds/linux.git - Linux kernel source tree. url:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/

tree/net/ipv4/ipconfig.c (visited on 03/29/2023).
[18] Kyo C. Kang et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study: tech.

rep. Fort Belvoir, VA: Defense Technical Information Center, Nov. 1990. doi: 10.
21236/ADA235785. url: http://www.dtic.mil/docs/citations/ADA235785 (visited
on 12/02/2022).

46

https://doi.org/10.1145/2362536.2362544
http://dl.acm.org/citation.cfm?doid=2362536.2362544
http://dl.acm.org/citation.cfm?doid=2362536.2362544
https://doi.org/10.1007/s10270-015-0472-2
http://link.springer.com/10.1007/s10270-015-0472-2
https://doi.org/10.1007/978-3-642-24574-9_17
http://link.springer.com/10.1007/978-3-642-24574-9_17
https://doi.org/10.1145/3336294.3336313
https://dl.acm.org/doi/10.1145/3336294.3336313
https://dl.acm.org/doi/10.1145/3336294.3336313
https://doi.org/10.1145/2020976.2020978
https://dl.acm.org/doi/10.1145/2020976.2020978
https://dl.acm.org/doi/10.1145/2020976.2020978
https://github.com/paulgazz/kmax
https://www4.cs.fau.de/Ausarbeitung/MA-I4-2015-04-Hengelein.pdf
https://lwn.net/Articles/767691/
https://lwn.net/Articles/767691/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/ipconfig.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/ipconfig.c
https://doi.org/10.21236/ADA235785
https://doi.org/10.21236/ADA235785
http://www.dtic.mil/docs/citations/ADA235785

[19] Christian Kästner and Sven Apel. “Feature-Oriented Software Development”. en.
In: Generative and Transformational Techniques in Software Engineering IV. Ed. by
Ralf Lämmel, João Saraiva, and Joost Visser. Vol. 7680. Series Title: Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 346–382.
isbn: 978-3-642-35991-0 978-3-642-35992-7. doi: 10.1007/978-3-642-35992-7_10.
url: http://link.springer.com/10.1007/978-3-642-35992-7_10 (visited on
03/28/2023).

[20] Kconfig « ipv4 « net - kernel/git/torvalds/linux.git - Linux kernel source tree. url:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/

tree/net/ipv4/Kconfig (visited on 03/29/2023).
[21] Kconfig Language — The Linux Kernel documentation. url: https://www.kernel.

org/doc/html/latest/kbuild/kconfig-language.html (visited on 03/28/2023).
[22] Kconfig make config — The Linux Kernel documentation. url: https://www.kernel.

org/doc/html/latest/kbuild/kconfig.html#menuconfig (visited on 03/28/2023).
[23] Sebastian Krieter et al. “FeatureIDE: Empowering Third-Party Developers”. en. In:

Proceedings of the 21st International Systems and Software Product Line Conference -
Volume B. Sevilla Spain: ACM, Sept. 2017, pp. 42–45. isbn: 978-1-4503-5119-5. doi:
10.1145/3109729.3109751. url: https://dl.acm.org/doi/10.1145/3109729.
3109751 (visited on 02/20/2023).

[24] Kun Chen et al. “An approach to constructing feature models based on requirements
clustering”. In: 13th IEEE International Conference on Requirements Engineering
(RE’05). Paris, France: IEEE, 2005, pp. 31–40. isbn: 978-0-7695-2425-2. doi: 10.1109/
RE.2005.9. url: http://ieeexplore.ieee.org/document/1531025/ (visited on
12/02/2022).

[25] Thomas Leich et al. “Tool support for feature-oriented software development: fea-
tureIDE: an Eclipse-based approach”. en. In: Proceedings of the 2005 OOPSLAworkshop
on Eclipse technology eXchange - eclipse ’05. San Diego, California: ACM Press, 2005,
pp. 55–59. doi: 10.1145/1117696.1117708. url: http://portal.acm.org/citation.
cfm?doid=1117696.1117708 (visited on 03/27/2023).

[26] Jörg Liebig et al. “An analysis of the variability in forty preprocessor-based software
product lines”. en. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1. Cape Town South Africa: ACM, May 2010,
pp. 105–114. isbn: 978-1-60558-719-6. doi: 10.1145/1806799.1806819. url: https:
//dl.acm.org/doi/10.1145/1806799.1806819 (visited on 03/28/2023).

[27] Rafael Lotufo et al. “Evolution of the Linux Kernel Variability Model”. In: Software
Product Lines: Going Beyond. Ed. by David Hutchison et al. Vol. 6287. Series Title:
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 136–150. isbn: 978-3-642-15578-9 978-3-642-15579-6. doi: 10.1007/978-
3-642-15579-6_10. url: http://link.springer.com/10.1007/978-3-642-15579-
6_10 (visited on 11/29/2022).

47

https://doi.org/10.1007/978-3-642-35992-7_10
http://link.springer.com/10.1007/978-3-642-35992-7_10
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/Kconfig
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/Kconfig
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig.html#menuconfig
https://www.kernel.org/doc/html/latest/kbuild/kconfig.html#menuconfig
https://doi.org/10.1145/3109729.3109751
https://dl.acm.org/doi/10.1145/3109729.3109751
https://dl.acm.org/doi/10.1145/3109729.3109751
https://doi.org/10.1109/RE.2005.9
https://doi.org/10.1109/RE.2005.9
http://ieeexplore.ieee.org/document/1531025/
https://doi.org/10.1145/1117696.1117708
http://portal.acm.org/citation.cfm?doid=1117696.1117708
http://portal.acm.org/citation.cfm?doid=1117696.1117708
https://doi.org/10.1145/1806799.1806819
https://dl.acm.org/doi/10.1145/1806799.1806819
https://dl.acm.org/doi/10.1145/1806799.1806819
https://doi.org/10.1007/978-3-642-15579-6_10
https://doi.org/10.1007/978-3-642-15579-6_10
http://link.springer.com/10.1007/978-3-642-15579-6_10
http://link.springer.com/10.1007/978-3-642-15579-6_10

Bibliography

[28] Jeho Oh et al. “Finding broken Linux configuration specifications by statically
analyzing the Kconfig language”. en. In: Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. Athens Greece: ACM, Aug. 2021, pp. 893–905. isbn: 978-
1-4503-8562-6. doi: 10.1145/3468264.3468578. url: https://dl.acm.org/doi/10.
1145/3468264.3468578 (visited on 03/28/2023).

[29] Jeho Oh et al. “Uniform sampling from kconfig feature models”. In: The University
of Texas at Austin, Department of Computer Science, Tech. Rep. TR-19 2 (2019).

[30] parser.y « kconfig « scripts - kernel/git/torvalds/linux.git - Linux kernel source tree.
url: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
tree/scripts/kconfig/parser.y (visited on 03/29/2023).

[31] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. “Analysing the Kconfig
semantics and its analysis tools”. en. In: Proceedings of the 2015 ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences. Pitts-
burgh PA USA: ACM, Oct. 2015, pp. 45–54. isbn: 978-1-4503-3687-1. doi: 10.1145/
2814204.2814222. url: https://dl.acm.org/doi/10.1145/2814204.2814222
(visited on 11/29/2022).

[32] S. She et al. “The Variability Model of The Linux Kernel”. In: 2010. url: https://www.
semanticscholar.org/paper/The-Variability-Model-of-The-Linux-Kernel-

She-Lotufo/944f35fccdcfc5d189375812d3e7e5ae3519e603 (visited on 03/29/2023).
[33] Steven She. kconfig-g: ANTLR grammar for parsing Linux Kconfig files. July 2009.

url: https://code.google.com/archive/p/kconfig-g/ (visited on 03/30/2023).
[34] Julio Sincero and Wolfgang Schröder-Preikschat. “The Linux Kernel Configurator as

a Feature Modeling Tool”. In: Software Product Lines, 12th International Conference,
SPLC 2008, Limerick, Ireland, September 8-12, 2008, Proceedings. Second Volume (Work-
shops). Ed. by Steffen Thiel and Klaus Pohl. Lero Int. Science Centre, University of
Limerick, Ireland, 2008, pp. 257–260.

[35] Julio Sincero et al. “Efficient extraction and analysis of preprocessor-based vari-
ability”. en. In: Proceedings of the ninth international conference on Generative pro-
gramming and component engineering - GPCE ’10. Eindhoven, The Netherlands:
ACM Press, 2010, p. 33. isbn: 978-1-4503-0154-1. doi: 10.1145/1868294.1868300.
url: http://portal.acm.org/citation.cfm?doid=1868294.1868300 (visited on
12/05/2022).

[36] Julio Sincero et al. “Is The Linux Kernel a Software Product Line?” In: Proceedings of
the International Workshop on Open Source Software and Product Lines (SPLC-OSSPL
2007). Ed. by Frank van der Linden and Björn Lundell. Kyoto, Japan, 2007. url:
http://fame-dbms.org/publications/SPLC-OSSPL2007-Sincero.pdf.

[37] Reinhard Tartler et al. “Feature consistency in compile-time-configurable system
software: facing the linux 10,000 feature problem”. en. In: Proceedings of the sixth
conference on Computer systems - EuroSys ’11. Salzburg, Austria: ACM Press, 2011,
p. 47. isbn: 978-1-4503-0634-8. doi: 10.1145/1966445.1966451. url: http://portal.
acm.org/citation.cfm?doid=1966445.1966451 (visited on 12/01/2022).

48

https://doi.org/10.1145/3468264.3468578
https://dl.acm.org/doi/10.1145/3468264.3468578
https://dl.acm.org/doi/10.1145/3468264.3468578
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/kconfig/parser.y
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/kconfig/parser.y
https://doi.org/10.1145/2814204.2814222
https://doi.org/10.1145/2814204.2814222
https://dl.acm.org/doi/10.1145/2814204.2814222
https://www.semanticscholar.org/paper/The-Variability-Model-of-The-Linux-Kernel-She-Lotufo/944f35fccdcfc5d189375812d3e7e5ae3519e603
https://www.semanticscholar.org/paper/The-Variability-Model-of-The-Linux-Kernel-She-Lotufo/944f35fccdcfc5d189375812d3e7e5ae3519e603
https://www.semanticscholar.org/paper/The-Variability-Model-of-The-Linux-Kernel-She-Lotufo/944f35fccdcfc5d189375812d3e7e5ae3519e603
https://code.google.com/archive/p/kconfig-g/
https://doi.org/10.1145/1868294.1868300
http://portal.acm.org/citation.cfm?doid=1868294.1868300
http://fame-dbms.org/publications/SPLC-OSSPL2007-Sincero.pdf
https://doi.org/10.1145/1966445.1966451
http://portal.acm.org/citation.cfm?doid=1966445.1966451
http://portal.acm.org/citation.cfm?doid=1966445.1966451

[38] Thomas Thum et al. “Abstract Features in Feature Modeling”. en. In: 2011 15th
International Software Product Line Conference. Munich, Germany: IEEE, Aug. 2011,
pp. 191–200. isbn: 978-1-4577-1029-2. doi: 10.1109/SPLC.2011.53. url: http:
//ieeexplore.ieee.org/document/6030061/ (visited on 03/20/2023).

[39] Thomas Thüm et al. “FeatureIDE: An extensible framework for feature-oriented soft-
ware development”. en. In: Science of Computer Programming 79 (Jan. 2014), pp. 70–
85. issn: 01676423. doi: 10.1016/j.scico.2012.06.002. url: https://linkinghub.
elsevier.com/retrieve/pii/S0167642312001128 (visited on 12/09/2022).

[40] Kaan Berk Yaman. The Kconfig Variability Framework as a Feature Model: Sampled
Configurations for Manual Evaluation. Type: dataset. Mar. 2023. doi: 10.5281/zenodo.
7787304. url: https://zenodo.org/record/7787304 (visited on 03/31/2023).

[41] zephyrproject-rtos/zephyr. original-date: 2016-05-26T17:54:19Z.Mar. 2023.url: https:
//github.com/zephyrproject-rtos/zephyr (visited on 03/28/2023).

49

https://doi.org/10.1109/SPLC.2011.53
http://ieeexplore.ieee.org/document/6030061/
http://ieeexplore.ieee.org/document/6030061/
https://doi.org/10.1016/j.scico.2012.06.002
https://linkinghub.elsevier.com/retrieve/pii/S0167642312001128
https://linkinghub.elsevier.com/retrieve/pii/S0167642312001128
https://doi.org/10.5281/zenodo.7787304
https://doi.org/10.5281/zenodo.7787304
https://zenodo.org/record/7787304
https://github.com/zephyrproject-rtos/zephyr
https://github.com/zephyrproject-rtos/zephyr

A. Appendix

51

A. Appendix

1 config SYMBOL_A

2 bool "Config symbol A"

3

4 config SYMBOL_B

5 bool "Config symbol B"

6 depends on SYMBOL_A

7

8 config SYMBOL_C

9 bool "Config symbol C"

10 depends on SYMBOL_B

11

12 config SYMBOL_X

13 bool "Config symbol X"

14

15 config SYMBOL_Y

16 bool "Config symbol Y"

17 depends on SYMBOL_X

18 depends on SYMBOL_C

Figure 18.: Contents of Kconfig1, which was verified automatically using kmax. Kconfig1
contains a multiple dependency and a dependency chain.

52

1 config SYMBOL_A

2 bool "Config symbol A"

3

4 menu "Generic menu"

5

6 config SYMBOL_X

7 bool "Config symbol X"

8

9 choice CHOICE_B

10 bool "Choice block B"

11 depends on SYMBOL_A

12 depends on SYMBOL_X

13

14 config SYMBOL_C

15 bool "Config symbol C"

16

17 config SYMBOL_D

18 bool "Config symbol D"

19

20 endchoice

21

22 endmenu

23

24 choice CHOICE_E

25 bool "Choice block E"

26 optional

27

28 config SYMBOL_F

29 bool "Config symbol F"

30

31 config SYMBOL_G

32 bool "Config symbol G"

33 depends on SYMBOL_C

34

35 endchoice

Figure 19.: Contents of Kconfig2, which was verified automatically using kmax. Kconfig2
contains an optional and a mandatory boolean choice block, one these being
enclosed in a menu block.

53

A. Appendix

1 menu "Menu block M"

2

3 config SYMBOL_X

4 bool "Configuration symbol X"

5

6 config SYMBOL_Y

7 bool "Configuration symbol Y"

8 depends on SYMBOL_W

9

10 config SYMBOL_Z

11 bool "Configuration symbol Z"

12

13 endmenu

14

15 menuconfig SYMBOL_C

16 bool "menuconfig symbol C"

17

18 config SYMBOL_B

19 bool "Configuration symbol B"

20

21 config SYMBOL_D

22 bool "Configuration symbol D"

23 depends on SYMBOL_W

24 depends on SYMBOL_C

25

26 config SYMBOL_W

27 bool "Configuration symbol W"

Figure 20.: Contents of Kconfig3, which was verified automatically using kmax. Kconfig3
contains a menu block and a menuconfig symbol.

54

1 config SYMBOL_A

2 bool "Configuration symbol A"

3

4 config SYMBOL_X

5 bool "Configuration symbol X"

6 select SYMBOL_A

7

8 menu "Menu block M"

9

10 choice CHOICE_C

11 bool "Choice block C"

12 depends on SYMBOL_A

13

14 config SYMBOL_B

15 bool "Configuration symbol B"

16

17 config SYMBOL_D

18 bool "Configuration symbol D"

19

20 endchoice

21

22 choice CHOICE_E

23 bool "Choice block D"

24 depends on SYMBOL_X

25 optional

26

27 config SYMBOL_F

28 bool "Configuration symbol F"

29

30 config SYMBOL_G

31 bool "Configuration symbol G"

32

33 endchoice

34

35 endmenu

Figure 21.: Contents of Kconfig4, which was verified automatically using kmax. Kconfig4
contains a select dependency, two choice blocks enclosed in a menu block.

55

A. Appendix

1 config SYMBOL_A

2 bool "Configuration symbol A"

3

4 config SYMBOL_B

5 bool "Configuration symbol B"

6 depends on SYMBOL_A

7

8 menuconfig SYMBOL_C

9 bool "Menuconfig symbol C"

10 depends on SYMBOL_B

11

12 config SYMBOL_D

13 bool "Configuration symbol D"

14 depends on SYMBOL_C

15 depends on SYMBOL_F

16

17 config SYMBOL_F

18 bool "Configuration symbol F"

19

20 menuconfig SYMBOL_X

21 bool "Menuconfig symbol X"

22 depends on SYMBOL_C

23

24 config SYMBOL_Y

25 bool "Menuconfig symbol Y"

26 depends on SYMBOL_X

Figure 22.: Contents of Kconfig5, which was verified automatically using kmax. Kcon-
fig5 contains a longer dependency chain, multiple dependencies on a single
configuration symbol and a menuconfig symbol.

Figure 23.: This feature model was generated by Kfeature for Kconfig1.

56

Figure 24.: This feature model was generated by Kfeature for Kconfig2.

Figure 25.: This feature model was generated by Kfeature for Kconfig3.

Figure 26.: This feature model was generated by Kfeature for Kconfig4.

57

A. Appendix

Figure 27.: This feature model was generated by Kfeature for Kconfig5.

1 config SYMBOL_A

2 tristate "Configuration symbol A"

3

4 config SYMBOL_B

5 tristate "Configuration symbol B"

6 depends on SYMBOL_A

7 depends on SYMBOL_C

8

9 config SYMBOL_C

10 bool "Configuration symbol C"

11

12 config SYMBOL_D

13 bool "Configuration symbol D"

14 depends on SYMBOL_B

Figure 28.: Contents of Kconfig6, which was verified manually through sampling. Kconfig6
contains a mixed-type multiple dependency, tristate and boolean configuration
symbols.

58

Number of sampled configuration Solutions Non-solutions Validity rate
64 (of 64) 12 52 64/64

Figure 29.: This feature model was generated by Kfeature for Kconfig6. The given table
contains the results of the verification of the sampled configurations. We
have decided to widen the sample pool for this Kconfig file so that all possible
configurations were considered whilst evaluation.

59

A. Appendix

1 config SYMBOL_A

2 tristate "Configuration symbol A"

3

4 choice CHOICE_C

5 tristate "Choice block C"

6 depends on SYMBOL_A

7 optional

8

9 config SYMBOL_B

10 tristate "Configuration symbol B"

11 select SYMBOL_Y

12

13 config SYMBOL_C

14 tristate "Configuration symbol C"

15 depends on SYMBOL_X

16

17 endchoice

18

19 config SYMBOL_Y

20 bool "Configuration symbol Y"

21

22 config SYMBOL_X

23 tristate "Configuration symbol X"

24

25 choice CHOICE_D

26 bool "Choice block C"

27 depends on SYMBOL_Y

28

29 config SYMBOL_E

30 bool "Configuration symbol E"

31

32 config SYMBOL_F

33 bool "Configuration symbol F"

34

35 endchoice

Figure 30.: Contents of Kconfig7, which was verified manually through sampling. Kconfig7
contains a tristate choice block and a boolean choice block.

60

Number of sampled configuration Solutions Non-solutions Validity rate
60 (of 2048) 30 30 60/60

Figure 31.: This feature model was generated by Kfeature for Kconfig7. The given table
contains the results of the verification of the sampled configurations.

1 config SYMBOL_A

2 tristate "Configuration symbol A"

3 depends on SYMBOL_X

4

5 menu "Menu block M"

6

7 config SYMBOL_B

8 tristate "Configuration symbol B"

9 depends on SYMBOL_A

10

11 config SYMBOL_C

12 tristate "Configuration symbol C"

13

14 config SYMBOL_D

15 tristate "Configuration symbol D"

16 depends on SYMBOL_C

17

18 endmenu

19

20 menuconfig SYMBOL_X

21 bool "Menuconfig symbol X"

Figure 32.: Contents of Kconfig8, which was verified manually through sampling. Kconfig8
contains a menu block, multiple tristate configuration symbols and a mixed-
type dependency.

61

A. Appendix

Number of sampled configuration Solutions Non-solutions Validity rate
60 (of 512) 30 30 60/60

Figure 33.: This feature model was generated by Kfeature for Kconfig8. The given table
contains the results of the verification of the sampled configurations.

62

1 config SYMBOL_A

2 bool "Configuration symbol A"

3

4 menu "Menu block M"

5 depends on SYMBOL_A

6

7 config SYMBOL_B

8 tristate "Configuration symbol B"

9

10 choice CHOICE_C

11 bool "Choice block C"

12 depends on SYMBOL_B

13

14 config SYMBOL_D

15 bool "Configuration symbol D"

16

17 config SYMBOL_E

18 bool "Configuration symbol E"

19

20 endchoice

21

22 endmenu

23

24 choice CHOICE_S

25 tristate "Choice block S"

26

27 config SYMBOL_F

28 tristate "Configuration symbol F"

29

30 config SYMBOL_G

31 tristate "Configuration symbol G"

32

33 endchoice

34

35 config SYMBOL_W

36 bool "Configuration symbol W"

37 select SYMBOL_A

38

39 menuconfig SYMBOL_Y

40 bool "Configuration symbol Y"

41

42 config SYMBOL_X

43 tristate "Configuration symbol X"

44 depends on SYMBOL_W

45 depends on SYMBOL_Y

46 depends on SYMBOL_F

Figure 34.: Contents of Kconfig9, which was verified manually through sampling. Kconfig9
contains a menu block, two choice blocks, a menuconfig configuration symbol
and multiple mixed-type dependencies.

63

A. Appendix

Number of sampled configuration Solutions Non-solutions Validity rate
60 (of 8192) 30 30 60/60

Figure 35.: This feature model was generated by Kfeature for Kconfig9. The given table
contains the results of the verification of the sampled configurations.

64

	Abstract
	Zusammenfassung
	Introduction
	Foundations
	Kconfig
	Feature-oriented programming

	Related Work
	Tools that transform Kconfig files
	Feature-oriented programming and Kconfig

	Concept
	Scope of the transformations
	Transformation rules
	Boolean symbols
	Tristate symbols
	Mixed-type dependencies
	Reverse dependencies
	Choice blocks
	Menus

	Implementation
	Implementation details
	Challenges during implementation

	Evaluation
	Methods of evaluation
	Human readability of the created feature models
	Converting feature model configurations to Kconfig configurations
	Results
	Interpretation
	Threats to validity
	External validity
	Internal validity

	Conclusion
	Benefits
	Future Work

	Bibliography
	Appendix

