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Abstract

Self-supervised learning, which is strikingly referred to as the dark matter of intelligence,
is gaining more attention in biomedical applications of deep learning. In this work, we
introduce a novel self-supervision objective for the analysis of cells in biomedical
microscopy images. We propose training deep learning models to pseudo-colorize
masked cells. We use a physics-informed pseudo-spectral colormap that is well suited for
colorizing cell topology. Our experiments reveal that approximating semantic
segmentation by pseudo-colorization is beneficial for subsequent fine-tuning on cell
detection. Inspired by the recent success of masked image modeling, we additionally
mask out cell parts and train to reconstruct these parts to further enrich the learned
representations. We compare our pre-training method with self-supervised frameworks
including contrastive learning (SimCLR), masked autoencoders (MAEs), and
edge-based self-supervision. We build upon our previous work and train hybrid models
for cell detection, which contain both convolutional and vision transformer modules.
Our pre-training method can outperform SimCLR, MAE-like masked image modeling,
and edge-based self-supervision when pre-training on a diverse set of six fluorescence
microscopy datasets. Code is available at:
https://github.com/roydenwa/pseudo-colorize-masked-cells

Introduction

The ambitious goal of deep learning research is to develop intelligent generalist models
that can solve a wide variety of tasks. Supervised learning with massive amounts of
labeled data does not scale to the complexity of this goal. In self-supervised learning,
however, supervisory signals are generated from unlabeled data, making it more
scalable. Therefore, self-supervised learning, which is strikingly referred to as the dark
matter of intelligence [1], is gaining more attention in many applications of deep
learning. Especially in biomedical applications, where labeling data often requires
support of trained experts, self-supervised learning can accelerate research progress and
reduce costs [2]. In this work, we introduce a novel self-supervision objective for the
analysis of cells in biomedical microscopy images. In contrast to recent methods for
self-supervised learning on cell images (e.g., [3], [4]), we do not use contrastive
learning [5], but propose a unique self-supervision objective tailored to cell images. We
propose training deep learning models to pseudo-colorize masked cells. We use a
physics-informed pseudo-spectral colormap that is well suited for colorizing cell topology.
Compared to a spectral colormap, the used colormap has a higher color variance for low
intensity levels. Therefore, this pseudo-spectral colormap can better highlight cell nuclei
and their surroundings in areas of low intensity and low contrast in microscopy images.
Inspired by the recent success of masked image modeling (e.g., [6], [7]), we additionally
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mask out cell parts to increase the complexity of the objective and further enrich the
learned representations. Furthermore, we build upon our previous work [8] and train
hybrid models for cell detection, which contain both convolutional and vision
transformer modules. The convolutional modules are used to capture local information,
while the vision transformer modules are used to capture global information. Overall,
the contributions of our work are twofold:

1. We propose a novel self-supervision objective for the analysis of biomedical cell
images that combines pseudo-colorizing and masked image modeling.

2. We use a recent deep learning model for cell detection, which contains both
convolutional and vision transformer modules, to evaluate the proposed
self-supervision objective.

Related work

Self-supervised learning on biomedical cell images. Ciga et al. [3] and Perakis et
al. [4] use contrastive learning and build upon SimCLR [9] to train deep learning models
in a self-supervised manner on cell images. In contrastive learning for visual
representations, the learning objective is to maximize agreement between two different
augmented views of a single sample, while using the remaining samples in a batch as
negative examples. Experiments show that large batch sizes and correspondingly huge
datasets and computational resources are needed to maximize performance (e.g., a
batch size of 32k for SimCLR on ImageNet). Dmitrenko et al. [10] show that a small
convolutional autoencoder (only 190k parameters) trained on cell images can
outperform much larger general purpose pre-trained models (e.g., ViT-B/8 [11], 85M
parameters) on classifying drug effects. This demonstrates the potential of
autoencoding as pre-training on cell images. However, recent work on autoencoders
(e.g., [6], [12]) suggests that masking parts of the input further enriches the learned
representations. Kobayashi et al. [13] propose protein identification as self-supervision
objective for pre-training on biomedical cell images. While being well tailored to cell
images, this approach requires basic annotations of protein IDs. Dawoud et al. [14] use
edge detection as self-supervision objective to pre-train deep learning models for cell
segmentation. Edge detection is closely related to accurate segmentation of cell borders,
but is a fairly simple task which could lead to less expressive learned features.
Colorizing as self-supervision objective. Zhang et al. [15] convert natural color
images to grayscale and use the recolorization to the CIE lab color space as
self-supervision objective. Vondrick et al. [16] leverage the temporal coherency of color
in natural videos to learn colorizing following frames based on a reference frame. Both
approaches are promising for natural images or videos, but exploit color-related features
that are not present in biomedical grayscale microscopy images.

Materials and methods

Pseudo-colorize masked cells as self-supervision objective

Autoencoders [17] are classical deep learning models for self-supervised representation
learning. During training an autoencoder learns to map its input to a latent
representation and to reconstruct the input from the latent representation. The general
architecture of an autoencoder contains a contracting part called encoder and an
expanding part for reconstruction called decoder. Popular applications include
compression, where the learned latent representation is smaller than the input, or
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denoising [18], where input signals are corrupted by noise and uncorrupted signals are
reconstructed. In this work, we use a new form of autoencoding by training to
reconstruct pseudo-colorized versions of input images. Specifically, we train deep
learning models to pseudo-colorize cell images as self-supervised pre-training for cell
detection. As previously shown [10], basic autoencoding of cell images can improve the
performance on downstream tasks such as drug effect classification. We argue that
reconstruting a pseudo-colorized version is more difficult than reconstructing the
original input image. Thus, it can lead to more expressive learned features and further
improve the performance on downstream tasks. Fig 1 (a) shows pseudo-colorized cell
images and the characteristics of the used colormaps. We are using colormaps provided
by the matplotlib library [19]. The grayscale plots of the colormaps are generated by
computing the perceived brightness BP from RGB values using the HSP color
system [20], as follows:

BP =
√
0.299R2 + 0.587G2 + 0.114B2 (1)

We select four colormaps from different colormap categories to cover a wide range of
colormaps in the following. The rainbow colormap is a physics-informed spectral
colormap based on the visible spectrum of light. The lowest intensity levels are mapped
to violette, the highest intensity levels to red. The perceived brightness gradually
decreases from medium intensity levels towards low and high intensity levels. The
seismic colormap is a monotonically diverging colormap composed of two colors, blue
and red. The perceived brightness rapidly decreases from medium intensity levels
towards low and high intensity levels. The nipy spectral colormap is a
physics-informed pseudo-spectral color map that extends spectral colormaps by
prepending black for low intensity levels and appending gray for high intensity levels.
Therefore, this colormap has a higher color variance than spectral colormaps.
Furthermore, the color transitions in the colormap are sharper than in spectral
colormaps. This is further expressed in a less uniform perceived brightness. viridis is
a perceptually uniform sequential colormap composed of violette, blue, green, and
yellow. It contains smooth color transitions and the perceived brightness is gradually
increasing from low intensity levels towards high intensity levels.

We propose to choose colormaps for pseudo-color autoencoding, where the generated
color channels approximately match the semantics of the data. We hypothesise that
approximating semantic segmentation by pseudo-colorization is beneficial for
self-supervised pre-training on images. For data such as fluorescence microscopy images,
where semantics are closely related to grayscale intensity levels, spectral or
pseudo-spectral colormaps are suitable. Such colormaps map low intensities primarily to
bluish colors, medium intensities to greenish colors and high intensities to reddish colors.
Thus, the intensity levels are roughly divided into the three color channels in the RGB
scheme and semantic segmentation is approximated. As shown in Fig 1 (a), the
semantic cell mask covers primarily areas of low intensity. Therefore, the
pseudo-spectral nipy spetral colormap, which has a higher color variance for such
intensity levels, can better highlight cells in this context than the spectral rainbow
colormap. In detail, cell bodies are primarily colorized in violette, which maps to the
blue and red RGB channels, and cell nuclei are primarily colorized in blue and green.

Recent work on autoencoding as pre-training on images (e.g., [6], [7], [12]), suggests
that masked image modeling can lead to more expressive learned features than the
classical reconstruction objective. In masked image modeling, images are divided into
non-overlapping patches and during pre-training these patches are randomly masked
out. Thereby, the objective for an autoencoder becomes to reconstruct seen and unseen
parts of an image. The idea is that during pre-training an autoencoder builds up
internal representations for certain object classes and learns to leverage these to
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reconstruct masked image parts. Masked autoencoder (MAE) [6] is an autoencoder
model with an encoder and decoder based on the vision transformer architecture [21].
Therefore, images of size 224× 224 pixels are divided into non-overlapping 16× 16 pixel
patches. For an image size of 384× 384 pixels, this corresponds approximately to a
patch size of 27× 27 pixels. During pre-training, 75% of these patches are randomly
masked out. We argue that such a masking scheme is primarily designed for data where
the objective is to identify one concept per image and not to localize multiple objects
within an image. As shown in Fig 1 (b), the MAE-like masking would mask out a large
number of cells in a Fluo-N2DH-SIM+ microscopy image. Therefore, an autoencoder
can not use partially visible cell parts as clues to reconstruct adjacent masked patches,
but rather has to learn a representation for all cells combined in an image to reconstruct
masked patches. In Fig 1, the MAE-like masking is therefore applied to a
Fluo-C3DH-A549-SIM microscopy image, which only contains one cell. We argue that
learning to leverage local or semi-local visual clues is beneficial for downstream tasks
such as object detection or segmentation. Thus, we propose an alternate masking
scheme for cell detection. Our padded masking scheme is composed of smaller patches
(12× 12 pixels for an image size of 384× 384 pixels) and all patches are padded with a
padding size of 1/4 of the patch width. This surrounds all patches with a non-masked
area and prevents large connected masked areas, which could mask out whole cells. The
patches are masked out randomly with a probability of 50% using a discrete uniform
distribution U{0, 1} to choose the common pixel value of a patch. Considering the
non-masked padding areas the overall mean masking ratio becomes 33.3̄%. In the
following we combine the pseudo-color autoencoding with masked inputs and thus train
deep learning models to pseudo-colorize masked cells.

Microscopy image 

Semantic mask nipy_spectral

rainbow seismic

viridis

MAE mask Padded mask

Fluo-C3DH-A549-SIM

Masked image 

Fluo-N2DH-SIM+

Masked image

(a) (b)

Input

Target

Output

(c)
Fig 1. (a) Pseudo-colorization of fluorescence microscopy images and the corresponding colormaps. (b) Masking schemes
and masked fluorescence microscopy images. MAE [6] masks cover 75% of images, whereas our proposed padded masks
contain smaller patches and cover 33%. Image areas masked by our padded masking scheme are highlighted in white here to
enhance their visibility. During pre-training, these areas are set to zero. (c) Proposed pre-training objective: Pseudo-colorize
masked cells.
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Model architecture

The comparison of vision transformers (ViTs) [21] and convolutional neural networks
(CNNs) [22] in computer vision applications reveals that their receptive fields are
fundamentally different [23]. The receptive fields of ViTs capture local and global
information in both earlier and later layers. The receptive fields of CNNs, on the other
hand, initially capture local information and gradually grow to capture global
information in later layers. Therefore, we use MobileViT blocks [24] in the neck part of
our proposed model to enhance global information compared to a fully convolutional
neck part. Fig 2 (a) shows the proposed model architecture.

We represent cells by their centroid, their width, and their height. Our model
contains two fully convolutional heads to predict these cell properties. The first head
predicts a heatmap for cell centroids, and the second head predicts the cell dimensions
(width and height) at the position of the corresponding cell centroid. The heatmaps for
cell centroids are generated by first creating a semantic map where cells are
approximated by ellipses. Afterwards, we smooth each cell ellipse using a normalized
box filter with a kernel size k that is scaled to the corresponding cell height h and width
w:

k = (w//1.5, h//1.5), (2)

where // represents integer division. Cell height and width are encoded in rectangles
sized to 50% of the corresponding cell dimensions. These rectangles contain height and
width values scaled relative to the input image size of 384× 384 pixels.

384 x 384

Backbone Neck

Conv2D
MobileViT

block
Bilinear

upsampling
Layer 

normalization

Heads

384 x 384 x 2

384 x 384 x 1

(a) (b)

x

y
z

as stack of 2D slices
Fluo-C3DL-MDA231

z - 1

z

z + 1

Z x

Input
ContextBlock

ViT
...

EfficientNet

or

Patches

Input
image

Fig 2. (a) CellCentroidFormer model. Backbone: Five blocks of an EfficientNetV2S [25] or a vision transformer (ViT).
Neck: MobileViT blocks and convolutional layers. Heads: Fully convolutional upsampling blocks. (b) Adjacent z-slices as
input for the ContextBlock.

Prepended ContextBlock

The ContextBlock is a proposed extension to our CellCentroidFormer model. It serves
two purposes: first, to encode spatial context from adjacent slices when analyzing 3D
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inputs slice-wise. Second, to provide our model with a unified input form of 3 views for
2D and 3D input data to jointly train on both types of datasets. As previously shown
(e.g., [26], [27]), using tripletts of adjacent slices when analyzing 3D microscopy images
of cells slice-wise can improve cell detection and segmentation. Fig 2 (b) shows how we
decompose a 3D microscopy images into tripletts of adjacent slices. In the
ContextBlock, highlevel features are first extracted from adjacent slices S using
convolutional layers. These features are then merged with the current slice using a
multiply-accumulate operation to generate a context tensor Tcontext with three channels.

Tcontext(z) =

σ(Conv1x1(Conv3x3(S(z − 1))) · S(z) + S(z))
S(z)

σ(Conv1x1(Conv3x3(S(z + 1))) · S(z) + S(z))

 , (3)

where Conv3x3 and Conv1x1 represent 2D convolutional layers with kernel sizes of
3× 3 and 1× 1 and σ represents a sigmoid activation function. A Conv3x3 layer with
10 filters is used to detect high-level features, afterwards these features are fused along
the depth axis using a Conv1x1 layer with one filter. We merge context from the
previous slice S(z − 1) in the first channel, the second channel contains the current slice
S(z), and context from the next slice S(z + 1) is merged in the third channel. In this
way, context from adjacent slices can be highlighted, but the focus remains on the
current slice. In general, prepending the ContextBlock is a learned 2.5D approach for
3D data. For 2D data, additional features are extracted and 3 unique views of input
images are generated.

Decoding predictions

When decoding predictions, we first generate a binary map Eblob that contains elliptical
blobs by applying a threshold on the centroid heatmap Hcentroid, as follows:

Eblob(x, y) = Hcentroid(x, y) > 0.75 (4)

Afterwards, we compute the image moments M per blob and derive the corresponding
centroid position C using:

C{x, y} =

{
M10

M00
,
M01

M00

}
(5)

These centroid positions are then used to lookup the corresponding cell dimensions in
the predicted cell height and cell width maps. In this work, we use the classic bounding
box format of top left corner plus height and width as output.

Results

Datasets

We use publicly available datasets from the Cell Tracking Challenge [28] to evaluate our
proposed method. In the first set of experiments, we are using the Fluo-N2DH-SIM+
dataset [29], which contains fluorescence microscopy images of simulated nuclei of HL60
cells. Fig 1 shows an example image of this dataset. In the second set of experiments,
we combine the Fluo-N2DH-SIM+ with the Fluo-C3DH-A549-SIM [30], the
Fluo-C2DL-Huh7 [31], the Fluo-C3DL-MDA231, the Fluo-N2DH-GOWT1 [32], and the
Fluo-C2DL-MSC datasets for pre-training. The Fluo-C3DH-A549-SIM contains 3D
fluorescence microscopy images of simulated GFP-actin-stained A549 lung cancer cells.
The Fluo-C2DL-Huh7 dataset contains 2D fluorescence microscopy images of human
hepatocarcinoma-derived cells expressing the fusion protein YFP-TIA-1. The
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Fluo-C3DL-MDA231 dataset contains 3D fluorescence microscopy images of human
breast carcinoma cells infected with a pMSCV vector including the GFP sequence,
which are embedded in a collagen matrix. The Fluo-N2DH-GOWT1 dataset contains
2D fluorescence microscopy images of GFP-GOWT1 mouse stem cells. The
Fluo-C2DL-MSC dataset contains 2D fluorescence microscopy images of rat
mesenchymal stem cells on a flat polyacrylamide substrate. Fig 3 shows example images
for all used datasets (2D slices for 3D datasets), in the order in which they are listed
here. As pre-processing, we apply a median filter with a kernel size of 3 and perform
min-max scaling. During training, we use the Fluo-N2DH-SIM+ and
Fluo-C3DH-A549-SIM datasets that provide panoptic segmentation masks as ground
truth, which we convert to bounding box annotations for cells.

N2DH-SIM+ A549-SIM Huh7 MDA231 GOWT1 MSC

Fig 3. Fluorescence microscopy datasets used for pre-training

Comparing autoencoding schemes including pseudo-colorization
and masking as pre-training on cell images

In this set of experiments, we are comparing different autoencoding schemes as
pre-training for cell detection. We perform two types of training procedures, fine-tuning
and head evaluation. For fine-tuning, we pre-train the models using different
autoencoding schemes and afterwards allow all model parameters to adapt to the
downstream task during training. For head evaluation, we pre-train the models using
different autoencoding schemes and afterwards freeze the weights in the backbone and
neck part of our model during training. Therefore, only the heads are adapting to the
downstream task, which corresponds to 17% of the total model parameters.

Dataset. As dataset, we are using the training split of the Fluo-N2DH-SIM+
dataset. We perform geometric data augmentations such as elastic, perspective, shift,
scale, and rotation transformations to increase the dataset size to 2150 samples. 80% of
the resulting dataset are used for training and 20% for testing. The used dataset is
rather small and we are comparing similar autoencoding schemes in this set of
experiments. Therefore, we perform data augmentations beforehand instead of
randomly and on-the-fly during training to train all models with the exact same
samples and allow a fair comparison.

Evaluation metrics. As evaluation metrics, we use the structural similarity score
(SSIM) [33], the mean intersection-over-union metric (mIoU), and bounding box average
precision metrics (AP). The structural similarity score measures the similarity of two
matrices or grayscale images and is used to measure the reconstruction quality during
pre-training. For pseudo-colorized images we compute the SSIM score per color channel
and average them. We do not use weight-sharing, but train both heads separately
during pre-training. Therefore, we report the mean SSIM score of both model heads.
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The metric is defined as follows:

SSIM(x1, x2) =
(2µx1

µx2
+ (0.01L)2)(2σx1x2

+ (0.03L)2)

(µ2
x1

+ µ2
x2

+ (0.01L)2)(σ2
x1

+ σ2
x2

+ (0.03L)2)
(6)

For two inputs, the mean µ, the variance σ, and the dynamic range L are computed.
The mIoU metric is used to evaluate the centroid heatmap predictions. Matching our
decoding procedure in Equation 4, we apply a threshold to the predicted and ground
truth heatmap before computing the mIoU score. The metric is defined as:

mIoU =
1

C

∑
C

TPC

TPC + FPC + FNC
(7)

For the two class labels C, background and cell centroid blobs, the true positive (TP),
false positive (FP), and false negative (FN) pixels are computed. The bounding box AP
metrics are computed using the pycocotools software library, we refer to the COCO
dataset [34] for more details.

Experimental setup. During pre-training, Adam [35] with its standard
configuration is used as optimizer, the initial learning rate is set to 10−4, and reduced
on plateaus by a factor of 10 to a minimum learning rate of 10−6. As pre-training loss,
we are computing the pixel-wise mean squared error (MSE) between the reconstructed
and the original microscopy images. All autoencoding schemes including
pseudo-colorization are pre-trained for 75 epochs, whereas the basic autoencoding
without pseudo-colorization is pre-trained for 50 epochs since it converges faster.
Therefore, the basic autoencoding scheme has a lower relative total training time Trel

than the remaining autoencoding schemes. During training, the same optimizer
configuration and learning rate scheduling are used. As training loss, three Huber loss
functions [36] are used, one loss function per output (heatmap, height, and width).

LHuber(y, ŷ) =

{
1
2 (y − ŷ)2 if y − ŷ ≤ 1.0,

(y − ŷ)− 1
2 else

(8)

The total loss is computed by a weighted sum of the three loss values:

Ltotal = Lheatmap +
1

2
· Lheight +

1

2
· Lwidth (9)

All models are trained for 50 epochs to detect cells. All training runs are completed
three times, Table 1 shows the mean and standard deviation for all considered metrics.

Results. Basic autoencoding without pseudo-colorization yields the highest SSIM
scores during pre-training, autoencoding using the viridis and seismic colormaps
yields the second highest SSIM scores. This shows that these pre-training objectives are
simpler than the remaining ones and therefore easier to learn. More difficult to learn
seems autoencoding using the spectral rainbow colormap and most difficult are the two
variations with and without masking using the pseudo-spectral nipy spectral

colormap. For all autoencoding schemes, the standard deviation from the SSIM score
are low, showing that both model heads learn the objectives similarly well. In the
fine-tuning training procedure, all autoencoding schemes achieve at least 10% higher
values in all metrics than the baseline model trained from scratch. This demonstrates
that autoencoding is generally an effective form of pre-training for this type of data. All
cells in the Fluo-N3DH-SIM+ dataset fall into the small and medium large object
categories with respect to COCO AP metrics. In general, medium sized cells are better
detected, which is shown by higher AP scores. The basic autoencoding achieves on
average about 2% lower AP scores than the very similar performing autoencoding
schemes with the rainbow, viridis, and seismic colormaps. The two autoencoding
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Table 1. Comparing autoencoding schemes including pseudo-colorization and masking as pre-training on cell
images.

Pre-training Training

Colormap Masking SSIMheads
test Fds APtest AP50

test APsmall
test APmedium

test mIoUheatmap
train T rel

- - - 100% 31.37 (1.27) 71.93 (0.90) 27.43 (1.08) 44.37 (2.06) 82.78 (0.82) 1.0

Fine-tuning:

- - 0.9212 (0.0009) 100% 38.93 (2.60) 78.87 (2.20) 34.17 (2.40) 54.33 (3.25) 90.02 (2.04) 1.9
rainbow - 0.8392 (0.0003) 100% 40.60 (1.97) 79.77 (1.00) 35.53 (1.81) 56.53 (2.65) 89.79 (1.27) 2.3
viridis - 0.8790 (0.0087) 100% 40.70 (1.22) 80.03 (0.85) 35.97 (1.10) 56.07 (1.37) 91.21 (0.11) 2.3
seismic - 0.9020 (0.0035) 100% 40.33 (0.49) 79.80 (0.35) 35.73 (0.40) 55.13 (1.46) 90.41 (0.68) 2.3
nipy spectral - 0.6302 (0.0004) 100% 43.10 (1.51) 81.63 (0.90) 38.07 (1.02) 58.93 (2.93) 90.95 (0.50) 2.3
nipy spectral ✓ 0.6861 (0.0004) 100% 43.43 (1.90) 81.90 (1.61) 38.40 (2.15) 59.27 (1.30) 91.30 (0.55) 2.3

Head evaluation:

- - 0.9212 (0.0009) 100% 22.30 (2.69) 58.50 (4.77) 19.30 (2.60) 32.67 (2.57) 69.74 (0.86) 1.6
nipy spectral - 0.6302 (0.0004) 100% 30.87 (4.74) 69.40 (4.42) 27.30 (3.81) 43.00 (6.81) 73.41 (0.69) 2.1
nipy spectral ✓ 0.6861 (0.0004) 100% 32.57 (1.88) 70.17 (2.77) 28.30 (1.66) 47.17 (2.33) 74.06 (0.34) 2.1

Head evaluation with smaller training dataset:

- - 0.9212 (0.0009) 20% 9.45 (2.25) 30.02 (5.91) 7.00 (1.76) 18.65 (3.39) 66.69 (0.83) 1.1
nipy spectral - 0.6302 (0.0004) 20% 16.80 (2.77) 49.07 (5.00) 14.57 (2.36) 24.97 (4.26) 72.29 (0.62) 1.5
nipy spectral ✓ 0.6861 (0.0004) 20% 15.88 (3.47) 44.65 (7.92) 13.28 (3.08) 25.78 (5.02) 70.77 (1.17) 1.5

As baseline, the first row shows a model trained from scratch with random weight initialization. Masking refers to our
proposed padded masking scheme. Best scores per training procedure are bold, second best scores are underlined.

schemes with the nipy spectral colormap achieve AP scores that are about another
2.5% higher. When comparing these two autoencoding schemes, the autoencoding
scheme that uses the proposed padded masking in addition to the nipy spectral

colormap achieves AP values that are consistently about 0.3% higher and thus performs
best. The mIoU scores, which are achieved during training, are close to each other in
this training procedure and within a range of 1.5%. In the following head evaluation
procedure, the two previously best performing autoencoding schemes are compared with
the basic autoencoding scheme. According to the significantly lower number of
parameters, which can adapt to the downstream task, the performance drops
significantly. On average, 10 to 20% lower AP scores are achieved. The performance
differences between the three autoencoding schemes are comparable to those from the
previous procedure. Therefore, the autoencoding scheme using the combination of
nipy spectral colormap and padded masking again performs best. This autoencoding
scheme is also the only one that outperforms the differently trained baseline model with
this training procedure. We increase the difficulty further by reducing the fraction of
the training dataset Fds used to 20%. With this setup, the achieved AP scores are
approximately halved. The two autoencoding schemes with the nipy spectral

colormap outperform the basic autoencoding again, whereas the autoencoding scheme
with the nipy spectral colormap but without masking performs best in this setup. We
hypothesize that the task switch from pure pseudo-colorization to cell detection is easier
and therefore can be learned better with fewer training samples. The additional
masking arguably enhances the learned representations, leading to better performance
in the previous experimental setups. However, the associated reconstruction of masked
image parts differs more than the pure pseudo-colorization from cell detection using
centroid representations.

August 29, 2023 9/14



Comparing self-supervised pre-training methods on cell images

In this set of experiments, we are comparing our proposed pre-training objective,
pseudo-colorizing masked cells (PMC), with recent methods for self-supervised
pre-training on cell images. Following [3], we pre-train our model using the contrastive
learning framework SimCLR. In addition, we compare our method with edge-based
self-supervision (EdgeSSV) [14] and pure masked image modeling with the masking
scheme of masked autoencoders (MAE) [6]. The performance comparison is performed
with backbone evaluation as training procedure. For this, the weights in the backbone
are frozen after the pre-training, so that only the neck part and the two heads of our
model adapt to the downstream task of cell detection.

Experimental setup. As described in the datasets Section, we pre-train with a
diverse set of 6 fluorescence microscopy datasets. Subsequent training to evaluate
performance is performed on the Fluo-C3DH-A549-SIM and the Fluo-N2DH-SIM+
datasets. The pre-training of all methods is performed for 75 epochs, the subsequent
training for 50 epochs. During pre-training and training, we use the same optimizer
setup and learning rate schedule as in Section 4.2 for all methods. During pre-training,
we randomly perform geometric data augmentations on-the-fly such as flip, rotation,
and crop transformations. An exception is the pre-training of SimCLR, where color
affine transformations are performed in addition to geometric augmentations, as
specified in the framework [9]. For color affine transformations, the prepended
ContextBlock in our model and the corresponding input tenors with 3 channels
additionally serve as adapters to apply such transformations to grayscale images. For
SimCLR, we restrict the extent of the geometric augmentations, since the datasets used
were created from time-lapse microscopy videos. In these videos, cells move only
moderately between frames, so that successive frames are very similar. For contrastive
learning, this means that strong geometric augmentations would lead to two differently
augmented views of the same frame being more different from each other than from
surrounding frames. However, since all frames except the two views of the same frame
are used as negative samples in contrastive learning, we limit the extent of geometric
transformations to only slight rotations (+/- 10°) and cropping to a minimum of 90% of
the original size. For SimCLR-pre-training, we replace the two model heads by one
projection head with three fully connected layers, which have 256, 128, and 64 nodes.
For the remaining methods, the architecture of our CellCentroidFormer model is not
changed, only the top-layer is switched according to the output format between
pre-training and training. On the Fluo-N2DH-SIM+ dataset, we additionally fine-tune
a version of our method with a ViT backbone (PMC-ViT). We use a ViT-B/8 model
with a patch size of 8× 8 pixels and combine our pseudo-colorizing objective with
vanilla MAE-like masked autoencoding as pre-training. All training runs are performed
three times, we report mean and standard deviation in Table 2.

Results. As expected, all methods perform better on the Fluo-C3DH-A549-SIM
dataset than on the Fluo-N2DH-SIM+ dataset. The Fluo-C3DH-A549-SIM dataset
contains 3D data but only one cell is visible per frame. Furthermore, this dataset does
not contain small cells, accordingly we can not compare APsmall

test scores. The cells in this
3D dataset have an ellipsoidal shape, therefore their size in 2D slices decreases from the
center of the volume to the border. Accordingly, the detection in 2D slices from the
center of the volume is evaluated with the APlarge

test metric, and towards the border with
the APmedium

test metric. In the inner 2D slices, cells are detected more accurately by all
methods. On the Fluo-N2DH-SIM+ dataset, medium sized cells are detected more
accurately than small cells by all methods. On both datasets, SimCLR performs worst
overall, which can be explained by the fact that the similarity between individual frames
in time-lapse videos makes training for SimCLR more challenging. MAE-like masking
performs significantly worse on the Fluo-N2DH-SIM+ dataset than on the

August 29, 2023 10/14



Table 2. Comparing self-supervised pre-training methods on cell images.

Pre-training method Det. dataset APtest AP50
test APsmall

test APmedium
test APlarge

test mIoUheatmap
train

SimCLR A549-SIM 24.40 (2.69) 75.50 (0.99) - (-) 24.20 (2.12) 27.10 (3.25) 71.33 (1.21)
MAE-like A549-SIM 57.43 (2.23) 86.13 (1.75) - (-) 49.83 (2.71) 71.30 (2.75) 94.30 (1.08)
EdgeSSV A549-SIM 55.70 (3.11) 87.35 (2.90) - (-) 47.10 (3.25) 70.40 (2.97) 93.04 (0.15)
PMC (Ours) A549-SIM 57.70 (3.54) 87.90 (1.41) - (-) 51.80 (2.97) 70.00 (3.11) 93.08 (0.80)

SimCLR N2DH-SIM+ 24.10 (0.99) 60.55 (1.06) 20.10 (0.99) 37.45 (0.92) - (-) 68.10 (1.72)
MAE-like N2DH-SIM+ 27.25 (1.34) 66.55 (1.63) 23.40 (1.13) 39.85 (1.77) - (-) 84.78 (1.44)
EdgeSSV N2DH-SIM+ 31.30 (0.71) 72.50 (1.41) 26.95 (0.64) 45.20 (0.57) - (-) 86.23 (1.29)
PMC (Ours) N2DH-SIM+ 33.75 (0.64) 73.10 (0.57) 28.90 (0.85) 49.25 (0.64) - (-) 85.15 (1.06)
PMC-ViT (Ours) N2DH-SIM+ 51.60 (0.26) 87.07 (1.10) 46.27 (0.67) 64.37 (0.21) - (-) 78.58 (1.97)

Best scores are bold, second best scores are underlined. A549-SIM and N2DH-SIM+ refer to the Fluo-C3DH-A549-SIM and
Fluo-N2DH-SIM+ datasets.

Fluo-C3DH-A549-SIM dataset. This supports our hypothesis that this masking scheme
is better suited for data with one concept (one cell) per image. On the
Fluo-C3DH-A549-SIM dataset, MAE-like masking performs second best and yields
APtest scores within 1% of our proposed method. The EdgeSSV method achieves high
AP scores on both datasets. Overall, our proposed method achieves the highest AP
scores on both datasets. However, considering that on the Fluo-C3DH-A549-SIM
dataset the three best methods yield APtest scores within a range of 2% and the higher
standard deviation values, the performance difference is less significant for this dataset.
On the Fluo-N2DH-SSIM+ dataset, our method with a larger ViT backbone achieves
the highest AP scores. This shows that our method scales well with model size and can
be used for training larger models on small datasets. Interestingly, our method does not
achieve the highest mIoUheatmap

train scores in either dataset, which is measured on the
training data. This suggests that our method generalizes better and other methods tend
to overfit somewhat more on the training data.

Discussion

Our experiments reveal that pseudo-colorization is an effective extension to
autoencoding for pre-training on cell images. Pseudo-color autoencoding with
pseudo-spectral colormaps, which approximate the semantics of cell images, yields the
best results on fluorescence microscopy images. As recently shown for natural
images [37], the combination of standalone self-supervision objectives with masked
image modeling can also further improve performance on biomedical cell images. The
proposed unique combination of pseudo-color autoencoding and masked image modeling
for cell images can outperform several autoencoding schemes, contrastive learning, and
edge-based self-supervision. Our proposed masking scheme consists of smaller patches
and covers a much smaller area of images than the typical masking scheme of masked
autoencoders. This prevents object instances from being completely masked. We found
this to be beneficial for subsequent training on object detection in our experiments. Our
CellCentroidFormer model with a ViT backbone achieves the computational efficiency
of masked autoencoders since only unmasked patches are processed in the backbone
during pre-training. Our CellCentroidFormer model with an EfficientNet backbone has
no special mechanism to suppress the artificial edges added by masking. Nevertheless,
as shown in Fig 1 (c), no edge artifacts are visible in the reconstructions. We
hypothesize that the self-attention layers in the neck part of our model help to suppress
these edge artifacts, since self-attention can be understood as a form of generalized
spatial smoothing [38]. However, it is plausible that our method can be further
improved by using masked convolutions [12] instead of regular convolutions to suppress
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artificial edges. To this end, we show that our proposed pre-training method can
achieve good performance on small cell image datasets using an autoencoder-like model
without special architectural modifications.
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32. Bártová E, Šustáčková G, Stixová L, Kozubek S, Legartová S, Foltánková V.
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