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Abstract
We consider the normal approximation of Kabanov–Skorohod integrals on a general
Poisson space. Our bounds are for the Wasserstein and the Kolmogorov distance and
involve only difference operators of the integrand of the Kabanov–Skorohod integral.
The proofs rely on the Malliavin–Stein method and, in particular, on multiple appli-
cations of integration by parts formulae. As examples, we study some linear statistics
of point processes that can be constructed by Poisson embeddings and functionals
related to Pareto optimal points of a Poisson process.
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1 Introduction

Let η be a Poisson process on a measurable space (X,X ) with a σ -finite intensity
measureλ, defined on someprobability space (�,F , P). Formally,η is a point process,
which is a random element of the space N of all σ -finite measures on X with values
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in N0 ∪ {∞}, equipped with the smallest σ -fieldN making the mappings μ �→ μ(B)

measurable for each B ∈ X . The Poisson process η is completely independent, that
is, η(B1), . . . , η(Bn) are independent for pairwise disjoint B1, . . . , Bn ∈ X , n ∈ N,
and η(B) has for each B ∈ X a Poisson distribution with parameter λ(B), see, for
example, [7, 14].

Let G : N × X → R be a measurable function which is square integrable with
respect to Pη ⊗ λ, where Pη:=P(η ∈ ·) denotes the distribution of η. In this paper, we
study the Kabanov–Skorohod integral (short: KS-integral) ofG defined as aMalliavin
operator. IfG is in the domain of the KS-integral and integrable with respect to Pη ⊗λ,
its KS-integral is pathwise given by

δ(G) =
∫

Gx (η − δx ) η(dx) −
∫

Gx (η) λ(dx), (1.1)

where δx stands for the Dirac measure at x ∈ X, see, for example, [10, Theorem 6].
In this case, the Mecke formula immediately yields that Eδ(G) = 0. We refer to [10]
for an introduction to stochastic calculus on a general Poisson space.

The pathwise representation (1.1) of the KS-integral consists of two terms. The first
term is the sum of the values Gx (η − δx ) over the points of η. Such sums have been
intensively studied. The state of the art of limit theorems for such sums is presented
in [9], based on the idea of stabilisation. The stabilisation property means that the
functional Gx (η−δx ) depends only on points of η within some finite random distance
from x , with conditions imposed on the distribution of such a distance. As in [9], we
use recent developments of the Malliavin–Stein technique for Poisson processes, first
elaborated in [15] and then extended in [5, 8, 13, 22].

In all above-mentioned works, the sums over Poisson processes are centred by
subtracting the expectation, which is

E

∫
Gx (η − δx ) η(dx) =

∫
EGx (η) λ(dx).

In contrast, the centring involved in the pathwise construction of the KS-integral in
(1.1) is random. As shown in [12], KS-integrals naturally appear in the construction
of unbiased estimators derived from Poisson hull operators.

In this paper, we derive bounds for the Wasserstein and the Kolmogorov distance
between δ(G) and a standard normal random variable. Limit theorems for compen-
sated stochastic Poisson integrals in the Wasserstein distance have been studied in
several papers by N. Privault, assuming that X is the Euclidean space R

d with sepa-
rate treatments of the cases d = 1 in [20] and d ≥ 2 in [19]. In [20], the integrand
is assumed to be adapted, and in [19], it is assumed to be predictable and to have
bounded support. In particular, the stochastic integral coincides in both cases with the
KS-integral. Under these assumptions, the tools, based on derivation operators and
Edgeworth-type expansions, have resulted in bounds involving integrals of the third
power of G and differential operators applied to G. In comparison, our results apply
to a general state space, are not restricted to predictable (or adapted) integrands and do
not assume the support of the integrand to be bounded in any sense. Furthermore, our

123



Journal of Theoretical Probability

bounds are given in terms of difference operators directly applied to the integrand G,
and are derived for both the Wasserstein and the Kolmogorov distance. However, our
bounds contain the integral of the absolute value of G to power 3, which may be larger
than the corresponding term in [19]. Our results are used in [12] to derive quantitative
central limit theorems.

Let us compare our proof strategywith the standard approach for the normal approx-
imation of Poisson functionals via the Malliavin–Stein method, which goes back to
[15] and is also employed in [5, 8, 13, 22]. To this end, we omit all technical assump-
tions and definitions (some will be given later). Let F be a Poisson functional (a
measurable function of η), and let f be the solution of the associated Stein equation.
The identity δD = −L , where D is the difference operator and L is the Ornstein–
Uhlenbeck generator with its inverse L−1, and integration by parts lead to

EF f (F) = Eδ(−DL−1F) f (F) = E

∫
(−Dx L

−1F)Dx f (F) λ(dx).

This step comes for the price of the term Dx L−1F , which is often difficult to evaluate
and whose treatment is one of the main achievements of [13]. For the special case
F = δ(G), the identity δD = −L is not required. Instead, an immediate integration
by parts yields that

EF f (F) = Eδ(G) f (δ(G)) = E

∫
Gx Dx f (δ(G)) λ(dx), (1.2)

avoiding the inverse Ornstein–Uhlenbeck generator. We treat the KS-integrals that
arise from the Taylor expansion of Dx f (δ(G)) also by integration by parts, so that
our final bounds only involve G and its difference operators but no KS-integrals. This
is a difference to [26], where the argument in (1.2) is used but no further integration
by parts.

Even though our proofs differ from previous works, onemaywonder whether exist-
ing Malliavin–Stein bounds can be applied to δ(G). As they do not involve the inverse
Ornstein–Uhlenbeck generator, the results from [13] seem to be the best ones for the
off-the-shelf use. They require only moments of the first and the second difference
operator of the Poisson functional F , which onemight also encounter when evaluating
the bounds from [5, 8, 15, 22]. In our case, this means that one has to control moments
like E

[
G4

x

]
, E

[
δ(DxG)4

]
and E

[
δ(D2

x,yG)4
]
for x, y ∈ X. Since we aim for bounds

in terms of G and its difference operators, one has to remove the KS-integrals. This
can be achieved by fourfold integration by parts, but would lead to normal approxima-
tion bounds that are more involved than in the current paper and include even iterated
integrals with roots of the inner integrals. We expect these results to yield the same
rates of convergence as our approach but under stronger integrability assumptions.
Instead, our approach is direct and leads to much simpler calculations. In particular,
it does not require the computation of expressions involving powers of KS-integrals
apart from second moments.

Section 2 presents our main results, which are proved in Sects. 4 and 5 separately
for the Wasserstein and Kolmogorov distances, after recalling necessary results and
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constructions from stochastic calculus on Poisson spaces in Sect. 3. We conclude with
two examples in Sects. 6 and 7 concerning some linear statistics of point processes
constructed via Poisson embeddings and Pareto optimal points.

2 Main Results

To state our results, we need to introduce some notation. The Wasserstein distance
between the laws of two integrable random variables X and Y is defined by

dW (X ,Y ):= sup
h∈Lip(1)

∣∣E[h(X)] − E[h(Y )]∣∣,

where Lip(1) denotes the space of all Lipschitz functions h : R → R with a Lipschitz
constant at most one. The Kolmogorov distance between the laws of X and Y is given
by

dK (X ,Y ):= sup
t∈R

|P(X ≤ t) − P(Y ≤ t)|.

Given a function f : N → R and x ∈ X, the function Dx f : N → R is defined by

Dx f (μ):= f (μ + δx ) − f (μ), μ ∈ N. (2.1)

Then Dx is known as the difference operator. Iterating its definition yields, for given
x, z, w ∈ X, the second difference operator D2

x,z and the third difference operator
D3
x,z,w which can again be applied to functions f as above. For a functionG : N×X →

R (which maps (μ, y) to Gy(μ)) and x, z, w ∈ X, we let Dx , D2
x,z and D3

x,z,w act on
Gy(·) so that it makes sense to talk about DxGy(μ), D2

x,zGy(μ) and D3
x,z,wGy(μ).

Throughout the paper, we write shortly Gy for Gy(η) and similarly for difference
operators.

We shall require the following integrability assumptions:

E

∫
G2

y λ(dy) < ∞, (2.2)

E

∫
(DxGy)

2 λ2(d(x, y)) < ∞, (2.3)

E

∫
(D2

z,xGy)
2 λ3(d(x, y, z)) < ∞, (2.4)

E

∫
(D3

w,z,xGy)
2 λ3(d(w, y, z)) < ∞, λ -a.e. x . (2.5)
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If (2.2) and (2.3) hold, it follows from [13, Proposition 2.3] that the KS–integral δ(G)

of G is defined as a Malliavin operator and satisfies

Var δ(G) = E

∫
G2

x λ(dx) + E

∫
DxGyDyGx λ2(d(x, y)). (2.6)

In order to deal with the Kolmogorov distance, we also need to assume that

E

∫
|DxGyGx | λ2(d(x, y)) < ∞, (2.7)

E

∫ (
Dz(Gx |Gx |)

)2
λ2(d(x, z)) < ∞, (2.8)

E

∫ (∫
Dz(DxGyDy |Gx |) λ(dy)

)2

λ2(d(x, z)) < ∞. (2.9)

The following main result on the normal approximation of δ(G) involves only the
integrand G and its first-, second- and third-order difference operators. Throughout
the paper, we let N denote a standard normal random variable. Define and denote

T1:=
(

E

∫ (∫
Dy(G

2
x ) λ(dx)

)2

λ(dy)

)1/2

,

T2:=
(

E

∫ (∫
Dz(DxGyDyGx ) λ2(d(x, y))

)2

λ(dz)

)1/2

,

T3:=E

∫
|Gx |3 λ(dx),

T4:=E

∫ (
3
∣∣DxGyDyGxGx

∣∣ + ∣∣DxGy(DyGx )
2
∣∣ + 2G2

x

∣∣DxGy
∣∣

+ ∣∣(Gx + DyGx )DxGy
∣∣(2|Gy | + |DxGy + DyGx |

))
λ2(d(x, y)),

T5:=E

∫ (
2
(|DyGz | + |D2

x,yGz |
)(|Dz

(
(Gx + DyGx )DxGy

)| + 2|(Gx + DyGx )DxGy |
)

+ |DxGz |
(
|Dz

(
DyGx DxGy

)| + 2|DyGx DxGy |
))

λ3(d(x, y, z)),

T6:=
(

E

∫ (∫
(Gx + DyGx )DxGy λ(dx)

)2

λ(dy)

+ E

∫ (∫
Dz

(
(Gx + DyGx )DxGy

)
λ(dx)

)2

λ2(d(y, z))

)1/2

,

T7:=
(

E

∫
G4

x λ(dx) + E

∫
Dx (Gy |Gy |)Dy(Gx |Gx |) λ2(d(x, y))

)1/2

,

T8:=
(

E

∫ (∫
DxGyDy |Gx | λ(dy)

)2

λ(dx)

+ E

∫
Dx

( ∫
DzGyDy |Gz | λ(dy)

)
Dz

( ∫
DxGyDy |Gx |λ(dy)

)
λ2(d(x, z))

)1/2

,
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T9:=
(
3E

∫
(DxGy)

2(Dy |Gx | + |Gx |
)2

λ2(d(x, y))

+ 3E
∫ (

Dz
(
DxGy(Dy |Gx | + |Gx |)

))2
λ3(d(x, y, z))

+ 2E

∫ (
D2
z,w

(
DxGy(Dy |Gx | + |Gx |)

))2
λ4(d(x, y, z, w))

)1/2

.

Theorem 2.1 Suppose that G : N × X → R satisfies assumptions (2.2), (2.3), (2.4)
and (2.5). Assume also that Eδ(G)2 = 1. Then

dW (δ(G), N ) ≤ T1 + T2 + T3 + T4 + T5. (2.10)

If, additionally, (2.7), (2.8) and (2.9) are satisfied, then

dK (δ(G), N ) ≤ T1 + T2 + T6 + 2(T7 + T8 + T9). (2.11)

We say that the functional G satisfies the cyclic condition of order two if

DxGyDyGx = 0 a.s. for λ2 -a.e. (x, y) ∈ X
2, (2.12)

see [18], where such conditions were used to simplify moment formulae for the KS-
integral. Note that (2.12) always holds if the functional G is predictable, that is, the
carrier space is equipped with a strict partial order ≺ and Gy(η) depends only on η

restricted to {x ∈ X : x ≺ y}. If (2.12) holds, then also

Dx |Gy |Dy |Gx | = 0 and DxGyDy |Gx | = 0 a.s. for λ2 -a.e. (x, y) ∈ X
2,

since

0 ≤ ∣∣Dx |Gy |Dy |Gx |
∣∣ = ∣∣Dx |Gy |

∣∣∣∣Dy |Gx |
∣∣ ≤ |DxGy |

∣∣Dy |Gx |
∣∣ ≤ |DxGy ||DyGx |

= 0.

In view of this, under the cyclic condition, the bounds from Theorem 2.1 simplify as
follows.
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Corollary 2.2 Assume that the cyclic condition (2.12) holds, and the assumptions of
Theorem2.1aremaintained. Then the bounds (2.10)and (2.11)holdwith T2 = T8 = 0,
and

T4 = E

∫ (
2G2

x |DxGy | + ∣∣Gx DxGy
∣∣(2|Gy | + |DxGy |

))
λ2(d(x, y)),

T5 = E

∫
2
(
|DyGz | + |D2

x,yGz |
)(∣∣Dz(Gx DxGy)

∣∣ + 2|Gx DxGy |
)

λ3(d(x, y, z)),

T6 =
(

E

∫ ( ∫
Gx DxGy λ(dx)

)2

λ(dy) + E

∫ ( ∫
Dz

(
Gx DxGy

)
λ(dx)

)2

λ2(d(y, z))

)1/2

,

T7 =
(

E

∫
G4

x λ(dx)

)1/2

,

T9 =
(
3E

∫
(DxGy)

2G2
x λ2(d(x, y)) + 3E

∫ (
Dz(DxGy |Gx |)

)2
λ3(d(x, y, z))

+ 2E

∫ (
D2
z,w(DxGy |Gx |)

)2
λ4(d(x, y, z, w))

)1/2

.

Remark 2.3 Assuming that Gx (η) ≡ f (x) does not depend on η and that f ∈ L2(λ),
δ(G) is the first Wiener–Itô integral I1( f ) of f (see, for example, [14, Chapter 12]).
In this case, Theorem 2.1 yields the classical Stein bounds for the Wasserstein and the
Kolmogorov distance,

dW (I1( f ), N ) ≤
∫

| f (x)|3 λ(dx)

and

dK (I1( f ), N ) ≤ 2

( ∫
f (x)4 λ(dx)

)1/2

,

see, for example, [15, Corollary 3.4] and [13, Example 1.3].

Remark 2.4 The paper [26] studies normal and Poisson approximation of innovations
of general point processes with Papangelou conditional intensities, which include
KS-integrals on the Poisson space. More precisely, Theorem 3.1 and Corollary 3.2
in [26] (with π = 1 there) provide bounds on the Wasserstein distance between a
KS-integral and a standard normal random variable. In contrast to our main results,
the bound in Theorem 3.1 from [26] contains still KS-integrals as integration by parts
is employed only once. Proceeding there with further integrations by parts might be
challenging since one of the KS-integrals is within an absolute value. The bound on
the Wasserstein distance presented in Theorem 3.1 is evaluated in Corollary 3.2, but
the resulting bound might not always behave as desired for a limit theorem. The first
term on the right-hand side can be bounded from below by

∣∣∣∣1 − E

∫
G2

x λ(dx)

∣∣∣∣,
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which does not become small if the KS-integral has variance one and the second term
in (2.6) has a non-vanishing contribution (see Example 6.5 for such a situation). The
third term contains only a product of two factors, which could be not sufficient if one
rescales by the standard deviation of the KS-integral (see, for example, the situation
discussed in Remarks 6.1 and 6.4 under the additional assumptions that u is constant
and ϕ is translation invariant in its first argument).

Remark 2.5 In view of the works [16, 23], we expect that our results can be extended
to the multivariate normal approximation of vectors of KS-integrals for distances
based on smooth test functions and for the so-called dconvex-distance under suitable
assumptions.

3 Preliminaries

In this section, we provide some basic properties of the difference operator D and the
KS-integral δ. First of all, we recall from [10] the definitions of D and δ asMalliavin
operators. These definitions are based on nth-order Wiener–Itô integrals In , n ∈ N;
see also [14, Chapter 12]. For symmetric functions f ∈ L2(λn) and g ∈ L2(λm) with
n,m ∈ N, we have

EIn( f )Im(g) = 1{n = m}n!
∫

f (x)g(x) λn(dx). (3.1)

We use the convention I0(c) = c for c ∈ R. Any H ∈ L2(Pη) admits a chaos
expansion

H =
∞∑
n=0

In(hn), (3.2)

where we recall our (somewhat sloppy) convention H ≡ H(η), and where h0 = EH
and the hn , n ∈ N, are symmetric elements of L2(λn). Here and in the following, we
mean by series of Wiener–Itô integrals their L2-limit, whence all identities involving
such sums hold almost surely. Then H is in the domain dom D of the difference
operator D (in the sense of a Malliavin operator) if

∞∑
n=1

nn!
∫

hn(x1, . . . , xn)
2 λn(d(x1, . . . , xn)) < ∞.

In this case, one has

Dx H =
∞∑
n=1

nIn−1(hn(x, ·)), λ -a.e. x ∈ X,
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see [10, Theorem 3], i.e. the pathwise defined difference operator from (2.1) can be
represented in terms of the chaos expansion (3.2). For H ∈ L2(Pη), the relations
H ∈ dom D and

E

∫
(Dx H)2 λ(dx) < ∞

are equivalent; see [10, Eq. (48)]. The (pathwise defined) difference operator satisfies
the product rule

Dx (HH ′) = (Dx H)(H + Dx H
′) + HDx H

′, x ∈ X, (3.3)

for measurable H , H ′ : N → R.
Now letG : N×X → R be ameasurable function such thatGx ≡ G(·, x) ∈ L2(Pη)

for λ-a.e. x . Then there exist measurable functions gn : X
n+1 → R, n ∈ N0, such that

Gx =
∞∑
n=0

In(gn(x, ·)), λ -a.e.x ∈ X. (3.4)

One says that G is in the domain dom δ of the KS-integral δ if

∞∑
n=0

(n + 1)!
∫

g̃n(x)2 λn+1(dx) < ∞,

where g̃n : X
n+1 → R is the symmetrisation of gn . In this case, the KS-integral of G

is defined by

δ(G):=
∞∑
n=0

In+1(g̃n). (3.5)

We have Eδ(G) = 0. If G ∈ dom δ ∩ L1(Pη ⊗ λ), then δ(G) is indeed given by the
pathwise formula (1.1); see [10, Theorem 6]. If G ∈ L2(Pη ⊗ λ), which is (2.2), and
if (2.3) holds, then G ∈ dom δ and

Eδ(G)2 = E

∫
G2

x λ(dx) + E

∫
DxGyDyGx λ2(d(x, y)), (3.6)

see [13, Proposition 2.3] or [10, Theorem 5]. Thus, assumptions (2.2) and (2.3) on G
in Theorem 2.1 are sufficient to guarantee that G ∈ dom δ.

For H ∈ dom D and G ∈ dom δ, we have the important integration by parts
formula

EHδ(G) = E

∫
Gx Dx H λ(dx); (3.7)
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see, for example, [10, Theorem 4]. Unfortunately, the assumption H ∈ dom D is
often not easy to check, and the sufficient conditions given above lead to rather strong
integrability assumptions. Instead we shall often use the following two results.

Lemma 3.1 Suppose that G satisfies (2.2) and (2.3), and let H ∈ L2(Pη) be such that
Dx H ∈ L2(Pη) for λ-a.e. x. Then

∫
|EDx HGx | λ(dx) < ∞ (3.8)

and (3.7) holds.

Proof The proof is essentially that of Lemma 2.3 in [22]. For the convenience of the
reader, we provide the main arguments. Since H ∈ L2(Pη), we can represent H as in
(3.2). Similarly, we can write

Dx H =
∞∑
n=0

In(h
′
n(x, ·)), λ-a.e. x,

where themeasurable functions h′
n : X

n+1 → R are in the last n coordinates symmetric
and square integrable with respect to λn . In fact, it follows from [14, Theorem 18.10]
that we can choose

h′
n(x, x) = (n + 1)hn+1(x, x).

Combining this with (3.4) and (3.1), we obtain

EDx HGx =
∞∑
n=0

(n + 1)!
∫

hn+1(x, x)gn(x, x) λn(dx)

for λ-a.e. x . The Cauchy–Schwarz inequality (applied twice) yields

∫
|EDx HGx | λ(dx)

≤
( ∞∑

n=0

(n + 1)!
∫

hn+1(x)2 λn+1(dx)
)1/2( ∞∑

n=0

(n + 1)!
∫

gn(x)2 λn+1(dx)
)1/2

.

Since EH2 < ∞, the first factor on the above right-hand side is finite. By assumption
(2.3), the second factor is finite as well; see the proof of [10, Theorem 5]. Hence, (3.8)
holds. The remainder of the proof is as in [22]. ��
Lemma 3.2 Suppose that G satisfies (2.2) and (2.3), and let H : N → R be a measur-
able function satisfying

E|Hδ(G)| < ∞. (3.9)
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Then

|EHδ(G)| ≤ E

∫
|Dx HGx | λ(dx). (3.10)

Proof If H is bounded, then (3.10) follows from Lemma 3.1. In the general case, we
set Hr :=max{min{H , r}),−r} for r > 0. Then (3.10) holds with Hr instead of H .
Hence, the observation that |Dx Hr | ≤ |Dx H | for x ∈ X (see [14, Exercise 18.4])
yields that

|EHrδ(G)| ≤ E

∫
|Dx HGx | λ(dx).

By (3.9), we can conclude the assertion from dominated convergence. ��
We often need the following (basically) well-known commutation rule for the

KS-integral. For the pathwise defined version (1.1), this rule follows (under suitable
integrability assumptions) by direct calculation.

Lemma 3.3 Suppose that G satisfies (2.2), (2.3) and (2.4). Then δ(G) ∈ dom D and
DxG ∈ dom δ for λ-a.e. x as well as

Dxδ(G) = Gx + δ(DxG) a.s., λ -a.e. x ∈ X. (3.11)

Proof We have already noticed at (3.6) that (2.2) and (2.3) imply G ∈ dom δ. Next we
show that δ(G) ∈ dom D. Assumptions (2.2) and (2.3) ensure that Gx ∈ dom D for
λ-a.e. x . Representing G as in (3.4) and using [10, Theorem 3] twice, we can write

D2
y,zGx =

∞∑
n=0

(n + 2)(n + 1)In(gn+2(x, y, z, ·)), λ2 -a.e. (y, z) ∈ X
2.

By the L2-convergence of the right-hand side and (3.1), we obtain

E

∫
(D2

y,zGx )
2 λ3(d(x, y, z))

=
∞∑
n=0

(n + 2)2(n + 1)2n!
∫∫

gn+2(x, y, z, x)2 λn(dx) λ3(d(x, y, z))

=
∞∑
n=0

(n + 2)(n + 1)(n + 2)!
∫

gn+2(x)2 λn+3(dx).

By assumption (2.4), this is finite, which is equivalent to

∞∑
n=2

n(n − 1)n!
∫

gn(x)2 λn+1(dx) < ∞.
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In view of (3.5) and the inequalities

∫
g̃n(x)2 λn+1(dx) ≤

∫
gn(x)2 λn+1(dx)

(a consequence of Jensen’s inequality), this yields that δ(G) ∈ dom D.
Let G ′ be another measurable function satisfying (2.2) and (2.3). It follows from

(3.6) and the polarisation identity that

Eδ(G)δ(G ′) = E

∫
GxG

′
x λ(dx) + E

∫
DxGyDyG

′
x λ2(d(x, y)). (3.12)

The integration by parts formula (3.7) yields that

Eδ(G)δ(G ′) = E

∫
G ′

x Dxδ(G) λ(dx).

Assumptions (2.3) and (2.4) show that DxG ∈ dom δ for λ-almost all x and that
δ(D·G) belongs to L2(P ⊗ λ) (see (3.6) and the discussion before it). Therefore, we
obtain from Fubini’s theorem and integration by parts that

E

∫∫
DxGyDyG

′
x λ(dy) λ(dx) = E

∫
G ′

xδ(DxG) λ(dx),

where we could apply Fubini’s theorem on the left-hand side due to (2.3) and on the
right-hand side by the Cauchy–Schwarz inequality and the square integrability of G ′
and δ(D·G). Inserting these two results into (3.12) yields

E

∫
G ′

x Dxδ(G) λ(dx) = E

∫
G ′

xGx λ(dx) + E

∫
G ′

xδ(DxG) λ(dx).

Since the class of functions G ′ with the required properties is dense in L2(Pη ⊗ λ)

(see, for example, the proof of [10, Theorem 5]), we conclude the asserted formula
(3.11). ��

4 Proof for theWasserstein Distance in Theorem 2.1

Our proof is similar to the proofs of Theorems 1.1 and 1.2 in [13] and relies on the
ideas already present in [15]. The first step is to recall Stein’s method. Let C1,2 be the
set of all twice continuously differentiable functions g : R → R whose first derivative
is bounded in absolute value by 1 and the second derivative by 2. Then we have for an
integrable random variable X that

dW (X , N ) ≤ sup
g∈C1,2

|E[g′(X) − Xg(X)]|.
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Let the function G satisfy the assumptions of Theorem 2.1 and write X :=δ(G). By
the definition of the KS-integral we can write X ≡ X(η) as a measurable function of
η. Let g ∈ C1,2. Then we have for λ-a.e. x ∈ X and a.s. that

Dxg(X) = g(X(η + δx )) − g(X(η)) = g(X + Dx X) − g(X). (4.1)

Since g is Lipschitz (by the boundedness of its first derivative) and X ∈ dom D
by Lemma 3.3, it follows that |Dxg(X)| ≤ |Dx X |, so that Dg(X) (considered as a
function on N × X) is square integrable with respect to Pη ⊗ λ. Since, moreover, it is
clear that g(X) is square integrable, we have in particular that g(X) ∈ dom D. The
integration by parts formula (3.7) yields that

EXg(X) = E

∫
Gx Dxg(X) λ(dx). (4.2)

Since G ∈ L2(Pη ⊗ λ) and X ∈ dom D, we obtain from the Lipschitz continuity of
g and the Cauchy–Schwarz inequality that

E

∫
|Gx Dxg(X)| λ(dx) ≤ E

∫
|Gx ||Dx X | λ(dx) < ∞. (4.3)

We have that

Dxg(X) = g(X + Dx X) − g(X) =
∫ X+Dx X

X
g′(t) dt

= Dx X
∫ 1

0
g′(X + sDx X) ds.

Our assumptions on G allow to apply the commutation rule (3.11) to Dx X , yielding
a.s. and for λ-a.e. x that

Gx Dxg(X) = Gx Dx X
∫ 1

0
g′(X + sDx X) ds

=
∫ 1

0
Gx (Gx + δ(DxG))g′(X + sDx X) ds

=
∫ 1

0
G2

x g
′(X + sDx X) ds +

∫ 1

0
Gxδ(DxG)g′(X + sDx X) ds

=: S1(x) + S2(x).

In view of |g′| ≤ 1, (3.11), (2.2) and (4.3), we can note that

E

∫ ∫ 1

0
|Gxδ(DxG)g′(X + sDx X)| ds λ(dx) ≤ E

∫
|Gx |(|Dx X | + |Gx |) λ(dx)

< ∞. (4.4)
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We obtain

|E[g′(X) − Xg(X)]| ≤
∣∣∣∣Eg′(X)

(
1 −

∫
G2

x λ(dx) −
∫

DxGyDyGx λ2(d(x, y))

)∣∣∣∣
+

∣∣∣∣E
∫ (

g′(X)G2
x − S1(x)

)
λ(dx)

∣∣∣∣
+

∣∣∣∣Eg′(X)

∫
DxGyDyGx λ2(d(x, y)) − E

∫
S2(x) λ(dx)

∣∣∣∣
=: U0 +U1 +U2.

Since Eδ(G)2 = 1, Jensen’s inequality and (3.6) yield that

U0 ≤ E

∣∣∣1 −
∫

G2
x λ(dx) −

∫
DxGyDyGx λ2(d(x, y))

∣∣∣

≤
(

Var
∫

G2
x λ(dx)

)1/2

+
(

Var
∫

DxGyDyGx λ2(d(x, y))

)1/2

.

It follows from the Poincaré inequality (see [14, Section 18.3]) that

Var
∫

G2
x λ(dx) ≤ E

∫ ( ∫
Dy(G

2
x ) λ(dx)

)2

λ(dy) = T 2
1

and

Var
∫

DxGyDyGx λ2(d(x, y)) ≤ E

∫ ( ∫
Dz

(
DxGyDyGx

)
λ2(d(x, y))

)2

λ(dz)

= T 2
2 ,

whence

U0 ≤ T1 + T2. (4.5)

We now turn to U1. We note first that, by |g′| ≤ 1 and (2.2),

E

∫ ∫ 1

0
G2

x

∣∣g′(X) − g′(X + sDx X)
∣∣ ds λ(dx) < ∞.

Because of

g′(X + sDx X) − g′(X) = sDx X
∫ 1

0
g′′(X + st Dx X) dt =: Dx XH(s, x) (4.6)
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for x ∈ X and s ∈ [0, 1], we have that

U1 =
∣∣∣∣E

∫ ∫ 1

0
G2

x (g
′(X + sDx X) − g′(X)) ds λ(dx)

∣∣∣∣
=

∣∣∣∣E
∫ ∫ 1

0
G2

x Dx XH(s, x) ds λ(dx)

∣∣∣∣
≤

∣∣∣∣E
∫ ∫ 1

0
G2

xGx H(s, x) ds λ(dx)

∣∣∣∣
+

∣∣∣∣E
∫ ∫ 1

0
G2

xδ(DxG)H(s, x) ds λ(dx)

∣∣∣∣, (4.7)

where we have used the commutation rule (3.11) in the last step. To justify the linearity
of the integration, we can assume without loss of generality that

T3 = E

∫
|Gx |3 λ(dx) < ∞

and use that |g′′| ≤ 2. The latter inequality yields that |H(s, x)| ≤ 2s and

∣∣∣∣E
∫ ∫ 1

0
G2

xGx H(s, x) ds λ(dx)

∣∣∣∣ ≤ E

∫ ∫ 1

0
|Gx |3|H(s, x)| ds λ(dx) ≤ T3.

To treat the term (4.7), we first use |δ(DxG)| ≤ |Dx X | + |Gx | for x ∈ X (see (3.11)),
(4.6) and the preceding integrability properties to conclude that

E

∫ ∫ 1

0
G2

x |δ(DxG)H(s, x)| ds λ(dx)

≤ E

∫ ∫ 1

0
|Gx |3|H(s, x)| ds λ(dx) + E

∫ ∫ 1

0
G2

x |Dx XH(s, x)| ds λ(dx)

= E

∫ ∫ 1

0
|Gx |3|H(s, x)| ds λ(dx) + E

∫ ∫ 1

0
G2

x |g′(X) − g′(X + sDx X)| ds λ(dx) < ∞.

(4.8)

Therefore, we obtain from Fubini’s theorem that

U1 ≤ T3 +
∫ ∫ 1

0
|EG2

xδ(DxG)H(s, x)| ds λ(dx).

The expectation on the above right-hand side can be bounded with Lemma 3.2 applied
to H :=G2

x H(s, x) and with DxG instead of G (justified by (2.3), (2.4), and (4.8)).
This gives

U1 ≤ T3 +
∫ ∫ 1

0
E|DxGy |

∣∣Dy
(
G2

x H(s, x)
)∣∣ ds λ2(d(x, y))

≤ T3 + E

∫
|DxGy |(|Dy(G

2
x )| + 2G2

x ) λ2(d(x, y)),
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where we used (3.3), |DyH(s, x) + H(s, x)| ≤ 2s, and |DyH(s, x)| ≤ 4s.

Now we turn to the term U2. Define Rx :=
∫ 1
0 g′(X + sDx X) ds, x ∈ X. By the

integrability property (4.4) and Fubini’s theorem,

E

∫
S2(x) λ(dx) =

∫
Eδ(DxG)Gx Rx λ(dx).

ByLemma3.1,whose assumptions are satisfied forλ-a.e. x by (2.2)–(2.4) and |g′| ≤ 1,
and the product rule (3.3),

E

∫
S2(x) λ(dx) =

∫ ∫
EDxGyDy(Gx Rx ) λ(dy) λ(dx)

=
∫ ∫

(EDxGyDyGx Rx + EDxGy(Gx + DyGx )DyRx ) λ(dy) λ(dx),

so that

U2 ≤
∫ ∣∣∣∣EDyGx DxGy

∫ 1

0

(
g′(X + sDx X) − g′(X)

)
ds

∣∣∣∣ λ2(d(x, y))

+
∫ ∣∣∣∣EDxGy(Gx + DyGx )Dy

( ∫ 1

0
g′(X + sDx X) ds

)∣∣∣∣ λ2(d(x, y))

=: U2,1 +U2,2.

Here, the expectations exist for λ2-a.e. (x, y) because of |g′| ≤ 1, (2.2) and (2.3). In
view of the definition of T4, we can assume without loss of generality that

E

∫
|DyGx DxGyGx | λ2(d(x, y)) < ∞. (4.9)

The commutation rule (3.11) leads to

U2,1 =
∫ ∣∣∣∣EDyGx DxGyDx X

∫ 1

0

∫ 1

0
sg′′(X + st Dx X) ds dt

∣∣∣∣ λ2(d(x, y))

≤
∫ ∣∣∣∣EDyGx DxGyGx

∫ 1

0

∫ 1

0
sg′′(X + st Dx X) ds dt

∣∣∣∣ λ2(d(x, y))

+
∫ ∣∣∣∣EDyGx DxGyδ(DxG)

∫ 1

0

∫ 1

0
sg′′(X + st Dx X) ds dt

∣∣∣∣ λ2(d(x, y)).

The following computation as well as (2.3) and (2.4) allow us to apply Lemma 3.2
to the second term on the right-hand side. From the commutation rule (3.11), the
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boundedness of g′ and g′′, (4.9) and (2.3), we obtain

∫
E

∣∣∣∣DyGx DxGyδ(DxG)

∫ 1

0

∫ 1

0
sg′′(X + st Dx X) ds dt

∣∣∣∣ λ2(d(x, y))

≤
∫

E|DyGx DxGyGx | λ2(d(x, y))

+
∫

E

∣∣∣∣DyGx DxGyDx X
∫ 1

0

∫ 1

0
sg′′(X + st Dx X) ds dt

∣∣∣∣ λ2(d(x, y))

≤
∫

E|DyGx DxGyGx | λ2(d(x, y))

+
∫

E

∣∣∣∣DyGx DxGy

∫ 1

0
(g′(X + sDx X) − g′(X)) ds

∣∣∣∣ λ2(d(x, y)) < ∞.

Thus, we derive from Lemma 3.2 and |g′′| ≤ 2 that

U2,1 ≤ E

∫
|DyGx DxGyGx | λ2(d(x, y))

+
∫ ∫

E

∣∣∣∣DxGzDz

(
DyGx DxGy

∫ 1

0

∫ 1

0
sg′′(X + st Dx X) ds dt

)∣∣∣∣ λ(dz) λ2(d(x, y))

≤ E

∫
|DyGx DxGyGx | λ2(d(x, y))

+ E

∫
|DxGz |

(|Dz
(
DyGx DxGy

)| + 2|DyGx DxGy |
)
λ3(d(x, y, z)),

where we used (3.3) in the last step. Similarly as in (4.1), we derive

Dy

(∫ 1

0
g′(X + sDx X) ds

)

=
∫ 1

0
(g′(X + sDx X + DyX + sD2

x,y X) − g′(X + sDx X)) ds

=
∫ 1

0

∫ 1

0
(DyX + sD2

x,y X)g′′(X + sDx X + t(DyX + sD2
x,y X)) dt ds

=
∫ 1

0
(DyX + sD2

x,y X)R(s, x, y) ds (4.10)

for x, y ∈ X with

R(s, x, y):=
∫ 1

0
g′′(X + sDx X + t(DyX + sD2

x,y X)) dt .

By assumptions (2.2)-(2.5), we can use the commutation rule (3.11) twice to obtain
that

D2
x,y X = Dy(Dxδ(G)) = Dy(Gx + δ(DxG)) = DyGx + DxGy + δ(D2

x,yG)
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a.s. and for λ2-a.e. (x, y), while DyX = Gy +δ(DyG) a.s. and for λ-a.e. y. Therefore,
(4.10) equals

∫ 1

0
(Gy + δ(DyG) + s(DxGy + DyGx + δ(D2

x,yG)))R(s, x, y) ds.

For s ∈ [0, 1], one has
∣∣(Gy + δ(DyG) + s(DxGy + DyGx + δ(D2

x,yG)))R(s, x, y)
∣∣

= ∣∣(DyX + sD2
x,y X)R(s, x, y)

∣∣
=

∣∣∣∣
∫ 1

0
(DyX + sD2

x,y X)g′′(X + sDx X + t(DyX + sD2
x,y X)) dt

∣∣∣∣
= ∣∣g′(X + sDx X + DyX + sD2

x,y X) − g′(X + sDx X)
∣∣ ≤ 2,

(4.11)

whence

∣∣∣∣
∫ 1

0
(δ(DyG) + sδ(D2

x,yG))R(s, x, y) ds

∣∣∣∣
≤ 2 +

∣∣∣∣
∫ 1

0
(Gy + s(DxGy + DyGx ))R(s, x, y) ds

∣∣∣∣.

Since |R(s, x, y)| ≤ 2,

∣∣∣∣
∫ 1

0
(Gy + s(DxGy + DyGx ))R(s, x, y) ds

∣∣∣∣ ≤ 2|Gy | + |DxGy + DyGx |.

Because of the assumption T4 < ∞, this yields

∫ ∣∣∣∣EDxGy(Gx + DyGx )

∫ 1

0
(Gy + s(DxGy + DyGx ))R(s, x, y) ds

∣∣∣∣ λ2(d(x, y))

≤
∫

E|DxGy(Gx + DyGx )|(2|Gy | + |DxGy + DyGx |) λ2(d(x, y)) < ∞.

Together with (2.2) and (2.3), we deduce from (4.11) that

E

∫ 1

0

∣∣DxGy(Gx + DyGx )(δ(DyG) + sδ(D2
x,yG))R(s, x, y)

∣∣ ds
≤ E|DxGy(Gx + DyGx )|(2 + 2|Gy | + |DxGy + DyGx |) < ∞ (4.12)
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for λ2-a.e. (x, y). Hence, we have shown that

U2,2 ≤ E

∫ ∣∣(Gx + DyGx )DxGy
∣∣(2|Gy | + |DxGy + DyGx |) λ2(d(x, y))

+
∫ 1

0

∫ ∣∣E(Gx + DyGx )DxGyδ(DyG + sD2
x,yG)R(s, x, y)

∣∣ λ2(d(x, y)) ds.

By Lemma 3.2, which can be applied due to (4.12), the second term on the right-hand
side can be further bounded by

∫ 1

0

∫ ∣∣E(DyGz + sD2
x,yGz)Dz((Gx + DyGx )DxGy R(s, x, y))

∣∣ λ3(d(x, y, z)) ds

≤ 2E

∫
(|DyGz | + |D2

x,yGz |)
(|Dz

(
(Gx + DyGx )DxGy

)| + 2|(Gx + DyGx )DxGy |
)

× λ3(d(x, y, z)).

Combining the previous bounds, we see that

U1 +U2 ≤E

∫
|Gx |3 λ(dx) + E

∫ (
2|DxGyDyGxGx | + |DxGy(DyGx )

2| + 2G2
x |DxGy |

+ ∣∣(Gx + DyGx )DxGy
∣∣(2|Gy | + |DxGy + DyGx |)

+ |DyGx DxGyGx |
)
λ2(d(x, y))

+ E

∫
2(|DyGz | + |D2

x,yGz |)
(|Dz

(
(Gx + DyGx )DxGy

)|
+ 2|(Gx + DyGx )DxGy |

)
+ |DxGz |

(|Dz
(
DyGx DxGy

)| + 2|DyGx DxGy |
)
λ3(d(x, y, z))

=T3 + T4 + T5,

which together with (4.5) completes the proof.

5 Proof for the Kolmogorov Distance in Theorem 2.1

We prepare the proof of the second part of Theorem 2.1 by two lemmas. Since we
consider iterated KS-integrals in the following, we indicate the integration variable as
a subscript, i.e. write δx to denote the KS-integral with respect to x .

Lemma 5.1 Let h : N × X
2 → R be measurable and such that

E

∫
h(x, y)2 λ2(d(x, y)) + E

∫
(Dzh(x, y))2 λ3(d(x, y, z))

+E

∫
(D2

z,wh(x, y))2 λ4(d(x, y, z, w)) < ∞. (5.1)
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(i) Then, δx (δy(h(x, y))) is well defined and

E
[
δx (δy(h(x, y)))2

] ≤ 3E
∫

h(x, y)2 λ2(d(x, y))

+3E
∫ (

Dzh(x, y)
)2

λ3(d(x, y, z))

+2E

∫ (
D2

w,zh(x, y)
)2

λ4(d(x, y, z, w)).

(ii) If H ∈ L2(Pη) is such that Dx H ∈ L2(Pη) for λ-a.e. x, D2
x,y H ∈ L2(Pη) for

λ2-a.e. (x, y) and

E

∫
|D2

x,y Hh(x, y)| λ2(d(x, y)) < ∞, (5.2)

then

E

∫
D2
x,y Hh(x, y) λ2(d(x, y)) = E

[
δx (δy(h(x, y)))H

]
.

Proof First, let us assume that all KS-integrals arewell defined. By applying iteratively
[13, Corollary 2.4] and (3.11), we have

E
[
δx (δy(h(x, y)))2

]

≤ E

∫
δy(h(x, y))2 λ(dx) + E

∫
(Dzδy(h(x, y)))2 λ2(d(x, z))

≤ E

∫
δy(h(x, y))2 λ(dx) + 2E

∫
h(x, z)2 λ2(d(x, z)) + 2E

∫
δy(Dzh(x, y))2 λ2(d(x, z))

≤ E

∫
h(x, y)2 λ2(d(x, y)) + E

∫ (
Dzh(x, y)

)2
λ3(d(x, y, z)) + 2E

∫
h(x, z)2 λ2(d(x, z))

+ 2E

∫ (
Dzh(x, y)

)2
λ3(d(x, y, z)) + 2E

∫ (
D2

w,zh(x, y)
)2

λ4(d(x, y, z, w))

= 3E
∫

h(x, y)2 λ2(d(x, y)) + 3E
∫ (

Dzh(x, y)
)2

λ3(d(x, y, z))

+ 2E

∫ (
D2

w,zh(x, y)
)2

λ4(d(x, y, z, w)).

Since, by (5.1), the right-hand side is finite, all involved KS-integrals are well defined
by [13, Proposition 2.3].

Because of (5.2) and Fubini’s theorem, we have

J :=E

∫
D2
x,y Hh(x, y) λ2(d(x, y)) =

∫ ∫
ED2

x,y Hh(x, y) λ(dy) λ(dx).
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For λ-a.e. x , our assumptions imply Dx H ∈ L2(Pη), D2
x,y H ∈ L2(Pη) for λ-a.e. y as

well as

E

∫
h(x, y)2 λ(dy) < ∞ and E

∫
(Dzh(x, y))2 λ2(d(y, z)) < ∞.

Thus, it follows from Lemma 3.1 that

J =
∫

EDx Hδy(h(x, y)) λ(dx).

Since H ∈ L2(Pη), Dx H ∈ L2(Pη) for λ-a.e. x and combining (5.1) and [13, Corol-
lary 2.4] as in the proof of part (i) yields

E

∫
δy(h(x, y))2 λ(dx) < ∞ and E

∫
(Dzδy(h(x, y)))2 λ2(d(x, z)) < ∞,

a further application of Lemma 3.1 leads to

J = EHδx (δy(h(x, y))),

which concludes the proof of part (ii). ��
For a ∈ R, let fa be a solution of the Stein equation

f ′
a(u) − u fa(u) = 1{u ≤ a} − 	(a), u ∈ R, (5.3)

where 	 is the distribution function of the standard normal distribution. Note that fa
is continuously differentiable on R \ {a}. Thus, we use the convention that f ′

a(a) is
the left-sided limit of f ′

a in a. For the following lemma, we refer the reader to [4,
Lemma 2.2 and Lemma 2.3].

Lemma 5.2 For each a ∈ R, there exists a unique bounded solution fa of (5.3). This
function satisfies:

(i) u �→ u fa(u) is non-decreasing;
(ii) |u fa(u)| ≤ 1 for all u ∈ R;
(iii) | f ′

a(u)| ≤ 1 for all u ∈ R.

Now we are ready for the proof for the Kolmogorov distance. It combines the
approach for the Wasserstein distance with arguments from [8], which refined ideas
previously used in [5] and [22]. Indeed, for the normal approximation of Poisson
functionals in Kolmogorov distance the Malliavin–Stein method was first used in
[22]. One of the terms in the bound was removed in [5] and two more in [8]. The
innovation of [8], which was inspired by the proof of Theorem 2.2 in [24] and which
we also employ in the following, is to exploit the monotonicity of u �→ u fa(u) and
u �→ 1{u ≤ a}.
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Proof for the Kolmogorov distance in Theorem 2.1 Throughout the proof,we can assume
without loss of generality that T1, T2, T6, T7, T8, T9 < ∞. Let a ∈ R, and let fa be
the solution of (5.3) from Lemma 5.2. For X :=δ(G), we have fa(X) ∈ dom D (since
| f ′

a | ≤ 1 and X ∈ dom D), whence the integration by parts rule (3.7) yields similarly
as in (4.2) that

E
[
f ′
a(X) − X fa(X)

] = E

[
f ′
a(X) −

∫
Gx Dx fa(X) λ(dx)

]
.

Together with

Dx fa(X) = fa(X + Dx X) − fa(X) =
∫ Dx X

0
f ′
a(X + s) ds,

we obtain

E
[
f ′
a(X) − X fa(X)

] = E f ′
a(X)

(
1 −

∫
Gx Dx X λ(dx)

)

− E

∫ ∫ Dx X

0

(
f ′
a(X + s) − f ′

a(X)
)
ds Gx λ(dx)

=: I1 − I2,

where the decomposition into I1 and I2 is allowed due to | f ′
a | ≤ 1 and (4.3). The

commutation rule (3.11) yields

I1 = E f ′
a(X)

(
1 −

∫
G2

x λ(dx) −
∫

Gxδ(DxG) λ(dx)
)
.

From Fubini’s theorem, which is applicable because of | f ′
a | ≤ 1 and (4.3), and

Lemma 3.1 it follows that

E f ′
a(X)

∫
Gxδ(DxG) λ(dx) =

∫
E f ′

a(X)Gxδ(DxG) λ(dx)

=
∫ ∫

EDxGyDy
(
f ′
a(X)Gx

)
λ(dy) λ(dx).

The use of Lemma 3.1 is justified by f ′
a(X)Gx ∈ L2(Pη) for λ-a.e. x and

Dy( f ′
a(X)Gx ) ∈ L2(Pη) for λ2-a.e. (x, y), which are consequences of | f ′

a | ≤ 1,
(2.2) and (2.3), as well as (2.3) and (2.4). From (3.3), we derive

Dy
(
f ′
a(X)Gx

) = f ′
a(X)DyGx + Dy f

′
a(X)(Gx + DyGx ).
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Combining this with | f ′
a | ≤ 1, (2.3) and (2.7), we see that

∫ ∫
E

∣∣DxGyDy
(
f ′
a(X)Gx

)∣∣ λ(dy) λ(dx)

≤
∫

E
∣∣ f ′

a(X)DxGyDyGx
∣∣ λ2(d(x, y)) +

∫
E

∣∣Dy f
′
a(X)DxGy(Gx + DyGx )

∣∣ λ2(d(x, y))

≤ E

∫
|DxGyDyGx | λ2(d(x, y)) + 2E

∫
(|DxGyGx | + |DxGyDyGx |) λ2(d(x, y)) < ∞.

(5.4)

By Fubini’s theorem, this makes it possible to rewrite I1 as

I1 = E f ′
a(X)

(
1 −

∫
G2

x λ(dx) −
∫

DyGx DxGy λ2(d(x, y))
)

− E

∫
Dy f

′
a(X)(Gx + DyGx )DxGy λ2(d(x, y)) =: I1,1 − I1,2.

It follows, as in the proof for the Wasserstein distance, that

|I1,1| ≤ T1 + T2.

As shown in (5.4), we can apply Fubini’s theorem to I1,2, so that

I1,2 =
∫

EDy f
′
a(X)

∫
(Gx + DyGx )DxGy λ(dx) λ(dy).

The boundedness of f ′
a implies that | f ′

a(X)| ≤ 1 and |Dy f ′
a(X)| ≤ 2 for λ-a.e. y,

while y �→ ∫
(Gx + DyGx )DxGy λ(dx) satisfies (2.2) and (2.3) because of T6 < ∞.

Thus, Lemma 3.1 shows that

I1,2 = E f ′
a(X)δy

( ∫
(Gx + DyGx )DxGy λ(dx)

)
.

Together with | f ′
a | ≤ 1 and Jensen’s inequality, we obtain that

|I1,2| ≤ E
∣∣δy

( ∫
(Gx + DyGx )DxGy λ(dx)

)∣∣

≤
(

Eδy

( ∫
(Gx + DyGx )DxGy λ(dx)

)2)1/2

.
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It follows from [13, Corollary 2.4] that

Eδy

( ∫
(Gx + DyGx )DxGy λ(dx)

)2

≤ E

∫ ( ∫
(Gx + DyGx )DxGy λ(dx)

)2

λ(dy)

+ E

∫ ( ∫
Dz

(
(Gx + DyGx )DxGy

)
λ(dx)

)2

λ2(d(y, z)) = T 2
6 .

In the sequel, we focus on I2. By (5.3), the inner integral in I2 equals

∫ Dx X

0

(
(X + s) fa(X + s) − X fa(X) + 1{X + s ≤ a} − 1{X ≤ a}

)
ds.

Since u �→ u fa(u) is non-decreasing (see Lemma 5.2 (i)) and u �→ 1{u ≤ a} is non-
increasing, we derive by considering the cases Dx X ≥ 0 and Dx X < 0 separately
that

∣∣∣∣
∫ Dx X

0

(
(X + s) fa(X + s) − X fa(X)

)
ds

∣∣∣∣ ≤ Dx X
(
(X + Dx X) fa(X + Dx X) − X fa(X)

)

= Dx XDx (X fa(X))

and

∣∣∣∣
∫ Dx X

0

(
1{X + s ≤ a} − 1{X ≤ a}

)
ds

∣∣∣∣ ≤ −Dx X
(
1{X + Dx X ≤ a} − 1{X ≤ a}

)

= −Dx XDx1{X ≤ a}.

Combining these estimates with (3.11) leads to

|I2| ≤ E

∫
Dx XDx

(
X fa(X) − 1{X ≤ a})|Gx | λ(dx)

= E

∫
Dx (X fa(X) − 1{X ≤ a})Gx |Gx | λ(dx)

+ E

∫
δ(DxG)Dx

(
X fa(X) − 1{X ≤ a})|Gx | λ(dx) =: I2,1 + I2,2.

The decomposition into two integrals on the right-hand side is allowed as can be seen
from the following argument. From Lemma 5.2 (ii), we know that

|u fa(u) − 1{u ≤ a}| ≤ 2 for all u ∈ R. (5.5)
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Together with (2.2), we see that

E

∫ ∣∣Dx (X fa(X) − 1{X ≤ a})Gx |Gx |
∣∣ λ(dx) ≤ 4E

∫
G2

x λ(dx) < ∞.

It follows from (5.5), the Cauchy–Schwarz inequality [13, Corollary 2.4] and (2.2)–
(2.4) that

E

∫ ∣∣δ(DxG)Dx
(
X fa(X) − 1{X ≤ a})|Gx |

∣∣ λ(dx) ≤ 4E

∫
|δ(DxG)Gx | λ(dx)

≤ 4

(
E

∫
δ(DxG)2 λ(dx)

)1/2(
E

∫
G2
x λ(dx)

)1/2

≤ 4

(
E

∫
(DxGy)

2 λ2(d(x, y)) + E

∫
(D2

x,zGy)
2 λ3(d(x, y, z))

)1/2(
E

∫
G2
x λ(dx)

)1/2

< ∞.

Thus, the integrals I2,1 and I2,2 are well defined and finite. Moreover, we can inter-
change expectation and integration in I2,1 and I2,2 by Fubini’s theorem.

We deduce from (5.5) for Z :=X fa(X) − 1{X ≤ a} that

|Z | ≤ 2, |Dx Z | ≤ 4 for λ-a.e. x and |D2
x,y Z | ≤ 8 for λ2-a.e. (x, y).

(5.6)

Note thatE
∫
G4

x λ(dx) < ∞ since T7 < ∞. Togetherwith (2.8),we see thatX � x �→
Gx |Gx | satisfies the integrability conditions (2.2) and (2.3) and that G|G| ∈ dom δ.
Thus, Lemma 3.1 with G replaced by G|G| implies

I2,1 = E
(
X fa(X) − 1{X ≤ a})δ(G|G|).

Since Dx
(
X fa(X)− 1{X ≤ a})|Gx | ∈ L2(Pη) for λ-a.e. x and Dy(Dx

(
X fa(X)−

1{X ≤ a})|Gx |) ∈ L2(Pη) for λ2-a.e. (x, y), Lemma 3.1 and the product rule (3.3)
yield

I2,2 = E

∫
DxGyD

2
x,y

(
X fa(X) − 1{X ≤ a})(Dy |Gx | + |Gx |) λ2(d(x, y))

+ E

∫
DxGyDx

(
X fa(X) − 1{X ≤ a})Dy |Gx | λ2(d(x, y)).

The decomposition of I2,2 into two integrals is justified since it follows from (5.5),
(2.3) and (2.7) that

E

∫
|DxGyD

2
x,y

(
X fa(X) − 1{X ≤ a})(Dy |Gx | + |Gx |)| λ2(d(x, y))

≤ 8E
∫

|DxGyGx | + (DxGy)
2 λ2(d(x, y)) < ∞

(5.7)
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and

E

∫
|DxGyDx

(
X fa(X) − 1{X ≤ a})Dy |Gx || λ2(d(x, y))

≤ 4E

∫
(DxGy)

2 λ2(d(x, y)) < ∞.

(5.8)

Note that h(x, y):=DxGy(Dy |Gx | + |Gx |) satisfies (5.1) because of T9 < ∞, so that
δx (δy(h(x, y))) is well defined by Lemma 5.1 (i). Together with (5.6) and (5.7), it
follows from Lemma 5.1 (ii) that

E

∫
DxGyD

2
x,y

(
X fa(X) − 1{X ≤ a})(Dy |Gx | + |Gx |) λ2(d(x, y))

= E
(
X fa(X) − 1{X ≤ a})δx(δy(DxGy(Dy |Gx | + |Gx |))

)
.

Because of T8 < ∞, we see that

E

∫ ( ∫
DxGyDy |Gx | λ(dy)

)2
λ(dx) < ∞

and recall (2.9), whence X � x �→ ∫
DxGyDy |Gx | λ(dy) satisfies the integrability

assumptions (2.2) and (2.3) and belongs to dom δ. By (5.6), (5.8), Fubini’s theorem
and Lemma 3.1,

E

∫
DxGyDx

(
X fa(X) − 1{X ≤ a})Dy |Gx | λ2(d(x, y))

=
∫

EDx
(
X fa(X) − 1{X ≤ a})

∫
DxGyDy |Gx | λ(dy) λ(dx)

= E
(
X fa(X) − 1{X ≤ a})δx

( ∫
DxGyDy |Gx | λ(dy)

)
.

We have shown that

I2,2 = E
(
X fa(X) − 1{X ≤ a})δx(δy(DxGy(Dy |Gx | + |Gx |))

)

+ E
(
X fa(X) − 1{X ≤ a})δx

( ∫
DxGyDy |Gx | λ(dy)

)
.

Now (5.5) and Jensen’s inequality yield that

|I2,1| ≤ 2E|δ(G|G|)| ≤ 2
√

Eδ(G|G|)2
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and that

|I2,2| ≤ 2

(
Eδx

(
δy(DxGy(Dy |Gx | + |Gx |))

)2)1/2

+ 2

(
Eδx

( ∫
DxGyDy |Gx | λ(dy)

)2)1/2

.

By (3.6), we have

Eδ(G|G|)2 = E

∫
G4

x λ(dx) + E

∫
Dx (Gy |Gy |)Dy(Gx |Gx |) λ2(d(x, y)) = T 2

7

and

Eδx

( ∫
DxGyDy |Gx | λ(dy)

)2

≤ E

∫ (∫
DxGyDy |Gx | λ(dy)

)2

λ(dx)

+ E

∫
Dx

( ∫
DzGyDy |Gz | λ(dy)

)
Dz

(∫
DxGyDy |Gx | λ(dy)

)
λ2(d(x, z))

= T 2
8 .

From Lemma 5.1 (i), whose assumptions are satisfied due to T9 < ∞, it follows that

Eδx
(
δy(DxGy(Dy |Gx | + |Gx |))

)2
≤ 3E

∫
(DxGy)

2(Dy |Gx | + |Gx |)2 λ2(d(x, y))

+ 3E
∫ (

Dz
(
DxGy(Dy |Gx | + |Gx |)

))2
λ3(d(x, y, z))

+ 2E

∫ (
D2
z,w

(
DxGy(Dy |Gx | + |Gx |)

))2
λ4(d(x, y, z, w)) = T 2

9 ,

which completes the proof. ��

6 Poisson Embedding

In this section, we consider a Poisson process η on X:=R
d × R+, whose intensity

measure λ is the product of the Lebesguemeasure λd onR
d and the Lebesguemeasure

λ+ on R+. We fix a measurable mapping ϕ : R
d × N → [0,∞], where the value ∞

is allowed for technical convenience. Then

ξ :=
∫

1{s ∈ ·}1{x ≤ ϕ(s, η − δ(s,x))} η(d(s, x)) (6.1)
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is a point process on R
d . (At this stage, it might not be locally finite.) Let u : R

d → R

be a measurable function, and define G : N × X → R by

G(s,x)(μ):=u(s)1{x ≤ ϕ(s, μ)}, (μ, (s, x)) ∈ N × X.

Under suitable integrability assumptions, we then have

δ(G) =
∫

u(s)1{x ≤ ϕ(s, η − δ(s,x))} η(d(s, x)) −
∫

u(s)1{x ≤ ϕ(s, η)} λ(d(s, x)),

that is,

δ(G) =
∫

u(s) ξ(ds) −
∫

u(s)ϕ(s, η) ds.

This can be interpreted as integral of u with respect to the compensated point pro-
cess ξ . To make the dependence on u more visible, we abuse our notation and write
δ(u):=δ(G), whenever this integral is defined pathwise.

Under certain assumptions, it can be expected that the standardised δ(u) is getting
close to a normal distribution. To establish an asymptotic scenario, we take a Borel
set B ⊂ R

d with λd(B) < ∞ and define the function uB : R
d → R by uB(s):=1{s ∈

B}u(s). Then δ(uB) is the KS-integral of the function GB : N × X → R, defined by
GB(μ, s, x):=uB(s)1{x ≤ ϕ(s, μ)}. We are interested in the normal approximation
of δ(uB) for B of growing volume.

Remark 6.1 Assume that d = 1 and that ϕ is predictable, that is, ϕ(t, μ) = ϕ(t, μt−),
whereμt− is the restriction ofμ ∈ N to (−∞, t)×R+. Then, under suitable integrabil-
ity assumptions (satisfied under our assumptions below)

(
ξ([0, t])−∫ t

0 ϕ(s, η) ds
)
t≥0

is a martingale with respect to the filtration (σ (η(−∞,t]×R+))t≥0; see, for example,
[11]. Therefore, (ϕ(t, ·))t≥0 is a stochastic intensity of ξ (on R+) with respect to this
filtration. Take B = [0, T ] for some T > 0 and write uT :=uB . Then (δ(uT ))T≥0 is
a martingale. Theorem 3.1 from [25] provides a quantitative central limit theorem in
the Wasserstein distance for δ(uT ). Below we derive a similar result using our tools,
not only for the Wasserstein but also for the Kolmogorov distance. It should be noted
that predictability and martingale properties are of no relevance for our approach. All
what matters is that δ(uB) is a KS-integral with respect to the Poisson process η.

Before stating some assumptions on ϕ, we introduce some useful terminology. A
mapping Z from N to the Borel sets of X is called graph-measurable if (μ, s, x) �→
1{(s, x) ∈ Z(μ)} is a measurable mapping. Given such a mapping, we define a whole
family of Zt , t ∈ R

d , of such mappings by setting

Zt (μ):=Z(θtμ) + t,

where θtμ:= ∫
1{(r − t, z) ∈ ·} μ(d(r , z)) is the shift of μ by t in the first coordinate

and A + t :={(s + t, x) : (s, x) ∈ A} for any A ⊂ R
d × R+.
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We assume that there exists a graph-measurable Z such that

ϕ(t, μ + μ′) = ϕ(t, (μ + μ′)Zt (μ)), (t, μ, μ′) ∈ R
d × N × N, μ′(X) ≤ 3. (6.2)

Here, we denote by νA the restriction of a measure ν to a Borel set A of X. Next, we
assume that there exists a measurable mapping Y : N → R+ such that

ϕ(t, μ + μ′) ≤ Y (θtμ), (t, μ, μ′) ∈ R
d × N × N, μ′(X) ≤ 3. (6.3)

We let Yt (η) = Y (θtη) for t ∈ R
d . As in the rest of the paper, we write Zt , Yt

and ϕt instead of Zt (η), Yt (η) and ϕt (η) for t ∈ R
d . Finally, we need the following

integrability assumptions:

∫
Rd

(
Eλ(Z0 ∩ Zs)

4)1/4 ds < ∞, (6.4)
∫
R+

∫
Rd

P((s, x) ∈ Z0)
1/4 ds dx < ∞, (6.5)

∫
R+

∫
R+

∫
Rd

P((s, x) ∈ Z0, (0, y) ∈ Zs)
1/3 ds dx dy < ∞, (6.6)

EY 4
0 < ∞. (6.7)

It follows from Fubini’s theorem, Hölder’s inequality and (6.5) that Eλ(Z0)
4 < ∞.

Assumptions (6.3) and (6.7) justify that δ(uB) is defined pathwise if u is bounded.
Moreover, we will see below that our assumptions imply that (2.2) and (2.3) hold.
Therefore, GB is in the domain of the KS-integral.

Next we illustrate (6.2) and (6.4)–(6.6) with a simple example. Further examples
will be discussed later in the section.

Example 6.2 Assume that d = 1. A simple (deterministic) choice of the sets Zt is
Zt :=[t − h, t) × C , where h > 0 and C ⊂ R+ is a bounded Borel set. If we assume
that ϕ(t, μ) = ϕ(t, μZt ) for all (t, μ), then (6.2) holds, while (6.4)–(6.6) are trivially
true. To discuss another, less trivial, choice, we fix another Borel set C ′ ⊂ R+ with
0 < λ+(C ′) < ∞ and n ∈ N. For μ ∈ N and t ∈ R, let T t

n (μ) denote the nth point
of μ(· × C ′) strictly before t ∈ R. Define Zt (μ):=[T t

n (μ), t) × C . Then Zt (μ) =
Z(θtμ) + t , and we have

Zt (μ + μ′) = Zt ((μ + μ′)Zt (μ)) and Zt (μ + μ′) ⊂ Zt (μ), (t, μ, μ′) ∈ R+ × N × N.

(6.8)

Assuming again that ϕ(t, μ) = ϕ(t, μZt ), we easily obtain (6.2). It is straightforward
to check that (6.4)–(6.6) hold.

For the normal approximation of δ(uB), we have the following result.
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Theorem 6.3 Let ϕ : R
d × N → [0,∞] be measurable, and let Z be a graph-

measurable mapping from N to the Borel sets of X. Assume that (6.2)–(6.7) are
satisfied. Let u : R

d → R be measurable and bounded, and let B ⊂ R
d be a Borel

set with λd(B) < ∞. Finally, assume that σ 2
B := Var(δ(uB)) > 0. Then there exists a

constant c > 0, not depending on B, such that

max
{
dW

(
σ−1
B δ(uB), N

)
, dK

(
σ−1
B δ(uB), N

)} ≤ cλd(B)1/2σ−2
B + cλd(B)σ−3

B .

(6.9)

Proof We apply Theorem 2.1 with GB/σB in place of G. For notational simplicity,
we omit the subscript B of GB . We need to bound the terms Ti for i ∈ {1, . . . , 9}.
The assumptions of Theorem 2.1 are checked at the end of the proof. For simplicity,
assume that |u| is bounded by 1. The value of a constant c might change from line to
line. We often write Ds,x instead of D(s,x).

The term T ′
3:=σ 3

BT3 satisfies

T ′
3 ≤ E

∫
B

ϕs ds ≤ cλd(B),

where the second inequality follows from assumptions (6.3) and (6.7). Here and later,
we often use that θsη and η have the same distribution for each s ∈ R

d , whence Ys
has the same distribution for all s ∈ R

d and the same holds for λ(Zs).
We deduce from (6.2) that, for (s, x) ∈ X, (t, y) /∈ Zs and ν ∈ N with ν(X) ≤ 2,

1{x ≤ ϕs(η + ν + δ(t,y))} = 1{x ≤ ϕs((η + ν + δ(t,y))Zs )}
= 1{x ≤ ϕs((η + ν)Zs )} = 1{x ≤ ϕs(η + ν)},

whence the first three difference operators of 1{x ≤ ϕs} vanish if one of the additional
points is outside of Zs . From (6.3), we see that 1{x ≤ ϕs} and its first three difference
operators become zero if x > Ys . In the following, these observations are frequently
used to bound difference operators in terms of indicator functions.

First we consider T1. Writing the square of the inner integral as a double integral,
we have

T ′
1:=σ 4

BT
2
1 ≤ E

∫
1{s, r ∈ B}|Dt,y1{x ≤ ϕs}||Dt,y1{z ≤ ϕr }| d(s, x, t, y, r , z).

By the discussed behaviour of the difference operators,

T ′
1 ≤ cE

∫
1{s, r ∈ B}1{(t, y) ∈ Zs ∩ Zr }1{x ≤ Ys, z ≤ Yr }| d(s, x, t, y, r , z)

= cE

∫
B2

λ(Zs ∩ Zr )YsYr d(s, r)

≤ c
∫
B2

(
Eλ(Zs ∩ Zr )

3)1/3(
EY 3

s

)1/3(
EY 3

r

)1/3
d(s, r),
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where we have used Hölder’s inequality. By (6.7), EY 3
s = EY 3

r = EY 3
0 < ∞.

Moreover,

Eλ(Zs ∩ Zr )
3 = Eλ((Z(θsη) + s) ∩ (Z(θrη) + r))3

= Eλ((Z(θs−rη) + s − r) ∩ Z(η))3.

Therefore,

T ′
1 ≤ c

∫
1{s ∈ R

d , r ∈ B}(Eλ((Z(θsη) + s) ∩ Z(η))3
)1/3

d(s, r)

= cλd(B)

∫
Rd

(
Eλ(Zs ∩ Z0)

3)1/3 ds ≤ cλd(B),

where we have used assumption (6.4) (and the monotonicity of L p-norms). Hence,
T1 ≤ cλd(B)1/2σ−2

B , as required by (6.9).
For the term T2, we have

T ′
2:=σ 4

BT
2
2 ≤ E

∫ (∫
1{s, t ∈ B}|Dr ,z(Ds,x1{y ≤ ϕt }Dt,y1{x ≤ ϕs})| d(s, x, t, y)

)2

d(r , z).

The inner integrand does only contribute if (s, x) ∈ Zt , (t, y) ∈ Zs , and (r , z) ∈ Zt

or (r , z) ∈ Zs . Since the last two cases are symmetric, T ′
2 can be bounded by

cE

∫ (∫
1{t ∈ B}1{(r , z) ∈ Zt , (s, x) ∈ Zt , (t, y) ∈ Zs} d(s, x, t, y)

)2

d(r , z).

By Fubini’s theorem,

T ′
2 ≤ cE

∫
1{t, t ′ ∈ B}λ(Zt ∩ Zt ′)1{(s, x) ∈ Zt , (t, y) ∈ Zs , (s

′, x ′) ∈ Zt ′ , (t
′, y′) ∈ Zs′ }

× d(s, x, t, y, s′, x ′, t ′, y′)

≤ c
∫

1{t, t ′ ∈ B}(Eλ(Zt ∩ Zt ′)
3)1/3

P((s, x) ∈ Zt , (t, y) ∈ Zs)
1/3

× P((s′, x ′) ∈ Zt ′ , (t
′, y′) ∈ Zs′ )

1/3 d(s, x, t, y, s′, x ′, t ′, y′).

By definition of Zt and Zs and the distributional invariance of η,

P((s, x) ∈ Zt , (t, y) ∈ Zs) = P((s − t, x) ∈ Z(θtη), (t − s, y) ∈ Z(θsη))

= P((s − t, x) ∈ Z(η), (t − s, y) ∈ Z(θs−tη)).

Changing variables yields that

T ′
2 ≤ cb2

∫
B2

(Eλ(Zt ∩ Zt ′)
3)1/3 d(t, t ′),
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where

b:=
∫

P((s, x) ∈ Z(η), (−s, y) ∈ Z(θsη))1/3 d(s, x, y).

Since

P((s, x) ∈ Z(η), (−s, y) ∈ Z(θsη)) = P((s, x) ∈ Z0, (0, y) ∈ Zs),

we obtain from assumption (6.6) that b < ∞. Hence,

T ′
2 ≤ c

∫
B2

(
Eλ(Zt ∩ Zt ′)

3)1/3 d(t, t ′) = c
∫
B2

(
Eλ(Zt−t ′ ∩ Z0)

3)1/3 d(t, t ′) ≤ cλd (B),

where we have used assumption (6.4).
Each of the summands in the term T ′

4:=σ 3
BT4 includes the factor Ds,x1{y ≤ ϕt },

so that

T ′
4 ≤ cE

∫
1{t ∈ B}1{(s, x) ∈ Zt }1{y ≤ Yt } d(s, x, t, y) = cE

∫
B

λ(Zt )Yt dt

≤ c
∫
B

(
Eλ(Zt )

2)1/2(
EY 2

t

)1/2
dt = c

(
Eλ(Z0)

2)1/2(
EY 2

0

)1/2
λd(B).

For T ′
5:=σ 3

BT5, we have

T ′
5 ≤ cE

∫
1{r ∈ B}1{(s, x) ∈ Zt }1{(t, y) ∈ Zr }1{z ≤ Yr } d(s, x, t, y, r , z),

where in the second term of T5 we renamed x as y and vice versa. This leads to the
upper bound

T ′
5 ≤ cE

∫
1{r ∈ B}1{(t, y) ∈ Zr }λ(Zt )Yr d(t, y, r)

≤ c
∫

1{r ∈ B}P((t, y) ∈ Zr )
1/3(

Eλ(Zt )
3)1/3(

EY 3
r

)1/3
d(t, y, r)

= c
(
Eλ(Z0)

3)1/3(
EY 3

0

)1/3 ∫
P((t, y) ∈ Z0)

1/3 d(t, y)λd(B).
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We can rewrite T ′
6:=σ 4

BT
2
6 as sum of T ′

6,1 and T ′
6,2 with

T ′
6,1 ≤ cE

∫ ( ∫
1{t ∈ B}1{y ≤ Yt }1{(s, x) ∈ Zt } d(s, x)

)2

d(t, y)

≤ cE

∫
1{t ∈ B}1{y ≤ Yt }λ(Zt )

2 d(t, y) = cE
∫
B
Ytλ(Zt )

2 dt

≤ c
∫
B

(
EY 3

t

)1/3(
Eλ(Zt )

3)2/3 dt = c
(
EY 3

0

)1/3(
Eλ(Z0)

3)2/3λd(B)

and

T ′
6,2 ≤ cE

∫ ( ∫
1{t ∈ B}1{y ≤ Yt }1{(s, x) ∈ Zt }1{(r , z) ∈ Zs ∪ Zt } d(s, x)

)2

d(t, y, r , z)

= cE

∫
1{t ∈ B}1{y ≤ Yt }1{(s, x) ∈ Zt }1{(r , z) ∈ Zs ∪ Zt }

× 1{(s′, x ′) ∈ Zt }1{(r , z) ∈ Zs′ ∪ Zt } d(s, x, s′, x ′, t, y, r , z)

= cE

∫
1{t ∈ B}Yt1{(s, x), (s′, x ′) ∈ Zt }λ((Zs ∪ Zt ) ∩ (Zs′ ∪ Zt )) d(s, x, s′, x ′, t)

≤ c
∫

1{t ∈ B}P((s, x) ∈ Zt )
1/4

P((s′, x ′) ∈ Zt )
1/4(

EY 4
t

)1/4

× ((
Eλ(Zs)

4)1/4 + (
Eλ(Zt )

4)1/4) d(s, x, s′, x ′, t)

= 2c
(
EY 4

0

)1/4(
Eλ(Z0)

4)1/4( ∫
P((s, x) ∈ Z0)

1/4 d(s, x)

)2

λd (B).

For T ′
7:=σ 4

BT
2
7 , the first term can be bounded as T ′

3, while the second term is
bounded by

cE

∫
1{t ∈ B}1{(s, x) ∈ Zt }1{y ≤ Yt } d(s, x, t, y), (6.10)

which we treated above in order to control T ′
4.

We can decompose T ′
8:=σ 4

BT
2
8 into two terms T ′

8,1 and T ′
8,2, where T ′

8,1 can be
bounded as T ′

6,1. Since the product of two difference operators in T ′
8,2 is bounded by

the sum of the squared difference operators, T ′
8,2 can be controlled as T ′

6,2.

Note that T ′
9:=σ 4

BT
2
9 can be written as a sum of three terms T ′

9,1, T
′
9,2, T

′
9,3, where

T ′
9,i is an integral with respect to i points for i ∈ {1, 2, 3}. The term T ′

9,1 can be
bounded by (6.10), while

T ′
9,2 ≤ cE

∫
1{t ∈ B}1{y ≤ Yt }1{(s, x) ∈ Zt }1{(r , z) ∈ Zs ∪ Zt } d(s, x, t, y, r , z)

≤ cE

∫
1{t ∈ B}Yt1{(s, x) ∈ Zt }(λ(Zs) + λ(Zt )) d(s, x, t)

≤ c
∫

1{t ∈ B}(EY 3
t
)1/3

P((s, x) ∈ Zt )
1/3((

Eλ(Zs)
3)1/3 + (

Eλ(Zt )
3)1/3) d(s, x, t)
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≤ 2c
(
EY 3

0
)1/3(

Eλ(Z0)
3)1/3 ∫

P((s, x) ∈ Z0)
1/3 d(s, x)λd (B).

For T ′
9,3, we deduce the bound

T ′
9,3 ≤ cE

∫
1{t ∈ B}1{y ≤ Yt }1((s, x) ∈ Zt )1{(s′, x ′), (r , z) ∈ Zs ∪ Zt }

× d(s, x, t, y, r , z, s′, x ′)

≤ cE

∫
1{t ∈ B}Yt1((s, x) ∈ Zt )(λ(Zs) + λ(Zt ))

2 d(s, x, t),

which can be treated similarly as in the computation for T ′
9,2 but with the power 4.

Finally, we check the assumptions of Theorem 2.1. The expression in (2.2) can be
treated as T ′

3, while (2.3), (2.7) and (2.8) can be bounded as T
′
4. Similarly, we can verify

(2.4), (2.5) and (2.9) by using the computations for T ′
9,2, T

′
9,3 and T

′
6,2, respectively. ��

Remark 6.4 Theorem 6.3 can be used to establish central limit theorems. Consider,
for instance, the setting of Remark 6.1. Two possible choices of Zt are provided in
Example 6.2. Since ϕ is assumed to be predictable in Remark 6.1, the cyclic condition
(2.12) is satisfied and (2.6) simplifies to

σ 2
T := Var(δ(uT )) =

∫ T

0
u(t)2 Eϕ(t, η) dt .

It is natural to assume that σ 2
T ≥ cT for some c > 0 and all sufficiently large T . If,

additionally, the assumptions of Theorem 6.3 are satisfied, then (6.9) shows that

max
{
dW

(
σ−1
T δ(uT ), N

)
, dK

(
σ−1
T δ(uT ), N

)} ≤ c′T−1/2

for some c′ > 0 and all sufficiently large T . It does not seem to be possible to derive
the Wasserstein part of this bound from [25, Theorem 3.1]; see also [6, Remark 3.8].
The reason is that the third term on the right-hand side of [25, (3.9)] does not have the
appropriate order.

Example 6.5 Let h : R
d → R+ be a measurable function satisfying

∫
(h(s) +

h(s)2) ds < ∞. Define Z :={(s, x) ∈ R
d×R+ : x ≤ h(s)} and Zt :=Z+t , t ∈ R

d .We
interpret Z and Zt as constant mappings on N and check that (6.4)-(6.6) are satisfied.
For (6.4), we note that

∫
λ(Z0 ∩ Zs) ds =

∫
1{y ≤ h(t), y ≤ h(t − s)} d(t, y, s)

=
∫

1{y ≤ h(t), y ≤ h(s)} d(t, y, s) =
∫ (∫

1{y ≤ h(s)} ds
)2

dy.

Since h is square integrable, we have
∫
1{y ≤ h(s)} ds ≤ cy−2 for some c > 0, so

that the above integral is finite. Relation (6.5) follows at once from the integrability
of h, while the left-hand side of (6.6) is bounded by

∫
h(s)2 ds.
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Assume now that the function ϕ satisfies

ϕ(t, μ) = ϕ(t, μZt ), (t, μ) ∈ R
d × N.

Then (6.2) holds. Assumptions (6.3) and (6.7) depend on the choice of ϕ. They are
satisfied, for instance, if ϕ(t, ·) is a polynomial or exponential function of μ(Zt ).

Assume that u and Eϕ(·, ηZ ) have a lower bound c > 0 and that ϕ(s, ·) is for all
s ∈ R

d either increasing or decreasing when adding a point. Then Theorem 6.3 yields
a (quantitative) central limit theorem for λd(B) → ∞. To this end, we need to find a
lower bound for σ 2

B , given by (2.6). In our case, the first term on the right-hand side
of (2.6) equals

E

∫
1{s ∈ B}u(s)21{x ≤ ϕ(s, ηZs )} d(s, x)

and has the lower bound

c2
∫

1{s ∈ B}Eϕ(s, ηZs ) ds ≥ c3λd(B).

The second term is given by

E

∫
1{s, t ∈ B}u(s)u(t)Dt,y1{x ≤ ϕ(s, η)}Ds,x1{y ≤ ϕ(t, η)} d(s, x, t, y).

By the monotonicity assumption on ϕ and u ≥ c, this is non-negative.

Example 6.6 For a point configuration μ ∈ N and w ∈ X, the Voronoi cell of w is
given by

V (w,μ):={v ∈ X : ‖w − v‖ ≤ ‖w′ − v‖ for all w′ ∈ μ},

i.e. V (w,μ) is the set of all points in X such that no point of μ is closer than w.
The cells (V (w,μ))w∈μ have disjoint interiors and form a tessellation of X, the so-
called Voronoi tessellation, which is an often studied model from stochastic geometry
(see, for example, [21, Section 10.2]). From the Poisson–Voronoi tessellation (i.e. the
Voronoi tessellation with respect to η), we construct the point process

ξ :=
∫

1{s ∈ ·}1{V ((s, x), η) ∩ (Rd × {0}) �= ∅} η(d(s, x)). (6.11)

This point process has the following geometric interpretation. We take all cells of
the Poisson–Voronoi tessellation that intersect R

d × {0}, which one can think of as
the lowest layer of the Poisson–Voronoi tessellation, and the first coordinates of their
nuclei are the points of ξ . The points of ξ build the projection of a one-sided version
of the Markov path considered in [1].
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First we check that ξ can be represented as in (6.1). For s ∈ R
d , x1, x2 ∈ R+ with

x1 < x2 and μ ∈ N, we have

V ((s, x1), μ) ∩ (Rd × {0}) ⊃ V ((s, x2), μ) ∩ (Rd × {0}). (6.12)

If V ((s, 0), μ) is bounded, which is for Pη-a.e. μ the case, there exists a unique
x0 ∈ R+ such that V ((s, x0), μ) ∩ (Rd × {0}) is exactly a single point. This allows
us to rewrite ξ as

ξ =
∫

1{s ∈ ·}1{x ≤ ϕ(s, η − δ(s,x))} η(d(s, x))

with

ϕ(s, μ):= sup{x ∈ R+ : V ((s, x), μ) ∩ (Rd × {0}) �= ∅}.

For s ∈ R
d and μ ∈ N, let

R(s, μ):= sup{‖(s, 0) − v‖ : v ∈ V ((s, 0), μ)},

which is the maximal distance from (s, 0) to a point of its Voronoi cell. Note that
V ((s, 0), μ) is completely determined by the points of μ in B((s, 0), 2R(s, μ)), the
closed ball in X with radius 2R(s, μ) around (s, 0). Indeed, the centres of all neigh-
bouring cells to the Voronoi cell of (s, 0) are within this ball and all other points of η

outside are too far away to affect the cell. If we consider V ((s, x), μ)∩ (Rd ×{0}) as a
function of x , for increasing x the sets V ((s, x), μ)∩(Rd ×{0}) are not increasing (see
(6.12)) and (V ((s, 0), μ)∩ (Rd ×{0}))\(V ((s, x), μ)∩ (Rd ×{0})) is divided among
the neighbouring cells of V ((s, 0), μ). This implies that V ((s, x), μ) ∩ (Rd × {0})
is also completely determined by the points in B(s, 2R((s, 0), μ)). Hence, we can
conclude that

ϕ(s, μ) = ϕ(s, μB((s,0),2R(s,μ))).

Since this identity is still valid if we restrict μ to a larger set on the right-hand side
and R is non-increasing with respect to the point configuration, we obtain

ϕ(s, μ + μ′) = ϕ(s, (μ + μ′)B((s,0),2R(s,μ+μ′))) = ϕ(s, (μ + μ′)B((s,0),2R(s,μ)))

for all μ′ ∈ N with μ′(X) ≤ 3, which is (6.2) with Zs = B((s, 0), 2R(s, μ)). Since
for each point of V ((s, 0), μ) ∩ (Rd × {0}), there exists a point of μ different from
(s, 0) which is at most 2R(s, μ) away, we obtain

ϕ(s, μ + μ′) ≤ ϕ(s, μ) ≤ 2R(s, μ),

which is (6.3).
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Note that for any s ∈ R
d one can partition X into finitely many cones C1, . . . , Cm

with apex (s, 0) such that

max
i∈{1,...,m} inf

y∈μ∩Ci
‖y − (s, 0)‖ ≥ R(s, μ)

for all μ ∈ N (see, for example, [17, Subsection 6.3]). Hence, there exist constants
C, c > 0 such that

P(R(s, η) ≥ u) ≤ C exp(−cud+1)

for all u ≥ 0 and s ∈ R
d . Using this exponential decay, it is easy to verify (6.4)–(6.7).

Relations (6.5) and (6.7) are obvious. To see (6.4), we can use the bound

λ(B((0, 0), 2R(0, η)) ∩ B((s, 0), 2R(s, η)))4

≤ 1{2R(0, η) > ‖s‖/2}λ(B((0, 0), 2R(0, η)))4

+1{2R(s, η) > ‖s‖/2}λ(B((s, 0), 2R(s, η)))4.

For (6.6), we can bound P((s, x) ∈ B((0, 0), 2R(0, η)), (0, y) ∈ B((s, 0), 2R(s, η)))

by the Cauchy–Schwarz inequality and then bound the resulting integral. This yields
that the conclusions of Theorem 6.3 hold for the point process ξ from (6.11).

Since ϕ is non-increasing with respect to additional points, one can argue as in the
previous example to see that there is a lower bound for the variance of order λd(B)

if u > c0 for some c0 > 0. This yields a (quantitative) central limit theorem as
λd(B) → ∞.

7 Functionals Generated by a Partial Order

In this section, we return to the setting of a general σ -finite measure space (X,X , λ).
In many situations, the functional Gx can be written as Gx (μ) = f (x)Hx (μ), where
f ∈ L2(λ) and the functional Hx (μ) is measurable in both arguments, takes values in
{0, 1} and can be decomposed as

Hx (μ) =
∏
y∈μ

Hx (δy). (7.1)

Write shortly Hx (y) instead of Hx (δy), and denote Hx (y):=1 − Hx (y). A generic
way to construct such functionals is to consider a strict partial order ≺ on X and to set
Hx (y):=1 − 1{y ≺ x}. The set of points x ∈ η such that Hx (η) = 1 is called the set
of Pareto optimal points with respect to the chosen partial order, i.e. x ∈ η is Pareto
optimal if there exists no y ∈ η such that y ≺ x . For x /∈ η, we have Hx (η) = 1 if x
is Pareto optimal in η + δx . If δ(G) can be defined pathwise as in (1.1), then it equals
the sum of the values of f over Pareto optimal points centred by the integral of f over
the set of x such that Hx (η) = 1. As shown in [12], such examples naturally arise in
statistical applications.

123



Journal of Theoretical Probability

It is easy to see by induction that

Dm
z1,...,zmGx (μ) = (−1)m f (x)Hx (μ)

m∏
i=1

Hx (zi ). (7.2)

In particular,

DzGx (μ) = − f (x)Hx (μ)Hx (z). (7.3)

By construction, Hy(η) = 1 and Hy(x) = 1 yield that Hx (η) = 1, which can be
expressed as

Hx (η)Hy(η)Hy(x) = Hy(η)Hy(x), (7.4)

so that

Gx DxGy = f (x)DxGy . (7.5)

The asymmetry property of the strict partial order implies that Hx (y)Hy(x) = 0
for all x, y ∈ X. Hence, the functional G satisfies the cyclic condition (2.12). Thus,
the second term on the right-hand side of (2.6) vanishes. If (2.2) and (2.3) are satisfied,
it follows from [13, Proposition 2.3] that the KS-integral δ(G) of G is well defined
and

Eδ(G)2 = E

∫
f (x)2Hx (η) λ(dx). (7.6)

In addition, property (7.1) leads to a considerable simplification of the terms arising
in the bounds in Corollary 2.2. Write Hx as a shorthand for Hx (η), and denote

hi (y):=
∫

f (x)i H y(x) λ(dx), i = 0, 1, 2,

and

h̃(y):=
∫

| f (x)|Hy(x) λ(dx).

Proposition 7.1 Assume that Gx (μ) = f (x)Hx (μ), where f ∈ L2(λ) and the func-
tional H is determined by (7.1) from a strict partial order on X. Then the terms T2
and T8 defined before Theorem 2.1 vanish and the other terms satisfy

T1 =
( ∫

f (x)2 f (z)2EHx HzHx (y)Hz(y) λ3(d(x, y, z))

)1/2

,
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T3 =
∫

| f (x)|3EHx λ(dx),

T4 ≤
∫ (

2h2(y)| f (y)| + 3h̃(y) f (y)2
)
EHy λ(dy),

T5 ≤ 8
∫

h̃(z)2| f (z)|EHz λ(dz),

T6 =
( ∫ (

f (y)h1(y)
)2(1 + h0(y)

)
EHy λ(dy)

)1/2

,

T7 =
( ∫

| f (x)|4EHx λ(dx)
)1/2

,

T9 =
( ∫

f (y)2
[
3 + 3h0(y) + 2h0(y)

2
]
h2(y)EHy λ(dy)

)1/2

.

Suppose Var δ(G) > 0 and that (2.2)–(2.5) are satisfied. Then

dW

(
δ(G)√

Var δ(G)
, N

)
≤ T1

Var δ(G)
+ T3 + T4 + T5√

Var δ(G)
3 .

If, additionally, (2.7)–(2.9) are satisfied, then

dK

(
δ(G)√

Var δ(G)
, N

)
≤ T1 + T6 + 2(T7 + T9)

Var δ(G)
.

Proof The expression for T1 follows from G2
x = f (x)Gx for x ∈ X and (7.3), while

T3 results from the definition of Gx . Now consider the further terms, appearing in
Corollary 2.2. We rely on (7.2) with m = 2, 3, (7.3) and (7.5) in the subsequent
calculations. First,

T4 = E

∫ (
2 f (x)2| f (y)|HyH y(x)

+ | f (x)| f (y)2HyH y(x)
(
2Hy + HyH y(x)

))
λ2(d(x, y))

≤
∫ (

2 f (x)2| f (y)| + 3| f (x)| f (y)2)EHyH y(x) λ2(d(x, y)),

which yields the expression for T4 in view of the definitions of the functions h2 and
h̃. Next,

T5 = E

∫
2| f (x) f (y) f (z)|(HzHz(y) + HzHz(y)Hz(x)

)

× (
HyH y(x)Hy(z) + 2HyH y(x)

)
λ3(d(x, y, z))

= E

∫
2| f (x) f (y) f (z)|HzHz(y)

(
1 + Hz(x)

)
HyH y(x)

(
Hy(z) + 2

)
λ3(d(x, y, z))

≤ 8E
∫

| f (x) f (y) f (z)|HzHz(y)HyH y(x) λ3(d(x, y, z))
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= 8
∫

| f (x) f (y) f (z)|EHzHz(y)Hy(x) λ3(d(x, y, z)),

where we used the fact that Hz(y)Hy(z) = 0 for all y and z as well as (7.4). This
yields the sought bound for T5, taking into account that Hz(y)Hy(x) ≤ Hz(y)Hz(x).
Next, T6 = (T6,1 + T6,2)1/2, where

T6,1:=E

∫ ( ∫
f (x) f (y)HyH y(x) λ(dx)

)2
λ(dy)

=
∫

f (y)2EHy

( ∫
f (x)Hy(x) λ(dx)

)2
λ(dy) =

∫
f (y)2h1(y)

2
EHy λ(dy)

and

T6,2:=E

∫ ( ∫
f (x) f (y)HyH y(x)Hy(z) λ(dx)

)2
λ2(d(y, z))

=
∫

f (y)2EHyH y(z)h1(y)
2 λ2(d(y, z)).

Hence, the expression for T6 follows. The expression for T7 follows directly from the
definition of Gx . Finally, T9 = (3T9,1 + 3T9,2 + 2T9,3)1/2, where

T9,1:=
∫

f (x)2 f (y)2EHyH y(x) λ2(d(x, y)),

T9,2:=
∫

f (x)2 f (y)2EHyH y(x)Hy(z) λ3(d(x, y, z)),

T9,3:=
∫

f (x)2 f (y)2EHyH y(x)Hy(z)Hy(w) λ4(d(x, y, z, w)).

Thus,

T9 =
( ∫

f (x)2 f (y)2
[
3 + 3h0(y) + 2h0(y)

2]EHyH y(x) λ2(d(x, y))

)1/2

,

which yields the formula for T9. The bounds for the normal approximation follow
from Corollary 2.2 and the normalisation by

√
Var δ(G). ��

Example 7.2 LetX be the unit cube [0, 1]d with the Lebesguemeasure λ. For x, y ∈ X,
write y ≺ x if x �= y and all components of y are not greater than the corresponding
components of x . LetGx (μ) = Hx (μ), with Hx (μ) given by (7.1) and Hx (y):=1{y ≺
x}.

Let ηt be the Poisson process on X of intensity tλ. Then Gx (ηt ) = 1 means that
none of the points y ∈ ηt satisfies y ≺ x , that is, none of the points from ηt is smaller
than x in the coordinatewise order. In this case, x is said to be a Pareto optimal point
in ηt + δx . Then δ(G) equals the difference between the number of Pareto optimal
points in ηt and the volume of the complement of the set of points x ∈ X such that
y ≺ x for at least one y ∈ ηt .
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For x = (x1, . . . , xd) ∈ X, denote |x |:=x1 · · · xd . Then EHx (ηt ) = e−t |x |, and
(7.6) yields that the variance of δ(G) is

σ 2
t :=t

∫
e−t |z| λ(dz).

It is shown in [2] that the right-hand side is of order logd−1 t for large t . Note that the
above formula gives also the expected number of Pareto optimal points.

Quantitative limit theorems for the number of Pareto optimal points centred by
subtracting the mean and scaled by the standard deviation were obtained in [3]. Below
we derive a variant of such result for the KS-integral, which involves a different
stochastic centring.

Since Gx (η) = f (x)Hx (η) with the function f identically equal one and the
measure λ is finite, the integrability conditions (2.2)–(2.5) and (2.7)–(2.9) are satisfied.
The terms arising in Proposition 7.1 can be calculated as follows. First,

T 2
1 = t3

∫
E

[
Hx (ηt )Hy(ηt )

]|x ∧ y| λ2(d(x, y))

= t3
∫

e−t(|x |+|y|−|x∧y|)|x ∧ y| λ2(d(x, y)),

where x ∧ y denotes the coordinatewise minimum of x, y ∈ [0, 1]d . Fix a (possibly
empty) set I ⊆ {1, . . . , d}, let J :=I c, and denote by x I and x J the subvectors of
x ∈ [0, 1]d formed by coordinates from I and J . It suffices to restrict the integration
domain to the set where x ∧ y = (x I , y J ) and let T 2

1,I be the corresponding integral.
Let m denote the cardinality of I . If m = 0, then

T 2
1,I = t3

∫
e−t |x ||y|1{y ≺ x} λ2(d(x, y)) = 2−d t3

∫
e−t |x ||x |2 λ(dx) ≤ 27 · 2−dσ 2

t/3.

Here and in what follows, we use the inequality se−s ≤ 1 with s = t |y|, which yields
that

t i
∫

|y|i−1e−t |y| λ(dy) ≤ t
∫

(t |y|e−t |y|/i )i−1e−t |y|/i λ(dy) ≤ i iσ 2
t/i , i ∈ N.

The same calculation applies if m = d. If m ∈ {1, . . . , d − 1}, then

T 2
1,I = t3

∫
[0,1]d

et |x I | |y J ||x I | |y J |
(∫

[0,1]m
e−t |y I | |y J |1{x I ≺ y I } dyI

)

×
(∫

[0,1]d−m
e−t |x I | |x J |1{y J ≺ x J } dx J

)
λ(d(x I , y J )).
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It can be shown by a small adaptation of the proof of [3, Lemma 3.1] that

s
∫

[0,1]m
e−s|x |1{y ≺ x} dx ≤ Ce−s|y|/a[1 + ∣∣ log(s|y|)∣∣m−1

]
, y ∈ [0, 1]m,

for any a > 1 and a constant C that depends on m and a. Let a ∈ (1, 2). Then, with
s:=t |y J |, we have

t
∫

[0,1]m
e−t |y I | |y J |1{x I ≺ y I }|y J |dyI ≤ Ce−t |y J ||x I |/a[1 + ∣∣ log(t |y J ||x I |)∣∣m−1

]
.

By applying the same argument to the integral over [0, 1]d−m , we have that

T 2
1,I ≤ C2t

∫
e−t |z|(2/a−1)

[
1 + ∣∣ log(t |z|)∣∣m−1

][
1 + ∣∣ log(t |z|)∣∣d−m−1

]
λ(dz).

This is of the orderO(logd−1 t) by considering all summands separately and following
the proof of [3, Lemma 3.2].

In this setting, hi (y) = t |y| for all i and h̃(y) = t |y|. Further terms can be calculated
as follows:

T3 = t
∫

e−t |x | λ(dx) = σ 2
t ,

T4 ≤ 5t2
∫

|y|e−t |y| λ(dy) ≤ 20σ 2
t/2,

T5 ≤ 8t3
∫

|y|2e−t |y| λ(dy) ≤ 216σ 2
t/3,

and the terms involved in the bound on the Kolmogorov distance are

T6 =
( ∫

t3|y|2(1 + t |y|)e−t |y| λ(dy)
)1/2 ≤ (27σ 2

t/3 + 256σ 2
t/4)

1/2,

T7 =
(
t
∫

e−t |x | λ(dx)
)1/2 = σt ,

T9 =
( ∫ [

3t2 + 3|y|t3 + 2|y|2t4]|y|e−t |y| λ(dy)
)1/2 ≤ (12σ 2

t/2 + 81σ 2
t/3 + 512σ 2

t/4)
1/2.

Noticing that σ 2
t = Var δ(G) behaves like logd−1 t , we obtain from Proposition 7.1

that

max
(
dW (σ−1

t δ(G), N ), dK (σ−1
t δ(G), N )

)
= O(σ−1

t ).
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