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Mean Lipschitz–Killing curvatures for homogeneous
random fractals

Jan Rataj, Steffen Winter, and Martina Zähle

Abstract. Homogeneous random fractals form a probabilistic extension of self-similar sets
with more dependencies than in random recursive constructions. For such random fractals we
consider mean values of the Lipschitz–Killing curvatures of their parallel sets for small parallel
radii. Under the uniform strong open set condition and some further geometric assumptions, we
show that rescaled limits of these mean values exist as the parallel radius tends to 0. Moreover,
integral representations are derived for these limits which extend those known in the determin-
istic case.

1. Introduction

Fractal versions of the k-th order Lipschitz–Killing curvatures Ck in Rd known from
convex geometry, differential geometry and geometric measure theory have been con-
sidered in [24, 26] and subsequent papers for deterministic self-similar sets, and in
[30] for random recursive constructions (in the sense of [4, 9, 11]). Compared to the
latter class of models, homogeneous random fractals, as first considered in [10] (for a
special case), possess more dependencies in their structure. This leads, in particular,
to the phenomenon that their a.s. Minkowski dimension, which agrees again with the
a.s. Hausdorff dimension, is determined by a different equation than in the recursive
case (see [19] together with [21] for the general case). Moreover, in [22] it is shown
that in the non-deterministic case there exists no gauge function for an exact Haus-
dorff measure. It was conjectured in [31] that the almost sure Minkowski content does
not exist either. Meanwhile, this has been proved in [23]. In contrast to this striking
difference in the almost sure behaviour of both models, it turned out that for expect-
ations the results are the same as in the case of stochastically self-similar sets, i.e.,
random recursive constructions (see [31]).
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The Minkowski content may be viewed as the marginal case k D d of the fractal
Lipschitz–Killing curvatures. It is the aim of the present paper to extend the above
mentioned results regarding Minkowski contents of homogeneous random fractals F
to all Lipschitz–Killing curvatures.

For a deterministic self-similar set F satisfying the open set condition and some
additional assumptions, Lipschitz–Killing curvatures can be introduced by approxim-
ation with parallel sets. If r > 0 is a regular value of the distance function d.�;F / of F ,
then the r-parallel set F.r/ WD ¹x W d.x; F / � rº has ‘nice’ geometric properties.
(More precisely, its boundary is a Lipschitz manifold and the closure of its com-
plement has positive reach.) In particular, F.r/ admits Lipschitz–Killing curvature
measures Ck.F.r/; �/, k D 0; : : : ; d � 1. We use the notation C var

k
.F.r/; �/ for the

variation measures, and Ck.F.r// WD Ck.F.r/;Rd / for the total mass. Provided that
almost all r > 0 are regular values (which is always the case if d � 3, see [7]), the
(total) fractal Lipschitz–Killing curvatures of F can be introduced as rescaled (essen-
tial or averaged) limits

ess lim
"!0

"D�kCk.F."// or lim
ı!0

1

jln ıj

Z 1

ı

"D�kCk.F."// "
�1 d";

where D is the Minkowski dimension of F . It turned out that the first one (essential
limit) exists in the case of non-lattice self-similar sets, while the second one (averaged
limit) exists in general, see [24, 30] for details.

In order to give some idea of the results obtained in the paper, we give an informal
description of the considered model, a detailed definition can be found in Section 3.
Consider a random iterated function system (random IFS) f D .f1; : : : ; fN / consist-
ing of a random number N � 2 of contracting similarities f1; : : : ; fN with (random)
contraction ratios r1; : : : ; rN fulfilling 0 < rmin � ri � rmax < 1 for some determ-
inistic values rmin; rmax. We assume the uniform open set condition (UOSC): there
exists a (deterministic) nonempty open set O such that almost surely fi .O/ � O and
fi .O/ \ fj .O/ D ;, i ¤ j � N (cf. (3.3)). The homogeneous random fractal F is
defined by means of an i.i.d. random sequence .f n/n2N , where each random IFS
f n D .f n1 ; : : : ; f

n
Nn/ has the same distribution as f . Then F is obtained by applying

at each construction step n 2 N the same chosen IFS f n to all components of that
step. More precisely, denoting†n WD ¹�1�2 : : : �n W 1 � �i � N i ; 1 � i � nº, n 2N,
and f� WD f 1�1 ı � � � ı f

n
�n

, � 2 †n, the homogeneous random fractal associated to the
random IFS f is the random set F defined by

F WD

1\
nD1

[
�2†n

f� .O/:

If EN <1 (which we assume here throughout), then the equation E
PN
iD1 r

D
i D 1

has a unique solution D 2 Œ0; d �, called the mean Minkowski dimension of F . (Note



Mean Lipschitz–Killing curvatures for homogeneous random fractals 3

that it is given by the same formula as in the random recursive case, cf. [31] and (3.9)
below.) We consider the measure � WD E

PN
iD1 1¹jln ri j 2 �ºrDi and its mean value

� WDE
PN
iD1 jln ri j r

D
i : Further, we let†� WD

S1
nD1†n, and for any r > 0, we denote

by †.r/ the set of all finite words � D �1 � � � �n 2 †� such that r1�1 � � � r
n
�n
�

r
2jOj

<

r1�1 � � � r
n�1
�n�1

. Here, jOj denotes the diameter of O . For � 2 †�, let O� WD f� .O/.
Observe that O� is open, while its parallel sets O� .r/, r � 0, are closed.

Our main result, Theorem 3.2, establishes the existence of fractal Lipschitz–Kill-
ing curvatures for a large class of homogeneous random fractals. The following state-
ment is a special case, as can easily be seen from Proposition 5.2 (d). It provides this
existence under a stronger but easier to state hypothesis.

Theorem 1.1. Let F � Rd be a homogeneous random fractal with EN < 1

satisfying UOSC with some open set O � Rd such that F \ O ¤ ; almost surely.
Let k 2 ¹0; 1; : : : ; dº and assume further that

(i) with probability one, almost all r > 0 are regular values of d.�; F /;

(ii) there exists a constant c > 0 such that with probability one,

C var
k

�
F.r/;O� .r/ \O� 0.r/

�
� crk;

for a.a. r > 0 and all �; � 0 2 †.r/ with � ¤ � 0.

Define Fi WD
T1
nD1

S
�2†n; �1Di

f� .O/ for i 2 ¹1; : : : ; N º and

Rk;1.r/ WD ECk.F.r// � E
NX
iD1

1.0;ri �.r/Ck.Fi .r//; r > 0:

Then

C
frac
k;F WD lim

ı!0

1

jln ıj

Z 1

ı

"D�kECk.F."// "
�1d" D

1

�

Z 1

0

rD�k�1Rk;1.r/ dr:

Moreover, if the measure � is non-lattice, then

C frac
k;F WD ess lim

"!0
"D�kECk.F."// D C

frac
k;F :

As in the deterministic case, the values C
frac
k;F (and C frac

k;F
, in case they exist) can

be interpreted as the mean (averaged) fractal Lipschitz–Killing curvatures of F of
order k. (Note that in contrast to common differential geometric terminology in our
paper the term ‘mean’ curvatures is used in the probabilistic sense of expectations.)
For the cases k D d � 1 and k D d , conditions (i) and (ii) are, in fact, not needed.

Our result covers the case of deterministic self-similar sets considered in [24,
30]. As a nontrivial example, we discuss below a family of random homogeneous
fractals, for which the associated random IFS choose between two deterministic IFS
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generating Sierpiński type gaskets, see Section 5. In this case, the values of C frac
k;F

are
determined explicitly.

The plan of the paper is as follows. In Section 2, we give a brief survey on the
notion of curvature measures of parallel sets with references to the literature. The
measurability and continuity properties in Lemmas 2.3 and 2.4 are used in the sequel
for the probabilistic approach and application of the classical renewal theorem. But
they are also of independent interest, e.g. for possible extensions to other classes of
random fractals as considered in [3, 19, 21].

Section 3 contains the construction of homogeneous random fractals and the state-
ment of the main result (Theorem 3.2 together with Remarks 3.3, 3.4 and 3.5). The
proof of Theorem 3.2 in Section 4 is split into several steps. As in the case of self-
similar fractals and random recursive constructions, the renewal theorem is a main
tool. Most effort is needed for verifying the corresponding conditions. It turns out
that the integral representations for the above limits derived here for homogeneous
random fractals are very similar to those known for (random) self-similar sets.

In Section 5, the hypothesis of Theorem 3.2 is replaced, in part, by a simpler but
stronger condition, cf. Proposition 5.2 and Theorem 1.1, which is easier to verify in
concrete examples. This is then demonstrated for a family of homogeneous random
Sierpiński gaskets as mentioned above.

In the Appendix, the continuity of the curvature measures of parallel sets at regular
distances is proved, cf. Theorem 6.1, which is of independent interest. It completes,
in particular, the proof of [30, Lemma 2.3.4] and can be applied to other deterministic
and stochastic models.

2. Curvature measures of parallel sets

2.1. Definitions and relevant properties

For certain classes of compact sets K � Rd (including many classical singular sets)
it turns out that for Lebesgue-almost all distances r > 0, the parallel set

K.r/ WD
®
x 2 Rd W d.x;K/ D min

y2K
jx � yj � r

¯
(2.1)

possesses the property that the closure of its complement,

eK.r/ WD K.r/c ; (2.2)

is a set with positive reach with Lipschitz boundary. (Recall that X � Rd is a set with
positive reach if for some ı > 0, every point x 2 X.ı/ has a unique point …X .x/ 2
X nearest to x.) A sufficient condition is that r is a regular value of the Euclidean
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distance function to K (see [7, Theorem 4.1] together with [16, Proposition 3]). In
this case, both sets eK.r/ and K.r/ are Lipschitz d -manifolds of bounded curvature
in the sense of [17], implying that their k-th Lipschitz–Killing curvature measures,
k D 0;1; : : : ; d � 1, are determined in this general context and agree with the classical
versions in the special cases. (See also [18, Chapter 9] for some background and
extensions.) Moreover, they satisfy

Ck.K.r/; �/ D .�1/
d�1�kCk. eK.r/; �/; (2.3)

which implies that the Ck.K.r/; �/ are signed measures with finite variation measures
C var
k
.K.r/; �/ and, moreover, that they have explicit integral representations which

reduce to the ones in [29] (cf. [17, Theorem 3] for the general case). The correspond-
ing normal cycle representation will briefly be mentioned below. We list some of the
main properties of curvature measures of parallel sets which will be used repeatedly:
2Cd�1.K.r/; �/ agrees with .d � 1/-dimensional Hausdorff measure Hd�1 on the
boundary @K.r/. The latter is a finite measure for all r > 0 and all compact sets K.
Therefore, we use the notation

Cd�1.K.r/; �/ WD
1

2
Hd�1.@K.r/ \ .�//

in the general case. For completeness, we also define Cd .K.r/; �/ to be the Lebesgue
measure restricted to K.r/. The total curvatures of K.r/ are denoted by

Ck.K.r// WD Ck.K.r/;R
d /; k D 0; : : : ; d: (2.4)

By an associated Gauss–Bonnet theorem (see [16, Theorems 2 and 3]), the Gauss
curvatureC0.K.r// coincides with the Euler–Poincaré characteristic�.K.r//, when-
ever the curvature measure C0.K.r/; �/ is defined as described above. For smooth
boundaries @K.r/ in the differential geometric setting, Ck.K.r// can be interpreted
as the total k-th order mean curvature ofK.r/, which is extrinsic if d � 1� k is odd.
For k D d � 2, it is also known as extrinsic total mean curvature of K.r/, and for
k D d � 3, it coincides with the intrinsic total scalar curvature of @K.r/, up to certain
constants.

The curvature measures are motion invariant, i.e.,

Ck
�
g.K.r//; g.�/

�
D Ck.K.r/; �/ for any Euclidean motion gI (2.5)

they are homogeneous of degree k, i.e.,

Ck
�
.�K/.�r/; �.�/

�
D Ck

�
�K.r/; �.�/

�
D �kCk.K.r/; �/; � > 0I (2.6)

and locally determined, i.e.,

Ck
�
K.r/; .�/ \G

�
D Ck

�
K 0.r 0/; .�/ \G

�
(2.7)
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for any open set G � Rd such that K.r/ \G D K 0.r 0/ \G, where K.r/ and K 0.r 0/
are both parallel sets such that the closures of their complements have positive reach.

2.2. Unit normal cycles, measurability and continuity

We now summarize some facts about sets with positive reach needed in the sequel.
Recall that for a set X � Rd , reachX is defined as the supremum over all r � 0 such
that for every point x in the r-parallel set of X there is a unique point …Xx 2 X
nearest to x. The mapping…X (on its domain) is called the metric projection onto X .
For a set X of positive reach, the unit normal bundle is defined as

norX WD
®
.x; n/ 2 Rd � Sd�1 W x 2 X; n 2 Nor.X; x/

¯
;

where Nor.X; x/ is the dual cone to the (convex) tangent cone of X at x.
If, additionally, norX \ �.norX/D; for the normal reflection � .x;n/ 7! .x;�n/,

thenX is a d -dimensional Lipschitz manifold with boundary (see [16, Proposition 3]).
For general X with reachX > 0, there is an associated rectifiable current called

the unit normal cycle of X which is given by

NX .'/ WD

Z
norX
haX .x; n/; '.x; n/iH

d�1.d.x; n//

for an appropriate unit simple .d � 1/-vector field aX D a1 ^ � � � ^ ad�1 associated
a.e. with the tangent spaces of norX and for integrable differential .d � 1/-forms '.
In these terms, for k � d � 1, the curvature measure may be represented by

Ck.X;B/ D NXx1B�Rd .'k/ D

Z
norX\.B�Rd /

haX .x; n/; 'k.n/iH
d�1.d.x; n//

for any bounded Borel set B � Rd , where the k-th Lipschitz–Killing curvature form
'k does not depend on the points x and is defined by its action on a simple .d � 1/-
vector � D �1 ^ � � � ^ �d�1 as follows: Let �0.y; z/ WD y and �1.y; z/ WD z be the
coordinate projections in Rd �Rd , e01; : : : ; e

0
d

the dual basis of the standard basis in
Rd , and Ok the surface area of the k-dimensional unit sphere. Then we have

h�; 'k.n/i WD O�1d�k

X
"i2¹0;1ºP
"iDd�1�k

h�"1�1 ^ � � � ^ �"d�1�d�1 ^ n; e
0
1 ^ � � � ^ e

0
d i:

Below, we will use the following nice behavior of parallel sets with sufficiently large
distances. The diameter of a compact set K is denoted by jKj.

Lemma 2.1 ([30, Theorem 4.1]). For any R >
p
2 and k D 0; 1; : : : ; d , there exists

a constant ck.R/ such that for any compact set K � Rd and any r � RjKj,

reach. eK.r// � jKj
p

R2 � 1;
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@K.r/ is a .d � 1/-dimensional Lipschitz submanifold, and

sup
r�RjKj

C var
k
.K.r/;Rd /

rk
� ck.R/:

(It is well known that for compact convex sets K the last two properties hold for
all r > 0, the last one is the sharper version of an isodiametric inequality with an
optimal constant.)

In the general case, we define the set of regular pairs of compact sets and distances
by

Reg WD
®
.r;K/ 2 Œ0;1/ �K W eK.r/ 2 P R; nor eK.r/ \ �.nor eK.r// D ;¯; (2.8)

where K denotes the family of all nonempty compact subsets of Rd , P R stands for
the space of subsets of Rd with positive reach and � is the normal reflection given by
.x; n/ 7! .x;�n/.

Remark 2.2. An equivalent representation of regular pairs at positive distances is

Reg\ ..0;1/ �K/ D
®
.r;K/ 2 .0;1/ �K W r is a regular value of dK

¯
; (2.9)

where dK W x 7! d.x;K/ is the distance function of K, see Appendix.

In [7, Theorem 4.1], it is shown that in space dimensions d � 3, for any compact
set K, there exists a bounded exceptional set E of Lebesgue measure 0 such that for
any r …E, the set eK.r/ has positive reach and nor eK.r/\ �.nor eK.r//D;. Moreover,
if r >

p
d=.2d C 2/jKj, these two properties hold for any space dimension d . It fol-

lows that in space dimensions d � 3, for any compactK, the pair .r;K/ is regular for
Lebesgue-a.a. r . In higher dimensions, we will formulate this as a regularity condition
on the random fractal sets.

For probabilistic purposes we need the following measurability properties. Let
F denote the space of all closed subsets of Rd provided with the Vietoris topology
(generated by the sets ¹A 2 F W A \ O ¤ ;º and ¹A 2 F W A \ C D ;º for open
O and closed C ) and the associated Borel � -algebra B.F /. On its subspace K (of
nonempty compact sets), this topology can be metrized by the Hausdorff distance

dH .K;L/ WD max
°

max
x2K

d.x;L/; max
y2L

d.y;K/
±
; K;L 2K;

and B.K/ denotes the Borel � -algebra on K .

Lemma 2.3. The following assertions hold.

(i) P R 2 B.F /.

(ii) The mapping .r;K/ 7! eK.r/ from Œ0;1/�K to F is ŒB.Œ0;1//˝B.K/;

B.F /�-measurable.
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(iii) For any bounded Borel set B � Rd and k D 0; : : : ; d , the mappings X 7!
Ck.X; B/ and X 7! C var

k
.X; B/ from P R to R are ŒB.F / \ P R;B.R/�-

measurable.

(iv) For k D 0; : : : ; d , the mappings .X; F / 7! Ck.X; F / and .X; F / 7!

C var
k
.X; F / from P R � K to R are Œ.B.F / \ P R/ ˝ B.K/; B.R/�-

measurable.

(v) Reg 2 B.Œ0;1//˝B.K/.

Proof. (i) See [28, Proposition 1.1.1].
(ii) It is easy to see that for the centered balls B.R/ of radius R, the mappings

.r;K/ 7! eK.r/ \ B.R/ are continuous (with respect to the Hausdorff metric). Using
that eK.r/ DS1RD1. eK.r/ \ B.R//, we infer the assertion.

(iii) See [28, Theorem 2.1.2 (i) and Theorem 6.2.2].
(iv) Due to (iii), the mappings X 7! Ck.X; �/ and X 7! C var

k
.X; �/ are random

signed measures on the probability space .P R;B.F /\P R;Pr/ for any probability
measure Pr on the given space. The result then follows from Lemma 6.5.

(v) This follows from (i), (ii), and the fact that the mappingX 7! norX from P R

into the space of closed subsets of Rd �Rd is measurable.

In order to apply the classical renewal theorem to the curvatures of random fractals
we additionally need the following continuity property. Recall that the set of regular
values of the distance function dK is open. (This can be seen, for example, from (6.1)
in the Appendix.) Therefore, for each regular value r0, there exists an " > 0 such that
for any r 2 .r0 � "; r0 C "/, r is a regular value of dK , too.

Lemma 2.4. For any .r0;K/ 2 Reg with r0 > 0 and any k 2 ¹0; : : : ; dº, the measures
Ck.K.r/; �/ converge weakly to Ck.K.r0/; �/ as r ! r0.

A detailed proof will be given in the Appendix, see Theorem 6.1.

Remark 2.5. If k D d or k D d � 1, then the weak convergence in Lemma 2.4
remains valid for general compact sets K and almost all r0 > 0, i.e., we need not
restrict K to the class P R or r0 to regular values of K. To see this, note that r 7!
Vd .K.r// D Ld .K.r// is a Kneser function (see [20, Lemma 5]) and that

Vd�1.K.r// D Hd�1.@K.r// D
d

dr
Ld .K.r//

for all r > 0 up to a countable set (see [14, Corollary 2.5]). The continuity of Vd .r/
at all r > 0 and of Vd�1.K.r// at all r > 0 up to a countable set follow then from the
properties of Kneser functions (see [20, Lemma 2]).

Furthermore, since both mappings K 7! Ld .K/ and K 7! Hd�1.@K/ are meas-
urable on K (cf. [27]), Lemma 2.3 (iii) and (iv) are valid for k D d and k D d � 1,
with P R replaced by the larger space K .
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3. Construction of homogeneous random fractals and statement of the
results

For fixed 0 < rmin < rmax < 1, let Sim be the set of all contractive similarities g W
Rd ! Rd with contraction ratios r such that rmin � r � rmax. We equip Sim with the
topology given by uniform convergence on compact sets. B denotes the associated
Borel � -algebra. The space �0 WD

S1
kD2 Simk together with the � -algebra F0 WD

¹A��0 W A\ Simk
2
Nk
iD1B for all k � 2º, and with a distribution P0 on it provide

the primary probability space Œ�0;F0;P0�. This space is used to generate a random
iterated function system (IFS) .f1; : : : ; fN /, with a random number N of mappings
f1; : : : ; fN chosen randomly from Sim. Note that, by construction, N � 2.

For the definition of the homogeneous model, we need a sequence of independent
and equally distributed random IFS. Therefore, the basic probability space for the
model is the product space

Œ�;F ;P � WD
1O
nD1

Œ�0;F0;P0�; (3.1)

and the expectation symbol E will be used for integration with respect to P .
The elements of � are denoted by

! D .!1; !2; : : :/ WD
�
.f 11 ; : : : ; f

1
N1
/; .f 21 ; : : : ; f

2
N2
/; : : :

�
;

and rni are the contraction ratios of the similarities f ni . For f 1i , r1i and N 1, we will
often write fi , ri and N , respectively. Below, we will use the measurable mapping

� W �! �; �.!1; !2; !3; : : :/ WD .!2; !3; : : :/;

and for a random elementX and n 2N, we define the shifted random elementX .n/ by

X .n/.!/ WD X.�n!/; ! 2 �; (3.2)

where �n is the n-fold application of the shift � . (If it is clear from the context, the
argument ! will be omitted.)

Note that for each n 2 N, .f n1 ; : : : ; f
n
Nn/ is a random IFS of random length N n

with distribution P0 representing the n-th construction step. For different n, they are
independent of each other.

In the sequel, we assume that the uniform open set condition (UOSC) is satisfied:
there exists a nonempty bounded open set O � Rd such that P0-a.s.

N[
iD1

fi .O/ � O and fi .O/ \ fj .O/ D ;; i ¤ j: (3.3)
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Then, with P -probability 1, all IFS in the product space fulfill this UOSC.
The corresponding random fractal set is introduced by means of a random coding

tree:†n D †n.!/ WD ¹�1 � � ��n W 1 � �i � N i ; i D 1; : : : ; nº is the set of all nodes at
level n and †� WD

S1
nD0†n is the set of all nodes of the tree, where †0 denotes the

empty code at level 0.
Recall from (3.2) that †.k/

l
is defined by †.k/

l
.!/ D †l.�

k!/, ! 2 �. For � D
�1 � � � �k 2 †k and � D �1 � � � �l 2 †

.k/

l
, we write �� WD �1 � � � �k�1 � � � �l 2 †kCl for

the concatenation of these codes. If � D �1 � � � �n 2 †n and 0 � k � n, then � jk WD
�1 � � � �k denotes the restriction to the first k entries of � , and j� j WD n is the length
of � . For any fixed n D 1; 2; : : : , we associate to each � 2 †n the same random IFS
.f nC11 ; : : : ; f nC1

NnC1
/. This leads to the homogeneous structure. (In the V -variable case

these random IFS are chosen by means of V different types. Here, we have V D 1, and
in the case of random recursive constructions, where V D 1, for different � 2 †n,
the IFS are i.i.d.) Furthermore, we define the random mappings

f� WD f
1
�1
ı f 2�2 ı � � � ı f

n
�n

with contraction ratios r� WD r1�1r
2
�2
� � � rn�n . Then the random compact set

F D F.!/ WD

1\
nD1

[
�2†n

f� .O/ (3.4)

is P -a.s. determined and measurable with respect to B.K/, the Borel � -algebra
determined by the Hausdorff distance dH on the space K of nonempty compact sub-
sets of Rd . It is called the associated homogeneous random fractal. F is stochastically
self-similar in the following sense (recall from (3.2) that F .n/.!/ D F.�n!/):

F D

N[
iD1

fi .F
.1//; P -a.s.

More generally, for all n 2 N,

F D
[
�2†n

f� .F
.n//; P -a.s.; (3.5)

where the random compact set F .n/ is independent of the random mappings ¹f� W
� 2 †nº and has the same distribution as F . We will also use the abbreviation

F� WD f� .F
.j� j// for � 2 †�:

For a boundedness condition in the application of the renewal theorem we will further
use a formula similar to (3.5) with respect to some Markov stop: Fix an arbitrary
constant R >

p
2jOj and define for all 0 < r < R a random subset of codes by

†.r/ WD
®
� 2 †� W Rr� � r < Rr� jj� j�1

¯
; (3.6)
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where, by convention, r� jj� j�1 D 1, if j� j D 1. It is convenient to set †.r/ WD †0 for
r � R. Then we have

F D
[

�2†.r/

F� ; P -a.s. (3.7)

In order to formulate the main results we also need the following random sets of
boundary codes, i.e., codes � 2 †.r/ for which the parallel set F� .r/ has distance
less than r to the boundary of the first iterate f .O/ WD

SN
iD1 fi .O/ of the basic open

set O under the random similarities:

†b.r/ WD
®
� 2 †.r/ W F� .r/ \ .f .O/

c/.r/ ¤ ;
¯
: (3.8)

Our considerations below do not depend on the choice of the constant R which is
related to Lemma 2.1 (where the above R corresponds to RjOj).

In the sequel many relationships between random elements are fulfilled only with
probability 1. We will not mention this, if it can be seen from the context. Furthermore,
the different meanings of F D F.!/ as random set and F.r/ D F.!; r/ as parallel
set of the random set F will also be clear from the context.

The measurability properties of the random elements used in the sequel follow
from their definitions together with Lemma 2.3 and Remark 2.5.

Recall now that 2 � N and assume that EN <1. Let D be the number determ-
ined by

E
NX
iD1

rDi D 1: (3.9)

Note that UOSC implies D � d .

�.�/ WD E
NX
iD1

1.�/.jln ri j/ rDi (3.10)

is an associated probability distribution for the logarithmic contraction ratios ri of the
primary random IFS. The corresponding mean value is denoted by

� WD E
NX
iD1

jln ri j rDi : (3.11)

For our main result, we need a slightly stronger condition than UOSC (3.3), namely
the uniform strong open set condition (USOSC). It is satisfied if

UOSC holds for some O such that P .F \O ¤ ;/ > 0: (3.12)

Remark 3.1. In the literature, instead of P .F \O ¤ ;/ > 0, the condition

P .F \O ¤ ;/ D 1
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has been used. By the following arguments, one can see that these conditions are
equivalent: If P .F \O ¤ ;/ > 0, there must be some n0 2 N such that the set

S0 WD
®
! W 9 � 2 †n0 with f� .O/ � O

¯
has positive probability. (Otherwise, F would concentrate on the boundary of O .)
Then the sets Sk WD �kn0.S0/, k D 0; 1; 2; : : : , are independent and have all the same
probability. Hence, the Borel–Cantelli lemma implies that P .

T1
nD0

S
k�n Sk/ D 1;

in particular, P .
S1
kD0 Sk/ D 1. This and UOSC lead to P .F \O ¤ ;/ D 1.

By Lemma 2.1, the boundary @F.r/ of the parallel set F.r/ D F.!; r/ is a
.d � 1/-Lipschitz manifold and eF.r/ has positive reach for all r � R, where R is
some constant such that R >

p
2jOj �

p
2jF j. For r < R, we will use the following

regularity condition. (Recall from (2.8) the definition of the set Reg of regular pairs.)
The random set F is called regular if the measure of irregular pairs vanishes, i.e., if

P �L
�®
.!; r/ 2 � � .0;1/ W .r; F / … Reg

¯�
D 0: (3.13)

In this case, we also consider the set

Reg� WD
®
.!; r/ W .r; F� / 2 Reg for all � 2 †�

¯
:

(Recall that †� D
S1
nD1†n.) Note thatZ Z

1.Reg�/c .!; r/L.dr/P .d!/ D 0: (3.14)

To see this, let N .!/ WD ¹r > 0 W .r; F / … Regº and observe thatZ Z
1.Reg�/c .!; r/L.dr/P .d!/

D

Z
L

� [
�2†�

r� .!/N .� j� j.!//

�
P .d!/

�

1X
nD1

Z X
�2†n

L
�
r� .!/N .�n.!//

�
P .d!/

D

1X
nD1

Z X
�2†n

r� .!/L
�
N .�n.!//

�
P .d!/

D

1X
nD1

Z X
�2†n

r� .!/

Z
L.N .!0//P .d!0/P .d!/ D 0;

since under the regularity condition (3.13), the inner integral vanishes. Here, we have
used that the random sets N .�n.!// are independent of the events up to the step n
and have the same distribution as N .!/.
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Now, we can formulate our main result. In the sequel, the occurring essential limits
and suprema are always meant with respect to Lebesgue-a.a. arguments.

Theorem 3.2. Let k 2 ¹0; 1; : : : ; dº and let F be a homogeneous random fractal
satisfying the uniform strong open set condition (3.12) with basic set O � Rd and
EN <1. Let R >

p
2jOj. For k � d � 2, we additionally suppose the following:

(i) if d � 4, then F is regular in the sense of (3.13);

(ii) for all r0 2 .0; R/,

E ess sup
r0�r�R

max
�2†b.r/

C var
k

�
F.r/; @.F� .r// \ @

� [
� 02†.r/
� 0¤�

F� 0.r/

��
<1I

(iii) there is a constant C > 0 such that with probability 1,

E

�
max

�2†b.r/
r�kC var

k

�
F.r/; @.F� .r//\ @

� [
� 02†.r/
� 0¤�

F� 0.r/

�� ˇ̌̌̌
].†b.r//

�
� C

for Lebesgue almost all r 2 .0; R�.

Let L > 0 and set, for almost all r > 0,

Rk;L.r/ WD ECk.F.r// � E
NX
iD1

1.0;Lri �.r/ Ck
�
Fi .r/

�
:

Then the following assertions hold:

(I) If the measure � is non-lattice, then

C frac
k;F WD ess lim

"!0
"D�kECk.F."// D

1

�

Z L

0

rD�k�1Rk;L.r/ dr:

(II) If the measure � is lattice with constant c, then for almost all s 2 Œ0; c/

lim
n!1

e.k�D/.sCnc/ECk.F.e
�.sCnc/// D

1

�

1X
mD0

e.k�D/.sCmc/Rk;L.e
�.sCmc//:

(III) In general,

C
frac
k;F WD lim

ı!0

1

jln ıj

Z 1

ı

"D�kECk.F."// "
�1d"D

1

�

Z L

0

rD�k�1Rk;L.r/dr:

Remark 3.3. In conditions (ii) and (iii), the boundary signs @ can be omitted, since
int F� .r/ � int F.r/ for any � 2 †� and the curvature measures are concentrated
on the boundary of the set F.r/. Similarly as in the deterministic case (see [25,
Example 4.10]), one can construct an example of a homogeneous random fractal
where these conditions are not satisfied.
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Remark 3.4. It is a consequence of the statement that the limit expressions in (I), (II)
and (III) do not depend on the choice of the constant L, which gives some flexibility
in applications, see Section 5. This independence can also be seen directly using the
self-similarity of F , cf. Lemma 4.5. The proof of Theorem 3.2 will be given for the
choice L D R, where R is the constant appearing in the conditions (ii) and (iii). It
is easily seen that, if these two conditions are satisfied with some R >

p
2jOj, then

they are also satisfied with any other constant zR >
p
2jOj instead of R. (Indeed, this

is obvious for zR < R, since in this case the suprema in (ii) are taken over a smaller
range of values and also the expectation in (iii) needs to be bounded for a smaller
range of values r only. For zR > R, this follows from Lemma 2.1, which implies that,
for almost all R < r � zR, almost surely

C var
k

�
F.r/; @.F� .r// \ @

� [
� 02†.r/
� 0¤�

F� 0.r/

��
� C var

k .F.r// � ck.R/ zR
k :

Thus, if conditions (ii) and (iii) hold with R, they also hold with zR > R, the latter
possibly with a larger constant C .) This shows that a proof of Theorem 3.2 for some
L >

p
2jOj (e.g. for L D R) implies indeed the validity of the stated formulas for

any L >
p
2jOj. The argument in Lemma 4.5 below shows that the latter restriction

can be relaxed to L > 0.

Remark 3.5. The special case of deterministic self-similar sets satisfying OSC is
included in Theorem 3.2. In this case, statement and formulas reduce to the ones
obtained in [24, 30] (and in [8] for the case k D d ). The formulas in [24, The-
orem 2.3.6] are stated with L D 1 and the ones in [30, Theorem 2.3.8] correspond
to the choice L D R, but Remark 3.4 applies similarly in these situations.

Note also that the formulas for the mean fractal curvatures are structurally equal
to the ones obtained for the fractal curvatures (almost surely and in the mean) for
self-similar random sets in [8, 30]. Indeed, if F is a homogeneous random fractal
as in Theorem 3.2 generated by some random IFS, and K denotes the random self-
similar set generated by the same random IFS, then the formulas for their mean fractal
curvatures coincide, except that in the integrand Rk;L the set F has to be replaced
by K. It turns out that in certain situations, both functions coincide, see Example 5.3.
In general, this is probably not true.

4. Proofs

The proof of Theorem 3.2 is split into several steps. We start with the main part in
which the problem is reduced to an application of the classical renewal theorem.
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In order to verify the assumptions of this theorem, we will show that the function
arising in the renewal equation is Lebesgue-a.e. continuous and bounded by a dir-
ectly Riemann integrable function. For the first property, condition (ii) is used, and
for the second one, condition (iii). The required estimates are shown in a sequence of
lemmas. Part of the estimates can be reduced to Lemma 2.1 (see Lemma 4.2 below).
The others follow from Lemmas 4.3 and 4.4, where the latter is essential. Finally, in
Lemma 4.5 it is shown that the limit formula in the assertion of the theorem is the
same for all L > 0.

Proof of Theorem 3.2 for L D R and up to the estimates (4.1) and (4.4). For L > 0,
the function �L

k
is .P �L/-almost everywhere defined by

�Lk .r/D �
L
k .!;r/ WD 1.0;L�.r/Ck.F.r//�

NX
iD1

1.0;Lri �.r/Ck.Fi .r//; .!;r/2Reg� :

Below, we will see that the expectations of the absolute values of the two sum-
mands on the right-hand side are finite. Then, in view of (3.14), the function

Rk;L D E�Lk

in Theorem 3.2 is determined at a.a. arguments. If L D R, where R is as in The-
orem 3.2, we will omit the subscript R and write �k.r/ WD �Rk .r/ and

Rk.r/ D E�k.r/:

By the motion invariance and scaling property of Ck , we get, for .!; r/ as above,

�k.r/ D 1.0;R�.r/Ck.F.r// �
NX
iD1

1.0;R�
� r
ri

�
rki Ck

�
F .1/

� r
ri

��
:

In order to translate the problem into the language of the renewal theorem, we substi-
tute r D Re�t and define

Zk.t/ D Zk.!; t/ WD 1Œ0;1/.t/e.k�D/tCk.F.Re�t //;

zk.t/ D zk.!; t/ WD e
.k�D/t�k.Re

�t /;

whenever .!; Re�t / 2 Reg�. Note that zk.!; t/ D 0 for t < 0. We infer from the
above relations that for such .!; t/,

Zk.!; t/ D

NX
iD1

rDi Zk
�
�.!/; t � jln ri j

�
C zk.!; t/;

where .�.!/; t � jln ri .!/j/ 2 Reg� for i D 1; : : : ; N.!/.
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Denote
T WD

®
t > 0 W .!;Re�t / 2 Reg� for P -a.a. !

¯
:

Let ��n be the n-th convolution power of the distribution �D E
PN
iD1 1.�/.jln ri j/rDi ,

if n � 1, ��0 the Dirac measure at 0, and

U.t/ WD

1X
nD0

��n..0; t �/; t > 0:

Note that the summands on the right vanish for n > t
jln rmaxj

, so that the summation is
finite for each t > 0. (In the sequel,U -a.a. means a.a. with respect to the corresponding
measure.) Below we will show the following.

Lemma 4.1. If t 2 T , then t � s 2 T for �-a.a. s � t and for U -a.a. s � t .

Then we infer, for t 2 T , from the above equality for Zk.!; t/, that

EjZk.t/j �

Z N.!/X
iD1

ri .!/
D
ˇ̌
Zk
�
�.!/; t � jln ri .!/j

�ˇ̌
P .d!/C Ejzk.t/j

D

Z
EjZk.t � s/j�.ds/C Ejzk.t/j :

In view of Lemma 4.1, we obtain from iterated application of this inequality that

EjZk.t/j �

Z t

0

Ejzk.t � s/j dU.s/; t 2 T:

Below, we will show that there exist some constants ck > 0 and ı > 0 such that
for all u 2 T , we have

Ejzk.u/j � ck1Œ0;1/.u/ e�ıu: (4.1)

(In the proof for k � d � 2 we will use condition (iii) of Theorem 3.2.) Furthermore,
since in our case U.t/ � t

jln rmaxj
for all t > 0, we infer from (4.1) and the definition of

Zk that for some constants dk and d 0
k

,

EjZk.t/j �

Z t

0

Ejzk.t � s/j dU.s/ < dk; t 2 T;

and, consequently,

EjCk.F.r//j � d
0
k r

k�D
ˇ̌̌
ln
� r
R

�ˇ̌̌
for a.a. 0 < r � R: (4.2)

This shows, in particular, the finiteness of the expectations mentioned at the beginning
of the proof.
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Moreover, we can repeat to above arguments omitting the absolute value signs and
replacing the corresponding inequalities by equalities in order to obtain the renewal
equation in the sense of Feller [6]. We get, for all t 2 T ,

EZk.t/ D

Z t

0

EZk.t � s/�.ds/C Ezk.t/

and

EZk.t/ D

Z t

0

Ezk.t � s/ dU.s/: (4.3)

Below, we will also show that for all 0 < r0 � R,

E ess sup
r>r0

j�k.r/j <1; (4.4)

where ess sup means the supremum over all arguments where the function is determ-
ined. (In the proof of (4.4) for k � d � 2, we will use condition (ii) of the theorem.)

We now define two auxiliary functions on .0;1/ by

zk.t/ WD

8<:Ezk.t/; if t 2 T;

lim sup
t 0!t; t 02T

Ezk.t
0/; if t 2 .0;1/ n T;

Zk.t/ WD

Z t

0

zk.t � s/ dU.s/; t > 0:

Then, in view of Lemma 4.1 and (4.3),

Zk.t/ D EZk.t/ for t 2 T: (4.5)

Assumption (i) and Lemma 2.4 imply that the random function �k.!; �/ is continuous
in the second argument at all arguments r , where .!; r/ 2 Reg�. (For k D d;d � 1we
do not need (i) for this conclusion.) The dominated convergence theorem (justified by
(4.4)) yields that at each t 2 T , the function zk , which agrees with e.k�D/tE�k.Re�t /
at such t , is continuous, i.e., zk is continuous Lebesgue-a.e. Moreover, in view of
(4.1), zk is bounded by a directly Riemann integrable function. Thus, according to
Asmussen [2, Proposition 4.1, p. 118], zk is directly Riemann integrable, too. There-
fore, the classical renewal theorem in Feller [6, p. 363] can be applied, which yields
that

lim
t!1

Zk.t/ D
1

�

Z 1
0

zk.t/ dt:

The right-hand side agrees with

1

�

Z 1
0

Ezk.t/ dt D
1

�

Z 1
0

e.k�D/tRk.Re
�t / dt;
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since zk.t/ D Ezk.t/ for Lebesgue-a.a. t . Multiplying RD�k in this equation and
substituting r D Re�t under the integral, assertion (I) follows in view of (4.5).

Since EZk is bounded on finite intervals, in the non-lattice case the corresponding
average limit in (III) is a consequence.

In the lattice case, the renewal theorem provides the limit along arithmetic pro-
gressions with respect to the lattice constant, here only for those sequences along
which the function is determined. This shows assertion (II). This also implies the
average convergence (III). For more details, we refer to the arguments of Gatzouras
at the end of the proof of [8, Theorem 2.3] in the classical case.

Proof of Lemma 4.1. For t 2 T , we have

1 D P
�®
! W .Re�t ; F� .!// 2 Reg for all � 2 †�.!/

¯�
� P

�®
! W .Re�t ; Fi� .!// 2 Reg for i D 1; : : : ; N.!/; � 2 †�.�.!//

¯�
:

Using that .Re�t ; Fi� .!// 2 Reg if and only if .Re�.t�jln ri .!/j/; F� .�.!/// 2 Reg
and the product structure of the basis probability space, we infer

1 D

Z
P
�®
!0 W

�
Re�.t�jln ri .!/j/; F� .!

0/
�
2 Reg

for i D 1; : : : ; N.!/; � 2 †�.!0/
¯�

P .d!/:

Hence, we get, for P -a.a. !,

P
�®
!0 W

�
Re�.t�jln ri .!/j/; F� .!

0/
�
2 Reg for � 2 †�.!0/

¯�
D 1;

for i D 1; : : : ; N.!/, and thereforeZ NX
iD1

ri .!/
DP

�®
!0 W

�
Re�.t�jln ri .!/j/;F� .!

0/
�
2Reg for � 2†�.!0/

¯�
P .d!/D 1;

since
R PN

iD1 ri .!/
DP .d!/ D 1. By the definition of the measure �, this means thatZ

P
�®
!0 W

�
Re�.t�s/; F� .!

0/
�
2 Reg for � 2 †�.!0/

¯�
�.ds/ D 1:

Thus, for �-a.a. s � t ,

P
�®
!0 W

�
Re�.t�s/; F� .!

0/
�
2 Reg for � 2 †�.!0/

¯�
D 1;

i.e., for t 2 T and �-a.a. s � t , we get t � s 2 T . Iterated application of this result
yields that t 2 T implies t � s 2 T for U -a.a. s � t .
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In order to complete the proof of Theorem 3.2, it remains to verify (4.1) and (4.4).
By the definition of zk , the first one is equivalent to showing that there are constants
c0
k

and ı > 0 such that

E
ˇ̌
�k.r/

ˇ̌
� c0k r

k�DCı for a.a. r > 0: (4.6)

(In particular, if this inequality holds, then (4.1) is satisfied with the same ı and ck D
Rk�DCıc0

k
.) Observe that, by Lemma 2.1, (4.4) and (4.6) are satisfied for all r0 > R

and r > R, respectively. In order to prepare the estimates for a.a. r � R, note first that
for a.a. r 2 .0; R�, we get

j�k.r/j D

ˇ̌̌̌
Ck.F.r// �

NX
iD1

.1 � 1.Rri ;R�.r// Ck.Fi .r//
ˇ̌̌̌

D

ˇ̌̌̌
Ck.F.r// �

NX
iD1

Ck.Fi .r//C

NX
iD1

1.Rri ;R�.r/ Ck.Fi .r//
ˇ̌̌̌

�

ˇ̌̌̌
Ck.F.r// �

NX
iD1

Ck.Fi .r//

ˇ̌̌̌
C

ˇ̌̌̌ NX
iD1

1.Rri ;R�.r/ Ck.Fi .r//
ˇ̌̌̌

DW �k1.r/C �k2.r/:

Therefore, it suffices to provide the required bounds for the two summands in the last
line instead of j�k.r/j. For the second summand the estimates (4.4) and (4.6) follow
from the next statement, since we supposed that EN <1.

Lemma 4.2. There exists some constant bk such that for all r 2 .0; R�,

�k2.r/ � bkNr
k a.s.

Proof. Recalling that Fi .r/ D .fi .F .1///.r/ D fi .F .1/. rri //, we have

�k2.r/ D

ˇ̌̌̌ NX
iD1

1.Rri ;R�.r/ Ck.Fi .r//
ˇ̌̌̌
�

ˇ̌̌̌ NX
iD1

1.Rri ;R�.r/ C
var
k

�
fi

�
F .1/

� r
ri

���ˇ̌̌̌
D

NX
iD1

1.Rri ;R�.r/ r
k
i C

var
k

�
F .1/

� r
ri

��
:

By the choice of R, we have for any r 2 .Rri ; R� that r
ri
> R >

p
2jOj �

p
2jF .1/j.

Hence, we can apply Lemma 2.1 and infer that there is a constant bk D bk.R/ such
that almost surely

C var
k

�
F .1/

� r
ri

��
� bk

� r
ri

�k
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for all r > Rri and all i . Plugging this into the above estimates, we get, for all r � R,ˇ̌̌̌ NX
iD1

1.Rri ;R�.r/ Ck.Fi .r//
ˇ̌̌̌
� Nbkr

k;

i.e., the assertion follows.

It remains to prove the required bounds for the first summand �k1 in the above
estimates.

Lemma 4.3. There exist constants c0
k
> 0 and ı > 0 such that

E�k1.r/ D E

ˇ̌̌̌
Ck.F.r// �

NX
iD1

Ck.Fi .r//

ˇ̌̌̌
� c0k r

k�DCı for a.a. r 2 .0;R�; (4.7)

and
E ess sup
r0<r�R

�k1.r/ <1; 0 < r0 < R: (4.8)

Proof. For k 2 ¹d � 1; dº, the estimate (4.8) is a simple consequence of the facts
that for any compact K and r > 0, we have Cd .K.r// � const.2r C jKj/d and
Cd�1.K.r// � const r�1Cd .K.r//. The latter follows from the Kneser property of
the volume function, i.e., @

@r
Ld .K.r// � d

r
Ld .K.r// for almost all r (see, e.g., [12,

Lemma 4.6] and its proof), together with [14, Corollary 2.6].
For k � d � 2, we decompose the total k-th curvatures by means of the corres-

ponding curvature measures:

Ck.F.r// D Ck.F.r/; Ar/C Ck.F.r/; .Ar/
c/;

where
Ar WD

[
j¤k

fj .O/.r/ \ fk.O/.r/: (4.9)

Similarly,

Ck.Fi .r// D Ck.Fi .r/; Ar/C Ck.Fi .r/; .Ar/
c/; i D 1; : : : ; N:

The local definiteness of the curvature measure Ck implies

Ck.Fi .r/; .Ar/
c/ D Ck.Fi .r/; B

i / D Ck.F.r/; B
i /;

and F.r/ \ .Ar/c is the disjoint union of the sets B i WD Fi .r/ n Ar , i D 1; : : : ; N .
Hence,

Ck.F.r/; .Ar/
c/ �

NX
iD1

Ck.Fi .r/; .Ar/
c/ D 0:
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Substituting this in the above expression for �k1, we infer that

�k1.r/ D

ˇ̌̌̌
Ck.F.r/; Ar/ �

NX
iD1

Ck.Fi .r/; Ar/

ˇ̌̌̌
and so, by the scaling property of Ck ,

�k1.r/ D

ˇ̌̌̌
Ck.F.r/; Ar/ �

NX
iD1

rki Ck

�
F .1/

� r
ri

�
; f �1i .Ar/

�ˇ̌̌̌
D j�k3.r/ � �k4.r/ � �k5.r/j � j�k3.r/j C j�k4.r/j C j�k5.r/j;

where

�k3.r/ WD Ck.F.r/; Ar/;

�k4.r/ WD

NX
iD1

rki 1.0;R�
� r
ri

�
Ck

�
F .1/

� r
ri

�
; f �1i .Ar/

�
;

�k5.r/ WD

NX
iD1

rki 1.R;1/
� r
ri

�
Ck

�
F .1/

� r
ri

�
; f �1i .Ar/

�
:

Therefore, instead of proving the estimates (4.7) and (4.8) for �k1, it suffices to prove
corresponding estimates for j�k3j, j�k4j and j�k5j separately.

The arguments for j�k5j are the same as for �k2 taking into account that for any
Borel set B , jCk.F .1/.r/; B/j � C var

k
.F .1/.r/;Rd / and applying Lemma 2.1.

For estimating �k3 and �k4, we will use the set inclusions

Ar � .f .O//
c.r/; f �1i .Ar/ � O

c
� r
ri

�
and Oc.r/ � f .O/c.r/:

(Recall that f .O/ D
SN
iD1 fi .O/ and O is the open set from UOSC.) Then for j�k3j,

the estimates (4.7) and (4.8) follow from (4.11) and (4.10), respectively, in Lemma 4.4
below.

Furthermore, for Lebesgue-a.a. r 2 .r0; R�, we obtain from the above set inclu-
sions

j�k4.r/j �

NX
iD1

1.0;R�
� r
ri

�
rki C

var
k

�
F .1/

� r
ri

�
; Oc

� r
ri

��
� N ess sup

r0<r�R

C var
k

�
F .1/.r/;Oc.r/

�
:

Since the random set F .1/ is independent of the events in the first step and, in partic-
ular, of N , and has the same distribution as F , we infer

E ess sup
r0<r�R

j�k4.r/j � EN E ess sup
r0<r�R

C var
k

�
F.r/;Oc.r/

�
:
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As Oc.r/ � f .O/c.r/, the estimate (4.10) in Lemma 4.4 below yields (4.8) for �k4.
Similarly, we get

ess sup
r0<r�R

E
h�
j�k4.r/j

rk�DCı

�i
� ess sup
r0<r�R

E

� NX
iD1

rD�ıi 1.0;R�
� r
ri

��rk�DCıi

rk�DCı
C var
k

�
F .1/

� r
ri

�
; Oc

� r
ri

����
D ess sup
r0<r�R

E

� NX
iD1

rD�ıi 1.0;R�
� r
ri

��rk�DCıi

rk�DCı
EC var

k

�
F .1/

� r
ri

�
; Oc

� r
ri

����
� E

� NX
iD1

rD�ıi

�
ess sup
0<r�R

�
EC var

k
.F .1/.r/;Oc.r//

rk�DCı

�
� EN ess sup

0<r�R

�
EC var

k
.F.r/; f .O/c.r//

rk�DCı

�
<1

for some 0 < ı < D according to (4.11) in Lemma 4.4 below.
(Via conditional expectation, the inner expectations are chosen with respect to

the random set F .1/; recall that the latter is independent of the contraction ratios
r1; : : : ; rN and has the same distribution as F .)

This yields the remaining estimate (4.7) for �k4. Thus, Lemma 4.4 completes the
proof of Theorem 3.2.

Lemma 4.4. Under the conditions of Theorem 3.2, we have

E ess sup
r0<r<R

C var
k

�
F.r/; f .O/c.r/

�
<1 (4.10)

for all 0 < r0 < R, and

ess sup
0<r<R

�
EC var

k

�
F.r/; f .O/c.r/

�
rk�DCı

�
<1 (4.11)

for some 0 < ı < D.

Proof. We start similarly as in the above proof choosing the subtree †.r/ from (3.6)
instead of †1 in the decomposition of the curvature measures.

First, note that by a simple volume comparing argument the uniform open set
condition (3.3) implies that for all r > r0 > 0,

].†.r// � const.r0/�d ; (4.12)

where ] denotes the number of elements of a finite set.
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Next, recall that F.r/ D
S
�2†.r/ F� .r/ for any r > 0. Since curvature measures

are locally defined, this implies

C var
k

�
F.r/; f .O/c.r/

�
D C var

k

�
F.r/;

� [
�2†.r/

F� .r/

�
\ f .O/c.r/

�
�

X
�2†b.r/

C var
k

�
F.r/; F� .r/

�
; (4.13)

where the boundary code set†b.r/was defined in (3.8). Note that intF� .r/� intF.r/
for any � 2 †.r/, thus C var

k
.F.r/; intF� .r// D 0 for k � d � 1 (since the curvature

measures are concentrated on the boundary of F.r/). Then for k 2 ¹d � 1;dº, we can
use the (in)equality

C var
k

�
F.r/; F� .r/

�
� Ck.F� .r//; � 2 †b.r/: (4.14)

Similarly, we obtain, for any � 2 †b.r/ and k � d � 2,

C var
k

�
F.r/; F� .r/

�
D C var

k

�
F.r/; F� .r/ n

[
� 02†.r/
� 0¤�

F� 0.r/

�
C C var

k

�
F.r/; F� .r/ \

[
� 02†.r/
� 0¤�

F� 0.r/

�

� C var
k .F� .r//C C

var
k

�
F.r/; @F� .r/ \ @

� [
� 02†.r/
� 0¤�

F� 0.r/

��

D rk� C
var
k

�
F .j� j/

� r
r�

��
C C var

k

�
F.r/; @F� .r/ \ @

� [
� 02†.r/
� 0¤�

F� 0.r/

��
DW S1.r; �/C S2.r; �/:

Moreover, for � 2 †b.r/, we have r
r�
� R. Hence, the first summand S1.r; �/ on the

right-hand side is bounded by a constant in view of Lemma 2.1, since jOj � jF .j� j/j.
(This holds also for k 2 ¹d � 1; dº.) Therefore, these estimates together with (4.13)
and (4.12) lead to

E ess sup
r0<r�R

C var
k

�
F.r/; f .O/c.r/

�
� E ess sup

r0<r�R

X
�2†b.r/

S1.r; �/C E ess sup
r0<r�R

X
�2†b.r/

S2.r; �/

� constC const E ess sup
r0<r�R

max
�2†b.r/

S2.r; �/:
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In the last estimate, we have used that ].†b.r// is bounded by a constant (depending
on r0) according to (4.12). Since the last summand is finite by assumption (ii) in our
theorem, we obtain the first assertion (4.10).

To prove (4.11), we argue similarly that for 0 < ı < D,

rD�ı�kEC var
k

�
F.r/; f .O/c.r/

�
� E

�
rD�ı

X
�2†b.r/

r�kS1.r; �/

�
C E

�
rD�ı

X
�2†b.r/

r�kS2.r; �/

�
� E

�
rD�ı].†b.r// max

�2†b.r/
r�kS1.r; �/

�
C E

�
rD�ı].†b.r// max

�2†b.r/
r�kS2.r; �/

�
:

Since r
r�
� R for � 2 †b.r/ and any 0 < r � R, by Lemma 2.1, the maximum in the

first summand is uniformly bounded by some constant c D c.R/ independent of r .
Therefore, for all r 2 .0; R�, the last sum does not exceed

cE
�
rD�ı].†b.r//

�
C E

h
rD�ı].†b.r// max

�2†b.r/
r�kS2.r; �/

i
D cE

�
rD�ı].†b.r//

�
C E

h
rD�ı].†b.r//E

h
max

�2†b.r/
r�kS2.r; �/

� ˇ̌̌
].†b.r//

ii
� cE

�
rD�ı].†b.r//

�
C E

h
rD�ı].†b.r// ess sup

0<r�R

E
h

max
�2†b.r/

r�kS2.r; �/
� ˇ̌̌
].†b.r//

ii
� .c C C/E

�
rD�ı].†b.r//

�
;

since, by condition (iii) in Theorem 3.2, the supremum of the conditional expectations
in the second summand is bounded by C . Therefore, it remains to show that for some
0 < ı < D,

sup
0<r�R

E
�
rD�ı].†b.r//

�
<1: (4.15)

This was already proved in [31]. For the convenience of the reader, we replicate the
arguments here.

To this aim, we will use USOSC, i.e., UOSC withO such that P .F \O ¤;/ > 0,
which implies that there exist some constants ˛ > 0 and 0 < � < 1 such that

P
�
†.�; ˛/ ¤ ;

�
> 0 (4.16)

for †.�; ˛/ WD ¹� 2 †.�/ W d.x; @O/ > ˛; x 2 f� .O/º.
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Since†.�/ is a Markov stop, one infers from E
PN
iD1 r

D
i D 1 that E

P
�2†.�/ r

D
�

D 1 (see, e.g., [31, Proposition 1]). Then let ı be determined by

E

� X
�2†.�/n†.�;˛/

rD�ı�

�
D 1: (4.17)

We next choose for all r > 0,

r� WD 2R.˛rmin/
�1r: (4.18)

Then we get, for i D 1; : : : ;N and i� 2†.r�/ with � D �� 0 for some � 2†.1/.�;˛/,
that

fi� .F
.ji� j//.r/ \ f .O/c.r/ D ;:

To see this note that for any x 2 fi� .F ji� j/.r/, there exists a y 2 fi� .F .ji� j// such
that jx � yj � r . Furthermore, we have y 2 fi� .F .ji� j//� fi .F .1//� fi .O/� f .O/,
and d.y; @f .O// � d.y; @fi� .O// > ri�˛ > R�1r�rmin˛ D 2r . Consequently,
d.x; @f .O/c/ � d.y; @f .O/c/ � jx � yj > 2r � r D r , i.e., x … .f .O/c/.r/.

From this, we obtain

].†b.r// �

NX
iD1

]
�°
w 2 †.r�/ W w D i�; � 2 „.1/

�r�
ri

�±�
;

where the random sets „.r/, r > 0, are defined as

„.r/ WD †.r/ n
®
� 2 †.r/ W � D �� 0 for some � 2 †.�; ˛/

¯
:

In these notations, we get

rD�ıE].†b.r// � r
D�ıE

NX
iD1

]
�
„.1/

�r�
ri

��
D

�˛rmin

2

�D�d
E

NX
iD1

rD�ıi

�r�
ri

�D�ı
]
�
„.1/

�r�
ri

��
D

�˛rmin

2

�D�d
E

NX
iD1

rD�ıi

�r�
ri

�D�ı
E]
�
„.1/

�r�
ri

��
D const E

NX
iD1

rD�ıi  
�r�
ri

�
;

where we have used that „.1/ is independent of the events in the first step and has the
same distribution as„ and then the notation  .r/ WD rD�ıE].„.r//. Now, it suffices
to show that the function  is bounded.
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Similarly as above, using (4.16) and the definition of „.r/, we infer for suffi-
ciently large M and r < �,

 .r/ D E
X

�2†.�/n†.�;˛/

rD�ı�

� r
r�

�D�ı
]
�
„.j� j/

� r
r�

��
D

MX
nD1

E
X

�2†.�/n†.�;˛/

j� jDn

rD�ı�

� r
r�

�D�ı
]
�
„.n/

� r
r�

��

D

MX
nD1

E
X

�2†.�/n†.�;˛/

j� jDn

rD�ı�  
� r
r�

�
D E

X
�2†.�/n†.�;˛/

rD�ı�  
� r
r�

�
� E

X
�2†.�/n†.�;˛/

rD�ı� ess sup
r 0� r�

 .r 0/ D ess sup
r 0� r�

 .r 0/;

where we have used that the random sets „.n/.r/ are independent of the behavior
of the system up to the step n via conditional expectation, that they have the same
distribution as„.r/, and then (4.17). Hence,  .r/ � ess supr 0� r�  .r

0/ for any r < �,
which implies

sup
r��kC1

 .r/ � sup
r��k

 .r/ for all k:

Since the function  is bounded on any finite interval away from zero, it is bounded
on .0; R/. This completes the proof of (4.15).

We have proved Theorem 3.2 for the special case L D R (and it was argued in
Remark 3.4 that this implies, it holds for any L >

p
2jOj). In order to complete the

proof, we need to show that the assertions hold also for L 2 .0;
p
2jOj�. Recall that

Rk D Rk;R.

Lemma 4.5. Under the conditions of Theorem 3.2, for any 0 < L < R,Z L

0

rD�k�1Rk;L.r/ dr D

Z R

0

rD�k�1Rk.r/ dr:

Proof. Observe thatZ L

0

rD�k�1Rk;L.r/ dr

D

Z R

0

rD�k�1Rk.r/ dr �

Z R

L

rD�k�1ECk.F.r// dr

C

Z 1
0

rD�k�1E
NX
iD1

1.Lri ;Rri �.r/ Ck.Fi .r// dr

DW I1 � I2 C I3;
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provided that all three integrals on the right side converge absolutely. For the first
integral I1, this is included in the proof of Theorem 3.2 for L D R, and for I2, it
follows from the estimate (4.2). Replacing in I3 the curvature measure Ck by jCkj
and interchanging expectation and integration, we obtainZ 1

0

rD�k�1E
NX
iD1

1.Lri ;Rri �.r/jCk.Fi .r//j dr

D E
NX
iD1

Z 1
0

rD�k�11.Lri ;Rri �.r/jCk.Fi .r//j dr

D E
NX
iD1

Z 1
0

rD�k�11.L;R�
� r
ri

�
rki

ˇ̌̌
Ck

�
F
� r
ri

��ˇ̌̌
dr

D E
NX
iD1

rDi

Z R

L

NrD�k�1jCk.F
.1/. Nr//j d Nr

D E
NX
iD1

rDi E

Z R

L

NrD�k�1jCk.F
.1/. Nr//j d Nr

D

Z R

L

NrD�k�1EjCk.F. Nr//j d Nr;

where we have substituted Nr D r
ri

in the second step and used that Fi D fi .F .1//. For
the third step, note that F .1/ is independent of the first step of the construction. Hence,
the expectation can be written as a product of two expectations, where the first one
E
PN
iD1 r

D
i equals 1, by the definition ofD. In the second one, we interchanged again

expectation and integration. The last integral is finite because of (4.2). Hence, we have
shown the existence of the integral I3. Now, we can repeat the last transformations
omitting the absolute value signs in order to get I3 D I2. Together with the above
decomposition, this proves the assertion.

5. Sufficient conditions and examples

We discuss some examples to illustrate our main result and compare it with the known
results in the random recursive case. In order to simplify the verification of the condi-
tions (ii) and (iii) in Theorem 3.2, we discuss first some simpler sufficient conditions,
which may equally be used in the random recursive case. Recall that O� D f� .O/

for any word � 2 †�. As a first step, the following observation clarifies that not too
many of the parallel sets O� .r/, � 2 †.r/ intersect. Recall also that here we assume
a uniform lower bound rmin for the contraction ratios, cf. the first lines of Section 3.
For a similar estimate in the deterministic case, see, e.g., [24, Lemma 5.3.1].
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Lemma 5.1. Let F be a homogeneous random fractal or a random self-similar set
satisfying UOSC (3.3) for some open set O . Then there is a constant � > 0 such that
P -a.s. for all r > 0 and all � 2 †.r/,

]
®
� 0 2 †.r/ W O� .r/ \O� 0.r/ ¤ ;

¯
� �:

Proof. We provide a proof here for the homogeneous model. The one for the ran-
dom recursive model is literally the same, when P is replaced by the corresponding
measure; see, e.g., [30, equation (9)]. Let O be the open set in UOSC. The condition
implies that P -a.s. for any r > 0 the family ¹O� W � 2 †.r/º consists of pairwise
disjoint sets. The definitions of R >

p
2jOj and †.r/ imply that for any � 2 †.r/,

jO� j D r� jOj �
1
p
2
Rr� �

r
p
2
: (5.1)

Now, fix r > 0 and let �; � 0 2 †.r/ such that O� .r/ \O� 0.r/ ¤ ;. Then by (5.1),

O� 0 � O� .2r C jO� 0 j/ � B
�
f� .x/; .2C

p
2/r
�
� B.f� .x/; 4r/;

where x is an arbitrary point in O , and thus f� .x/ 2 O� . Here, B.y; s/ denotes the
closed ball with center y and radius s. Recalling that the volume of a ball of radius
4r is �d .4r/d (where �d is the volume of the unit ball in Rd ) and that the volume of
each of the (pairwise disjoint) sets O� 0 , � 0 2 †.r/ is bounded from below by

Cd .O� 0/ D r
d
� 0 Cd .O/ > Cd .O/R

�d rdminr
d ;

we conclude that not too many of the sets O� 0 can be contained in the ball B.f� .x/;
4r/. Hence, we obtain that P -almost surely

]
®
� 0 2 †.r/ W O� .r/ \O� 0.r/ ¤ ;

¯
� ]

®
� 0 2 †.r/ W O� 0 � B.f� .x/; 4r/

¯
�

�d4
dRd

rdminCd .O/
DW �;

where the constant � is independent of r > 0 and � .

Observe that, by UOSC, a.s. F � O , which implies

F.r/ � O.r/ P -a.s. for any r > 0; (5.2)

and hence, F� .r/ � O� .r/ for any � 2 †�. Therefore, the assertion of Lemma 5.1
does equally hold with the sets O� .r/ \O� 0.r/ replaced by F� .r/ \ F� 0.r/.

Now, we formulate the announced conditions that imply (ii) and (iii) in The-
orem 3.2. They are almost sure bounds in contrast to the bounds on expectations in (ii)
and (iii). In the deterministic case, a condition very similar to the one in (b) is known
to be equivalent to the curvature bounds corresponding to (ii) and (iii), cf. [25, The-
orem 4.7].
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Proposition 5.2. Let k 2 ¹0; 1; : : : ; dº and let F be a homogeneous random fractal
or a random self-similar set satisfying USOSC and the regularity condition (i) in
Theorem 3.2. Suppose that one of the following equivalent conditions (a)–(d) holds:

(a) there is a constant c > 0 such that P -a.s. for almost all r > 0 and all � 2†.r/,

C var
k

�
F.r/; F� .r/ \

[
�2†.r/n¹�º

F� .r/

�
� crkI

(b) there is c0 >0 such that P -a.s., for a.a. r > 0 and all �;� 0 2†.r/with � ¤ � 0,

C var
k

�
F.r/; F� .r/ \ F� 0.r/

�
� c0rkI

(c) there is c00 > 0 such that P -a.s., for a.a. r > 0 and all � 2 †.r/,

C var
k

�
F.r/; F� .r/

�
� c00rkI

(d) there is c000 > 0 such that P -a.s., for a.a. r > 0 and all �; � 0 2 †.r/ with
� ¤ � 0,

C var
k

�
F.r/;O� .r/ \O� 0.r/

�
� c000rk :

Then the conditions (ii) and (iii) in Theorem 3.2 are satisfied.

Proof. Again, we provide a proof for the homogeneous model, the one for the recurs-
ive case being similar. First, we show the equivalence of the four conditions (a)–(d).
The implications (a)) (b), (c)) (b) and (d)) (b) are obvious from corresponding
set inclusions.

(b)) (a): Suppose (b) holds. Then P -a.s., for a.a. r > 0 and any � 2 †.r/,

C var
k

�
F.r/; F� .r/ \

[
�2†.r/n¹�º

F� .r/

�
D C var

k

�
F.r/;

[
�2†.r/n¹�º

F� .r/ \ F� .r/

�
�

X
�2†.r/n¹�º

C var
k

�
F.r/; F� .r/ \ F� .r/

�
� � � c0rk;

since, by Lemma 5.1, the number of nonzero summands in the last sum is bounded by
some constant � independent of r or � . Moreover, by (b), each of these summands is
bounded by c0rk . Hence, (b) implies (a) (with constant c D �c0), and therefore both
conditions are equivalent.

(a)) (c): We have P -a.s., for a.a. r > 0 and � 2 †.r/,

C var
k

�
F.r/; F� .r/

�
� C var

k

�
F.r/; F� .r/ \ Ur;�

�
C C var

k

�
F.r/; F� .r/ n Ur;�

�
;
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where Ur;� WD
S
�2†.r/n¹�º F� .r/. By (a), the first summand on the right is bounded

by crk . For the second summand, we infer that

C var
k

�
F.r/; F� .r/ n Ur;�

�
� C var

k

�
F.r/;Rd n Ur;�

�
D C var

k

�
F� .r/;R

d
n Ur;�

�
;

by the local definiteness, and therefore, by Lemma 2.1,

C var
k

�
F.r/; F� .r/ n Ur;�

�
� C var

k .F� .r// � ck.R/r
k;

since, by definition of †.r/, r � Rr� >
p
2jOjr� �

p
2jF� j. Hence, (c) holds (with

c00 D c C ck.R/), showing the equivalence of (a) and (c).
(c)) (d): We have P -a.s., for a.a. r > 0 and all �; � 0 2 †.r/ with � ¤ � 0 (with

Ur;� defined as above and noting that F.r/ D F� .r/ [ Ur;� ),

C var
k

�
F.r/;O� .r/ \O� 0.r/

�
D C var

k

�
F.r/;O� .r/ \O� 0.r/ \ .F� .r/ [ Ur;� /

�
� C var

k

�
F.r/;O� .r/ \O� 0.r/ \ F� .r/

�
C C var

k

�
F.r/;O� .r/ \O� 0.r/ \ Ur;�

�
� C var

k

�
F.r/; F� .r/

�
C C var

k

�
F.r/;O� .r/ \ Ur;�

�
:

Due to (c), the first summand is bounded by c00rk , while for the second summand,
we get

C var
k .F.r/;O� .r/ \ U�;r/ � C

var
k

�
F.r/;

[
�2†.r/n¹�º

O� .r/\O� .r/¤;

F� .r/

�

�

X
�2†.r/n¹�º

O� .r/\O� .r/¤;

C var
k

�
F.r/; F� .r/

�
:

Now, again by (c), each summand is bounded by c00rk and, by Lemma 5.1, the num-
ber of summands is bounded by some constant � . Hence, (d) holds (with c000 D
.1C �/ c00).

It suffices now to show that condition (a) implies (ii) and (iii) in Theorem 3.2.
Applying condition (a) to the expectation in condition (ii), we conclude that for any
r0 2 .0; R/, this expectation is bounded from above by

E ess sup
r0�r�R

max
�2†b.r/

crk � cRk <1:

Similarly, the conditional expectation in condition (iii) is bounded from above by

E
h

max
�2†b.r/

r�k crk
ˇ̌̌
]†b.r/

i
� c�

for a.a. r 2 .0; R/. Hence, conditions (ii) and (iii) are satisfied as claimed.
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g1(T ) g2(T )

g3(T )

h1(T ) h2(T ) h3(T )

h5(T )h4(T )

h6(T )

Figure 1. Illustration of the first construction step of the two IFSG andH in Example 5.3 used
to generate the homogeneous random Sierpiński gasket.

Example 5.3. (Homogeneous random Sierpiński gasket) Let G D .g1; g2; g3/ be the
IFS of the standard Sierpiński gasket in R2, i.e., gi .x/D 1

2
xC ti , x 2R2, i D 1; 2; 3,

where

t1 D .0; 0/; t2 D
�1
2
; 0
�
; t3 D

�1
4
;

p
3

4

�
;

and let H D .h1; : : : ; h6/ be the IFS of the modified Sierpiński gasket given by the
six mappings hi .x/ D 1

3
x C si , x 2 R2, i D 1; : : : ; 6, where

s1 D .0; 0/;

s4 D
�1
6
;

p
3

6

�
;

s2 D
�1
3
; 0
�
;

s5 D
�1
2
;

p
3

6

�
;

s3 D
�2
3
; 0
�
;

s6 D
�1
3
;

p
3

3

�
I

see also Figure 1. Then for any p 2 Œ0; 1�, we consider the distribution P0 on the space
�0 of the primary random IFS with

P0.¹Gº/ D p; P0.¹H º/ D 1 � p: (5.3)

Let F be the corresponding homogeneous random fractal generated as in Section 3.
Keep in mind that P0 and F depend on the parameter p, although we suppress this
dependence in the notation. The two deterministic self-similar sets generated by G
and H are contained in this one-parameter family as marginal cases corresponding to
p D 1 and p D 0, respectively.

First, note that F satisfies UOSC for the open set O D int.T /, where

T WD conv
°
.0; 0/; .1; 0/;

�1
2
;

p
3

2

�±
;
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since both G and H satisfy OSC for O . Furthermore, 3 < N � 6 with probability 1.
We claim that the regularity condition (i) in Theorem 3.2 is satisfied. In fact, P -a.s.
all parallel sets of F are polyconvex. To see this, note that @T � F � T and that for
any r � jT j D jF j, F.r/ D T .r/. Hence, F.r/ is convex for these r . Now, let r > 0
be arbitrary and choose n 2 N such that for all � 2 †n, jF� j � r . This is possible,
since in each step sets are contracted at least by the factor 1

2
. Then F� .r/D T� .r/ for

all � 2 †n and, since F.r/ D
S
�2†n

F� .r/, we have found a representation of F.r/
by a finite number of convex sets. Hence, F.r/ is polyconvex for each r > 0.

In order to verify conditions (ii) and (iii), it suffices to check the assumptions of
Proposition 5.2. First, we need to specify the constant R. It is convenient to choose
R D 3

2
. Since jOj D 1, it clearly satisfies R >

p
2jOj. Let r > 0 and recall the

definition of the family †.r/. In the present example, the sets F� , � 2 †.r/, are
all congruent copies of each other. In particular, they have the same diameter r� and
their parallel sets F� .r/ D T� .r/ are convex, since r � Rr� >

p
2 jF� j.

Recall that F.r/ D
S
�2†.r/ F� .r/ is a representation of F.r/ by convex sets. By

Lemma 5.1, there is a constant � such that locally within a fixed set F� .r/, F.r/
can be represented by at most � of these sets. Let †� .r/ WD ¹� 2 †.r/ W F� .r/ \
F� .r/¤ ;º. By the above considerations, ]†� .r/ � � and, since curvature measures
are locally defined, we get

C var
k

�
F.r/; F� .r/ \ F� 0.r/

�
D C var

k

� [
�2†� .r/

F� .r/; F� .r/ \ F� 0.r/

�
� C var

k

� [
�2†� .r/

F� .r/

�
� 2� max

�2†� .r/
Ck.F� .r//

� 2� max
�2†� .r/

rk� Ck
�
F .j� j/.r�1� r/

�
� 2�R�krkCk.B.0; 1C 6R// DW cr

k;

where in the third step we used [24, Lemma 3.1.4] and in the last line the mono-
tonicity of total curvatures for convex sets together with the fact that jF.r�1� r/j �

jF j C 2r�1� � 1C 2Rr
�1
min � 1C 6R. Hence, by Proposition 5.2, conditions (ii) and

(iii) of Theorem 3.2 are satisfied and we can apply this theorem.
Observe that the scaling exponent D is given by the equation

3p � 2�D C 6.1 � p/ � 3�D D 1; (5.4)

and that the distribution of the logarithmic contraction ratios is

� D
3p

2D
1.�/.ln.2//C

6.1 � p/

3D
1.�/.ln.3//:
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Hence, � is non-lattice for p 2 .0; 1/ (and lattice for p 2 ¹0; 1º). Its mean value is
given by

� D
3p

2D
ln.2/C

6.1 � p/

3D
ln.3/: (5.5)

In order to compute the limits of the expected rescaled total curvatures, as provided
by Theorem 3.2, it remains to determine the functions Rk;L for k D 0; 1; 2.

For the computations it is convenient to set L WD
p
3
6

(which is the inradius of an
equilateral triangle with sidelength 1). We split the interval .0; L/ into three pieces.
For r 2 ŒL

2
; L/, all indicators in Rk;L are zero almost surely, since ri � 1

2
a.s. Hence,

Rk;L.r/ D ECk.F.r// D Ck.T .r// in this case, since r is large enough such that
F.r/ has no holes. For r 2 ŒL

3
; L
2
�, there are two possible situations. If we condition

on the event that in the first step of the construction the IFS G is chosen, then there
will be a hole in F.r/. Moreover, the indicators in Rk;L are 1, N D 3, ri D 1

2
and

the sets Fi .r/ D .giT /.r/ are convex. Since F.r/ D
S3
iD1 Fi .r/ in this case, the

inclusion-exclusion principle implies

E
�
�Lk .r/

ˇ̌
.f1; : : : ; fN / D G

�
D E

�
Ck.F.r// �

3X
iD1

Ck.Fi .r//

ˇ̌̌̌
.f1; : : : ; fN / D G

�
D �3Ck

�
.g1T /.r/ \ .g2T /.r/

�
:

Otherwise, i.e., if H is chosen, we have EŒ�L
k
.r/ j .f1; : : : ; fN / D H� D Ck.T .r//.

This yields

Rk;L.r/ D .1 � p/Ck.T .r// � p � 3Ck
�
.g1T /.r/ \ .g2T /.r/

�
; r 2

hL
3
;
L

2

i
:

Finally, for r 2 .0; L
3
/, all indicators inRk;L are 1 a.s. and recalling that F D

SN
iD1Fi ,

the inclusion-exclusion principle implies that

Rk;L.r/ D E
X
I�ŒN �
]I�2

.�1/]I�1Ck

�\
i2I

Fi .r/

�
; r 2

�
0;
L

3

�
;

where the summation is over all subsets I of ŒN � WD ¹1; : : : ; N º with at least two
elements. Conditioning on either G or H being chosen in the first step of the con-
struction and taking into account the symmetries of the resulting intersections, it is
easily seen that

�Rk;L.r/ D p � 3 Ck
�
.g1T /.r/ \ .g2T /.r/

�
C .1 � p/ �

�
9Ck..h1T /.r/ \ .h2T /.r//

� Ck..h2T /.r/ \ .h4T /.r/ \ .h5T /.r//
�
:
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for any r 2 .0; L
3
/. Here, we have used that under the condition .f1; : : : ; fN / D G,

F1.r/\ F2.r/ D .g1T /.r/\ .g2T /.r/ holds for any r 2 .0; L
3
/, and analogous rela-

tions under the condition .f1; : : : ; fN / D H .
Note that all the sets occurring above in the expressions for Rk;L are nonempty

and convex. For k D 0, this gives

R0;L.r/ D

8̂̂<̂
:̂
5p � 8; r 2

�
0; L

3

�
;

1 � 4p; r 2
�
L
3
; L
2

�
;

1; r 2
�
L
2
; L
�
:

Hence, for p 2 .0; 1/, Theorem 3.2 (I) yields

C frac
0;F D lim

"&0
"DEC0.F."// D

LD

D � �

�
1 � .1 � p/32�D � p22�D

�
;

where L D
p
3
6

, D is given by (5.4) and � by (5.5). For p 2 ¹0; 1º, part (III) of The-
orem 3.2 yields the same value for C

frac
0;F (while the limit C frac

0;F does not exist in these
two cases). For p D 1, this recovers the value � LD

3 ln3 obtained in [24, Example 2.4.1].
For k D 1, recall that C1 is half the boundary length. Therefore, we have, for any

r > 0, C1.T .r// D 3
2
C �r ,

C1
�
.g1T /.r/ \ .g2T /.r/

�
D C1

�
.h1T /.r/ \ .h2T /.r/

�
D

�2
3
� C
p
3
�
r

and Ck..h2T /.r/ \ .h4T /.r/ \ .h5T /.r// D C1.B.0; r// D �r , which yields

R1;L.r/ D

8̂̂̂̂
<̂
ˆ̂̂:
�
3p.� C 2

p
3/ � .9

p
3C 5�/

�
� r DW cp � r; r 2

�
0; L

3

�
;

3
2
.1 � p/C

�
� � 3p.� C

p
3/
�„ ƒ‚ …

DW zcp

� r; r 2
�
L
3
; L
2

�
;

3
2
C � � r; r 2

�
L
2
; L
�
:

Plugging this into the formula (I) in Theorem 3.2, we obtain

C frac
1;F D lim

"&0
"D�1EC1.F."// D

1

�

Z L

0

rD�2R1;L.r/ dr

D
LD

D�

�
3�D.cp � zcp/C 2

�D.zcp � �/C �
�

C
3LD�1

2.D � 1/�

�
1 � .1 � p/31�D � p21�D

�
:

For k D 2, we will derive below after Example 5.4 that C frac
2;F D

2
2�D

C frac
1;F .
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Example 5.4. For p 2 .0; 1/, let K D Kp be the random self-similar set generated
by the same IFS-distribution P0 D P0;p (given by (5.3)) as that for the homogen-
eous random fractal F D Fp in Example 5.3. (Note that for p 2 ¹0; 1º, we get the
same deterministic sets as above in Example 5.3.) By Remark 3.5, the mean fractal
curvatures C frac

k;K
of K are given by the same formulas as those of F . One just has to

replace in the integrand the function Rk;L for F by the corresponding one for K. It
is not difficult to see that for all k the functions Rk;L for K and F coincide. Indeed,
going through all the considerations in Example 5.3, it is clear that they apply equally
to K. Hence, by [30, Theorem 2.3.8], we get the same values for the mean fractal
curvatures of K as for F , i.e.,

C frac
k;K D C

frac
k;F

for k D 0; 1; 2 and any p 2 .0; 1/. Moreover, by the same theorem, the almost sure
limits Ck.K/ WD ess lim"&0 "

D�kCk.K."// exist and coincide with C frac
k;K

, for any
p 2 .0; 1/.

Recall from [15, Theorem 2.4] that, for any bounded setA�Rd and any constants
s 2 Œ0; d � andM 2R, the limit limr&0

Cd .A.r//

rd�s
exists and equalsM if and only if the

limit limr&0
2Cd�1.A.r//

.d�s/rd�1�s
exists and equalsM . Therefore, for any random self-similar

set K satisfying the assumptions of [30, Theorem 2.3.8], the (almost sure) existence
of the limits Ck.K/ for k D d; d � 1 implies that almost surely

Cd�1.K/D
d �D

2
lim
r&0

2Cd�1.K.r//

.d �D/rd�1�D
D
d �D

2
lim
r&0

Cd .K.r//

rd�D
D
d �D

2
Cd .K/

and thus also in the mean C frac
d�1;K

D
d�D
2
C frac
d;K

: For the self-similar random set K D
Kp in Example 5.4, we obtain

C frac
1;K D

2 �D

2
C frac
2;K ;

for any p 2 .0; 1/. Note that the observed coincidence of the mean fractal curvatures
of K with those of the homogeneous random fractal F in Example 5.3 implies now
the same relation for F , i.e., we get similarly

C frac
1;F D

2 �D

2
C frac
2;F ;

as claimed above. Note that in contrast the limit lim"&0 "
D�kCk.F."// (the corres-

pondingD-dimensional Minkowski content of F ) vanishes almost surely. Indeed, the
a.s. Minkowski (and Hausdorff) dimension DH of F is known to be given by the
equation E ln.

PN
iD1 r

DH
i / D 0 and thus strictly smaller than D; see, e.g., [30]. It is

an interesting open question whether the relation C frac
d�1;F

D
d�D
2
C frac
d;F

holds for any
homogeneous random fractal F with D < d .
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6. Appendix

Given a nonempty compact set K � Rd , we denote by

dK W x 7! d.x;K/ WD inf
a2K
jx � aj; x 2 Rd ;

the distance function to K. Note that dK is a 1-Lipschitz function. Denote by

†K.x/ WD
®
a 2 K W jx � aj D dK.x/

¯
the set of all closest points of K from x. By [7, Lemma 4.2], the Clarke subgradient
@dK.x/ of dK at x equals

@dK.x/ D conv.x �†K.x//:

Recall that x is called a regular point of dK if 0 62 @dK.x/. The above identity thus
implies

x 62 K is a regular point of dK if and only if x 62 conv†K.x/: (6.1)

Moreover, Fu [7] showed that if r > 0 is a regular value of dK (i.e., all points x with
dK.x/ D r are regular), then reach eK.r/ > 0.

Given a nonempty setA�Rd , we will use the notationAo WD ¹y 2Rd W y � a� 0

for all a 2Aº for the polar cone ofA. Note that the polar cone of the polar cone agrees
with the generated convex cone:

Aoo D

² nX
iD1

tiai W ti � 0; ai 2 A; i D 1; : : : ; n; n 2 N

³
:

If reach. eK.r/; x/ > 0, then the tangent and normal cones to eK.r/ at x fulfill

Tan. eK.r/; x/ D .†K.x/ � x/o; (6.2)

Nor. eK.r/; x/ D .†K.x/ � x/oo: (6.3)

Indeed, it is easy to see that if a 2 †K.x/, then intB.a; jx � aj/ \ eK.r/ D ; and
hence a� x 2 Nor. eK.r/; x/, by [18, Lemma 4.5]. Moreover, if u 2 int.†K.x/� x/o,
then the distance to K increases (locally) in direction u from x implying that there
is some " > 0, such that the whole segment Œx; x C "u� is contained in eK.r/. Hence,
u 2 Tan. eK.r/; x/.

The above observations imply the characterization (2.9) of regular pairs Reg (see
(2.8)): If r > 0 is a regular value of dK then reach eK.r/ > 0 and Nor. eK.r/; x/ \
�.Nor. eK.r/; x// is trivial by (6.3), hence .r; K/ 2 Reg. For the reverse inclusion, if
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.r;K/ 2 Reg for some r > 0, then reach eK.r/ > 0 and if x is a point with dK.x/ D r
then Nor. eK.r/; x/ \ �.Nor. eK.r/; x// is trivial by the definition of Reg and, hence,
due to (6.3), .†K.x/ � x/oo contains no line through the origin, which implies by
(6.1) that x 62 conv†K.x/, hence, x is a regular point of dK . Consequently, r is a
regular value of dK .

In the rest of this section, we provide a proof of Lemma 2.4. Due to (2.9), it can
be reformulated as follows.

Theorem 6.1. Let K � Rd be nonempty and compact and let r0 > 0 be a regular
value of dK . Then for any k D 0; 1; : : : ; d , the weak convergence

lim
r!r0

Ck.K.r/; �/ D Ck.K.r0/; �/

takes place.

We start with several auxiliary results. Given A � Rd nonempty and r > 0, we
denote

A<r WD
®
y 2 Rd W dA.y/ < r

¯
:

Lemma 6.2. Let r > 0, x 2 Rd and a compact set † � @B.x; r/ be given. Then

intB.s; js � xj/ � †<r ; s 2 conv†:

Proof. Take any points s 2 conv† and y 2 intB.s; js � xj/ and assume, to the con-
trary, that d.y;†/ � r . LetH be the hyperplane of symmetry of y and x, andHC the
closed half space with boundary H and containing x. Then

† � @B.x; r/ \BB.y; r/ � HC:

On the other hand,H separates x and s, hence s 62HC, which contradicts the assump-
tion s 2 conv†.

Lemma 6.3. If K � Rd is nonempty and compact and r > 0, then

reach eK.r/ � inf
®
JK.x/ W x 2 @K.r/

¯
;

where
JK W x 7! dist.x; conv†K.x//; x 2 Rd nK:

Proof. Denote � WD inf¹JK.x/ W x 2 @K.r/º. If �D 0, there is nothing to prove. Thus,
assume that � > 0. We will show that

d
Tan.eK.r/;x/.y � x/ �

jy � xj2

2�
; x; y 2 eK.r/: (6.4)
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This will imply the assertion, see [18, Proposition 4.14].
If x 2 int eK.r/, then Tan. eK.r/;x/DRd and (6.4) obviously holds. Hence, assume

that x 2 @ eK.r/, which implies that dK.x/ D r .
Denote T WD .†A.x/� x/o,N WD T o, and recall that T D Tan. eK.r/;x/ andN D

Nor. eK.r/; x/ (see (6.2), (6.3)). Denote further u WD pT .y � x/ and v WD pN .y � x/
(pT , pN denote the orthogonal projection to T , N , respectively), and note that u � v
D 0 since T;N are dual convex cones. We will show that

j.y � x/ � uj �
jy � xj2

2�

whenever y 2 eK.r/, which will prove (6.4). If v D 0, then y � x D u and we are
done. If v ¤ 0, denote Nv WD v

jvj
and note then, using elementary planar geometry,

j.y � x/ � uj D .y � x/ � Nv:

Hence, we have to show that

.y � x/ � Nv �
jy � xj2

2�
: (6.5)

Let s 2 conv†K.x/ be such that s � x D t Nv for some t > 0. Applying Lemma 6.3,
we obtain

intB.x C � Nv; �/ � intB.s; js � xj/ � K<r D Rd n eK.r/;

which means that

�2 � jy � x � � Nvj2 D jy � xj2 C �2 � 2�.y � x/ � Nv;

and this proves (6.5).

Lemma 6.4. The function x 7! JK.x/ is lower semicontinuous on Rd , i.e.,

lim inf
y!x

JK.y/ � JK.x/:

Proof. First we show that the set-valued function x 7! †K.x/ is upper semicontinu-
ous (w.r.t. Hausdorff metric), i.e., that lim supy!x†K.y/�†K.x/. (This was proved
in [13, Lemma 5.1]; we repeat the short argument here for the convenience of the
reader.) Let xn ! x, an 2 †K.xn/, an ! a. We will show that a 2 †K.x/. If not,
there would be another point b 2K with jb � xj < ja � xj. Let n be sufficiently large
that

max
®
jan � aj; jxn � xj

¯
< " WD

1

3

�
ja � xj � jb � xj

�
:
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Then, by the triangle inequality,

jxn � bj � jxn � xj C jb � xj < "C ja � xj � 3"

< ja � xj � ja � anj � " � jan � xj � "

< jan � xj � jx � xnj � jan � xnj;

which means that an is not the closest point of K to xn, a contradiction.
Since the convex hull is a continuous operation on compact sets, also

lim sup
y!x

conv.†K.y/ � y/ � conv.†K.x/ � x/:

This means that for any " > 0, there exists ı > 0 such that

conv.†K.y/ � y/ �
�
conv.†K.x/ � x/

�
."/; jy � xj < ı;

which clearly implies that JK.y/ � JK.x/ � " whenever jy � xj < ı.

Proof of Theorem 6.1. For k D d , see Remark 2.5.
Assume now that k � d � 1. Since the set of regular values of dK is open, there

exists an " > 0 such that for any r 2 .r0 � "; r0 C "/, r is a regular value of dK ,
reach eK.r/ > 0 and (2.3) holds. Thus, in order to prove the statement, it is enough to
show that

lim
r!r0

Ck. eK.r/; �/ D Ck.AK.r0/; �/:

Since clearly K.r/! K.r0/ in the Hausdorff distance as r ! r0, it will be enough
to show that

lim inf
r!r0

reach eK.r/ > 0; (6.6)

and apply [5, §5.9]. The function JK is positive on @K.r0/ and, using Lemma 6.4,
we obtain that for any x 2 @K.r0/ there exists a ı.x/ > 0 such that JK.y/ >

JK.x/
2

whenever y 2 U.x; ıx/. By the compactness of @K.r0/, we easily find an � > 0 and
an open set U � @K.r0/ such that JK > � on U . Since @K.r/ � U for r sufficiently
close to r0, we conclude that

lim inf
r!r0

inf
®
JK.x/ W x 2 @K.r/

¯
� �;

and the proof is completed by applying Lemma 6.3.

At the end, we show the measurability property used in the proof of Lemma 2.3.
By a random signed measure, we mean a mapping � from a probability space into
the space of locally finite signed Borel measures such that �.B/ is a random variable
for any bounded Borel set B . Recall that the space K of nonempty compact sets was
provided with the Borel � -algebra determined by the Hausdorff distance.
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Lemma 6.5. Let � D �! be a random signed measure. Then the mapping

ˆ W .!;K/ 7! �!.K/; .!;K/ 2 � �K;

is jointly measurable.

Proof. Note that the mapping

‰ W .!; f / 7!

Z
f d�! ; .!; f / 2 � � Cc ;

is jointly measurable (Cc is the space of continuous functions with compact support
with supremum metric). This follows from the fact that ! 7!

R
f d�! is measurable

and f 7!
R
f d�! is continuous, hence‰ is a Carathéodory function, which is always

jointly measurable, see [1, Lemma 4.51].
Further, given K 2K and n 2 N, consider the function

fK;n W x 7! .1 � ndK.x//
C; x 2 Rd :

Since for any K; K 0 2 K we have jfK;n.x/ � fK0;n.x/j � ndH .K; K 0/, the map-
ping 'n W K 7! fK;n is continuous from K to Cc . Thus, the mapping z'n W .!;K/ 7!
.!; fK;n/, as well as the composition ˆn WD ‰ ı z'n, are measurable on the product
space � �K . Since ˆn.!; K/ D

R
fK;n d�

! ! �!.K/ D ˆ.!; K/, n!1, for
any .!;K/, the limit function ˆ is jointly measurable as well.
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