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Abstract
This paper proposes a general framework for solving multiobjective nonconvex opti-
mization problems, i.e., optimization problems in which multiple objective functions
have to be optimized simultaneously. Thereby, the nonconvexity might come from the
objective or constraint functions, or from integrality conditions for some of the vari-
ables. In particular, multiobjective mixed-integer convex and nonconvex optimization
problems are covered and form the motivation of our studies. The presented algo-
rithm is based on a branch-and-bound method in the pre-image space, a technique
which was already successfully applied for continuous nonconvex multiobjective
optimization. However, extending this method to the mixed-integer setting is not
straightforward, in particular with regard to convergence results. More precisely, new
branching rules and lower bounding procedures are needed to obtain an algorithm that
is practically applicable and convergent for multiobjective mixed-integer optimization
problems. Corresponding results are a main contribution of this paper. What is more,
for improving the performance of this new branch-and-bound method we enhance it
with two types of cuts in the image space which are based on ideas from multiobjec-
tivemixed-integer convex optimization. Those combine continuous convex relaxations
with adaptive cuts for the convex hull of the mixed-integer image set, derived from
supporting hyperplanes to the relaxed sets. Based on the above ingredients, the paper
provides a new multiobjective mixed-integer solver for convex problems with a stop-
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ping criterion purely in the image space. What is more, for the first time a solver for
multiobjective mixed-integer nonconvex optimization is presented. We provide the
results of numerical tests for the new algorithm. Where possible, we compare it with
existing procedures.

Keywords Branch-and-bound · Branch-and-cut · Multiobjective optimization ·
Mixed-integer optimization · Nonconvex optimization · Box enclosure

Mathematics Subject Classification 90C29 · 90C11 · 90C26

1 Introduction

We consider multiobjective mixed-integer optimization problems of the form

min f (x) s.t. g(x) ≤ 0, x ∈ X , xi ∈ Z, i ∈ I (MOMIP)

with a continuous vector-valued objective function f : R
n → R

m , a continuous
vector-valued inequality constraint function g : R

n → R
k , an n-dimensional box

X = [x, x] with x, x ∈ R
n , x ≤ x , and I ⊆ {1, . . . , n} an index set of integer

variables. The entries xi , xi , i ∈ I , are chosen from Z without loss of generality. The
inequality ≤ as well as < between vectors is always understood componentwise. We
denote the set of feasible points by

M = M(X) = {x ∈ X | xi ∈ Z, i ∈ I , g(x) ≤ 0}. (1)

In case of I �= ∅, the problem MOMIP is a nonconvex optimization problem, which
makes it difficult to develop appropriate solution methods for this class of problems.
Still, in case all appearing functions are convex, we call MOMIP a multiobjective
mixed-integer convex optimization problem, otherwise amultiobjectivemixed-integer
nonconvex optimization problem.

The values of the vector-valued objective function will be compared component-
wise, which leads to the standard concept of efficiency (in the pre-image space) and
nondominance (in the image space), as widely used in multiobjective optimization,
see, for instance, [13]. As a consequence, there can be an infinite number of opti-
mal values, i.e., of nondominated points, in the image space. This adds significant
difficulties compared to the single-objective case (m = 1): in convex mixed-integer
single-objective optimization with, for instance, I = {1} and x1 ∈ {0, 1}, just two
single-objective continuous convex optimization problems have to be solved (one for
each possible assignment of x1) and the optimal values have to be compared. In the
multiobjective setting, this already leads to two convex multiobjective optimization
problems forwhich nomethod is available that computes their full set of nondominated
points. Moreover, in the end, sets of nondominated points have to be compared.

In case of I = ∅, the problem MOMIP collapses to a continuous multiobjective
optimization problem MOP. If one or several of the functions fi , i ∈ {1, . . . ,m}
and g j , j ∈ {1, . . . , k} are nonconvex, the problem MOP is denoted a nonconvex
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multiobjective optimization problem. Deterministic solution methods for nonconvex
continuous multiobjective optimization problems have already been proposed, for
instance, in [20, 36] and, more recently, in [15].

We remark that any mixed-integer problem MOMIP could be artificially reformu-
lated as a continuous problemMOP by introducing inequalities whose solution set is
the integer grid. From this point of view, for instance the algorithm from [15] could
also be directly applied to the mixed-integer setting. However, such continuous refor-
mulations of mixed-integer problems are known to impede the algorithmic treatment
in general. For example, the algorithm from [15] and its convergence proof would
have to rely on an artificial and algorithmically expensive lower bounding technique
using this approach.

Also, we will not try to determine all feasible integer assignments for the problem
MOMIP and then to solve all related problems of type MOP. There is no method
available which allows to calculate such a set of feasible integer assignments. More-
over, this would lead to too many problems of the type MOP which all have to be
solved although their individual nondominated sets might not at all or only partially
contribute to the set of nondominated points of MOMIP. We aim for a more direct
iterative method, which does not explore the individual integer assignments.

The aim of this paper is to propose an algorithm for the case I �= ∅, for convex
or nonconvex functions, which guarantees to stop after a finite number of iterations
with an approximation of the nondominated set of certain quality. More precisely, we
use the concept of an enclosure to cover the nondominated set and use its width as
quality criterion. This concept was proposed in [15] as a generalization of the well-
known gap concept from single-objective global optimization, where algorithms stop
as soon as an interval of a certain length is determined which contains the optimal
value. Our algorithm not only computes an enclosure of the nondominated set, but
also, as a by-product, delivers a finite list of attainable points (i.e., images of feasible
points), which contributes to the definition of the enclosure andwhich also serves as an
approximation of the nondominated set of the problemMOMIP. However, the quality
of the distribution of these points is not steered directly, as it is done, for instance, in
[24] by using bilevel formulations. Instead, we solely aim to improve the quality of
the enclosure.

As already mentioned, in this paper we do not artificially reformulate MOMIP
as a continuous problem. Instead, we take the general branch-and-bound approach
from [15] only as a basis and handle integrality conditions in a direct manner. We
will then be able to use standard relaxations in the lower bounding techniques, and
an adequate branching rule is simple to state and to execute. However, unfortunately,
these constructions interfere with a crucial assumption for the convergence proof in
the continuous setting from [15]. Hence, especially with regard to the convergence
results, one cannot easily extend the results for the purely continuous setting from
[15] to the mixed-integer setting that is in focus of this paper. Consequently, a main
contribution of the present article is to derive new assumptions and corresponding
convergence results, i.e., to show finite termination of the branch-and-bound method,
also for multiobjective mixed-integer optimization problems.

Moreover, we demonstrate that the proposed branch-and-bound method is not only
conceptual but actually implementable and of practical use. Furthermore, if continuous
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convex relaxations are employed, one may introduce polyhedral lower bounding sets,
which are adaptively refined by two types of cuts. Such cuts have been introduced in
[11] for multiobjective mixed-integer convex optimization, but they can still be used
for nonconvex problems in case convex relaxations are applied first. Since we apply
these cuts in node problems of the branch-and-bound tree, this results in a branch-
and-cut method. In contrast to cuts in the pre-image space, as they are commonly used
in single-objective branch-and-cut methods, these are image-space cuts. We evaluate
the benefits of these polyhedral lower bounds numerically.

We point out that our method is neither a pure pre-image nor a pure image space
method. While it performs branching steps in the pre-image space, the node selection
and termination criteria as well as the mentioned cuts are image space concepts.

For convex multiobjective mixed-integer optimization problems, several solution
approaches have already been presented in the literature. For example, a branch-and-
cut algorithm is proposed in [11]. However, rather than using any derived lower bounds
for determining a final enclosure, it just uses rough bounds from Lipschitz constants.
Instead, the width of sub-boxes in the pre-image space is used as a stopping criterion,
whichmay lead tomanyboxes and thus limits the size of problemswhich canbe treated.
This is overcome with the method in [19] which is an algorithm working purely in the
image space. It uses as an ingredient linear relaxations of the convex functions and is
thus not, at least not immediately, usable for extensions to the nonconvex setting. We
compare the performance of our algorithm with the ones of both these algorithms for
the special case of convex mixed-integer optimization problems.

Specifically for the biobjective case (i.e., m = 2), an approach to solve mixed-
integer convexoptimization problemshas beenpresented in [8]. This approach requires
information about those feasible integer assignments which are at least ‘promising’ to
contribute to the final efficient set. Also for m = 2, in [12] an approach was presented
which approximates the nondominated set by line segments steered by optimizing a
quality measure known as hyper-volume. The algorithm requires knowledge about the
so-called nadir point which is not easily calculable for m ≥ 3. What is more, for the
concept of line segments a suitable higher-dimensional analogue is not obvious.

There are also specifically designed algorithms for linear multiobjective mixed-
integer optimization. As nonlinear functions are the focus of our contribution, our
algorithm is not meant to explicitly exploit polyhedral structures. For completeness,
we mention here some exemplary solvers, as for m = 2 [38] and for an arbitrary
number of linear objectives [40]. A more extensive survey of algorithms to solve
multiobjective mixed-integer linear optimization problems is provided in [22].

For the first time, this paper proposes a solver for general nonconvexmultiobjective
mixed-integer optimization problems with a performance guarantee. Of course, it
would be possible to apply scalarization techniques as proposed in [5] and then to
solve the resulting parameter-dependent single-objective mixed-integer subproblems
with available single-objective methods. However, this approach is limited to problem
classes for which corresponding subsolvers are available as, for instance, quadratic
mixed-integer problems. Moreover, it is an open question how to choose the set of
parameters for three ormore objective functions to guarantee an enclosure (or a similar
approximation) with a certain quality.
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Also in the single-objective setting, solvers for mixed-integer nonconvex optimiza-
tion problems are still an active area of research. For an overview, see [7]. Possible
approaches are relaxations, which may be based on factorable functions or convexi-
fication using bounds on the eigenvalues and combining those with branching in the
pre-image space. Within this paper, we generalize some of these basic ideas to the
multiobjective setting. We would like to mention that for just one objective function
also fundamentally different approaches exist as, for instance, copositive reformula-
tions, see [6]. However, for those it is known that they cannot be transferred to the
multiobjective setting [14].

The paper is structured as follows: In Sect. 2, we recall the basics from multi-
objective optimization and give the basic ingredients for a general multiobjective
branch-and-bound framework derived from lower and upper bounding sets. In this
section, we also present the overall algorithm as well as the proposed branching rule.
Section 3 provides the finiteness results for our algorithm based on a collection of
assumptions, which we keep in a general form to allow to use the algorithm with
various lower bounding and box partition procedures. These assumptions are further
discussed in Sect. 4 for specific classes of problems as convex or quadratic mixed-
integer problems. Section 5 discusses possibilities to speed up our algorithm by adding
image-space cuts, and Sect. 6 concludes with our numerical studies.

2 Ingredients for the Algorithm

In the following, we introduce all needed concepts from multiobjective optimization
such as optimality notions and the concept of an enclosure, as well as all ingredients
for our proposed algorithm, including suitable concepts for lower and upper bounds.

2.1 Optimality Notions for Multiobjective Problems

Throughout this paper, we use multiobjective optimality notions based on the natural
ordering cone R

m+. The following definition works for any set Y in the image space
R
m of f , but will subsequently be applied to the set Y = f (M) of attainable points of

MOMIP.We remark that the branch-and-bound algorithm proposed in this paper relies
on constructions in the image space R

m . For details and motivation of the following
notions, we refer to [13, 19, 28, 31].

Definition 2.1 For some set Y ⊆ R
m let ȳ ∈ Y .

(a) The point ȳ is called a nondominated point of Y if there exists no y ∈ Y with
y ≤ ȳ and y �= ȳ.

(b) For ε > 0, the point ȳ is called an ε-nondominated point of Y if there exists no
y ∈ Y with y ≤ ȳ − εe and y �= ȳ − εe, where e denotes the all-ones vector.

(c) The sets YN and Y ε
N of all nondominated and ε-nondominated points are called

nondominated set and ε-nondominated set of Y , respectively.

The following definition collects the according notions in the pre-image space R
n

of MOMIP.
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Definition 2.2 Let x̄ ∈ M be a feasible point of MOMIP and let Y = f (M).

(a) The point x̄ is called efficient for MOMIP if f (x̄) ∈ YN holds.
(b) For ε > 0, the point x̄ is called ε-efficient for MOMIP if f (x̄) ∈ Y ε

N holds.
(c) The sets ME and Mε

E of all efficient and ε-efficient points are called efficient set
and ε-efficient set of MOMIP, respectively.

Under our assumptions, the set ME is nonempty whenever M is nonempty [13].
Due to the inclusions ME ⊆ Mε

E as well as YN = f (ME ) ⊆ Y ε
N = f (Mε

E ) for any
ε > 0, all of these sets are then nonempty.

In multiobjective optimization, one aims in general to find the set of all nondomi-
nated points.Whenever this set is infinite, one has to be satisfiedwith an approximation
of it which can, for instance, consist of a representation with a finite number of non-
dominated points as it was done in [24].We aim on finding what is known as enclosure
and which we define in Sect. 2.2.1.

2.2 A General Branch-and-Bound Framework

We aim on providing a natural generalization of the branch-and-bound ideas from the
single-objective case. For continuous nonconvex multiobjective optimization prob-
lems, a branch-and-bound framework was provided in [15]. This is in contrast to other
multiobjective branch-and-bound methods such as for example the one in [36] where
lower bounds are just used for discarding and not as stopping criterion. In fact, with
regard to its structure the subsequently stated Algorithm 1 coincides with [15, Algo-
rithm 1], where the input MOP is replaced by MOMIP, and where the choice of the
branching rule is to be specified separately. Our contribution will be to examine nec-
essary assumptions for the lower bounding procedures and for the branching rule such
that we are able to prove convergence even in the presence of integer variables, as the
assumptions from [15] can no longer be satisfied in this case. Of course, we will also
propose procedures which satisfy these assumptions. In the following, we explain the
main ingredients that are necessary to understand the structure of Algorithm 1, which
we state in Sect. 2.2.6.

2.2.1 The Enclosure of the Nondominated Set

In single-objective branch-and-bound, the minimal value v of a function f : M → R
1

is sandwiched between successively improved lower bounds �b and upper bounds ub.
For a given tolerance ε > 0, the method terminates when the gap ub − �b between
�b and ub drops below ε. The upper bounds ub are generated as values f (x) of
successively updated feasible points x ∈ M . Upon termination, the final incumbent
x ∈ M is ε-minimal in the sense that v ≤ f (x) ≤ v + ε holds.

In the multiobjective setting, the optimal value v corresponds to the nondominated
set YN of MOMIP. One may then generalize the values �b, ub ∈ R

1 to lower and
upper bounding sets LB,UB ⊆ R

m with

YN ⊆ (LB + R
m+) ∩ (UB − R

m+), (2)
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where here and in the following sums of sets are meant in the Minkowski sense.
This sandwiching approach for YN is in line with the ones reviewed in [39, 42]. The
enclosing interval [�b, ub] for v from the single-objective case thus generalizes to the
enclosure

E(LB,UB) := (LB + R
m+) ∩ (UB − R

m+)

for YN . For illustrations of this concept, see Figs. 3 and 4.

2.2.2 The Gap Between Lower and Upper Bounding Sets

Having defined a suitable extension of the concept of an enclosing interval, it remains
to define a suitable extension of the gap ub − �b. In [15], it is suggested to generalize
this gap to the geometrical width

w(LB,UB) = sup{‖(y + te) − y‖2/√m | t ≥ 0, y, y + te ∈ E(LB,UB)}

of E(LB,UB) in the direction of the all-ones vector e. Before we state a more
explicit formula for this width, let us mention that without any further assumption,
[15, Lem. 3.1] guarantees that for any ε > 0 and w(LB,UB) < ε all attainable
points of MOMIP in the enclosure E(LB,UB) are ε-nondominated. In particular,
any algorithmically generated x ∈ M with f (x) ∈ E(LB,UB) is thus ε-efficient
for MOMIP, which is in line with the ε-minimality of the final incumbent from the
single-objective case. From this point of view, the above proposal for measuring the
multiobjective gap is a natural concept.

It is not hard to see that for any lower and upper bounding sets LB,UB the enclosure
E(LB,UB) can be written as the union of the (possibly infinitely many) nonempty
boxes, which can be constructed with lower and upper bound vectors from LB and
UB, respectively,

E(LB,UB) =
⋃

(�b,ub)∈LB×UB
�b≤ub

[�b, ub]. (3)

With
s(�b, ub) := min

j=1,...,m
(ub j − �b j ) (4)

denoting the length of a shortest edge of a box [�b, ub], in [15, Lem. 3.2] it is shown
that the geometrical width w(LB,UB) of E(LB,UB) in the direction of the all-ones
vector coincides with the supremum of s(�b, ub) over all boxes [�b, ub] from (3). We
record this in the following definition.

Definition 2.3 For any sets LB,UB ⊆ R
m with (2), we call the supremum

w(LB,UB) of the problem

max
�b,ub

s(�b, ub) s.t. (�b, ub) ∈ LB ×UB, �b ≤ ub

gap between LB and U B.
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Since the supremum in Definition 2.3 is attained for nonempty and compact sets LB
andUB ([15,Lem. 3.3]),we arrive at the followingmain result about themultiobjective
gap.

Theorem 2.1 [15, Th. 3.4] For nonempty and compact sets LB,UB ⊆ R
m with (2)

and some ε > 0, let the gap between LB and U B satisfy

max {s(�b, ub) | (�b, ub) ∈ LB ×UB, �b ≤ ub} < ε. (5)

Then, E(LB,UB) ∩ f (M) ⊆ Y ε
N holds.

Our Algorithm 1 generates finite sets LB and UB, so that (3) yields a description
of E(LB,UB) by finitely many boxes, which we shall refer to as a box enclosure of
YN . In this case, the maximum in (5) is taken over finitely many boxes.

2.2.3 Provisional Nondominated Sets and Upper Bounding Sets

As in the single-objective case, upper bounding sets UB for YN are constructed from
information at attainable points f (xub) with xub ∈ M of MOMIP. However, in the
multiobjective setting there is not a single incumbent, but different attainable points
may provide good approximations for different nondominated points. Algorithm 1
thus keeps a finite list F of attainable points generated so far.

Each time that some new point xub ∈ M is generated in the course of the algorithm,
its image f (xub) is only inserted into F if f (xub) is not dominated by any element
fromF . Moreover, all elements ofF which are dominated by f (xub) are deleted from
F . In the following, we will refer to this procedure as updating F with respect to
f (xub). The source of the underlying feasible points xub will be elements of subboxes
X ′ of X which are chosen for the discarding tests described below. If such an xub ∈ X ′
is feasible for MOMIP, the list F will be updated with respect to f (xub).

As a consequence of this construction, F forms a finite and stable subset of the set
of attainable points of MOMIP, where stability means that no element ofF dominates
any other element ofF . Since YN possesses the same property,F is called provisional
nondominated set [20]. In contrast to the single-objective case, settingUB = F does
not provide a valid upper bounding set. To see this, just take, for example, forF a single
nondominated point ȳ1 ∈ YN , and further assume that the nondominated set contains
also another nondominated point ȳ2 ∈ YN . Then it does not hold ȳ2 ∈ F−R

m+ but just
ȳ2 /∈ F + R

m+. Still the information from F may be used to construct an appropriate
upper bounding set, as explained next (see also [36]).

The construction assumes the existence of a sufficiently large box Z = [z, z] with
f (M) ⊆ int(Z), where int denotes the topological interior. In the present setting of
MOMIP the set f (M) is contained in the compact set f (X), so that the existence of
such a box Z is no restriction, and it may be computed by, e.g., interval arithmetic
[23, 32, 41], see also [15] .
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Given a provisional nondominated setF , the elements of the nondominated set YN

cannot be dominated by any q ∈ F . Hence, YN\F is a subset of the search region

S(F) = {z ∈ int(Z) | ∀q ∈ F : q � z} = int(Z)\
⎛

⎝
⋃

q∈F
{q} + R

m+

⎞

⎠ ,

that is, the set of all points in int(Z)\F which are not dominated by any point from
F . This implies YN ⊆ F ∪ S(F). An algorithmically useful description of S(F) is
provided by the concept of local upper bounds.

Definition 2.4 ([26]) Let F be a finite and stable subset of f (M). A set lub(F) ⊆ Z
is called local upper bound set with respect to F if

(i) ∀z ∈ S(F) : ∃p ∈ lub(F) : z < p,
(ii) ∀z ∈ (int(Z))\S(F) : ∀p ∈ lub(F) : z ≮ p,
(iii) ∀p1, p2 ∈ lub(F) : p1 � p2 or p1 = p2.

The set lub(F) is uniquely determined, nonempty and finite, with S(F) =⋃
p∈lub(F){z ∈ int(Z) | z < p} (cf. [15, 26] for motivation and graphical illus-

tration). Since by [36, Lem. 3.4] also F ⊆ lub(F) − R
m+ holds, one obtains YN ⊆

F ∪ S(F) ⊆ lub(F) − R
m+ and may define the upper bounding set UB := lub(F).

In the course of Algorithm 1, methods proposed in [10, 26] may be employed to effi-
ciently calculate and update the sets lub(F) with respect to the appearing provisional
nondominated sets F .

2.2.4 Discarding by Relaxed Partial Upper Image Sets and Local Upper Bounds

In the single-objective case, the overall lower bound �b for the minimal value v is
defined as �b = minX ′∈L �b′ with partial lower bounds �b′ for f on subsets M(X ′),
X ′ ∈ L, of M(X). Here X ′ denotes a subbox of X resulting from successive branching
steps (cf. Sec. 2.2.7). The algorithm keeps a list L of boxes X ′ for which M(X ′) may
contain globally minimal points. In fact, if �b′ is a lower bound for f on the partial
set M(X ′) satisfying �b′ > ub = f (xub) for the incumbent xub ∈ M(X) and the
resulting overall upper bound ub, then X ′ may be discarded from L since M(X ′)
cannot contain any globally minimal point of f on M(X). Partial lower bounds �b′
are used in place of the actual infimum of f on M(X ′) since the computation of the
latter is rarely algorithmically tractable.

In the multiobjective setting, for a subbox X ′ of X we call any compact set LB ′ ⊆
R
m with f (M(X ′))+R

m+ ⊆ LB ′ +R
m+ partial lower bounding set for f (M(X ′)), that

is, the upper set defined by LB ′ +R
m+ of LB ′ provides a relaxation for the upper image

set of f on M(X ′). In the continuous nonconvex case from [15] interval arithmetic
[23, 32, 41], the αBB method [1, 2] as well as reformulation-linearization techniques
(RLT) [3, 43–45] are discussed as examples for convex relaxation techniques. In the
present setting of the nonconvex andmixed-integer problemMOMIP, such techniques
may either be applied directly, leading tomixed-integer convex ormixed-integer linear
relaxations, or in combination with continuous relaxation, which yields continuous
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convex or continuous linear relaxations. Our framework also covers other relaxation
techniques, as long as they lead to algorithmically tractable relaxed problems and the
assumptions for convergence from Sect. 3 hold. For a given choice T of a relaxation
technique, we denote the resulting partial lower bounding sets by LB ′

T .
We point out that the above-mentioned relaxation techniques T usually work in the

pre-image spaceR
n for the construction of relaxationsMT (X ′) ⊆ X ′ ofM(X ′), and in

the combined pre-image and image space R
n ×R

m for the construction of relaxations
fT of f on X ′. In this way, they provide a relaxation epi( fT , MT (X ′)) of the epigraph
epi( f , M(X ′)) := {(x, y) ∈ M(X ′)×R

m | f (x) ≤ y} of f on M(X ′). The image-set
object LB ′

T + R
m+ then formally results by parallel projection of epi( fT , MT (X ′)) to

R
m .
For a subbox X ′ ⊆ X with M(X ′) �= ∅, the point a′ ∈ R

m with components

a′
j = min

x∈M(X ′)
f j (x), j = 1, . . . ,m, (6)

is called ideal point of the partial image set f (M(X ′)). Lower estimates for ideal
points will play a crucial role in the sequel. In fact, for each relaxation technique T
and partial lower bounding set LB ′

T of f (M(X ′)) the infima of the problems

min
y

y j s.t. y ∈ LB ′
T + R

m+ (7)

with j ∈ {1, . . . ,m} form a vector ã′
T ≤ a′, that is, the choice of the relaxation

technique T induces a specific lower estimate for the ideal point of f (M(X ′)) via the
set LB ′

T . With these constructions, the discarding test from the single-objective case
can be generalized as follows.

Theorem 2.2 [15, Cor. 5.11] Let F be a finite and stable subset of f (M), let X ′ be a
subbox of X, let LB ′

T be some partial lower bounding set for f (M(X ′)), and let ã′
T

be the induced lower estimate of the ideal point of f on M(X ′). If

p /∈ LB ′
T + R

m+ (8)

holds for all p ∈ lub(F)∩ (̃a′
T + R

m+), then f (M(X ′)) does not contain any nondom-
inated point of MOMIP and X ′ can be discarded from L.

Figure 1 illustrates a case in which X ′ can be discarded using Theorem 2.2 and
a continuous convex relaxation. More precisely, the box can be discarded since no
local upper bound p ∈ lub(F) (indicated by crosses) is contained in the upper set of
LB ′

T . As stated in Theorem 2.2, it is actually sufficient that the latter only holds for
p ∈ lub(F) ∩ (̃a′

T + R
m+).

Condition (8) is equivalent to the positivity of the optimal value ϕLB′
T
(p) of the

problem
min
t

t s.t. p + te ∈ LB ′
T + R

m+ (9)

(cf. [15, Lem. 5.5] and [9, 21]), exhibiting a similar constraint structure as (7). For the
algorithmic treatment of (7) and (9), their image space formulation is complemented
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Fig. 1 Discarding test with f (M(X ′)) (filled dots), F (circles) and lub(F) (crosses)

by pre-image space variables x . Using the epigraphical formulation, they may be
equivalently replaced by

min
x

( fT ) j (x) s.t. x ∈ MT (X ′) (10)

and
min
x,t

t s.t. fT (x) ≤ p + te, x ∈ MT (X ′), (11)

respectively.Bycomputing the ideal point estimate ã′
T as the vector of optimal values of

the problems in (10), j ∈ {1, . . . ,m}, and by computing ϕLB′
T
(p) as the optimal value

of (11), one obtains an algorithmically tractable discarding test based on Theorem 2.2.

2.2.5 Overall Lower Bounding Sets and Box Enclosures

While for a subbox X ′ of X and a relaxation technique T the discarding test from
Theorem 2.2 combines the coarse partial lower bounding set ã′

T with the tighter lower
bounding set LB ′

T , [15] proposes to construct an overall lower bounding set for YN

only from the ideal point estimates ã′
T . In fact, let AT ,N denote the set of nondominated

points of {̃a′
T | X ′ ∈ L}. Then LBT := AT ,N is an overall lower bounding set for YN

which even satisfies YN ∪ F ⊆ LBT + R
m+ [15, Lem. 6.5]. Altogether, we obtain the

box enclosure

E(AT ,N , lub(F)) =
⋃

(a,p)∈AT ,N×lub(F)
a≤p

[a, p]

of YN ∪ F , and in view of Theorem 2.1 the following result holds.

Theorem 2.3 [15, Th. 7.1] In some iteration of the branch-and-bound method, let
AT ,N be the nondominated set of the current set of induced ideal point estimates
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{̃a′
T | X ′ ∈ L}, let F denote the current provisional nondominated set, and for some

ε > 0 let the gap between AT ,N and lub(F) satisfy

max
{
s(a, p) | (a, p) ∈ AT ,N × lub(F), a ≤ p

}
< ε. (12)

Then, all q ∈ F are ε-nondominated points of MOMIP, and E(AT ,N , lub(F)) forms
a box enclosure of YN with width w(AT ,N , lub(F)) < ε.

2.2.6 Pseudocode of the Main Algorithm

Based on the discussed ingredients, we are now able to present the structure of our
main procedure in Algorithm 1, named MOMIBB. It remains to clarify the branching
rule in line 11 which we discuss in the subsequent Sect. 2.2.7 in detail.

2.2.7 Node Selection and Branching

If for ε > 0 the condition (12) is violated, then the gap between AT ,N and lub(F) is
reduced by branching a box X� ∈ L. For this purpose, we choose a box X∗ ∈ L for
which there is a lower estimate ã�

T for the ideal point of the partial image set f (M(X�))

with ã�
T ∈ AT ,N and for which it holds for some p� ∈ lub(F) ∩ (̃a�

T + R
m+) that the

length of the shortest edge of the box [̃a�
T , p�] equals the gap between AT ,N and

lub(F), i.e., with

s (̃a�
T , p�) = max

{
s(a, p) | (a, p) ∈ AT ,N × lub(F), a ≤ p

}
.

The finite termination and performance of the resulting Algorithm 1 mainly rely on
the choice of an adequate branching rule in line 11 and an appropriate lower bounding
technique T for lines 14, 15 and 16. We propose a generalization of the branching
rule from [15] (which was used already in [11]) in Algorithm 2 and will discuss lower
bounding techniques in Sect. 3.

Before presenting this branching rule, we remark that improvements of Algorithm 1
regarding its memory usage are possible by introducing additional filtering steps. For
example, after updating the set of local upper bounds in line 20 for someof the subboxes
X ′ ∈ Lk the condition (8) may hold for all p ∈ lub(F) ∩ (̃a′

T + R
m+). Hence, these

boxes could be discarded, i.e., removed from the list Lk . As a consequence of this
filtering step, an advantage would be that the box selection in line 9 of the algorithm
would become faster since there are fewer elements in the listLk to consider. However,
in our numerical tests there was almost no noticeable difference in computation times
for line 9 with and without the filtering. Hence, the additional computational effort for
the filtering was usually not worth it. We remark that in Algorithm 1 the list entries
of Lk are triples consisting of subboxes Xk and corresponding partial lower bounding
sets as well as ideal point estimators, which avoids possible re-computations of the
latter two entries in the course of the algorithm. However, as above, by a slight abuse
of notation we refer to the list entries as mere boxes if no confusion is possible.

Another filtering step can be included at the end of each iteration of the repeat loop.
More precisely, in line with Theorem 2.3 it would be possible to reduce the set Ak

T
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Algorithm 1Multiobjective Mixed-Integer Branch-and-Bound Method (MOMIBB)

Input: Problem MOMIP with f : R
n → R

m , g : R
n → R

k , I ⊆ {1, . . . , n}, X = [x, x],
x, x ∈ R

n , x < x , xi , xi ∈ Z, i ∈ I , termination tolerance ε > 0, partial lower
bounding technique T .

1: Compute a box Z = [z, z] with f (M(X)) ⊆ int(Z).
2: Initialize list L0 ← {

(X , {z}, z)}.
3: Initialize set of ideal point estimates A0T ← {z}.
4: Initialize provisional nondominated set F0 ← ∅.
5: Initialize set of local upper bounds lub(F0) = {z}.
6: Initialize iteration counter k ← 0.
7: repeat
8: k ← k + 1.
9: Choose (Xk , LBk

T , ãkT ) from Lk−1 with ãkT ∈ Ak−1
T

and pk ∈ lub(Fk−1) ∩ (̃akT + R
m+) with

s (̃akT , pk ) = max{s(a, p) | (a, p) ∈ Ak−1
T × lub(Fk−1), a ≤ p}.

10: Lk ← Lk−1\{(Xk , LBk
T , ãkT )}.

11: Divide Xk into Xk,1 and Xk,2 by a branching rule.
12: Fk ← Fk−1, lub(Fk ) ← lub(Fk−1).
13: for � = 1, 2 do
14: Determine a partial lower bounding set LBk,�

T for f (M(Xk,�)).

15: Determine the ideal point estimate ãk,�T induced by LBk,�
T .

16: if there is some p ∈ lub(Fk ) ∩ (̃ak,�T + R
m+) with ϕ

LBk,�T
(p) ≤ 0 then

17: Lk ← Lk ∪ {(Xk,�, LBk,�
T , ãk,�T )}.

18: if some xk,� ∈ M(Xk,�) is available then
19: Fk ← update of Fk with respect to f (xk,�).
20: lub(Fk ) ← update of lub(Fk ).

21: until Lk = ∅ or max{s(a, p) | (a, p) ∈ AkT × lub(Fk ), a ≤ p} < ε.

Output:
22: if Lk �= ∅ then

Fk is a set of ε-nondominated points of MOMIP,
and E(AkT , lub(Fk )) is a box enclosure of YN with w(AkT , lub(Fk )) < ε.

23: else
MOMIP is inconsistent.

to its stable set Ak
T ,N , i.e., to remove all dominated points within the set. Again, this

could make the selection of a new box in line 9 less time-consuming. However, it turns
out that also this improvement is almost neglectable for our numerical tests in Sect. 6,
while the computational costs for adding the filtering step are indeed noticeable.

Algorithm 2 bisects a given box along a longest edge not only for the coordinate
directions of continuous variables like in [15], but also if the coordinate direction
corresponds to one of the integer variables xi , i ∈ I . This is in contrast to a com-
mon branching rule in single-objective mixed-integer optimization, which branches
on integer variableswhose value in a computed optimal point of a continuously relaxed
node problem is fractional. This is not possible in the present setting for several rea-
sons. First, our approach does not only consider continuous relaxations but allows for
alternative relaxations. Second, node problems are not ‘solved’ by Algorithm 1, since
this would amount to the computation of the whole efficient and nondominated sets.
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Third, even if the whole efficient set was computed, a strategy would be needed to
choose efficient points with fractional entries for branching. We point out that, while
Algorithm 2 does not use such information from the node problem for branching, we
will generate cuts from node information in Sect. 5.

The bisection along a longest edge in the case of an integer coordinate is refined in
Algorithm 2 by a usual rounding rule. This involves line 9, which is well-defined for
any input from Algorithm 1, since no box with a longest edge length of zero is chosen
for branching there.

Algorithm 2 Branching rule
Input: Box X = [x, x], x, x ∈ R

n , x < x , index set I ⊆ {1, . . . , n} with xi , xi ∈ Z, i ∈ I .

1: Compute the index k of a longest edge Xk = [xk , xk ] of X .
2: mid(Xk ) ← 1

2 (xk + xk ).
3: if k ∈ I then
4: if xk − xk is odd then
5: X1

k ← [ xk , �mid(Xk )� ],
6: X2

k ← [ �mid(Xk )�, xk ].
7: else
8: X1

k ← [ xk ,mid(Xk ) ],
9: X2

k ← [mid(Xk ) + 1, xk ].
10: else
11: X1

k ← [xk ,mid(Xk )],
12: X2

k ← [mid(Xk ), xk ].
13: Construct X1 and X2 from X by replacing the edge Xk with the edges X1

k and X2
k , respectively.

Output: Subboxes X1 and X2 of X .

3 Finite Termination in the General Case

This section provides general assumptions under which Algorithm 1 terminates after
finitely many steps.

3.1 Convergence Under General Assumptions

We start by recalling the convergence considerations from [15] and by adapting them
to the mixed-integer setting.

The convergence proof from the continuous case relies on the convergence behavior
of sequences of induced ideal point estimates (̃akT ) on exhaustive sequences of boxes
(Xk) in X . Thereby, a sequence of boxes (Xk) in X is called exhaustive if Xk+1 ⊆
Xk ⊆ X holds for all k ∈ N and limk diag(Xk) = 0, where diag(X ′) = ‖x ′ − x ′‖2
denotes the diagonal length of a box X ′ ⊆ X . In a branch-and-bound framework,
sequences of boxes (Xk) are generated by successive branching of the box X according
to the given branching rule. One needs to ensure that any such sequence generated by
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the branching rule is exhaustive, see the forthcoming Assumption 3.1. Algorithm 2
satisfies it since it bisects boxes along a longest edge.

Assumption 3.1 Any sequence of boxes (Xk) in X which is generated by infinitely
many steps of the branching rule is exhaustive.

For any exhaustive sequence of boxes (Xk), the set
⋂

k∈N Xk is a singleton, say
{̃x}. While x̃ clearly lies in X , for the convergence of a branch-and-bound scheme
the behavior of the chosen lower bounding technique in the two cases x̃ ∈ M(X)

and x̃ /∈ M(X) is crucial. Since additional properties of x̃ may be derived from the
branching rule, the interplay between the lower bounding technique and the branching
rule must be adequate, in a sense to be explained below.

Parts a and b of the following definition for single-objective problems are taken
from [25] and adapted to the mixed-integer case.

Definition 3.1 Let f : R
n → R

1, g : R
m → R

k and M(X) = {x ∈ X | xi ∈ Z, i ∈
I , g(x) ≤ 0}.
(a) A function � from the set of all subboxes X ′ of X to R ∪ {+∞} is called M-

dependent lower bounding procedure if �(X ′) ≤ infx∈M(X ′) f (x) holds for all
subboxes X ′ ⊆ X .

(b) An M-dependent lower bounding procedure is called convergent if every exhaus-
tive sequence of boxes (Xk) in X satisfies

lim
k

�(Xk) = lim
k

inf
x∈M(Xk )

f (x). (13)

(c) Given a particular branch-and-bound algorithm A, an M-dependent lower bound-
ing procedure is called convergent for A if every exhaustive sequence of boxes
(Xk) generated by A satisfies (13).

Along the lines of [15], we connect this single-objective concept to the multiob-
jective setting as follows. In Algorithm 1, the entries (̃a′

T ) j of the induced ideal point
estimate for f (M(X ′)) may be interpreted as the results �T , j (X ′) of a lower bound-
ing procedure �T , j for f j on M(X ′). With �T (X ′) denoting the vector with entries
�T , j (X ′), this yields ã′

T = �T (X ′), so that the convergence behavior of the ideal
point estimates follows directly from the convergence behavior of the lower bounding
procedure.

While convergence of the lower bounding procedure in the sense of Definition 3.1b
is assumed in the convergence proof from [15], it is not hard to see that this may be
weakened to convergence for [15, Algorithm 1] in the sense of Definition 3.1c. The
weakening of this assumption will be crucial subsequently and is stated as follows.

Assumption 3.2 The entries of the induced ideal point estimates are computed by
some M-dependent lower bounding procedure which is convergent for Algorithm 1.

With regard to upper bounds, the following assumption makes sure that in line 18
of Algorithm 1 feasible points in sufficiently small boxes can be computed when they
exist.
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Assumption 3.3 There exist some δ > 0 and some procedure so that for all boxes
X ′ ⊆ X created by Algorithm 1 with diag(X ′) < δ and M(X ′) �= ∅ a feasible point
x ′ ∈ M(X ′) can be computed.

Theorem 3.1 [15, Th. 8.5] Let Assumptions 3.1, 3.2 and 3.3 hold. Then for any ε > 0
Algorithm 1 terminates after a finite number of iterations.

Observe that in [15] the above theorem is shown under the general Assumptions 3.2
and 3.3, but for a special branching rule, namely the purely continuous version of
Algorithm 2. However, only its exhaustiveness property from Assumption 3.1 is used
in the proof, so that Theorem 3.1 is a valid reformulation of [15, Th. 8.5].

We mention that [16, Cor. 5.2] proves convergence in the Hausdorff metric of the
box enclosures of YN to the boundary of the upper image set f (M(X)) + R

m+ for ε

tending to zero (relative to the box Z ).
The applicability of Theorem 3.1 clearly depends on how restrictive Assump-

tions 3.2 and 3.3 are. We shall discuss this issue next.

3.2 Applicability of Assumption 3.2

While basically all lower bounding procedures that are commonly used in continuous
global optimization are convergent in the sense of Definition 3.1b [15], convergence in
this sense cannot be expected in the mixed-integer case, even for such a fundamental
lower bounding technique T as continuous relaxation (for which we put T := CR).
This is mainly due to the case x̃ /∈ M(X) for an exhaustive sequence (Xk) with⋂

k∈N Xk = {̃x}. Then we have M(Xk) = ∅ for all sufficiently large k, so that
with the usual convention inf x∈∅ f (x) = +∞ the convergence of a lower bounding
procedure requires limk �(Xk) = +∞.

On the other hand, the computation of the ideal point estimate ãkCR amounts to the
solution of the m single-objective continuous problems

min f j (x) s.t. g(x) ≤ 0, x ∈ Xk, j = 1, . . . ,m. (14)

Assume that x̃ /∈ M(X) holds due to x̃i /∈ Z for some i ∈ I , while there are points
xk ∈ Xk with g(xk) ≤ 0 for all k. Then each xk is feasible for the problems in (14),
and in view of limk diag(Xk) = 0 the sequence (xk) converges to x̃ . The continuity
of f j thus yields

lim
k

ãkj = lim
k

�CR, j (X
k) ≤ lim

k
f j (x

k) = f j (̃x) < +∞, (15)

in contradiction to the required convergence property limk �CR, j (Xk) = +∞.
For this reason, we introduced convergence of a lower bounding procedure for an

algorithm in Definition 3.1c. This allows us to infer additional properties of points
x̃ with

⋂
k∈N Xk = {̃x} for an exhaustive sequence of boxes (Xk) generated by this

algorithm. In particular, wemay take effects of the chosen branching rule into account.
Such a useful effect may be formulated as follows.
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Assumption 3.4 Let (Xk) be any exhaustive sequence in X which is generated by the
branching rule. Then for all sufficiently large k, all integer variables xi , i ∈ I , of
vectors x ∈ Xk are fixed to some constant integer value.

Lemma 3.1 The branching rule from Algorithm 2 satisfies Assumption 3.4.

Proof Exhaustiveness of (Xk) implies that for all sufficiently large k the maximal edge
length of Xk = [xk, xk] lies strictly below one. The branching rule from Algorithm 2
then implies that each edge length xki − xki with i ∈ I is zero. This means that for all
sufficiently large k all integer variables xi , i ∈ I , of vectors x ∈ Xk are fixed to the
constant integer value xki = xki . ��

The following theorem shows in particular that the branching rule fromAlgorithm 2
prevents the described lack of convergence due to the presence of integer variables.

Theorem 3.2 Let MCR(X) = {x ∈ X | g(x) ≤ 0} denote the continuous relaxation
of M(X), let the branching rule satisfy Assumption 3.4, and for some component
function f j of f let � be an M-dependent convergent lower bounding procedure for
f j on MCR(X). Then, � is an M-dependent lower bounding procedure for f j on
M(X), and � is convergent for Algorithm 1.

Proof Due to infx∈MCR(X ′) f j (x) ≤ inf x∈M(X ′) f j (x) for any X ′ ⊆ X , � is also an
M-dependent lower bounding procedure for f j on M(X). For the proof of conver-
gence, let (Xk) be an exhaustive sequence of boxes generated by Algorithm 1. In
view of Assumption 3.4, for all sufficiently large k the additional explicit statement
of integrality conditions in M(Xk) is superfluous, so that M(Xk) coincides with its
continuous relaxation MCR(Xk). As � is convergent for f j on MCR(X), this shows
that � is also convergent for f j on M(X). ��

Since, as mentioned before, basically all lower bounding procedures from continu-
ous global optimization are convergent, their application to the continuous relaxation
in combination with a branching rule satisfying Assumptions 3.1 and 3.4 leads to
the validity of Assumption 3.2. This includes the combination of interval arithmetic,
the αBB method or RLT (see [15] and the references therein) with Algorithm 2. For
example, lower bounding by αBB convexification of the continuous relaxation leads
to smooth convex problems (10) and (11).

3.3 Applicability of Assumption 3.3

In Assumption 3.3, the choice δ = 1 as a strict upper bound for the diagonal length
of a box X ′ implies that also all edge lengths of X ′ are strictly bounded from above
by one. In combination with a branching rule satisfying Assumption 3.4, this fixes all
integer variables to integer values by the same arguments as in the proof of Lemma 3.1.
Hence, the applicability question for this assumption reduces to the purely continuous
case, which is discussed in [15, Sect. 8].

From a practical perspective, the generation of feasible points for larger boxes, for
which integer variables are not yet fixed, may be supported by the arsenal of primal
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heuristics for mixed-integer optimization (cf. [4] for a survey). This also includes the
granularity based primal heuristics for the linear [34], convex [33], and nonconvex
[35] case.

4 Finite Termination for Specially Structured Problems

The convergence considerations from Sect. 3 simplify significantly if the problem
MOMIP exhibits certain structurally favorable characteristics. One such characteristic
is the absence of integer variables (I = ∅),which is discussed in [15]. Subsequently,we
briefly discuss explicit designs of Algorithm 1 for three other special cases, involving
integer variables.

4.1 Convergence in the ConvexMixed-Integer Case

In this section, we impose the following convexity assumption.

Assumption 4.1 The component functions of f and g are convex and continuously
differentiable on X .

Following [11], a MOMIP satisfying Assumption 4.1 is called a MOMICP. For
any MOMICP, choosing solely continuous relaxation as the partial lower bounding
technique in Algorithm 1 already leads to efficiently computable ideal point estimates,
since then the continuous problems in (14) are defined by smooth convex functions.
In particular, there is no need to additionally apply any lower bounding procedures
from continuous global optimization in that setting. This means that for anyMOMICP
we may use the simple lower bounding procedure �CR, j (X ′) = infx∈MCR(X ′) f j (x) in
Theorem 3.2, and Assumption 3.2 is satisfied.

Regarding Assumption 3.3, from Sect. 3.3 we know that it suffices to be able to find
a feasible point of the continuous relaxation MCR(X ′) for sufficiently small boxes X ′.
Since this amounts to the solution of smooth and convex feasibility problems, also
Assumption 3.3 is satisfied. Theorem 3.1 thus yields the following result.

Corollary 4.1 (Finite termination for MOMICPs) Let Assumption 4.1 hold and choose
continuous relaxation as the lower bounding technique T (i.e., T := CR). Then for
any ε > 0 Algorithm 1 with the branching rule from Algorithm 2 terminates after a
finite number of iterations.

Our numerical experience withMOMIBB (Algorithm 1) for MOMICPs is reported
in Sect. 6.

4.2 Convergence in the Linear Mixed-Integer Case

While MILPs are hard to handle from a complexity perspective, state-of-the-art soft-
ware can often solve them within reasonable time limits. Therefore, the following
polyhedrality assumption is a favorable characteristic of MOMIPs.
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Assumption 4.2 The component functions of f and g are affine-linear on X .

We refer to a MOMIP satisfying Assumption 4.2 as a MOMILP. For MOMILPs, the
ideal points of partial image sets do not have to be underestimated. The computation
of their entries by (6) amounts to the solution ofm MILPs. Hence, the ideal points can
be computed without using any relaxations. Formally this corresponds to choosing the
partial lower bounding set LB ′

T to be identical to the partial image set f (M(X ′)),which
we indicate by T := P I S. Moreover, Assumption 3.3 only requires the solution of
continuous linear feasibility problems for sufficiently small boxes. Theorem 3.1 hence
implies the following corollary.

Corollary 4.2 (Finite termination for MOMILPs) Let Assumption 4.2 hold and choose
the lower bounding technique T = P I S. Then for any ε > 0 Algorithm 1 with the
branching rule from Algorithm 2 terminates after a finite number of iterations.

Since in this setting Algorithm 1 works without continuous convex relaxations,
subsequently we shall refer to it as MOMIBBdirect .

4.3 Convergence in the Quadratic Mixed-Integer Case

Recent advances in software packages for mixed-integer optimization allow a certain
generalization of the approach from Sect. 4.2. It uses the following weakening of
Assumption 4.2.

Assumption 4.3 The component functions of f and g are quadratic on X .

We refer to a MOMIP satisfying Assumption 4.3 as a MOMIQP. State-of-the-art
software packages like Gurobi [29] are able to handle quadratic mixed-integer opti-
mization problems, where actually not even convexity of the quadratic functions is
required. Proceeding without continuous relaxation, like in Sect. 4.2 we arrive at the
following result.

Corollary 4.3 (Finite termination forMOMIQPs) Let Assumption 3.3 and 4.3 hold and
choose the lower bounding technique T = P I S. Then for any ε > 0 Algorithm 1 with
the branching rule from Algorithm 2 terminates after a finite number of iterations.

Unlike Corollary 4.2, the Corollary 4.3 explicitly requires Assumption 3.3. Thismeans
that onemust be able to solve continuous quadratic feasibility problems for sufficiently
small boxes, which is guaranteed at least for convex quadratic component functions
of g on X .

Our numerical experience with Algorithm 1 for MOMIQPs is reported in Sect. 6.
Again, since in this setting Algorithm 1 works without continuous convex relaxations,
it is of the type MOMIBBdirect . In contrast to Sect. 4.2, here quadratic rather than
linear mixed-integer subproblems have to be solved.

5 Cuts in the Node Problems

This section discusses possibilities to speed up Algorithm 1 under the following
assumption.
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Assumption 5.1 The discarding test problem (11) is continuous with the function fT
and the functions defining MT (X ′) being differentiable and convex.

In the case when Assumption 5.1 holds, but the cuts presented in this section are
not employed, we refer to Algorithm 1 as MOMIBB-c0. Assumption 5.1 holds, for
example, if the lower bounding technique T combines continuous relaxation with
convex relaxation like αBB, or if continuous relaxation is used under Assumption 4.1
(Cor. 4.1). Under Assumption 5.1 also the computation of the ideal point estimates
from (10) amounts to smooth convex problems. However, the latter only requires
the solution of m problems, while the number of smooth convex problems (11) in
discarding tests may be vast, depending on the number and position of local upper
bounds. More precisely, recall that the discarding test from Theorem 2.2 allows to
discard the box X ′ if

p /∈ LB ′
T + R

m+ ∀p ∈ lub′(F) := lub(F) ∩ (̃a′
T + R

m+) (16)

holds. In line 16 of Algorithm 1 the condition (16) is checked by its equivalent refor-
mulation

ϕLB′
T
(p) > 0 ∀p ∈ lub′(F) (17)

with the optimal value ϕLB′
T
(p) of (11). Hence, for each of the potentially many

elements of lub′(F) one convex optimization problem needs to be solved.
In the following, we will successively construct polyhedral lower bounding sets

in the node problems by cuts, which possess the potential to significantly reduce the
number of these convex optimization problems to be solved. To this end, we introduce
polyhedral sets LB ′

PT with LB ′
PT+R

m+ =: {y ∈ R
m | y ≥ ã′

T , Ay ≥ b} ⊇ LB ′
T+R

m+
(cf. Fig. 2). The main advantage of using this set is that the discarding condition (16)
does not need to be checked by its equivalent reformulation (17), but one may resort
to the sufficient condition

lub′(F) ∩ (LB ′
PT + R

m+) = ∅

which may be rewritten as

lub′(F) ∩ {y ∈ R
m | Ay ≥ b} = ∅. (18)

As the source of the system of inequalities Ay ≥ b we propose two types of
cuts suggested in [11], where the second type of cuts is based on the first type and
improves them under additional assumptions explained below. Initially the matrix A
and the vector b are empty, resulting in lub′(F) ∩ {y ∈ R

m | Ay ≥ b} = lub′(F) and
LB ′

PT = ã′
T + R

m+. The general refinement step for LB ′
PT + R

m+ = {y ∈ R
m | y ≥

ã′
T , Ay ≥ b} proceeds as follows.
Case 1: lub′(F) ∩ {y ∈ R

m | Ay ≥ b} = ∅
Since (18) is sufficient for (16), X ′ can be discarded in view of Theorem 2.2.
Case 2: lub′(F) ∩ {y ∈ R

m | Ay ≥ b} �= ∅
Choose some p̄ ∈ lub′(F) ∩ {y ∈ R

m | Ay ≥ b} (with a strategy presented below)
and compute ϕLB′

T
( p̄) as the optimal value of the convex problem (11).
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Fig. 2 A set LB′
PT + R

m+

Case 2.1: ϕLB′
T
( p̄) > 0

Then p̄ /∈ LB ′
T + R

m+ holds, and X ′ could be discarded if also the remaining
p ∈ lub′(F) ∩ {y ∈ R

m | Ay ≥ b} satisfied p /∈ LB ′
T + R

m+. To check the latter
by polyhedral relaxation, we refine LB ′

PT + R
m+ by information obtained during the

computation of ϕLB′
T
( p̄), namely the cut λ̄�y ≥ λ̄� z̄, where (x̄, t̄) is an optimal point

of (11), z̄ := p̄ + t̄ e, and λ̄ ≥ 0 is a corresponding multiplier vector of the system
of inequalities fT (x) ≤ p + te [27, 36]. The matrix A is then augmented by the row
vector λ̄�, the vector b by the entry λ̄� z̄, and the condition from the above Case 1 is
checked again. In Sect. 6, we will refer to Algorithm 1 with the cuts from Case 2.1 as
MOMIBB-c1.

Before wemove on to Case 2.2, we briefly illustrate the construction fromCase 2.1.
In the situation of Fig. 2 the set lub′(F) ∩ (̃a′

T + R
2+) contains two elements, and p̄ is

chosen to be the one to the right. Solving (11) (with the arrow symbolizing the vector
e) yields ϕLB′

T
( p̄) > 0. With a corresponding multiplier vector λ̄ a cut is added to

update LB ′
PT +R

2+ from the set ã′
T +R

2+ to the set depicted with bold boundary lines.
Solving (11) also for the second element in lub′(F) ∩ (̃a′

T + R
2+) is now superfluous,

since this point violates the cut. The subbox X ′ can thus be discarded.
Case 2.2: ϕLB′

T
( p̄) ≤ 0

In this case, it is not possible to discard X ′ on the grounds of Theorem 2.2. However,
under some algorithmic effort we may strengthen the above inequality λ̄�y ≥ λ̄� z̄
to a second type of cut by increasing its right-hand side while it stays valid for the
nonrelaxedmixed-integer partial upper image set f (M(X ′))+R

m+. This can be realized
by computing an optimal point x̃ of the mixed-integer problem

min
x

λ̄� f (x) s.t. x ∈ M(X ′) (19)

and define the stronger valid inequality λ̄�y ≥ λ̄� f (̃x) for f (M(X ′)) + R
m+.

Case 2.2.1: λ̄� p̄ < λ̄� f (̃x)
This relation means that the valid inequality serves as a cut. The matrix A is aug-

mented by the row vector λ̄�, the vector b by the entry λ̄� f (̃x), and the condition
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from the above Case 1 is checked again. In Sect. 6, we will refer to Algorithm 1
with the cuts from Case 2.2.1 as MOMIBB-c2. Note that for these cuts the condition
LB ′

PT + R
m+ ⊇ LB ′

T + R
m+ may no longer hold. Nevertheless, p /∈ LB ′

PT + R
m+ is

still sufficient for p /∈ f (M(X ′)) + R
m+. Hence, the box X ′ can be discarded in case

this holds for all other p ∈ lub′(F) as well.
Case 2.2.2: λ̄� p̄ ≥ λ̄� f (̃x)
In this case, the box X ′ cannot be discarded, and Algorithm 1 moves on.
Since generally the solution of the mixed-integer problem (19) is not possible in

an efficient manner, the second type of cuts from Case 2.2 may only be beneficial
under additional structural assumptions, like currently for quadratic functions. For
more details on the two types of cuts, we refer to [11].

In our numerical tests of these cutting strategies in Sect. 6, we proceed as follows
to choose the point p̄ ∈ lub′(F) ∩ {y ∈ R

m | Ay ≥ b} in Case 2. We rewrite
{y ∈ R

m | y ≥ ã′
T , Ay ≥ b} = {y ∈ R

m | λ�y ≥ λ�z for all (λ, z) ∈ 	} with an
appropriate finite set of parameters 	 ⊆ R

m × R
m and put

σ(p) := min{λ� p − λ�z | (λ, z) ∈ 	}.
Then the condition in Case 1 is equivalent to maxp∈lub′(F) σ (p) < 0. Consequently in
Case 2 we have maxp∈lub′(F) σ (p) ≥ 0, and the announced strategy is to choose any
p̄ ∈ lub′(F) at which this maximum is attained. In addition to being a formally natural
choice, this also allows the following geometrical interpretation. Due to σ( p̄) ≥ 0 the
inequalities λ� p̄ − λ�z ≥ 0 are satisfied for all (λ, z) ∈ 	. If the vectors λ are
chosen to be normalized, then the term λ� p̄ − λ�z coincides with the geometrical
distance of p̄ to the hyperplane {y ∈ R

m | λ�y − λ�z = 0}. Therefore, among
the p ∈ lub′(F) with σ(p) ≥ 0, the chosen p̄ maximizes the overall distance to all
hyperplanes describing the boundary of {y ∈ R

m | Ay ≥ b}. This can be expected to
lead to a cut with the potential to remove a significant portion of the remaining local
upper bounds p.

6 Numerical Results

In the following, we present our numerical results for selected test instances including
general mixed-integer nonconvex as well as mixed-integer convex quadratic instances.
While for the former instances no algorithm with a performance guarantee was avail-
able so far, the latter are used to compare our new algorithm with those presented in
[11] and [19].

All numerical tests were performed using MATLAB R2021a using a machine with
Intel Core i9-10920X processor and 32GB of RAM. For this configuration the average
of the results of bench(5) is: LU = 0.2045, FFT = 0.2127, ODE = 0.3666, Sparse =
0.3919, 2-D = 0.1968, 3-D = 0.2290. As mentioned in the MATLAB documentation
[30], these results of MATLAB’s integrated benchmarking function are highly version
specific.

The termination tolerance for all instances was set to ε = 0.1. All single-objective
mixed-integer subproblems were solved using Gurobi [29]. For single-objective con-
tinuous convex subproblems, fmincon was used. This is also the configuration that
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was used in [11, 17] for the numerical experiments to whichwe compare our algorithm
later for the special case of convex problems. For all algorithms, a time limit of 3600
seconds was set.

6.1 Performance of MOMIBB for the Nonconvex Case

Our algorithm is the first deterministic solver for multiobjective mixed-integer non-
convex optimization problems. Hence, we start our numerical tests considering such
optimization problems and demonstrating the capabilities of Algorithm 1.

Within this subsection, we make use of convex continuous relaxations employing
the αBB method [1, 2] for convexification. As mentioned in the previous sections, we
refer to this realization ofAlgorithm1 (without any cutting strategies) asMOMIBB-c0.
If, in addition, the first type of cuts from Sect. 5 (Case 2.1) is used, we refer to the
algorithm as MOMIBB-c1. Finally, we denote by MOMIBB-c2 the realization of
Algorithm 1 applying also the second type of cuts from Sect. 5 (Case 2.2.1).

First, we consider the biobjective mixed-integer nonconvex nonquadratic test
instance

min
x

(x1 + x2 + x5, x3 + x4 − exp(x5))
� s.t.

4∑

i=1

x2i ≥ 1,

x1, x2, x3, x4 ∈ [0, 1],
x5 ∈ [−4, 1] ∩ Z

(P1)

with quadratic but nonconvex constraints.
Without using any cutting strategies, MOMIBB-c0 computes an enclosure of the

nondominated set of (P1) within 236.60 s. Using MOMIBB-c1, i.e., employing addi-
tional cuts, the computation time decreases only slightly to 226.59 s. The reason for
this is that for (P1) the introduction of cuts did not allow to discard a significant amount
of boxes earlier or to reduce the amount of problems (11) that needed to be solved. This
changes in the forthcoming test instance (P2) where the use of cuts indeed reduces the
computation time.

However, it is important to mention that it is always a recommendable strategy
to use MOMIBB-c1 in favor of MOMIBB-c0. In fact, while the cuts introduced in
MOMIBB-c1 may, in the worst case, reduce neither the total number of boxes that
need to be considered nor the number of optimization problems (11) that need to be
solved, the optimization problems (11) to obtain the cuts in MOMIBB-c1 are solved
in MOMIBB-c0 anyway. In particular, MOMIBB-c1 never involves solving more
subproblems than MOMIBB-c0.

Note that employing additional cuts, i.e., using MOMIBB-c2, is not a practical
approach for this test instance since this would involve solving the (single-objective)
mixed-integer nonconvex nonquadratic problems (19). This is (by now) not possible
even using such advanced solvers as Gurobi.

Recall that the proposed algorithm MOMIBB works for an arbitrary number m of
objectives.Thus,wecontinue this sectionwith the triobjective nonconvexnonquadratic
example
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Fig. 3 Enclosure (left) and provisional nondominated set F (right) for (P2) computed by MOMIBB-c0

min
x

(x1 + x4, x2 − x4, x3 − exp(x4) − 3)� s.t. x21 + x22 ≤ 1,

exp(x3) ≤ 1,

x1x2(1 − x3) ≤ 1,

x ∈ [−2, 2]4,
x4 ∈ Z.

(P2)

For MOMIBB-c0, it took 528.34 s to compute an enclosure of the nondominated set.
In Fig. 3, the enclosure as well as the provisional nondominated set F are shown. By
introducing cuts with MOMIBB-c1, the computation time can be reduced to 464.05 s.
Thus, this example clearly shows the benefit of making use of the cutting strategies
from Sect. 5. This decrease in computation time is mainly a result of the reduced
number of subproblems that needed to be solved in order to discard certain boxes.More
precisely, the computation time for fmincon reduced from329.85 s forMOMIBB-c0
to 268.63 s for MOMIBB-c1. Again, usingMOMIBB-c2 was not a practical approach
for this test instance due to the nature of the subproblems (19).

To show the abilities ofMOMIBB-c2 andMOMIBBdirect , we consider the scalable
biobjective mixed-integer nonconvex but quadratic test instance

min
x

(
k/2∑
i=1

xi +
k+l/2∑
i=k+1

xi ,
k∑

i=k/2+1
xi +

n∑
i=k+l/2+1

xi

)�

s.t.
k∑

i=1
x2i ≥ 1,

n∑
i=k+1

x2i ≤ 9,

xi ∈ [0, 1], i = 1, . . . , k,
xi ∈ [−3, 3] ∩ Z, i = k + 1, . . . , n.

(P3)

with an even number k ∈ N of continuous variables, an even number l ∈ N of integer
variables, and n = k + l variables in total.
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Table 1 Comparison of
computation times for (P3) in
seconds

k l MOMIBB MOMIBBdirect
c0 c1 c2

2 2 34.76 34.89 32.42 14.39

2 4 165.39 157.80 146.25 70.15

2 6 409.23 373.19 290.06 81.46

4 2 247.33 243.84 180.62 100.24

4 4 1322.00 1231.51 931.07 536.80

4 6 1764.09 1664.65 1291.60 455.38

6 2 1240.25 1094.80 907.16 470.45

6 4 – – 3144.38 2421.86

As explained in Sect. 4.3, modern solvers like Gurobi are able to handle even
mixed-integer nonconvex quadratic optimization problems very well. This enables
us to make use of advanced cutting strategies, i.e., using MOMIBB-c2, as well as
completely omitting continuous convex relaxations and using T = P I S which leads
to MOMIBBdirect , see Sect. 4.3. Table 1 shows the numerical results for all those
different strategies and for various choices of the numbers k, l ∈ N of continuous and
integer variables. A ‘–’ indicates that no solution satisfying the termination criterion
was found within the time limit of 3600 s.

Introducing the first kind of cuts, i.e., using MOMIBB-c1, in general, slightly
decreases the computation times in comparison with MOMIBB-c0. This is basically
the same behavior we have seen for (P1) before. Additionally introducing the second
type of cuts obtained by solving the mixed-integer nonconvex quadratic problem (19),
i.e., usingMOMIBB-c2, reduces the computation timesmore significantly. The reason
for this is mainly that the number of boxes in the pre-image space that need to be
considered decreases noticeably forMOMIBB-c2. For example, regarding the instance
of (P3) with k = l = 2, the number of boxes (in comparison to MOMIBB-c0)
decreases by a third using MOMIBB-c2 (66 instead of 99) while it stays the same
when using MOMIBB-c1.

As a final strategy, we use MOMIBBdirect , i.e., we completely omit the continu-
ous convex relaxation and choose T = P I S instead, as discussed in Sect. 4.3. This
strategy massively reduces the overall computation time, making it more than twice as
fast as using continuous convex relaxation. This demonstrates how for specific types
of optimization problems, our algorithm benefits from the advances in corresponding
state-of-the-art solvers. In Fig. 4 the results, i.e., the computed enclosure of the non-
dominated set of (P3) and the provisional nondominated setF , for (P3)with k = l = 2
and MOMIBBdirect are shown.

6.2 Comparison with Other Algorithms for the Convex Case

While our algorithm is the first of its kind to solve multiobjective mixed-integer non-
convex optimization problems, several solvers for the convex case have already been
proposed in the literature. In this section, we compare our algorithmMOMIBB to two
of them, namely HyPaD [19] and MOMIX [11].
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Fig. 4 Enclosure (left) and provisional nondominated set F (right) for (P3) with k = 2 continuous and
n − k = 2 integer variables computed by MOMIBBdirect

Since HyPaD also computes an enclosure, the termination criterion of HyPaD
matches the termination criterion of our algorithm. This allows for a fair compari-
son. While our algorithm and HyPaD both work with the same image space based
termination criterion (depending on the parameter ε), MOMIX uses a criterion in the
pre-image space (depending on δ). All results for the MOMIX algorithm from [11]
were computed using a choice of δ = 0.1 as termination criterion. Hence, quantitative
comparisons are only possible to some extent and we will focus mostly on qualitative
comparisons.

The test instance

min
x

(
k/2∑
i=1

xi +
n∑

i=k+1
xi ,

k∑
i=k/2+1

xi −
n∑

i=k+1
xi

)�

s.t.
k∑

i=1
x2i ≤ 1,

x ∈ [−2, 2]n,
xi ∈ Z, i = k + 1, . . . , n

(T4)

is taken from [11]. It is scalable in both the number k ∈ N of continuous and l ∈ N

of integer variables, where the number of continuous variables needs to be even and
n = k + l.

Since this test instance is quadratic, we can employ all solution strategies
MOMIBB-c0, MOMIBB-c1, MOMIBB-c2, and MOMIBBdirect as in the previous
test instance (P3). The results for all configurations of our algorithm as well as for
MOMIX and HyPaD are shown in Table 2, where ‘–’ indicates that no solution satis-
fying the termination criterion was found within the time limit of 3600 s. For MOMIX
two different branching strategies can be used. We present here only the best result
(i.e., the shortest computation time) of all of them.

For all instances with k = 2 continuous variables, the results for MOMIBBdirect

are significantly better than those obtained for MOMIBB-c0, MOMIBB-c1, and
MOMIBB-c2. We have already seen this behavior for test instance (P3). For k =
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Table 2 Comparison of computation times for (T4) in seconds

k l MOMIBB MOMIBBdirect MOMIX HyPaD
c0 c1 c2

2 1 33.31 20.35 25.03 5.22 22.65 1.48

2 2 185.19 104.52 116.36 27.15 129.13 3.37

2 3 1774.12 586.21 644.45 180.25 752.27 5.53

4 1 694.54 209.82 229.03 268.06 1318.00 1.87

4 10 – – – – – 30.96

4, l = 1 MOMIBBdirect was still better than MOMIBB-c0. However, it no longer
outperformed MOMIBB-c1 and MOMIBB-c2.

It is also in line with the previous examples that MOMIBB-c1 performed better
than MOMIBB-c0. Again, this is no surprise since MOMIBB-c1 can never perform
worse than MOMIBB-c0 as it only makes more use of the data already obtained.
MOMIBB-c2 was not able to yield a better performance than MOMIBB-c1 for this
test instance.

For all instances MOMIBB-c1 as well as MOMIBBdirect performed better than
MOMIX. In particular, comparing the results for MOMIBBdirect and MOMIX,
the advantage of MOMIBBdirect seems to be quite stable (roughly factor 5). Note
that since both, our algorithm and MOMIX, are branch-and-bound approaches and
both, MOMIBBdirect and MOMIX, make use of the ability of Gurobi to solve
single-objective mixed-integer quadratic optimization problems, this is also the most
meaningful comparison quality-wise.

HyPaD on the other hand operates almost entirely in the image space. Thus, it
is no surprise that it is the fastest of all tested algorithms and is able to solve even
larger instances. In fact, it was demonstrated in [17] that HyPaD is able to solve
instances with up to l = 30 integer variables or k = 200 continuous variables.
Clearly, for such dimensions, MOMIBB with a branching in the pre-image space
will have difficulties. On the other hand, this branching in the pre-image space is the
reason why nonconvex functions can be handled by employing convexification using
for instance αBB underestimators, while HyPaD cannot be applied in this case. Hence,
unless it is inevitable to use pre-image space techniques such as branch-and-bound, for
example to handle nonconvexity, it is beneficial to stick to such algorithms as HyPaD
that work almost entirely in the criterion space.

These results also extend to multiobjective mixed-integer optimization problems
with more than two objective functions, for instance the optimization problem

min
x

(
x1 + x4, x2 − x4, x3 + x24

)�

s.t.
3∑

i=1
x2i ≤ 1,

x ∈ [−2, 2]4,
x4 ∈ Z

(T5)
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which is also presented in [11]. Analogously to the results for (P3) and most instances
of (T4),MOMIBBdirect is faster thanMOMIBB-c0,MOMIBB-c1, andMOMIBB-c2.
More precisely, it computes an enclosure of the nondominated set of (T5) within
88.58 swhichmakes it 20% faster thanMOMIBB-c1with 110.76 s. This configuration
of MOMIBB, which uses solely the first kind of cuts, is faster than MOMIBB-c2 with
129.30 s which additionally makes use of the cuts obtained by solving the mixed-
integer optimization problems (19). Both configurations are faster than not using any
cuts at all, i.e., using MOMIBB-c0, which results in a computation time of 144.42 s.

One might expect that the performance gap between HyPaD as a purely image
space-based method and MOMIBB as a pre-image space branch-and-bound algo-
rithm decreases for a larger number of objective functions and a small number of
variables. However, this is not the case. Even MOMIBBdirect is significantly slower
than HyPaD which only needs 8.63 s, and thus roughly 10% of the computation time
of MOMIBBdirect , to compute an enclosure of the nondominated set of (T5). The
main reason for this is that both HyPaD and MOMIBB are primarily algorithms that
compute a coverage of the nondominated set in the image space. Hence, if more boxes
are needed to cover the nondominated set, which is usually the case if the number
of objective functions increases, this increases the computation time for both algo-
rithms. This means that MOMIBB has to deal with the same difficulties as HyPaD
in that regard, but additionally also possesses the typical drawbacks of a pre-image
space branch-and-bound method. Thus, the main use case for MOMIBB are indeed
multiobjective mixed-integer nonconvex optimization problems, where purely image
space-based methods, e.g., HyPaD, are not applicable.

We remark that in case scalarizations of MOMIP can be solved fast and reliably,
one could make use of algorithms as the ones from [18, 37] that also generate an
approximation of the nondominated set.

7 Conclusions

In this paper, we presented a general algorithmic framework for solving multiobjec-
tive nonconvex optimization problems. In particular, for the first time, this framework
allows to specifically address and solve multiobjective mixed-integer nonconvex opti-
mization problems (MOMIP), both theoretically and practically. It extends the results
from [15] from the purely continuous to the mixed-integer setting, especially with
regard to the convergence results. A key ingredient for the convergence results is
Assumption 3.4, i.e., to ensure that for almost all boxes of an exhaustive sequence
(Xk) all integer variables are fixed to some constant (integer) value. In particular,
see also Theorem 3.1, this assumption guarantees that convergent lower bounding
procedures for purely continuous optimization problems are also convergent lower
bounding procedures in the mixed-integer setting. For several classes of specially
structured problems, for instance multiobjective mixed-integer convex optimization
problems, we also presented convergent lower bounding procedures that do not rely on
continuous relaxations and hence do not depend on the convergence results from [15]
for the continuous setting. Finally, we demonstrated the capabilities of our algorithm
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for both nonconvex and convex multiobjective mixed-integer optimization problems
on selected test instances.
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