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Abstract
Refractive power measurements serve as the primary quality standard in the automotive glazing
industry. In the light of autonomous driving new optical metrics are becoming more and more
popular for specifying optical quality requirements for the windshield. Nevertheless, the link
between those quantities and the refractive power needs to be established in order to ensure a
holistic requirement profile for the windshield. As a consequence, traceable high-resolution
refractive power measurements are still required for the glass quality assessment. Standard
measurement systems using Moiré patterns for refractive power monitoring in the automotive
industry are highly resolution limited, wherefore they are insufficient for evaluating the camera
window area. Consequently, there is a need for more sophisticated refractive power
measurement systems that provide a higher spatial resolution. In addition, a calibration
procedure has to be developed in order to guarantee for the comparability of the measurement
results. For increasing the resolution, a measurement setup based on an auto-correlation
algorithm is tested in this paper. In order to benchmark the proposed high-resolution refractive
power measurement technique, a novel laser-based setup has been realized in the Volkswagen
Laser Laboratory as a reference method tuned for high-accuracy measurements. Furthermore, a
calibration procedure is established by using a single reference lens with a nominal refractive
power of 100km−1. For the calibration of the entire measurement range of the system, the lens
is tilted by an inclination angle orthogonal to the optical axis. The effective refractive power is
then given by the Kerkhof model. By adopting the measurement and calibration procedure
presented in this paper, glass suppliers in the automotive industry will be able to detect relevant
manufacturing defects within the camera window area more accurately paving the way for a
holistic quality assurance of the windshield for future advanced driver-assistance system
(ADAS) functionalities. Concurrently, the traceability of the measurement results is ensured by
establishing a calibration chain based on a single reference lens, which is traced back to
international standards.
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1. Introduction

In the light of the ambition to launch level 4 [1] ready autonom-
ous driving vehicles within this decade, car manufacturers
have to face completely new challenges. According to the
SAE International Standard J3016-202 104 [1], level 4 driv-
ing is given if the driver becomes a passenger who can request
manual control if desired or needed. The latter statement is
applicable if the functionality is limited to specific terrains or
external conditions. In this case, the driver will be asked to take
over but the car has to be able to fall back to aminimal risk con-
dition automatically. Developing a robust level 4 systems is
quiet complex. For example, in order to guarantee that the per-
ception latency is always smaller than the maximum reaction
time to avoid a collision, level 4 ready cars will need higher
spatial resolution cameras for the frontal far field [2]. This trig-
gers higher quality requirements for the car windshield since
the sensitivities for optical aberrations are amplified by using
telephoto lenses. One way to assess the optical quality of a
system is given by evaluating the refractive power. The high
pixel resolution per field angle of telephoto cameras makes
it necessary to develop high spatial resolution measurement
methods for analyzing the refractive power distribution within
the windshields camera window. From an economic perspect-
ive, the inspection of the compliance of technical parts should
be achieved on a high confidence to minimize the number of
unrectifiable rejects. Consequently, a detailed uncertainty ana-
lysis for every measurement method is mandatory to qualify
these systems for industrial quality inspection. Furthermore, in
a highly globalized industrial sector like the automotive branch
it is of paramount importance that different methods yield the
same result. In general, there are three fundamental pillars
for a valid measurement in metrology, namely reproducibil-
ity, comparability and traceability. The reproducibility quanti-
fies the degree of agreement between the measurement results
of experiments conducted at locations with different environ-
mental conditions, different instrumentation, different para-
meterisation or different experimenter but the measurement
method remains unaffected. The comparability assesses the
degree of agreement between different measurements meth-
ods or principles. The traceability is essential for establish-
ing a calibration chain and to trace back the measurement
results to international standards. In other words, the repro-
ducibility, comparability and traceability of the measurement
results has to be demonstrated in order to guarantee for the
scalability of industrial solutions and applications in a glob-
alized world. Typically, the comparability is established by a
round robin test including different laboratories. The reference
object under test is usually a primary standard and the entire
measuring range can be tested by exploiting natural laws as a
baseline model.

In this paper, we introduce three different approaches to
measure the refractive power of windshields. First of all, a
conventional refractive power measurement setup based on
Moiré interference patterns is presented, which is currently the
standard measurement technique in automotive quality test-
ing [3, 4]. Secondly, a new high spatial resolution refractive
power measurement technique is introduced based on back-
ground oriented Schlieren (BOS) imaging [5]. Finally, an
experimental reference setup has been developed to provide
an additional metrological baseline tuned for high accuracy
measurements. For this method, we work out the uncertainty
budget in great detail based on the Guide to the Expression
of Uncertainty in Measurement (GUM) [6]. Furthermore, this
paper investigates the comparability of the presented measure-
ment methods based on the Kerkhof model [7], which charac-
terises the amplification of the refractive power of a lens if
a tilt angle is applied. To justify the validity of this proced-
ure, the inherent assumptions of theKerkhofmodel are worked
out in detail by deriving the governing equations in section 2.
The approximations which are made in order to get a spatially
independent amplification factor for the refractive power res-
ults in model limitations. Those limitations of the Kerkhof
model are studied in section 2.1 and determine the scope of
the model validity. In section 3, we introduce the aforemen-
tioned measurement methods regarding the refractive power
and the comparability study based on the Kerkhof model is
presented in section 4. In addition, the link between refract-
ive power and Fourier optics is worked out in section 5 to
give an outlook on how optical quality requirements for level 4
driving functionalities could be tested in future. Section 6 con-
cludes the results of this paper and motivates further research
activities.

2. Surface imperfections of plane parallel glasses

In this section, we analyze the impact of surface imperfections
on the ray propagation. The equations, which we derive by
utilizing the concept of ray optics, have already been presen-
ted by Schardin and Stamm [8] and Kerkhof [7]. Nevertheless,
it is important to recall the underlying physical assumptions
in order to understand the full picture behind the governing
DIN-52 305 industrial standard [4]. Figure 1 shows a sketch
of a glass plate perturbed by surface imperfections. The angles
can be derived by geometrical considerations and are given by
equations (1)–(5). In addition, Snell’s law is adapted for the
ray transition from air (nair ≈ 1) to glass (nglass ≈ 1.52=: n)
and vice versa. The general idea of the Kerkhof model is to
treat the perturbations of a glass plate as local prisms. Hence,
the surface perturbations of the glass are translated into a
map of prism wedge angles δ(x,y). For simplification, the
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Figure 1. Sketch of a plane parallel glass plate (red line) perturbed
by surface imperfections (dashed red line). The incoming collimated
beam (black line) is refracted by surface imperfections leading to a
local focus effect.

two-dimensional problem is studied on the condition y
!
= 0

without loss of generality. The analysis of figure 1 results in
the following algebraic angular relationships:

sinϵ= n · sinγ1 , (1)

γ2 =
π

2
− δ− γ1 , (2)

γ3 =
π

2
− γ2 , (3)

n · sinγ3 = sinγ4 , (4)

ϵ+α= γ4 − (γ3 − γ1) . (5)

The equations from expression (1)–(5) can be used to derive
the deflection angle α as a function of the wedge angle
δ. The mathematical relationship is derived subsequently in
Expression (6):

ϵ+α
(5,4,3)
= arcsin(n · sinγ3)−

(π
2
− γ2 − γ1

)
⇔ ϵ+α

(3,2)
= arcsin(n · cosγ2)− δ

⇔ ϵ+α+ δ
(2,1)
= arcsin

(
n · sin

(
arcsin

(
sinϵ
n

)
+ δ

))
⇔ sin(ϵ+α+ δ) = n · sin

(
arcsin

(
sinϵ
n

)
+ δ

)
⇔ sin(ϵ+α+ δ) = sinϵ · cosδ+ n · cos

(
arcsin

(
sinϵ
n

))
· sinδ

⇔ sin(ϵ+α+ δ) = sinϵ · cosδ+
√
n2 − (sinϵ)2 · sinδ

⇔ sin(ϵ+α+ δ) = sinϵ+ δ ·
√
n2 − (sinϵ)2 +O

{
δ2
}

. (6)

Figure 2. The local deflection angle α can be related to a local
refractive power distortion D with focal length f.

It is important to emphasize that the wedge angle δ quantifies
the local imperfections of the glass surface and has an impli-
cit spatial dependency. The deflection angle α is amplified if
the optical system is tilted by the inclination angle ϵ. At this
point, the assumption is made that the local wedge angle δ is

small (δ � π

4
) and that the deflection angle α is small as well

(α� π

4
). Hence, expression (6) can be further simplified as

demonstrated in expression (7):

sin(ϵ+α+ δ) = sin(ϵ+α) · cosδ+ cos(ϵ+α) · sinδ

⇔ sin(ϵ+α+ δ) = sinϵ · cosα · cosδ+ cosϵ · sinα · cosδ

+ cosϵ · cosα · sinδ− sinϵ · sinα · sinδ

⇔ sin(ϵ+α+ δ) = sinϵ · cosα+ cosϵ · sinα+ δ · cosϵ · cosα

− δ · sinϵ · sinα+O
{
δ2
}

⇔ sin(ϵ+α+ δ) = sinϵ+α · cosϵ+ δ · cosϵ−α · δ · sinϵ

+O
{
δ2
}
+O

{
α2

}
⇔ sin(ϵ+α+ δ) = sinϵ+α · cosϵ+ δ · cosϵ+O

{
(α+ δ)2

}
.

(7)

Due to the small-angle approximation, higher order terms O
can be neglected. As a consequence, in first order approxima-
tion the deflection angle α is given by expression (8):

sinϵ+α · cosϵ+ δ · cosϵ
(6)
≈ sinϵ+ δ ·

√
n2 − (sinϵ)2

⇔ α≈ δ ·
[

1
cosϵ

·
√
n2 − (sinϵ)2 − 1

]
■ .

(8)

Equation (8) determines the relationship between the local
deflection angleα(x) and the local wedge angle δ(x). The local
deflection angle can be translated to a local refractive power of
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Figure 3. Ray tracing simulation for the laser setup at an angle of ϵ= 0◦ (left) and ϵ= 50◦ (right). The parameterisation of the simulation
is defined by the measurement setup described in section 3.3.

the glass. This is illustrated in figure 2 and can mathematically
be described by utilizing the sine rule as demonstrated by the
subsequent equations (9)–(11):

D :=
∂α

∂ξ
=

∂α

∂δ
· ∂δ
∂x

· ∂x
∂ξ

=:
1
f
, (9)

x
ξ
=

sin
(π
2
+α

)
sin

(π
2
−α− ϵ

) =
cosα

cos(α+ ϵ)
≈ 1

cosϵ
, (10)

Dϵ

(8,9,10)
≈ 1

cosϵ
·
[

1
cosϵ

·
√
n2 − (sinϵ)2 − 1

]
· ∂δ
∂x

. (11)

In general, the refractive power quantifies the first derivative of
the local deflection angle α with respect to the orthogonal off-
axis coordinate ξ. The spatial dependency in equation (11) on
the wedge angle profile can be eliminated if the ratio to the on-
axis case is considered (ϵ= 0◦). The resulting amplification
factor for the refractive power of the perturbed glass depends
exclusively on the inclination angle ε:

Dϵ

D0

(11)
≈ 1

(n− 1) · cosϵ
·
[

1
cosϵ

·
√
n2 − (sinϵ)2 − 1

]
■ .

(12)

As a result, equation (12) paves the way for calibrating refract-
ive power measurement devices over the entire range based
on a single reference lens. By tracing back the reference lens
to international standards we can safeguard the validity of
the calibration strategy and ensure that the fundamental trace-
ability requirement for a valid measurement in metrology is
fulfilled.

2.1. Limitations of the Kerkhof approximation

The assumption of the Kerkhof model, given by equation (12),
requires plane parallel glass. Nevertheless, the Kerkhof model
can be utilised to estimate the expected refractive power of a
weak focusing lens. In order to quantify the deviation from the
Kerkhof model and to derive an approximation threshold for a
weak focusing lens of 〈D〉= 100km−1 we implemented a ray
tracing simulation in Python. As an example, figure 3 shows
an ensemble of light rays refracted by the weak focusing lens

under different inclination angles ϵ. The point of least confu-
sion determines the focal length of the lens for the correspond-
ing inclination angle.

As a side effect, the circle of least confusion increases as the
inclination angle increases, which would result in an effect-
ive blurring if an imaging system is considered. This blurring
can be quantitatively characterized by the modulation transfer
function (MTF) as discussed in section 5. In addition to the
inclination angle ϵ, there are two parameters that influence the
effective refractive power of the lens. First of all, the thick-
ness of the lens dlens has an impact because the lens surface
is curved. Secondly, the wedge angle δ has to be small, such
that second order terms in δ are negligible. The three depend-
encies were studied in detail by executing the ray tracing sim-
ulation for different parameter settings. Figure 4(a) demon-
strates that the systematic bias between Kerkhof model and
physical simulation is less than 0.5% for ϵ⩽ 70◦. Typically,
car windshields are inclined by less than ϵ= 70◦, wherefore
the Kerkhof model is sufficiently accurate for the scope of
car windshield measurements. The thickness of the reference
lens, produced and calibrated by ZEISS, is given by 〈dlens〉=
10.1mm. Thicknesses of up to 40mm result in systematic
biases of less than 1% according to figure 4(b). The wedge
angle for the spherical lens is not constant over the entire pro-
file of the aperture surface. Therefore, the maximum wedge
angle δ was varied, which corresponds to different maximum
aperture diameters. From figure 4(c) can be concluded, that
the maximum aperture stop of the reference lens, which cor-
responds to a maximum wedge angle of δ = 4.7mrad, does
not violate the assumptions of the Kerkhof model. Hence,
the measurement bias is much smaller than 1% for a max-
imum inclination angle of ϵ= 70◦. In conclusion, the Kerkhof
model is valid within the refractive power measurement range
of weak focusing lenses. Consequently, by periodically recal-
ibrating the reference lens, refractive power measurement sys-
tems can be traced back to international standards and national
metrological institutes, e.g. PTB, METAS, NIST.

3. Refractive power measurement methods

3.1. Moiré interference method

A very well-established refractive power measurement
technique in the automotive industry is based on Moiré
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Figure 4. Robustness analysis of the Kerkhof model. For the parameterisation of the simulation, the worst case scenario has been
considered. The worst case scenario is given by the edge of the reference lens aperture (aperture edge corresponds to a wedge angle of
δ = 4.7mrad) and the maximum test angle of ϵ= 70◦.

interference patterns [9–11]. Initially, a fine-line grid is
illuminated by a coherent light source. The grid pattern is
then propagated through the windshield and mapped onto
a secondary line grid with a rotational offset. Without any
optical perturbations of the windshield, the superposition of
the line grid patterns creates a Moiré interference pattern with
constant differentiation length l0. Due to surface imperfec-
tions, optical aberrations will perturb the transmitted line grid
pattern and the superposition of the perturbed and unperturbed
pattern will show local deviations from the constant differen-
tiation length l0. The deviation from the differentiation length
∆l0 gives rise to the local deflection angle of the light beam
induced by the windshield. By differentiating the deflection
angle profile along the horizontal and vertical dimension,
the refractive power map is retrieved. The resolution of the
system is limited by the differentiation length l0, which is
problematic for investigating small camera areas of advanced
driver-assistance system (ADAS) cameras.

3.2. Auto-correlation method

The local refractive power is mathematically defined as the
first derivative of the deflection angle (see equation (9)). This

gives rise to a new measurement approach based on BOS
imaging [5, 12–14]. If the image of a reference pattern is taken
by a camera with and without the windshield in the optical
path (as visualized in figure 5), then a map of local deflec-
tion angles can be reconstructed based on the structure of the
perturbed reference pattern by an auto-correlation algorithm.
The local deflection angles are determined by the ratio of
the corresponding deflection vector component related to the
optical path length (as shown in figure 6). Consequently, a
local refractive power map can be calculated by numerical
differentiation, which results in an uniform refractive power
distribution in case of the reference lens since the slopes in
figure 6 are location-independent. The last step is a bit more
complex than described because the optical parameters of the
setup have to be considered for an accurate result. For this, the
target vector is mapped by a matrix optics approach onto the
image plane. Consequently, this measurement setup implicitly
assumes the validity of the small angle approximation, which
breaks down for severe optical distortions. Nevertheless, for
the scope of optical distortions in automotive applications,
where D is much smaller than 1m−1, the assumption is valid.
In addition, the mapping approximates the camera system
as a pinhole camera and the distances between the optical
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Figure 5. The reference pattern and the distorted pattern is visualized for the reference lens under a test angle of ϵ= 59.7◦. It is clearly
noticeable, that the circular reference pattern is distorted towards elliptical shapes due to the broken symmetry as a consequence of the
inclination angle, which induces an amplification factor in this direction according to the Kerkhof model.

Figure 6. The horizontal and the vertical component of the deflection vector ∆⃗ is shown for the reference lens under a test angle of
ϵ= 59.7◦. The homogeneity of the slopes indicates an uniform refractive power distribution. The mean refractive power value of the
reference lens over the aperture surface amounts to Dmeas = 577km−1.

elements are determined by a camera calibration procedure.
Unfortunately, a more detailed description of those steps can
not be given due to confidentiality obligations. The major
advantage of this technique lies in the degree of freedom of
choosing an arbitrary axis of interest for the refractive power
calculation. Furthermore, the resolution of the system is only
limited by the areal density of the reference pattern, which is
subject to the magnitude of the distortion. Basically, if the dis-
tortions are severe (like in figure 5), then the areal density has
to be high enough, so that the auto-correlation algorithm can
still identify enough reference points on the target for a given
subset size. On the other hand, the areal density has to be low
enough in order to guarantee for the discriminability of the ref-
erence points within the pattern. Finally, it has to be emphas-
ized, that the auto-correlation measurement technique regard-
ing the refractive power is still subject to ongoing research.
We address some of the unresolved issues in more detail in
section 4.

3.3. Laser-based method

As a reference setup for refractive power measurements, a
laser-based method has been realized in the Volkswagen Laser
Laboratory. The setup is presented in figure 7 and is advert-
ised as a reference measurement method because of the high
measurement accuracy, which is achieved by operating the
experimental setup at a smooth region of the multidimensional

target function (14) leading to small sensitivity coefficients.
This procedure is only possible if an excellent parameterab-
ility of the experimental setup is given. On the downside, the
laser measurement setup is characterized by the worst spatial
resolution of the studied methods, wherefore it would be inad-
equate for automotive applications. Consequently, the follow-
ing considerations serve exclusively the intention to provide an
experimental method for determining the ground truth refract-
ive power.

The principle idea of the measurement setup is to observe
the transversal distance between two laser beams after passing
a refractive element as proposed by §9.2.1.1.3 of the UN/ECE-
R43 regulation on safety glasses [15]. For the experimental
setup, a photonic beam is generated by a laser. The beam
is attenuated and multiplied by a crystal beam splitter. The
outgoing laser beams are parallelized by the method of
superimposition with an alignment mirror. At the end of
the optical table, the beams are separated by a distance of
µ0 = (53.0 ± 0.5)mm. The observation plane is located
in a distance of L = (20.65 ± 0.02)m. Even though the
alignment procedure was executed with much care, the ini-
tial laser beam and the spatially conjugated beam are in prac-
tice not perfectly congruent. For that reason, the divergence
angle α0 of the measurement setup has to be determined.
The divergence angle is specified by the transversal distance
reduction over the optical axis coordinate z. If the transversal
distance of τ0 = (38.4 ± 0.5)mm between the laser beams is
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Figure 7. Laser measurement setup for measuring the refractive power as a function of the inclination angle. Upper Left: cross-section view
of the optic board. Lower left: Schematic drawing of the laser light path. Right: head-on view of the optic board. Please note: The schematic
drawing is not equidistantly representing the real alignment distances. The lens is mounted on a pivot bearing with an alignment tolerance of
σϵ = 30.6 ′ ′, which is sufficiently precise in order to neglect this uncertainty contribution.

measured in the observation plane, without a refracting sample
inside the light path, then the divergence angle α0 is given by
equation (13):

tanα0 :=
τ0 −µ0

2L
⇒ α0 ≈

τ0 −µ0

2L
≈−1.22 ′ . (13)

The particular choice of the parameterisation results from a
trade-off between the goal of operating at an optimal work-
ing point characterized by small sensitivity coefficients and the
practical limitations of the alignment parameters given by the
spatial dimensions of the laser laboratory and the optic board
respectively. The corresponding measurement uncertainties of
the alignment parameters are given by the specifications of the
measurement rulers on a confidence level of 68.3% assuming
a Gaussian distribution (k= 1).

For the propagation of the laser beams along the optical
axis, the matrix optics formalism can be deployed. This form-
alism exploits the paraxial approximation andmanifests a state
vector η⃗ consisting of the transversal coordinate and the deflec-
tion angle in the corresponding plane. The state vector η⃗f in the
observation plane can be determined by propagating the initial
state vector η⃗i through the lens and the drift space towards the
observation plane, as elaborated in detail in equation (14):

η⃗f :=

 −
dc
2

αf

=Mdrift ·Mlens · η⃗i

⇔ η⃗f =

[
1 L

0 1

]
·

[
1 0

−Deff 1

]
·

[ µ0

2
α0

]

⇔ η⃗f =


µ0

2
−
Lµ0Deff

2
+Lα0

−
µ0Deff

2
+α0



⇒−
dc
2

(13)
=

µ0

2
−
Lµ0Deff

2
+

τ0 −µ0

2

⇔ Deff =
dc + τ0

µ0L
. (14)

According to equation (14), the effective refractive power of
the lens is fully determined by the transversal distance dc
between the laser beam centroids. In order to measure dc, a
picture of the observation plane is taken by a Nikon D5100
with 16.2Mpx. The horizontal distance x between the beam
centroids was measured in an unbiased way, so that the refract-
ive power calculation is not affected. In order to satisfy this
condition, the camera has been positioned slightly above the
optical axis, in the middle of the two beam centroids. This gen-
erated a slight skewness of the vertical intensity distributions
towards larger values of y, which corresponds to the inclination
angle of the camera. The image is post-processed by a Python
algorithm to extract the coordinates of the beam centroids
by the mode value of the intensity profile distributions. This
method is used because of the non-zero skewness of the ver-
tical intensity distributions, which would bias the estimators of
a Gaussian fit in comparison. Furthermore, the upper edge of
the target screen causes a sudden drop of the Fresnel reflection
coefficient in the target plane, which influences the tails of the
vertical profile intensity distributions. As an example, the raw
image and the corresponding profile intensity distributions are
presented in figure 8 for the setup at an angle of ϵ= 50◦. The
mapping from pixel to metric coordinates is determined by a
calibration factor, which was determined by an initial image
of a straightedge in the region of interest on the image plane.

3.3.1. Uncertainty analysis. The uncertainty analysis is
based on GUM [6]. A-priori uncertainty distributions are
assigned to the input parameters by scientific judgement. The
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Figure 8. The raw image of the laser beam in the target plane is shown for the setup under an angle of ϵ= 50◦.

impact of the input variances on the target quantity is determ-
ined by Gaussian error propagation [16]. The random vari-
ables sampled from the distributions of the input quantities xi
are assumed to be uncorrelated [6], wherefore the expect-
ation value of products factorizes: E [xixj] = E [xi] ·E [xj].
Consequently, the error propagation is given by the quadratic
mean of the input uncertainties σi weighted by the sensitivity
coefficients ∂xiD and normalised by ξi. The normalisation ξi
is applied in order to unify the confidence intervals of the
input uncertainties σi on a 68.3% confidence level. For the
evaluation of the confidence level covered by the combined
standard deviation σeff, the degrees of freedom of the input
variances have to be determined. This is elaborated in detail
in subsection 3.3.1.1 in order to guarantee the reproducibility
of the resulting uncertainty budget. In general, the normal-
ized distribution of the target quantity follows a student’s
t-distribution if the standard deviation is estimated and the
number of degrees of freedom is small. Finally, a sophistic-
ated uncertainty budget for the laser-based refractive power
measurement method is presented in subsection 3.3.1.2.

3.3.1.1. Degrees of freedom (DoF). First of all, it is import-
ant to recapitulate, that the assigned probability density func-
tion (pdf) describes the distribution of xi and the input uncer-
tainty σx characterizes the variability or the width of the pdf.
The sample standard deviation σs, defined by equation (15):

σs :=

√√√√√ N∑
i=1

(xi−E [xi])
2

ν

static
=

√√√√√ N∑
i=1

(xi−µ)
2

N− 1
,

with: µ :=
1
N

N∑
i=1

xi , (15)

represents an unbiased estimator for the true standard devi-
ation σx if and only if the observables xi are Gaussian dis-
tributed. According to Cochran’s theorem [17], the sample
variance σ2

s of the population follows a χ2
ν-distribution of

ν degrees of freedom if the deviations are independent and
Gaussian distributed. The number of degrees of freedom of
the residuals for an ensemble of N observations is given by
ν = N− p, where p corresponds to the number of independ-
ent linear constraints on the residuals and the sample variance
respectively [18]. In zeroth order, the residual sum is minim-
ized by choosing an appropriate estimator µ that fulfills the

constraint ∂µσ2
s

!
= 0. The estimator µ is commonly known as

the arithmetic mean. If a subset from the ensemble of cardin-
ality N is drawn, (N− 1) subsamples can be drawn arbitrarily
but the last subsample is then fully determined by the con-
straint imposed by the ensemble average µ. This reduction
in degrees of freedom of the sample variance is commonly
addressed by the Bessel’s correction factor [19]. Similar con-
siderations can be made for non-static models, where regres-
sion is the mean of choice. If the ensemble follows an under-
lying linear drift, then the dynamic behavior is characterized
by two parameters. The conditional equation for the slope m
and the y-intercept b impose two constraints on the residuals,

namely ∂mσ
2
s

!
= 0 and ∂bσ

2
s

!
= 0. In this context, σ2

s is the first
order variance, where E [xi] is replaced by the corresponding
expectation value of the regression line. Therefore, σs quanti-
fies the ensemble spread around the regression line in this case,
which is more commonly known as the root-mean-square error
(RMSE) [19]. Each parameter of the regression function needs
to fulfill all constraints on the residual sum. As a consequence,
the degree of freedom of the variance of each regression para-
meter is given by (N− 2) for linear cases, which also applies
to the higher order variance or RMSE. The idea of higher order
variances is quite useful for benchmarking regression mod-
els because minimizing the residuals by more complex mod-
els reduces simultaneously the degrees of freedom of the vari-
ance, which acts as a penalty for more complex models like in
Ridge regression [20]. Consequently, the zeroth order sample
variance is a benchmark for the RMSE of a regression model
because the predictions have to outperform the naive estimate
given by the arithmetic mean. Hence, the RMSE should reduce
the randomness of the ensemble better than the zeroth order
sample variance [21].
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On the contrary, if only a single measurement with a-priori
pdf is considered, the number of degrees of freedom for the
distribution of the variance σ2

s has to be determined differ-
ently. In general, ν quantifies all statistical moments of the χ2

ν-
distribution, wherefore the shape of the distribution is exclus-
ively determined by the number of degrees of freedom [19].
In the limit of ν 7→∞, the χ2

ν-distribution equals a Gaussian
distribution according to the central limit theorem [22]. For
the purpose of uncertainty quantification and propagation,
the standard deviation σs is the quantity of interest. Since
ν determines all statistical moments of the χ2

ν-distribution it
seems to be appealing to investigate the dependency of the
variance of the sample standard deviation on the number of
degrees of freedom. The variance of the sample standard devi-
ation is given by equation (16):

VAR[σs] := E
[
(σs −E[σs])

2
]
= E[σ2

s ]−E[σs]
2 . (16)

In order to calculate the expectation values E[.] in
equation (16), the Cochran theorem (17):

pdf

(
ν · σ

2
s

σ2
x

)
= χ2

ν

(
ν · σ

2
s

σ2
x

)
, with: σ2

x := VAR [xi] ,

(17)

is applied. Here, σ2
x characterizes the true variance of the

underlying distribution for xi. Consequently, the expectation
value of the sample variance is given by equation (18):

E[σ2
s ] :=

σ2
x

ν
·E

[
ν · σ

2
s

σ2
x

]
(17)
=

σ2
x

ν

∞̂

0

ξ χ2
ν(ξ) dξ = σ2

x . (18)

For the calculation of the expectation value of the sample
standard deviation, it is important to recap the relationship for
variable changes in pdf’s as given by expression (19):

E[η := f(ξ)] =

∞̂

−∞

η pdfη(η) dη =

∞̂

−∞

f(ξ) pdfξ(ξ) dξ .

(19)
As a side note, relation (19) is the mathematical foundation
for Monte-Carlo sampling. With this knowledge in mind we
can determine the expectation value of the sample standard
deviation:

E[σs] :=
σx√
ν
·E

[√
ν · σs

σx

]
(17)
=

σx√
ν

∞̂

0

η χν(η) dη

⇔ E[σs]
(19)
=

σx√
ν

∞̂

0

√
ξ χ2

ν(ξ) dξ

⇔ E[σs] =

√
2
ν
·
Γ

[
ν+ 1
2

]
Γ
[ν
2

] ·σx
ν 7→ ∞−→ σx . (20)

Here, Γ denotes the Gamma function [19], which satisfies
the relation: Γ[n] = (n− 1)!. In addition, the fact that the
square root of residuals of Gaussian distributed observables
follows a χν-distribution was used. Finally, the relative stand-
ard deviation of the sample standard deviation of xi is given by
equation (21):

σσs

E[σs]
=

√
VAR[σs]

E[σvs]
(16)
=

√
E[σ2

s ]−E[σs]2

E[σs]

(18)
=

√
σ2
x

E[σs]2
− 1

⇔
σσs

E[σs]

(20)
=

√√√√√√√ν

2
·

(
Γ
[ν
2

])2

(
Γ

[
ν+ 1
2

])2 − 1 ν 7→ ∞−→ 0

⇔
σσs

E[σs]
=

√
1
2ν

+
1

8
√
2
·
√

1
ν3

−
9

128
√
2
·
√

1
ν5

+O

{√
1
ν7

}
.

(21)

In the last line of equation (21), a Puiseux expansion around
ν 7→∞ was applied for simplification. A Puiseux series
expansion in ν around infinity is loosely speaking a Taylor
expansion in ν−1 around zero including negative and frac-
tional exponents. By truncating the Puiseux series expansion
after first order, the degree of freedom ν of the χ2

ν-distribution
for the estimated sample variance can be determined. Hence,
ν can be calculated by equation (22):

ν
(21)
≈ 1

2

[
σσs

E[σs]

]−2

:=
1
2

[
σ
(2)
s

E[σs]

]−2

, (22)

in accordance with GUM [6]. It is important to emphasize,
that relation (22) also holds for the relative standard deviation
of the sample standard deviation of the mean µ. This is based
on the fact that all expectation values regarding the mean

would scale with
√
N
−1

, wherefore the ratio remains unaf-
fected. Furthermore, equation (22) adapts a slightly different
notation for σσs := σ

(2)
s in order to indicate the direct link

to the second order of uncertainty in xi. Unfortunately, it is
very difficult to give a solid scientific estimate for the second
order uncertainty [23]. Therefore, several methods have been
published to alleviate this problem for type-B uncertainties,
which either draw on the kurtosis [24–26] or perform artifi-
cial toy Monte-Carlo studies of independent Bernoulli trials
to estimate σ

(2)
s [27, 28]. For our purpose, the latter method

presented by Castrup [27] is adapted for the quantification of
σ
(2)
s . As a consequence, the problem of quantifying the second

order uncertainty σ
(2)
s is shifted to the challenge of determ-

ining the uncertainty in the confidence level of σi. In other
words, it has to be estimated how many Bernoulli trials would
be sampled within the limits ±σs, with confidence p, and
how many out of distribution subsamples within ±∆xi, with
confidence ∆p, are observed. Equation (23) approximates
the degree of freedom of a type-B uncertainty contribution
i, where Φ−1 denotes the Gaussian cumulative distribution
function.

9
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Table 1. Refractive power measurement uncertainty budget for the laser-based method at ϵ= 50◦.

i xi ⟨xi⟩ σi pdf
σi/2´

−σi/2
pdf(η) dη ξi

∂D
∂xi

ui νi

1 L 20.65m 0.02m Gaussian 68.3% 1 −15km−1/m 0.3 km−1 28
2 µ0 53.0mm 0.5mm Gaussian 68.3% 1 −5.9km−1/mm 2.95 km−1 28
3 dc 303.8mm 0.5mm Gaussian 68.3% 1 0.91 km−1/mm 0.46 km−1 28
4 τ 0 38.4mm 0.5mm Gaussian 68.3% 1 0.91 km−1/mm 0.46 km−1 28

νi
(22)
≈ 1

2

[
u(2)i

ui

]−2
!
=

1
2

[
σ
(2)
i

σi

]−2
[34]
≈

3σ2
i ·

(
Φ−1

[
(1+ p)

2

])2

2

(
Φ−1

[
(1+ p)

2

])2

· (∆xi)2 +πσ2
i · exp

{(
Φ−1

[
(1+ p)

2

])2
}
· (∆p)2

(23)

As a side note, the GUM method inherently assumes that the
inputted pdf of an observable is not affected by the uncer-
tainty propagation besides the scalingwith the sensitivity coef-
ficient, given by the first derivative of the objective func-
tion with respect to the observable [29]. As a consequence,
the number of degrees of freedom ν is equivalent for σi
and ui, where ui quantifies the projection of the uncertainty
contribution σi of the input parameter xi on the objective
function u.

For the evaluation of the measurement uncertainty budget
presented in table 1, equation (23) was exploited for the cal-
culation of the degrees of freedom of ui. In detail, the sample
standard deviation σi on a p= 68.3% confidence level as well
as the estimations for∆xi = 0.1σi and∆p= 0.1 were used for
the evaluation of ν i.

3.3.1.2. Measurement uncertainty budget. In table 1, the
measurement uncertainty budget for ϵ= 50◦ is presented.
The input parameters for the determination of the refract-
ive power according to equation (14) are Gaussian distrib-
uted, with expectation value 〈xi〉 and standard uncertainty
σi. The estimated variance u2i is χ2

νi-distributed according
to Cochran theorem (17) with ν i degrees of freedom. To
estimate the effective variance u2eff, a linear combination of
the input variances u2i is used. At this point it has to be
considered that a linear combination of χ2-distributed vari-
ables does not follow an effective χ2-distribution inherently.
Nevertheless, the pdf of u2eff can be approximated by a new
parameterized χ2-distribution up to the second moment in u2eff.
Hence, the number of degrees of freedom for u2eff is tuned,
so that the expectation value and the variance correspond
to the exact solution of the combined distribution given by
the convolved u2i distributions. The solution of the equation
system is known as the Welch [30]–Satterthwaite [31]
equation (24):

νeff =
u4eff
N∑
n=1

u4i
νi

. (24)

If the effective number of degrees of freedom is large, then the
distribution of u2eff can be approximated as a Gaussian distri-
bution according to the central limit theorem [22]. TheWelch–
Satterthwaite equation (24) for ϵ= 50◦ results in νeff = 6295.
Hence, the extension factor k for the renormalisation of the
confidence intervals can be chosen from a Gaussian pdf. For
a confidence level of 95% the extension factor amounts to
k= 1.96. Consequently, the extended uncertainty uext on a
95% confidence level for the setup with ϵ= 50◦ is given by
equation (25):

uext = k ·

√√√√ N∑
n=1

[
∂D
∂xi

· ζi ·σi
]2

= k ·

√√√√ N∑
n=1

u2i

⇒ uext =± 5.9km−1 [95.0%] . (25)

For different setups of the inclination angle ε, the extended
uncertainty is listed in table 3. For all configurations of ε the
effective χ2

νeff
-distribution can be approximated as a Gaussian

since νeff > 10 [32].

4. Comparison measurement

Figure 9 visualizes the deviation of all three measurement
techniques from the Kerkhof model. The measurement results
from the laser setup are in agreement with the Kerkhof model
under consideration of the measurement uncertainties. The
same holds for the measurement system that uses Moiré pat-
terns. Nevertheless, the clustering seems to be slightly biased
towards larger values ofD for theMoiré technique. Finally, the
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Figure 9. The relative refractive power deviation with respect to the Kerkhof model is plotted versus the inclination angle ϵ for different
measurement systems at a 95% confidence level (k= 1.96).

auto-correlation method shows the same trend as the expected
behaviour by the Kerkhof model. Nevertheless, there is still
a significant bias, which is subject to current investigations.
Most likely the estimators for the distances of the measure-
ment setup, which enter the refractive power calculation in the
matrix optics mapping, are not sufficiently accurate. Hence,
the setup alignment procedure has to be refined.

Furthermore, the comparability study baselined on the
Kerkhof model indicates that the calibration of the Moire
technique is insufficient for refractive powers greater than
∼200km−1. Currently, the measurement device using a Moire
interference pattern is calibrated by two reference lenses with
±100km−1, which are traced back to international standards
to ensure a valid calibration chain. The resulting calibration
line is assumed to be valid over the entire measurement range.
But the results in figure 9 clearly contradict this assumption
and indicate that the calibration procedure in place at the
moment might be insufficient.

5. The link between refractive power and Fourier
optics

In the light of autonomous driving new optical metrics are
becoming relevant. Within the ensemble of optical metrics,
the MTF plays a central role in assessing the imaging sharp-
ness [33] and is based on the concept of Fourier optics [34].
The dependency of the monochromatic, incoherent MTF(⃗k|λ)
on the optical path difference W(⃗xa) [34] is determined by
equation (26):

MTF(⃗k|λ) :=

∣∣∣∣∣∣∣∣∣
‚

P+∩P−
exp

(
2πi
λ

[
W(ξ⃗+∆⃗)−W(ξ⃗− ∆⃗)

])
dξ2

˜
R2 |P(ξ⃗)|2 dξ2

∣∣∣∣∣∣∣∣∣ ,

with: ∆⃗ := λza→o
k⃗
2
. (26)

The integral domain is given by the intersection of the shifted
aperture function P+ ∩P−. Here, the index label indicates the
sign of the spatial shift vector ∆⃗, which depends on the lon-
gitudinal distance between the aperture surface and the obser-
vation plane za→o. The optical path differenceW is defined as
the difference between the distorted wavefront and the refer-
ence wavefront. Concerning the effect of windshield aberra-
tions, the reference wavefront is given by a plane wave. The
MTF is a multidimensional function depending on the spatial
wavenumber k⃗ := (kx, ky) and the wavelength λ.

If the perturbed wavefront converges locally to a single
spot, then the wavefront error can be translated to a local
refractive power aberration [35]. In this case, the refractive
powerD physically quantifies the local curvature of the optical
path differencemapW [36, 37], as illustrated by equation (27):

Dxi (⃗xa) =
∂2

∂x2i
W(⃗xa) . (27)

Here, xi specifies the axis of interest and the input vector x⃗a ∈
R2 is bound to the principal plane of the refractive element.
Since the information about the wavefront deformation fully
characterizes the induced optical aberrations of the windshield
it is tempting to investigate if the refractive power is sufficient
for reconstructing W, which is attempted by equation (28):

4W(⃗xa)
(27)
=

d∑
i=1

Dxi (⃗xa)

⇒W(⃗xa) =
d∑

i=1

‹
P

Dxi (⃗x) ·G(⃗xa |⃗x) dx2
+ C(⃗xa)

⇔W(⃗xa) :=
d∑

i=1

4−1Dxi (⃗xa)+ C (⃗xa) ,

with: 4C (⃗xa)
!
= 0 . (28)
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Figure 10. Result of a refractive power measurement of an
exemplary windshield in the camera window area.

Here, G(⃗xa |⃗x) denotes the Green’s function for the two-
dimensional Laplacian on R2 given by equation (29) [38]:

G(⃗xa |⃗x) =
1
2π

ln(‖⃗x− x⃗a‖2) . (29)

Equation (28) demonstrates that the wavefront aberration map
could be reconstructed on the basis of refractive power meas-
urements if two conditions are fulfilled. First of all, the res-
olution of the refractive power measurement has to be suf-
ficiently high in order to numerically calculate the integral.
Secondly, the integration constant C(⃗xa) in equation (28),
which necessarily fulfills the Laplace equation, has to be neg-
ligible over the entire aperture. Hence, all aberration fields
that can be decomposed into harmonic functions are not
recoverable by the inversion of the refractive power distri-
bution. The latter condition is most likely not fulfilled in
general for the aberration structure induced by windshields.
This indicates the insufficiency of refractive power meas-
urements for safeguarding autonomous driving because the
link to the MTF is limited by the inversion information
loss [35].

Nonetheless, high-resolution refractive power measure-
ments are desirable for quantifying optical distortions within
the ADAS camera area, which can be utilized to ensure a rec-
tilinear mapping in the perception system by post-processing.
For this purpose, it is of paramount importance to consider the
dependency of the distortion magnitude on the field of view.
This is most likely the unique selling point of the measuring
technique presented in section 3.2 because it inherently takes
care of this reliance. As an example, figure 10 visualizes the
refractive power distribution on the aperture surface for a given

Table 2. Table of specifications for the setups involved in the
comparability study regarding different refractive power
measurement techniques.

Method Accuracy Resolution Practicability

Moiré method

Auto-correlation method

Laser-based method

car imaging system. It has to be emphasized, that there is a
non-zero refractive power gradient in the vertical as well as in
the horizontal direction reflecting the varying angle of field,
which ultimately amplifies the refractive power according to
the Kerkhof model.

6. Benefits and outlook

In a nutshell, the comparability of different measuring tech-
niques regarding the refractive power has been demonstrated
and a calibration procedure has been proposed, which can be
utilized to ensure the traceability of the measurement results to
international metrological reference standards. The specifica-
tions of the investigated measurement setups are compared in
table 2. As a next step, a detailed analysis has to be under-
taken, which aims for investigating the non-zero bias of the
auto-correlation measurement method. As soon as this puzzle
is resolved, high-resolution refractive power maps from wind-
shield measurements can be utilized to ensure a rectilinear
mapping in the perception system and thereby contribute to the
fulfillment of the performance requirements for level 4 ADAS
functionalities.

Appendix and data availability statement

In general, any data that support the findings of this study are
included within the article. Table 3 lists the refractive power
measurement results obtained by the laser-based method.
Here, δD labels the relative deviation of the measurement from
the expectation value predicted by the Kerkhof model (12).
Furthermore, the sensitivity coefficients—namely the local
partial derivatives of the objective function (14) with respect
to the observable parameter of interest—are stated explicitly.
In addition, the effective measurement uncertainty ueff as well
as the effective number of degrees of freedom νeff is provided
for each measuring point.
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Table 3. Measurement data obtained by the laser-based method w.r.t. a reference lens from Carl Zeiss AG with ⟨Dϵ=0◦⟩= 100.25km−1

as the object under test.

ϵ/ ◦ dc / mm Deff / km−1 DKerk / km−1 δD/ % ∂LD/ m−2 ∂µ0D/ m−2 ∂dcD/ m−2 ∂τ0D/ m−2 ueff / km−1 νeff / 1 k/ 1 uext / km−1 uextD
−1
eff / %

0 71.8 101 100.3 0.4 −0.005 −1.9 0.91 0.91 1.2 54 1.96 2.3 2.2
5 72.2 101 101.3 −0.3 −0.005 −1.9 0.91 0.91 1.2 54 1.96 2.3 2.2
10 74.4 103 104.5 −1.4 −0.005 −1.9 0.91 0.91 1.2 53 1.96 2.3 2.2
15 84.1 112 110.0 1.8 −0.005 −2.1 0.91 0.91 1.2 50 1.96 2.4 2.2
20 90.7 118 118.3 −0.3 −0.006 −2.2 0.91 0.91 1.3 48 1.96 2.5 2.1
25 104.2 130 130.1 0.2 −0.006 −2.5 0.91 0.91 1.4 44 1.96 2.7 2.1
30 121.5 146 146.5 −0.2 −0.007 −2.8 0.91 0.91 1.5 41 1.96 3.0 2.1
35 144.7 167 169.2 −1.1 −0.008 −3.2 0.91 0.91 1.7 38 1.96 3.4 2.0
40 179.7 199 201.0 −0.9 −0.010 −3.8 0.91 0.91 2.0 35 1.96 3.9 2.0
45 230.1 245 246.4 −0.4 −0.012 −4.6 0.91 0.91 2.4 33 1.96 4.7 1.9
50 303.8 313 312.9 −0.1 −0.015 −5.9 0.91 0.91 3.0 31 1.96 5.9 1.9
51 324 331.0 329.9 0.4 −0.016 −6.2 0.91 0.91 3.2 31 1.96 6.3 1.9
52 342.8 348 348.3 0.0 −0.017 −6.6 0.91 0.91 3.4 30 1.96 6.6 1.9
53 365.9 369 368.4 0.3 −0.018 −7.0 0.91 0.91 3.6 30 1.96 7.0 1.9
54 392.5 394 390.4 0.8 −0.019 −7.4 0.91 0.91 3.8 30 1.96 7.4 1.9
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