
Fully-Automated Packaging Structure Recognition of
Standardized Logistics Assets on Images

Zur Erlangung des akademischen Grades einer

DOKTORIN DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)

von der KIT-Fakultät für Maschinenbau des
Karlsruher Instituts für Technologie (KIT)

angenommene

DISSERTATION

von

M.Sc. Laura Dörr

Tag der mündlichen Prüfung: 02.08.2023

Hauptreferent: Prof. Dr.-Ing. Kai Furmans
Korreferentin: Prof. Dr.-Ing. Anne Meyer

Abstract

Within a logistics supply chain, a large variety of transported goods need to be handled, recognized
and checked at many different network points. Often, huge manual effort is required for recognizing or
verifying packet identity or packaging structure, for instance, to check the delivery for completeness.
We investigate the design and implementation of an algorithm for the complete automation of
packaging structure recognition. The alghorithm’s objective is to accurately localize one or multiple
transport units and recognize relevant characteristics, e.g. the total number and the arrangement of
its packaging units, based on a single image. We propose a multi-component pipeline to solve this
task of packaging structure recognition.

Our first implementation of this pipeline employs multiple deep learning models, more precisely
convolutional neural networks for instance segmentation, as well as computer vision methods and
heuristic components. We provide a custom data set of real-world logistics images, which we use
for the training and evaluation of our method. We show that the solution is capable of correctly
recognizing the packaging structure in approximately 85% of our test cases, and even more (93%)
when focusing on the most common package types.

For a selected component of our pipeline, we compare the potential of using leaner custom image
processing algorithms, instead of the initially implemented deep learning methods. As a result, we
conclude deep learning algorithms to be the more suitable method in our case, due to their high
generalization abilities and feature complexities.

Additionally, we formulate the problem of object localization based on custom feature points, as,
for instance, corner points of logistics transport units. The aim is to identify object locations more
accurately, as compared to when using bounding boxes, whilst constricting object shapes by geometric
apriori knowledge. We propose a specific deep learning model as a solution to this task for objects
representable by four corner points. The model, named TetraPackNet, is evaluated using general
metrics, and use-case-specific measurements. We show the solution’s applicability to our recognition
pipeline and argue its relevance for other applications, like license plate recognition.

i

Kurzzusammenfassung

Innerhalb einer logistischen Lieferkette müssen vielfältige Transportgüter an zahlreichen Knoten-
punkten bearbeitet, wiedererkannt und kontrolliert werden. Dabei ist oft ein großer manueller
Aufwand erforderlich, um die Paketidentität oder auch die Packstruktur zu erkennen oder zu veri-
fizieren. Solche Schritte sind notwendig, um beispielsweise eine Lieferung auf ihre Vollständigkeit
hin zu überprüfen. Wir untersuchen die Konzeption und Implementierung eines Verfahrens zur
vollständigen Automatisierung der Erkennung der Packstruktur logistischer Sendungen. Ziel dieses
Verfahrens ist es, basierend auf einem einzigen Farbbild, eine oder mehrere Transporteinheiten
akkurat zu lokalisieren und relevante Charakteristika, wie beispielsweise die Gesamtzahl oder die
Anordnung der enthaltenen Packstücke, zu erkennen. Wir stellen eine aus mehreren Komponenten
bestehende Bildverarbeitungs-Pipeline vor, die diese Aufgabe der Packstrukturerkennung lösen soll.

Unsere erste Implementierung des Verfahrens verwendet mehrere Deep Learning Modelle, genauer
gesagt Convolutional Neural Networks zur Instanzsegmentierung, sowie Bildverarbeitungsmethoden
und heuristische Komponenten. Wir verwenden einen eigenen Datensatz von Echtbildern aus einer
Logistik-Umgebung für Training und Evaluation unseres Verfahrens. Wir zeigen, dass unsere Lösung
in der Lage ist, die korrekte Packstruktur in etwa 85% der Testfälle unseres Datensatzes zu erkennen,
und sogar eine höhere Genauigkeit erzielt wird, wenn nur die meist vorkommenden Packstücktypen
betrachtet werden.

Für eine ausgewählte Bilderkennungs-Komponente unseres Algorithmus vergleichen wir das Poten-
zial der Verwendung weniger rechenintensiver, eigens designter Bildverarbeitungsmethoden mit den
zuvor implementierten Deep Learning Verfahren. Aus dieser Untersuchung schlussfolgern wir die
bessere Eignung der lernenden Verfahren, welche wir auf deren sehr gute Fähigkeit zur General-
isierung zurückführen.

Außerdem formulieren wir das Problem der Objekt-Lokalisierung in Bildern anhand selbst gewählter
Merkmalspunkte, wie beispielsweise Eckpunkte logistischer Transporteinheiten. Ziel hiervon ist es,
Objekte präziser zu lokalisieren, als dies insbesondere im Vergleich zur Verwendung herkömmlicher
umgebender Rechtecke möglich ist, während gleichzeitig die Objektform durch bekanntes Vorwissen
zur Objektgeometrie forciert wird. Wir stellen ein spezifisches Deep Learning Modell vor, welches
die beschriebene Aufgabe löst im Fall von Objekten, welche durch vier Eckpunkte beschrieben
werden können. Das dabei entwickelte Modell mit Namen TetraPackNet wird evaluiert mittels
allgemeiner und anwendungsbezogener Metriken. Wir belegen die Anwendbarkeit der Lösung im
Falle unserer Bilderkennungs-Pipeline und argumentieren die Relevanz für andere Anwendungsfälle,
wie beispielweise Kennzeichenerkennung.

iii

Contents

Abstract . i

Kurzzusammenfassung . iii

1 Introduction . 1
1.1 Motivation and Problem Description . 1
1.2 Research Questions and Objectives . 1
1.3 Scope and Organization of the Thesis . 3

2 Packaging Structure Recognition and Cognitive Systems in Logistics 5
2.1 Related Work and Classification of our Work . 5

2.1.1 Digitalization of Logistics . 5
2.1.2 Computer Vision and Deep Learning in Logistics 6
2.1.3 Goods Receipt Automation and Logistics Unit Recognition 7

2.2 Introducing the Use Case of Packaging Structure Recognition 7
2.2.1 Motivation and Applications for PSR . 8
2.2.2 The Idea of Automated Packaging Structure Recognition 9
2.2.3 Terms and Definitions . 10
2.2.4 Prerequisites and Limitations . 11

2.3 Summary . 13

3 Basics of Computer Vision, Machine Learning and Artificial Neural Networks 15
3.1 Computer Vision and Image Processing . 15
3.2 Machine Learning and Artificial Neural Networks 18

3.2.1 A Short History of Machine Learning and Artificial Intelligence 18
3.2.2 Deep Learning . 19

3.3 Object Detection and Instance Segmentation . 26
3.3.1 CNN Architectures for Image Analysis 27
3.3.2 Object Detection . 30
3.3.3 Instance Segmentation . 34

3.4 Summary . 35

4 A Method for Automated Packaging Structure Recognition in Single RGB
Images . 37
4.1 Research Question Elaboration . 37
4.2 Related Work . 38

v

Contents

4.3 Multi-Step Image Processing Pipeline . 38
4.3.1 Inter-Unit Segmentation . 39
4.3.2 Intra-Unit Segmentation . 40
4.3.3 Information Consolidation . 41

4.4 Dataset . 45
4.4.1 Image Acquisition Details . 45
4.4.2 Packaging Components . 45
4.4.3 Annotations . 46
4.4.4 Dataset Splits and Statistics . 47

4.5 Evaluation . 48
4.5.1 Segmentation Model Training and Evaluation 48
4.5.2 Pipeline Evaluation . 54

4.6 Result Discussion and Assessment . 62

5 Comparing Deep Learning and Computer Vision Approaches - A Case Study 63
5.1 Research Question Elaboration . 63
5.2 Related Work . 64
5.3 Computer-Vision-Based Transport Unit Side Detection 65
5.4 Results: Comparing Computer Vision and Deep Learning Approaches 71
5.5 Discussion of Experiment Results and Implications 72

6 TetraPackNet: Specialized Deep Learning Approaches for Packaging Struc-
ture Recognition . 75
6.1 Research Question Elaboration . 75
6.2 Related Work . 76
6.3 Object Representations . 78

6.3.1 Existing Object Instance Representations 78
6.3.2 Feature-Point Based Object Representation 79

6.4 TetraPackNet . 79
6.4.1 Network Design . 80
6.4.2 Assembling Corner Detections to Objects 85

6.5 Evaluation . 85
6.5.1 Transport Unit Side Detection . 85
6.5.2 Experiment: Embedding-Free Detection to Object Grouping Method . . . 92

6.6 Result Discussion and Assessment . 96

7 Conclusion . 97
7.1 Summary . 97
7.2 Outlook and Future Work . 99

List of Figures . 113

List of Tables . 117

vi

Contents

A Appendix . 121
A.1 Citations of Our Prior Publications . 121

vii

1 Introduction

1.1 Motivation and Problem Description

In logistics supply chains, numerous materials, parts and products are frequently handled by different
stakeholders at different network points. Each task of transportation or asset forwarding includes
noteworthy amounts of effort and expenses: Before the transport can begin, a corresponding transport
order is issued, the goods need to be packaged, assembled to transportation units and marked with
transport labels. During the actual transportation process, the palletized transport unit is handled
several times in the outgoing goods department, during loading and unloading, and once again in the
destination’s goods receipt. Once the transport unit reaches its destination, it has to be identified and
checked for completeness. Additionally, one or multiple turnovers at different transfer sites, where
the unit needs to be handled and identified once more, are possible. During these processes, each
agent may handle a large number of palletized units of similar appearance simultaneously. Fig. 1.1
shows an example of transport-ready palletized units consisting of standardized packages.

Our work contributes an essential step towards automation of the recognition and the checking
of transported goods. More precisely, we introduce the task of fully-automated packaging structure
recognition and propose a solution thereof. The objective of this task is the recognition of standardized
transport units and their packaging structure. We introduce an image recognition pipeline to solve
this task of recognizing the packaging structure of uniformly packed 1, standardized transport units
on 2D images. As the process is aimed to be accessible, agile and performant at the same time, only a
single RGB input image, possibly taken by a smartphone-integrated camera, is required. The pipeline
is trained and evaluated using our own, manually acquired and labeled, use-case-specific dataset.
We analyze different algorithmic choices for parts of the pipeline and discuss the results and their
implications for the whole pipeline. Further, we design specialized deep learning models exploiting
geometric characteristics given in the case of packaging structure recognition. Prospectively, these
models can be applied and adapted to other use cases.

1.2 Research Questions and Objectives

In this section, we present the central research questions guiding our work to clarify the objectives
of our work. We formulate three research questions as follows:

(RQ1) How can information about the constitution, assembly and condition of a packed transport
unit be inferred from a 2D image?

1 By uniformly packed, we denote transport units consisting of one specific package unit type only, and whose package unit
layers have the same number of packages each. For more details, see Section 2.2.4

1

1 Introduction

Figure 1.1: Example of stacked transport-ready palletized transport units.

(RQ2) Which algorithms and techniques are well-suited for the implementation of a packaging
structure recognition algorithm?

(RQ3) How can available apriori knowledge about geometrical restrictions of transported materials
be utilized to design specific detection algorithms, yielding improved results in packaging
structure recognition?

The first research question (RQ1) concerns the construction of a solution approach to the task of
packaging structure recognition. Moreover, in tackling this question, we design an image processing
pipeline, which extracts packaging structure information from suitable 2D images. Using our own
dataset, we evaluate our solution and demonstrate its applicability in controlled environments.

The second research question (RQ2) focuses on the algorithmic choices for our image processing
pipeline. Our first implementation makes use of image recognition methods involving convolutional
neural networks (CNNs), due to their use-case-agnostic character. As deep learning models require
large amounts of annotated training data, we explore the possibility of using other, non-learning-based
algorithms for the implementation of our pipeline. Due to the high complexity of our multi-step
processing pipeline and the involved image recognition sub-steps, we focus on a single case study to
reach general implications regarding this question.

2

1.3 Scope and Organization of the Thesis

Our last research question (RQ3) explores the design and implementation of specific CNN-based
image recognition algorithms for the use case of packaging structure recognition. Traditional ap-
proaches rely on generic object representations, like bounding boxes and arbitrary pixel masks. When
focusing on logistics transport assets, valuable apriori knowledge regarding object geometry is given.
We aim to incorporate this knowledge into our models to achieve higher accuracy in the recognition
and localization of relevant objects, i.e. transport and packaging units.

1.3 Scope and Organization of the Thesis

The rest of this thesis is organized as follows: Chapter 2 gives a more detailed introduction to
the use case of packaging structure recognition and its relevance, as well as the prerequisites and
limitations, which are necessary to ensure the task’s feasibility. Chapter 3 gives an overview of the
required, theoretical and technical, basics and backgrounds. Chapters 4, 5, and 6 contain the core
contributions of our work: In Chapter 4, we introduce our first solution to the task of packaging
structure recognition, as well as a relevant test dataset of real-world images, and evaluate our method
on the data at hand. Chapter 5 gives further insights into the choice of algorithms for the recognition
pipeline: We first present an alternative implementation for essential parts based on traditional
computer vision approaches, rather than deep learning. Consequently, we compare the pipeline’s
performances for both algorithmic choices and infer the superiority of deep learning approaches for
our solution approach to the use-case at hand. In Chapter 6, we propose highly specialized deep
learning models, according to the given geometric apriori knowledge, and incorporate these into our
recognition pipeline. In the context of packaging structure recognition, we compare the performance
of these specific recognition models to generic models. Chapter 7 concludes our work by summarizing
the contributions and findings, and giving guidance for further research opportunities.

We previously published parts of the results presented in this work. Some text passages, figures and
equations throughout this work are citations or adoptions of our previous publications. We provide
a detailed listing of citations of our previous work in Chapter A.1.

3

2 Packaging Structure Recognition and
Cognitive Systems in Logistics

In this chapter, we thoroughly introduce the use case our work focuses on: packaging structure
recognition (PSR). Further, we aim to provide an overview of recent developments of innovative
logistics systems related to packaging structure recognition, and point out similarities and differences
of our work, if possible. Part of this chapter was adopted from our previous publication Dörr et al.
2020a.

2.1 Related Work and Classification of our Work

We discuss existing research related to our use case and our solution to packaging structure recogni-
tion. We start on a very general level, considering publications concerning digitalization processes
in logistics. Subsequently, we narrow our scope to technically related logistics solutions. Lastly, we
focus on related work aiming to solve tasks and problems closely related to ours, i.e. concerned with
the visual recognition of logistics assets.

2.1.1 Digitalization of Logistics

Digitalization and process automation triggered by recent advances in technology are of increasing
relevance, also in the sector of logistics and supply chain management, as recent publications show:
Wei et al. (2019) provide comprehensive insights into the ongoing digitalization of the logistics
sector. The official positioning paper of the German Logistics Association (BVL) (Heistermann
et al. 2017) argues that this process is important and promising, even though it requires courage
and some rethinking. Sustainable digitalization of logistics networks often necessitates a move from
owning data, solutions and knowledge towards sharing such resources. The chances of the ongoing
digitalization process are manifold: Operative procedures can be simplified and accelerated by the use
of technical devices, machines or autonomous robotic systems. The greater and quicker availability
of data, like tracking and tracing information, allows for highly optimized workflows. At the same
time, customer satisfaction can be improved by providing reliable data and predictions. Further,
more reliable demand forecasts enable more accurate production and storage management. This
non-exhaustive list of examples indicates that digitalization in logistics is very versatile regarding
both applications and underlying techniques.

Starting points for digital transformation processes can be found in in-house logistics as well as in
cross-company logistics and supply chain management. Likewise, all logistics sub-areas, starting
from production, commissioning, shipment, storage and inventory management, to order and sales

5

2 Packaging Structure Recognition and Cognitive Systems in Logistics

management, are affected by the transformation. Over the past years and decades, the commissioning
process, for instance, has evolved from a purely manual, paper-based process to a highly automated
task performed by robots or unmanned storage and transport systems on auto-pilot. Moreover, manual
data transcripts and records have been replaced by application interfaces and connected information
systems and platforms.

Herold et al. (2021) give an overview of the beginning and the course of the digitalization process
in logistics and supply chain management from a business perspective. Remarkable for logistics
digitalization processes is also the very important and enabling role assignable to data, which is
further discussed and explained by Daxböck et al. (2019).

The technological foundations of modern applications range from barcode recognition and data
digitization by various sensors, over the optimization and data analytics to modern technologies like
blockchain, deep learning and virtual reality. The relevant enabling technology in the case of our work
is convolutional neural networks for image analysis. We discuss the role of computer-vision-related
methods in logistics innovations in the next section.

2.1.2 Computer Vision and Deep Learning in Logistics

Our contribution utilizes means of image processing and artificial intelligence. Borstell (2018) gives
an overview of how these methods have recently been used in various logistics applications. They
propose a list of 11 categories of logistics applications of image processing. Of these categories, our
use case of packaging structure recognition can be assigned to the one of "traceability and trackabil-
ity", concerning the "identification and localization of logistics objects". While many applications
of this category make use of 1-dimensional or 2-dimensional codes or optical character recognition
(OCR) for object identification, our approach is rather concerned with image interpretation and
analysis. The reason for this is that the goal of packaging structure recognition is not the pure identi-
fication of logistics objects, but rather the recognition and counting of transported units. Therefore,
the application is also closely related to a second one of the 11 categories, namely "inspection and
quality control of goods".

In many logistics applications of computer vision, but also other non-image-based systems, artificial
intelligence or machine learning are utilized. Kerner et al. (2020) give an introduction to the topic
of artificial intelligence, machine learning, and deep learning in the context of logistics. Woschank
et al. (2020) conduct a comprehensive literature review regarding the topics of artificial intelligence,
machine learning, and deep learning in smart logistics. Aiming to create a conceptual framework,
they identify seven clusters for the categorization of applications of artificial intelligence in smart
logistics:

1. Strategic and tactical process optimization

2. Cyber-physical systems in logistics

3. Predictive maintenance

4. Hybrid decision support systems

5. Production planning and control systems

6

2.2 Introducing the Use Case of Packaging Structure Recognition

6. Improvement of operational processes in logistics

7. Intelligent transport logistics

Our application of automated packaging structure recognition can be associated with cluster 6,
"Improvement of operational processes in logistics", as it aims to simplify, for instance, the goods
receipt process. The authors conclude their work by arguing that most relevant technologies are
still in development and not at all in a productive-ready state. The same applies to our work as we
provide foundations for the development of an artificial-intelligence-based system for application in
the digitalized logistics industry.

2.1.3 Goods Receipt Automation and Logistics Unit Recognition

The goal of packaging structure recognition is to recognize and analyze logistics transport units
within 2D images, in order to extract relevant information for logistics processes, like goods receipt
and booking. The idea of automating parcel recognition is not new to the logistics sector, as various
companies working on related applications show. A machine vision system by Zetes (2022) offers an
automated reading of barcodes and labels on logistics units and archiving of transport unit images.
Vitronic (2022) offer very similar machine vision systems for the automation of goods receipt and
shipping. Package volumes can also be measured by additional engagement of laser scanners.
Another camera-based system for automated barcode reading, sorting and dimensioning is offered
by Cognex (2022). Logivations (2022) offer a vision system that additionally counts and measures
objects within logistics units and can be trained by the user to recognize custom objects based on their
appearance. None of these systems aims to capture the total number of packages in an assembled
transport unit, as opposed to our work.

The number of scientific publications regarding logistics automation use cases is remarkably low.
This may be due to the fact, that such specialized solutions are mainly developed in commercial
settings, rather than in research environments. To our knowledge, no other scientific publication
focusing on packaging structure recognition exists. Fraunhofer IML have developed a system for
image-based automated counting of carriers (Hinxlage and Möller 2018), but do not provide further
information on the technologies involved.

2.2 Introducing the Use Case of Packaging Structure
Recognition

Within a logistics supply chain, a large variety of transported goods need to be handled and checked at
many different network points. Often, huge manual effort is involved in the recognition or verification
of packet identity or packaging structure, for instance, to check deliveries for completeness. We
propose a reduction of such manual efforts by automated packaging structure recognition for logistics
transport units on conventional 2D RGB images.

7

2 Packaging Structure Recognition and Cognitive Systems in Logistics

Figure 2.1: Illustration of the packaging structure recognition use case.

2.2.1 Motivation and Applications for PSR

In the following, we aim to motivate and demonstrate the need for and benefits of automated packaging
structure recognition. Therefore, we exemplary name a few relevant logistics use cases to demonstrate
the re-usability of our method:

1. Automated incoming goods transaction

2. Automated outgoing goods control

3. Automated empty package counting

We focus on the first of these use cases as our algorithm was primarily developed for such a setting.
The other use cases are only briefly sketched to argue our method’s relevance. The above list is not
exhaustive and automated packaging structure recognition may be relevant for other use cases, inside
and outside the domain of logistics (e.g. visual analysis of buildings from aerial images, or other
uniformly organized cubic compositions).

Automated incoming goods transaction: Incoming goods processes are an essential part of
every logistics supply chain, which are, for instance, described by Furmans and Kilger (2019). On
receipt of logistics goods, the execution of corresponding booking operations is mandatory. In
Germany, it is enforced by law (German Commercial Code (HGB) §377) that incoming goods
have to be, at least externally, checked for completeness and damages immediately after reception.
Commonly, the goods booking task is preceded by manual inspection of the transport units received:
Transport labels are read, either manually or using a scanning device, packages are counted and the
unit is checked for damages and tampering. In some cases, packages are opened for a more thorough
examination. The steps included in incoming goods checks can vary. Nonetheless, package number

8

2.2 Introducing the Use Case of Packaging Structure Recognition

verification is necessary in all applicable cases. While systems for the automated image-based
detection and reading of visible transport labels and bar codes on transport units exist, the whole
process cannot be covered by such systems: In most cases, not all packages and transport labels can
be captured in a single image as they may be attached to different sides of the transport unit or may
be occluded. Additionally, often imaging requirements can be high for such algorithms to be able to
read barcodes and text information on transport labels. Images taken from up close may be necessary
and sources of motion blur need to be eliminated. If packages are arranged in a 3D pattern, it is
not possible to picture all packages at once and simple counting does not suffice to find the total
number of packaging units. Our method tackles this problem by recognizing two of the transport
unit’s distinct sides and counting packages individually for each side. As units are not only counted;
but also their arrangement is captured, the total number of packages can be calculated.

Automated outgoing goods control: Similar to incoming goods control, outgoing goods need to
be checked analogously before dispatching. On the one hand, individual transport units are checked
for completeness, integrity and packaging instruction compliance. On the other hand, it has to be
ensured that the transport units take the right track and are loaded onto the designated means of
transport. This process can be supported by our method for packaging structure recognition: By
automatizing the counting of packaging units, parts of the manual efforts involved can be eliminated,
and additional sanity checks can be incorporated easily.

Automated empty package counting: As standardized packaging units, like "Kleinladungsträger"
(KLTs) (compare Section 2.2.3), may be part of a deposit system, empty transport units are often still
valuable resources, which need to be organized and repurposed: Once emptied, transport units are
often cleaned and, subsequently, relocated for further use or temporarily stored. Hereby, they can be
assembled to transport units or handled individually. Our method could be adapted and employed to
enable automatized logging, booking or stocktaking of KLT empties.

2.2.2 The Idea of Automated Packaging Structure Recognition

We define the basic task of packaging structure recognition as the challenge of inferring a logistics
transport unit’s packaging structure from a single image of that unit. Here, the packaging structure
consists of the following information:

• Type and number of packaging units

• Arrangement of packaging units

• Type of base pallet

In our work, the types of packaging units and base pallets that are distinguishable are limited to
a small set relevant to the context of our test data. In many logistics use cases, the limitation to
known packaging units and components does not compromise the applicability of our algorithm as
the vast majority of transport units comply with explicit packaging standards and unknown packaging
components are not to be expected. Multiple extensions and refinements to our method are possible

9

2 Packaging Structure Recognition and Cognitive Systems in Logistics

and intended, but not in the scope of this work. Some of these extensions are necessary to fully
cover the use cases described in the previous subsection. For example, the additional detection of
packaging components such as lids, security straps or transparent foils, could allow for automated
checks of packaging instruction compliance.

Fig. 2.1 shows an example of the application of packaging structure recognition: In the image, one
transport unit is fully visible. This unit is analyzed by our method and the results are illustrated by
red and yellow drawings (red: transport unit sides, yellow: packaging unit arrangement).

In this work, we use a single RGB image as input to our algorithm. The reasons for which we opted
for such a lightweight input are manifold: On the one hand, we aim to design an algorithm, which is
as readily applicable as possible. Single images can be easily acquired using smartphones or similar
handheld devices, but can also be provided by fixated industrial cameras or comparable equipment.
Further, as we target the reduction of manual effort in incoming goods checks, complex image or video
acquisition processes are not appropriate. On the other hand, the algorithmic complexity required to
process multiple images, or even videos, is significantly higher. The same applies to the algorithm’s
computational requirements. In our opinion, the first approaches to the design of a multi-step image
processing pipeline should not be unnecessarily complex. Still, with small image extraction efforts
in an adequate pre-processing step, our method can be applied to video data: More precisely, a
selector model could be used to extract single frames from a video, to which our packaging structure
recognition algorithm is applied subsequently. Within this work, we exclusively use input images,
which were manually acquired using conventional smartphone cameras. In future continuations of
our work, algorithmic variations using more complex input image data may be explored.

The input image may depict one or multiple fully visible transport units. Only fully visible units
are considered in our algorithm; partially visible or occluded units may be present in the image’s
background as this is often nearly unavoidable in logistics environments. Relevant transport units are
assumed to be uniformly packed, which is common in many industrial sectors, and is also the case
in the environment in which our dataset was acquired. Our assumptions regarding the packaging of
transport units are more thoroughly explained in the following subsection. Given a single image as
input, our algorithm produces information about the fully visible units and their packaging structure:
Fully visible transport units are located, and, for each of these units, the type, number and arrangement
of packaging units are extracted.

2.2.3 Terms and Definitions

For clarity, we introduce our understanding of a few important terms, which are frequently used
throughout our work.

Package Unit: We use the term package unit to refer to a single container holding assets for trans-
port or storage. This can, for instance, be a cardboard box, a wooden crate, or a standardized plastic
container (like so-called "Kleinladungsträger" (KLT) units, which are relevant in our logistics
setting). For our work, we focus on package units of regular cubic shape.

10

2.2 Introducing the Use Case of Packaging Structure Recognition

Base Pallet: A base pallet is the fundamental component of each logistics transport unit. Often
made from wood or plastic, the pallet enables forklifts to efficiently and safely handle a transport unit.
Standardized base pallets like the wooden Euro pallet are frequently used along logistics supply
chains.

Transport Unit: A logistics transport unit is a completely assembled and packed set of logistics
assets, ready for transport. In our case, we assume a 1-to-1 correspondence between transport units
and base pallets. Moreover, each transport unit consists of several package units, which are placed
on a logistics base pallet, and of adequate packaging, which allows for unified means of transport.
Often, a lid is put on top of the packaging units, and straps or foil are used to secure the transport
unit. Additionally, transport labels, allowing for identification, or danger warnings may be applied
to a transport unit. All such components, which are safely attached for transport, are included in
our definition of a logistics transport unit. Note that transport units may be handled and stored
individually, or may be stacked on top of each other.

2.2.4 Prerequisites and Limitations

The proposed prototype method was trained to work in a well-defined logistics environment. All tests
and evaluations were performed within the same setting. Thereby, restricted means that all types of
transport units and components, like, for instance, packages and base pallets, are known beforehand
and special requirements regarding the input image exist. The reasons for these restrictions are
twofold: On the organizational side, large manual effort is required in the acquisition of realistic,
annotated training and test data in varying logistics environments. On the technical side, difficulties
arise due to the application of learning methods, which can only generalize to what they have seen
in training. Image instance segmentation learning models recognize and distinguish only between
those classes previously seen in training data. Evidently, there is research on few-shot or zero-shot
learning working towards training algorithms that aim to distinguish instances of new classes, after
having seen only very few or even no examples of that class in training (Wei et al. 2019). Still, in
the scope of this work, we stick to well-proven deep learning approaches for object detection, which
require all the object classes to be known beforehand. We made this choice, as the accuracy, which
is generally achievable by such methods, is still higher compared to more recent few-shot-learning
approaches. All prerequisites and limitations assumed valid are summarized in the following.

Material Restrictions: In logistics supply chains, the package types used can vary largely, depend-
ing on the industry sector, the transported goods and the companies involved. We limit our models
for package recognition to a well-defined subset of package types, in accordance with our data set.
The selected materials are particularly relevant in the automotive industry. The package types present
in these images are standardized transport packages (KLT) (Verband der Automobilindustrie (VDA)
2013) of different sizes and colors (see Fig. 2.2 (a)) and so-called tray packages (see Fig. 2.2 (b)).
Similar to package types, also the base pallet types present in the data have to be known beforehand.
Our data contains two different types of base pallets: wooden Euro pallets (The European Pallet
Association (EPAL) 2022) and reusable pallets made of plastic. Both types are of the same size
(1200 x 800 mm).

11

2 Packaging Structure Recognition and Cognitive Systems in Logistics

(a) (b)

Figure 2.2: Examples of different transport unit types. (a) KLT units, (b) tray units.

Packaging Restrictions: We focus on uniformly packed transport units. This means, each
transport unit may be composed of only one single package type and packages are ordered regularly
in full layers. There are no gaps between neighboring package units and each level of package units
has the same number of packages. In this case, the complete packaging structure can be inferred by
only observing one image of the transport unit, if taken from the right perspective. For non-uniformly
packed transport units, the task is in general not solvable as the information contained in one image
is not sufficient to infer the unit’s packaging structure.

Imaging Restrictions: In order for one or more transport units to be correctly recognized in an
image, the image needs to meet the following criteria:

• Orientation: Transport units need to be upright in the image. Real-world vertical lines should
be roughly parallel to the vertical image boundaries.

• Perspective (horizontal): Transport units are not shown in a frontal perspective, but in such
a way that two sides are clearly visible and completely covered by the image.

• Perspective (vertical): The imaging device should be roughly on a level with relevant transport
units, i.e. neither a significant top-down nor bottom-up view on the transport unit should be
chosen. Moderate vertical view angles, as visible in part (b) of Fig. 2.2, are still acceptable.

12

2.3 Summary

This restriction aims to exclude such imagery in which the counting of packaging units is
hindered notably.

• No occlusions: Relevant transport units are completely visible within the image. No parts of
the unit are occluded by other objects or lie outside the image boundaries.

Note that, if both the orientation and perspective criteria are met, a left-most and a right-most
transport unit side can be clearly identified for each transport unit in an image. Please refer to Fig.
2.1 for examples compliant with the above restrictions.

2.3 Summary

In this chapter, we introduced the problem of packaging structure recognition and corresponding use
cases. To begin with, we also summarized the ongoing digitalization processes in logistics and briefly
discussed conceptually and technically related work. We highlighted the possible benefits of fully-
automated packaging structure recognition, and those of a prospective automated incoming goods
check. The problem formulation for the scope of this work was stated, and applicable prerequisites
and restrictions were defined. As the framework for our research is now set, we will move on to
elaborate on the first of our previously formulated research questions (RQ1).

13

3 Basics of Computer Vision, Machine
Learning and Artificial Neural Networks

3.1 Computer Vision and Image Processing

In the early 1920s, images were first digitized, transferred over large distances and reproduced. One
of the early applications of digital images was the newspaper industry. Over the years to follow,
digital image representation became more complex (increasing resolutions, increase of representable
gray and color values) and more frequently and broadly used.

Since the 1970s, both computer vision and image processing have become vast research fields.
According to Szeliski (2022), the field of computer vision can be distinguished from image processing
by the "desire to recover the three-dimensional structure of the world from images and to use this
as a stepping stone towards full scene understanding". Image processing, on the other hand, is not
concerned with interpreting or recovering knowledge from digital images, but focuses on the artificial
enhancement, manipulation or generation of such.

This section discusses the image processing and image analysis techniques relevant to our work.
For a broad introduction into the history, applications and research on the topic, the reader may, for
instance, refer to Vernon (1991), Burger and Burge (2016), or Szeliski (2022).

Convolution

Convolutions are a multi-purpose tool in classic image processing. Technically, convolution means
applying a filter of fixed window size (e.g. 3 × 3 or 5 × 5) to an image by computing a weighted
sum of spatially neighboring pixels at specific pixel locations. More precisely, given a filter kernel
𝐾 ∈ R𝑚×𝑛 and an image x ∈ R𝑤×ℎ, the convolution output (𝐾 ∗ x) ∈ R𝑤×ℎ is computed as:

(𝐾 ∗ x) (𝑖, 𝑗) =
⌈ 𝑚

2 ⌉∑︁
Δ𝑖=−⌊ 𝑚−1

2 ⌋

⌈ 𝑛
2 ⌉∑︁

Δ 𝑗=−⌊ 𝑛−1
2 ⌋

(
𝐾Δ𝑖,Δ 𝑗 · x𝑖+Δ𝑖, 𝑗+Δ 𝑗

)
(3.1)

At image boundaries, the appliance of the convolution operation is not trivial. There are three
different ways to handle image boundaries:

• Full convolution: The convolution kernel is applied in every pixel location where at least one
cell of the kernel overlaps with an image pixel (possibly resulting in increased output image
dimension).

15

3 Basics of Computer Vision, Machine Learning and Artificial Neural Networks

• Same convolution: The convolution kernel is applied in every pixel where the kernel’s center
cell overlaps with an image pixel (resulting in identical output image dimension).

• Valid convolution: The convolution kernel is only applied in such pixels where the full kernel
overlaps with image pixels (resulting in reduced output image dimension).

In case of full and same convolution, the image is expanded by adding artificial pixels outside the
image boundaries, to enable kernel appliance near image boundaries. Two different strategies for
choosing artificial pixel values are common:

• Reflecting boundaries, i.e. x−𝑖, 𝑗 = x𝑖, 𝑗 , x𝑖,− 𝑗 = x𝑖, 𝑗 , x𝑤+𝑖, 𝑗 = x𝑤−𝑖, 𝑗 , and x𝑖,ℎ+ 𝑗 = x𝑖,ℎ− 𝑗

• Constant boundaries, i.e. x−𝑖, 𝑗 = x𝑖,− 𝑗 = x𝑤+𝑖, 𝑗 = x𝑖,ℎ+ 𝑗 = 𝑐 for a fixed choice 𝑐 ∈ R, e.g.
𝑐 = 0.

The above boundary condition formulations hold for all 𝑖, 𝑗 ∈ N, 𝑖 ≤ ⌈𝑚2 ⌉, 𝑗 ≤ ⌈ 𝑛2 ⌉.

Depending on the kernel’s values, various operations can be performed using convolutions. Fig.
3.1 illustrates examples of two significantly different processing steps using convolution: In the first
example, a 3×3 smoothing kernel, 𝐾1, with uniform entries and unit weight sum equal is applied (see
Eq. 3.2). In the second example, a simple vertical line detection is performed by using a zero-sum
kernel, 𝐾2, where each column has uniform entries, as shown in Eq. 3.3.

𝐾1 =

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

 (3.2)

𝐾2 =

−1 2 −1
−1 2 −1
−1 2 −1

 (3.3)

Hough Transform

The Hough Transform is a patented method from 1962 for the detection of regular structures in
binary images (Hough 1962). Its original version focusing on the detection of lines, or line segments,
is relevant in our case. In answering our second research question (see Chapter 5), we make use of
the Hough Transform to design an image analysis algorithm to detect transport unit sides - without
the application of learning-based methods like artificial neural networks.

Application of the Hough Transform requires a binary input image, i.e. each pixel is either a
foreground (pixel value one) or a background (pixel value zero) pixel. The idea for finding line
structures in such an input image is to iterate over all foreground pixels within the image, and have
each pixel vote for all possible lines passing through that pixel. Corresponding data is obtained by
drawing an accumulator map in parameter space.

16

3.1 Computer Vision and Image Processing

Figure 3.1: Examples for image processing operations by convolution. Top: Smoothing kernel. Bottom: Vertical line
detection. Original images on the left, processed images on the right.

Every line through two points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in the original image’s plane can be parameterized
by two values 𝑘, 𝑑 ∈ R with

𝑦 = 𝑘 · 𝑥 + 𝑑 (3.4)

where 𝑘 is the line’s slope and 𝑑 its y-coordinate at 𝑥 = 0. For a single point, (𝑥1, 𝑦1), in image space
all lines running through that point satisfy

𝑦1 = 𝑘𝑖 · 𝑥1 + 𝑑𝑖 (3.5)

This means these lines are described by parameter pairs

𝐿𝑖 = {(𝑘𝑖 , 𝑑𝑖) |𝑑𝑖 = 𝑦1 − 𝑥1 · 𝑘𝑖} (3.6)

with 𝑘𝑖 ∈ R. Once again, the geometrical shape of set 𝐿𝑖 is a line within the 2-dimensional space
spanned by parameters 𝑘, 𝑑 ∈ R.

17

3 Basics of Computer Vision, Machine Learning and Artificial Neural Networks

If (𝑥1, 𝑦1) is a foreground pixel in the image plane, this pixel contributes to any of the lines parame-
terized by (𝑘𝑖 , 𝑑𝑖) ∈ 𝐿𝑖 . Thus, that point (𝑥1, 𝑦1) votes for any of these lines by increasing the values
for any of the parameter pairs in 𝐿𝑖 by drawing a corresponding line on the accumulator map. This
process is repeated for every foreground pixel in the input image. Afterward, line candidates within
the original image can be easily identified by finding local maxima in the accumulator map.

As vertical lines cannot be parameterized in form of equation 3.4, a line representation in Hessian
normal form is used in practice. This means, a line is parameterized by an angle 𝜃 ∈ [0, 𝜋) and a
distance 𝑟 > 0 as follows:

cos(𝜃) · 𝑥 + sin(𝜃) · 𝑦 = 𝑟 (3.7)

A more thorough discussion of the Hough transform can be found in Burger and Burge (2016).

3.2 Machine Learning and Artificial Neural Networks

This section concerns a short introduction to convolutional neural networks (CNNs), the state-of-
the-art technology which we apply to our sub-problem regarding instance segmentation in images.
First, we give a short historical overview of the superordinate research field of machine learning and
artificial intelligence. Subsequently, the technical fundamentals of artificial neural networks, and
specifically convolutional neural networks, are explained.

3.2.1 A Short History of Machine Learning and Artificial Intelligence

The term machine learning was first introduced and popularized by Arthur Samuel in 1952. Samuel
(1959) worked on a computer program for playing checkers, incorporating a scoring function for
arbitrary game positions and mechanisms for exploiting knowledge from previously seen positions.
In his paper, Samuel assigns vast potential to the emerging technique of machine learning by stating:
"Programming computers to learn from experience should eventually eliminate the need for much
of this detailed programming effort." Even though not properly documented, Samuel is also said to
have defined machine learning as: "A field of study that gives computers the ability to learn without
being explicitly programmed."

Nowadays, machine learning is mostly seen as a sub-domain of artificial intelligence (AI), on the same
level as, for instance, logic-based expert systems. Even though the two buzzwords are sometimes
used interchangeably, a definition of artificial intelligence is more abstract and machine learning
could rather be seen as one of the most powerful tools to achieve machine intelligence.

Another popular definition of machine learning is given by Mitchell (1997): "A computer program
is said to learn from experience (E) with respect to some task (T) and some performance measure
(P), if its performance on T, as measured by P, improves with experience E then the program is called
a machine learning program."

At about the same time as Samuel’s success in teaching computers to play checkers, Rosenblatt
(1958) introduced a model called the "perceptron" which was inspired by biological intelligent

18

3.2 Machine Learning and Artificial Neural Networks

systems. Thereby, the basic building block of artificial neural networks was designed. Overly high
expectations were raised and exaggerated predictions regarding machine intelligence were made
based on the perceptron model and other advancements of that era. This excitement was expunged
shortly after when Minsky and Papert (1969) presented that the perceptron was not able to solve the
not linearly separable XOR problem, and government reports by the Automatic Language Processing
Advisory Committee (ALPAC) (ALPAC 1966) and by Lighthill (1972) offered dark perspectives
on the research field of artificial intelligence. During the following years, a period of tremendously
reduced funding and interest in AI research, which came to be known as the first "AI winter" followed.

In the 1980s, the research attention on artificial neural networks, i.e. multi-layer perceptrons, started
increasing once again. This is due to significant advances made regarding the training of such
complex models by the introduction of practical backpropagation by Rumelhart et al. (1986). Still,
the computational resources available at that time did not yet allow for convenient and efficient
training of multi-layer neural networks, given the then-available training algorithms and data. Yet
again, research on artificial neural networks suffered another drawback and was widely disregarded.
Still, LeCun et al. (1989) succeeded in training a convolutional neural network for the recognition of
hand-written digits, using backpropagation.

In the 1990s, algorithms nowadays sometimes referred to as ’classical machine learning’ became
popular. More precisely, decision trees (Quinlan 1986) and random forests (e.g. summarized
by Breiman (2001)), support vector machines (Cortes and Vapnik 1995), and, linear and non-linear,
regression models, to name a few prominent examples, were successfully applied to various regression
and classification problems.

During the early years of the 21st century, things again took a different turn. On the one hand,
significant technical advancements were made, and the use of graphics processing units (GPUs)
for the efficient training of complex models became possible. Simultaneously, progress regarding
model design, training algorithms and training strategies was made, and large datasets, for instance
regarding the task of image classification, were acquired. All these factors enabled a breakthrough
of convolutional neural networks with the success of AlexNet by Krizhevsky et al. (2012) in the
"ImageNet Large-Scale Visual Recognition Challenge" (ILSVRC) (Russakovsky et al. 2015), a well-
known annual competition concerning the tasks of image classification and object detection. In the
years to follow, research regarding artificial neural networks flourished, and remarkable results were
achieved for various tasks, especially, but not exclusively, within the field of computer vision and
image analysis. Until today, artificial neural networks are state-of-the-art technology for problems
like object detection and instance segmentation, which are highly relevant to our work.

For more thorough elaborations on the history of AI, please refer, for instance, to LeCun et al. (2015),
Toosi et al. (2021), or Fradkov (2020).

3.2.2 Deep Learning

Artificial Neural Networks

The artificial neuron, the basic building block of every artificial neural network (ANN), is a
function that takes an arbitrary number of inputs and produces a single scalar output. This function

19

3 Basics of Computer Vision, Machine Learning and Artificial Neural Networks

𝑓 : R𝑛 → R is computed as a weighted sum of all input components and subsequent application of
a (usually non-linear) so-called activation function 𝜎 : R→ R:

𝑓 (x) = 𝜎
(
𝑏 +

∑︁
𝑥𝑖∈x

𝜔𝑖𝑥𝑖

)
(3.8)

with weights 𝑏, 𝜔𝑖 ∈ R, 𝑖 = 1, ..., 𝑛. The vector 𝜔𝑖 ∈ R𝑛 contains the scalar weights applied to the
different input values, and 𝑏 ∈ R is called bias. The values of 𝑏 and 𝜔𝑖 are optimized during training.

The design of this function is loosely inspired by biological neurons, which are known to be arranged
layerwise in a very branched fashion. As a result, each neuron is connected to multiple input
and output neurons. These neurons work by the so-called all-or-none law (McCulloch and Pitts
1943): If the input signals exceed a certain threshold, the neuron fires, i.e. a signal is passed on
to the succeeding neurons. Otherwise, no signal is passed on to succeeding neurons. In practice,
however, the activation function 𝜎 is not necessarily modeled as a binary step function. Instead,
different implementations, combining absolute values, trigonometric functions, and exponential and
logarithmic functions, are used and can be reasonable. Sharma et al. (2020) introduce the most
common activation functions. The model used in our experiments, Inception-v2 (Ioffe and Szegedy
2015), includes the so-called rectified linear unit (ReLU) activation function which is computed as

𝜎(𝑥) = max (0, 𝑥) (3.9)

The most simple form of an artificial neural network consists of a single neuron only (as in the
original perceptron model introduced by Rumelhart et al. (1986)). This neuron takes all model inputs
as input vector 𝑥 and the neuron’s output, i.e. its activation value, corresponds to the ANN model’s
output.

To form a neural network using artificial neurons, as described above, neurons are usually arranged
in layers: An ANN layer consists of an arbitrary number of identically built artificial neurons, each
having its own weights and bias. Each neuron takes as input a vector of all outputs of the previous
layer’s neurons, or a vector of all input values, respectively. Analogously, the layer’s neuron’s output
values are either used as inputs for the following layer or correspond to the model’s output in the
case of the final layer. This is the most basic ANN design, also called a fully-connected feed-forward
network.

Other arrangements of neurons to form specialized artificial neural networks exist. Examples of such
are recurrent networks, where some of the neurons are passed multiple times, or convolutional neural
networks, which are relevant in most image analysis applications, and which are also applied in our
case.

20

3.2 Machine Learning and Artificial Neural Networks

Convolutional Neural Networks

Compared to a standard ANN, a convolutional neural network has a more sophisticated design,
aiming to exploit spatial dependencies in the input data. This is, for instance, especially relevant in
the case of images, where neighboring pixels are undoubtedly, often closely, related.

To respect the 2D spatial adjacency of input images, or of a succeeding layer’s neurons, the data
has to be arranged accordingly. Thus, inputs and neuron layers are no longer represented by one-
dimensional vectors, but rather by stacked two-dimensionally arranged data points. For each of the
input image’s color channels, one 2D data frame is contained in the input data. Intermediate layers
may have an arbitrary number of channels, depending on the CNN’s individual design. Intermediate
layers, as well as the input image, have a consistent spatial arrangement in each layer. Thus, input
images x of 𝑤 × ℎ pixels in width and height, respectively, and 𝑝 color channels are represented as
x ∈ R𝑤×ℎ×𝑝 .

Inspired by convolutions as applied in classic image processing algorithms, each neuron applies a
local filter or kernel to a spatially connected area of the previous layer, or the input layer, respectively.
A local filter of window size 𝑚 × 𝑛, which is applied to a spatially arranged input x ∈ Rℎ×𝑤×𝑝 , and
produces an output with 𝑞 different channels, can be written as 𝐾 ∈ R𝑚×𝑛×𝑝×𝑞 . The convolution
is succeeded by an element-wise activation function 𝜎, as explained before. Thus, the function of a
neuron within a convolutional layer of an artificial neural network can be written as

𝑓𝑖, 𝑗 (x) = 𝜎
(
𝐾 ∗ x|𝑁 (𝑖, 𝑗) + 𝑏

)
(3.10)

with

𝑁 (𝑖, 𝑗) =
{
(𝑖 + Δ𝑖, 𝑗 + Δ 𝑗)

�� − 𝑚 − 1
2

< Δ𝑖 <
𝑚

2
,−𝑛 − 1

2
< Δ 𝑗 <

𝑛

2

}
(3.11)

𝑁 (𝑖, 𝑗) ⊂ N × N (3.12)
|𝑁 (𝑖, 𝑗) | = 𝑚 · 𝑛 (3.13)
x|𝑁 (𝑖, 𝑗) ∈ R𝑚×𝑛 (3.14)

𝑏 ∈ R𝑞 (3.15)

This means, 𝑁 (𝑖, 𝑗) describes the spatial neighborhood at location (𝑖, 𝑗) and 𝑏 is the neuron’s bias
term, as before. In equation 3.10, ∗ describes a channel-wise convolution operation producing 𝑞
different output channels:

∗ : R𝑚×𝑛×𝑝×𝑞 × R𝑚×𝑛×𝑝 → R𝑞 (3.16)

The activation function 𝜎 is structurally and may be computationally identical to the activation
functions used in traditional ANNs.

21

3 Basics of Computer Vision, Machine Learning and Artificial Neural Networks

Analogous to convolutional operations, there are common choices regarding the application of
convolution windows at spatial boundaries:

• Same padding: Additional neurons are augmented at layer boundaries in such a way, that the
window can be applied at every neuron, even at corners. (For a window of size 𝑚 × 𝑛, ⌊𝑚2 ⌋,
and ⌊ 𝑛2 ⌋, additional units are required, respectively.) This allows for the preservation of the
original spatial dimension.

• Valid padding: No additional units are inserted at boundaries. Consequently, the convolution
operation can not be applied at locations close to the layer’s boundaries, resulting in the
reduction of the layers’ spatial size.

Note that, contrary to convolutions in image processing, CNN’s convolutional kernels are not hand-
crafted to detect certain structures or perform specific operations. Instead, all kernel parameters are
learned and optimized to detect features relevant to the specific task and the data at hand. More
precisely, one does not deliberately design the convolutional kernels to perform a smoothing operation
or detect lines (compare Section 3.1). The CNN rather establishes the most suitable convolutional
kernels according to the data during the training process.

Apart from using convolutional neurons in their layers, convolutional neural networks also follow
typical design patterns differing from those of traditional fully-connected networks. As is common
in CNNs, convolutional layers are often alternated with pooling layers. Further, most network
architectures conclude with one or multiple non-convolutional, fully connected layers to obtain
output predictions.

In most cases, pooling layers are used to reduce the feature map sizes of layers of neurons, usually
using a simple maximum or an average operation. This pooling operation is applied layer-wise to a
small local neighborhood of window size 𝑘 × 𝑙 (often 𝑘 = 𝑙). Widely used window sizes for pooling
operations are, for instance, 3 × 3 or 5 × 5. To achieve a dimensionality reduction, the pooling
operation is not performed at each location of the input feature map. Instead, it may be applied to
every 2nd or every 3rd pixel in each row and column, thereby drastically reducing the number of
output values, i.e. the next layer’s number of neurons. The regular pattern in which the windows are
applied is called the layer’s stride. Analogously to convolutional layers, valid or same padding may
be applied at layer boundaries. Note that pooling layers do not contain any trainable parameters and,
thus, are static parts of the neural network.

More detailed explanations of the motivation, theory and architecture of convolutional neural net-
works are available in the literature, see e.g. Koonce (2021) or Aggarwal (2018).

Neural Network Training: Loss Function, Numerical Optimizers, Backpropagation

Loss Function: The training of artificial neural networks is a supervised training task. This
means annotated training data Ω = {(x, y)𝑖}𝑖=1,...,𝑠 ⊂ D × V is required for the process. D is the
problem domain, e.g., in our case, two-dimensional color images of size ℎ×𝑤. V is the CNN model’s
target domain, for instance, a class index in case of classification tasks, or more complex structured
bounding box predictors in case of object detection (see Section 3.3.2). The number of training data
instances is denoted by 𝑠 ∈ N.

22

3.2 Machine Learning and Artificial Neural Networks

Assume a prediction model 𝑓𝜃 : D→ V with parameter vector 𝜃 ∈ R𝑟 . In the case of ANNs and the
notation used above, the parameter vector contains all the neuron’s weights 𝜔𝑖 , 𝜔0. As is the case in
traditional supervised machine learning, the goal of training a deep prediction model is to find model
parameters 𝜃 ∈ R𝑟 such as to minimize the difference between the model’s predictions 𝑓𝜃 (x) and
the corresponding data label y for all training data samples (x, y) ∈ Ω. To measure this difference, a
so-called loss function 𝐿, measuring this difference for arbitrary model parameter choices, is used:

𝐿 : R𝑠 → R (3.17)

𝐿 (𝜃) =
𝑠∑︁
𝑖=1

𝐿𝑖 (𝜃) (3.18)

The loss function aims to incorporate a performance measure for the prediction model: The higher
the loss value, the less accurate the predictions with respect to the training data. In theory, the
model’s performance is optimal if the loss function is at its global minimum. (Optimal in this case
does not necessarily mean error-free but may be constricted by several factors. These include the
model’s potential, the data’s separability, but also the loss function.)

Depending on the model type, data dimension and structure, and training objectives, a wide variety
of different loss functions are applicable. As visible in equation 3.18, in the case of neural networks,
the loss function is computed as a sum of losses for all training data samples. Thus, 𝐿𝑖 : R𝑟 → R
describes the loss contribution of a single training data instance. 𝐿𝑖 can be rewritten as:

𝐿𝑖 (𝜃) = 𝐿𝑖 (𝑓𝜃 (x𝑖), y𝑖) (3.19)

The actual process of training a deep neural network corresponds to the minimization of the afore-
mentioned loss function. As a deep learning model’s function is non-linear and highly complex,
minimization is performed using a numerical optimizer, e.g. gradient descent, and, more importantly,
backpropagation. Both concepts are shortly reviewed in this section.

Gradient descent: Gradient descent is a classical numerical optimization algorithm that goes back
as early as 1847 when it was introduced by Cauchy et al. (1847). The iterative method builds on the
fact that a function’s gradient points in direction of its steepest ascent. That knowledge is exploited
to perform consecutive steps in descending directions thereby approaching a local minimum. For
gradient descent to be able to find a function’s global minimum, the function is required to be both
differentiable and convex. Differentiability is required to compute gradients at arbitrary points of the
function’s domain. Convexity ensures the function has exactly one local minimum, which coincides
with its global minimum.

For a differentiable and convex function 𝑓 : 𝐷 → R, with arbitrary domain 𝐷, one iteration, i.e. one
gradient descent step, can be written as:

x𝑛+1 = x𝑛 − 𝜆 · ∇ 𝑓 (x𝑛) (3.20)

If step size 𝜆 > 0 is chosen sufficiently small, it holds

23

3 Basics of Computer Vision, Machine Learning and Artificial Neural Networks

x𝑛+1 ≤ x𝑛 𝑛 ∈ N (3.21)
lim
𝑛→∞

x𝑛 = x̃ (3.22)

for arbitrary choice of x0 ∈ 𝐷 and global minimum x̃ = argmin
x∈𝐷

𝑓 (x). In the case of a differentiable,

but non-convex function 𝑓 , the limit x̃ is a local minimum of 𝑓 , but not necessarily a global one.

When training a neural network using a loss function as described above, the objective is to minimize
the value of a non-linear nested function including a high number of parameters. The function’s
gradient, i.e. its partial derivative with respect to each parameter has to be computed. These
computations are not trivial and caused significant problems in the training of neural networks in
their early days (Schmidhuber 2015). The remedy, in this case, is a technique called backpropagation
which is explained hereafter.

Backpropagation: Backpropagation is an optimization algorithm introduced in the 1970s which
was first applied to the training of artificial neural networks by Rumelhart et al. (1986). The idea
is to iteratively adjust the network weights by computing a backward pass through the network
structure based on the chain rule of differentiation: In each training step, the computed output costs
are backpropagated through the network, thereby computing cost function gradients with respect to
each weight within the network. This information can be used to perform gradient descent steps for
all parameters in order to approach a local (or global) minimum. Analogous to gradient descent,
backpropagation requires the function it is applied to, to be differentiable. Chauvin and Rumelhart
(1995) is an earlier work discussing the theory of backpropagation elaborately.

While deep neural networks theoretically can be trained using vanilla gradient descent and back-
propagation, usually more sophisticated gradient-descent-based optimizing algorithms are applied.
Ruder (2016) gives a comprehensive overview of typical choices of such algorithms for the training
of artificial neural networks. In our case, Polyak’s momentum optimizer, which goes back to Polyak
(1964), is used. This commonly applied algorithm makes use of a so-called momentum term 𝑣, which
can be interpreted as incorporating a weighted average of previous steps into the current update. The
update procedure can be written as

𝑣𝑛+1 = 𝜇𝑣𝑛 − 𝜆∇ 𝑓 (x𝑛) (3.23)
x𝑛+1 = x𝑛 + 𝑣𝑛+1 (3.24)

with momentum parameter 𝜇 ∈ [0, 1] and learning rate 𝜆 > 0.

Another important point to consider when training deep learning models using gradient descent
methods is the batch size, i.e. the amount of data considered in each iteration. While the objective is
to find parameters in such a way, that optimal results are achieved for the whole set of training data,
it is not necessarily the best approach to consider all the data in each training iteration. Basically,
three options are available in that regard:

24

3.2 Machine Learning and Artificial Neural Networks

• batch gradient descent: the whole data is considered in each iteration,

• mini-batch gradient descent: a small number of data instances are considered in each iteration
(depending on data type, model size, or available computation hardware),

• stochastic gradient descent: only a single instance of the data set is considered in each
iteration.

Note that batch gradient descent corresponds to joint minimization of loss function 𝐿, while stochastic
gradient descent alternately minimizes single loss components 𝐿𝑖 (see Equation 3.18). In deep
learning practice, batch gradient descent may be too computationally expensive to be performed on
available hardware resources. At the same time, mini-batch and stochastic gradient descent methods
are less likely to get stuck in local minima, as the individual update steps are randomized, depending
on the current iteration’s data selection. Masters and Luschi (2018) and Wilson and Martinez (2003)
analyze the advantages of using smaller batch sizes.

A more thorough and detailed explanation of the process of training artificial and convolutional
neural networks can, for instance, be found in Aggarwal (2018) or Goodfellow et al. (2016).

Overfitting and Regularization

One of the most prominent problems with training machine learning models is overfitting. This
phenomenon occurs, when the model memorizes the training data beyond generalization. That
means, the model does not learn to recognize general properties and features of the domain’s data
but is able to recognize every single training example by its individual characteristics, or even by
the noise within the data. Overfitting can be diagnosed by observing the model’s performances on
training and validation data during the training process: In the case of over-fitting, the performance
on training data is increasing further while validation performance is in decline.

The effect of overfitting generally can be observed if the model representation abilities, i.e. the
number of parameters, is too great relative to the amount of training data. Consequently, it can be
tackled by either choosing a smaller model, which is not able to simply memorize the whole training
data set or by increasing training data variance. The latter can not only be achieved by increasing the
number of available training samples, but also by incorporating data augmentation techniques into
the data pre-processing. Algorithmic techniques to reduce overfitting, called regularization, exist.
A traditional approach is the addition of regularization terms, which penalize excessive parameter
utilization, to the loss function. Deep-learning specific procedures are, for instance, dropout (Hinton
et al. 2012) or batch normalization (Ioffe and Szegedy 2015). Apart from that, overfitting can
be avoided by limiting training time such that the training process is terminated when no further
increases in validation performance are achieved. This concept is called early stopping. Ying (2019)
gives an overview of possible remedies to overfitting.

25

3 Basics of Computer Vision, Machine Learning and Artificial Neural Networks

Parameter Initialization

Another aspect not to be neglected when training deep neural networks is parameter initialization.
Simple zero or constant initialization of parameters is not a valid choice as it can cause all of
the network’s neurons to behave identically (based on their position within the network), leading
to redundant units. Further, the magnitude at which unit parameters are initialized is crucial for
convergence speed. Goodfellow et al. (2016) discuss neural network parameter initialization in more
detail and introduce common initialization strategies. As we use a transfer learning approach, and
thus do not need to choose initial parameters, the problem is not discussed further here. Instead,
transfer learning is explained in the following paragraph.

Transfer Learning

Features learned by convolutional neural networks are, to some degree, task-agnostic. That can be
seen in the widespread use of a technique called transfer learning. This term refers to the usage
of already trained neural networks for different use cases. It is frequently applied, e.g. in cases
of limited data availability, or when employing synthetic training data. Pan and Yang (2009) and
Weiss et al. (2016) provide comprehensive surveys on the general topic of transfer learning, including
definitions and application examples. More specifically, Li et al. (2019) show that transfer learning
approaches are highly beneficial for object detection tasks with limited data availability. Huh et al.
(2016) analyze the usage of ImageNet for CNN pre-training and find that dataset size is not an ideal
predictor for the suitability of a pre-training dataset.

It is common practice in vision applications to use models which were pre-trained on large, publicly
available datasets like ImageNet (Russakovsky et al. 2015) or COCO (Lin et al. 2014). Training of
such pre-trained models is then continued on a use-case-specific dataset. This is especially helpful if
the amount of data available for the specific use case is limited, or if there is a domain shift between
available training data and inference data. The latter is often the case if synthetic training data shall
be used to train a model for application in real-world scenarios.

3.3 Object Detection and Instance Segmentation

In this section, we outline the general tasks of object detection and instance segmentation in two-
dimensional images. While both tasks concern the identification of specific objects within images,
the granularity at which object instances are localized differs significantly: Object Detectors find
minimal bounding boxes containing instances of target objects, while Instance Segmentation models
try to segment object instances as accurately as possible, i.e. by pixel masks. Fig. 3.2 illustrates
these two types of object representations on one of our use case images. Note that the bounding
box representation generally covers an image part larger than the actual object, i.e. additional pixels
which do not show object parts are included in the object’s bounding box. The object segmentation
mask, on the other hand, includes only pixels covering the corresponding object.

26

3.3 Object Detection and Instance Segmentation

(a) (b)

Figure 3.2: Illustration of object representations, i.e. localization granularity, in the tasks of (a) Object Detection and (b)
Instance Segmentation. The object class to be detected are complete transport units (including base pallet,
packages, and lid).

For both tasks, identical CNNs for feature extraction can be used. What differs are the subsequent
layers that output either bounding box representations or pixel masks, for each categorized object
instance, respectively.

In this section, both tasks, corresponding data representations and relevant detection models are
explained briefly. A more thorough introduction, including historic developments and milestones, as
well as state-of-the-art approaches, can, for instance, be found in Szeliski (2022).

3.3.1 CNN Architectures for Image Analysis

A groundbreaking work on image classification involving CNNs was published by Krizhevsky et al.
(2012). The authors achieved top results in the 2012 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) (Russakovsky et al. 2015), leading the competition by a huge margin (15.3%
top-5-error rate 1 vs. 26.2% for the second place competitor). The ImageNet challenge is an image
classification contest, providing a dataset of more than one million images showing instances of
objects of 1,000 different categories. Participating algorithms are required to predict up to five
object categories per image, ranked by confidence. What was remarkable in the 2012 version of the
challenge was that the winning model, which is widely known as AlexNet, was a deep convolutional
neural network. Krizhevsky et al. (2012) were the first to efficiently design and train such a model
for the task of image classification.

1 The top-5-error rate of a model corresponds to the ratio of test instances, for which the true image class was within the
model’s five highest-rated class predictions for that image.

27

3 Basics of Computer Vision, Machine Learning and Artificial Neural Networks

AlexNet operates on images of resolution 224 × 224 pixels and consists of eight main layers: Five
convolutional layers, followed by three fully-connected (dense) layers. The first convolutional layer is
applied with stride 4 to reduce spatial image resolution. With the same objective, maximum pooling
with stride 2 is applied after the first two and the last convolutional layer. Convolutional kernel sizes
are 11 × 11 in the first, 5 × 5 in the second, and 3 × 3 in all following convolutional layers. Spatial
resolution decreases, and feature number increases, as the image is passed through the model. This
is illustrated in more detail by Fig. 3.3.

The architecture was slightly modified in order to split computations among two GPUs. For more
details, please refer to the author’s original work.

Figure 3.3: Architecture of AlexNet. Source: Krizhevsky et al. (2012)

AlexNet was adapted for many applications and more advanced algorithms in similar tasks, e.g. in
Region-based CNNs for object detection (see section 3.3.2).

After the success of AlexNet in 2012, deep CNNs quickly became the go-to choice for high-
performance image analysis models. Performances in recognition challenges like ImageNet and
the common objects in context (COCO) object detection challenge (Lin et al. 2014) were steadily
increased by further optimizations of CNN architectures.

Szegedy et al. (2015) introduced the concept of inception, achieving the top result in the 2014
ImageNet challenge. The idea of inception modules is to be able to capture and summarize features
of different sizes at the same time. In summary, inception modules perform multiple convolutions
with different kernel sizes in parallel (e.g. 1×1, 3×3, and 5×5). To avoid tremendous computational
costs, 1×1-convolutions reducing the number of channels, precede the convolutional layers employing
larger kernel sizes. Apart from the different convolutional layers, an additional maximum pooling
layer is added in parallel. Fig. 3.4 shows the structure of a single inception module. The proposed
network, GoogLeNet, consists of three conventional convolutional layers (the first of which is the
only one with a larger filter size of 7×7, the filter sizes of the second and third convolution operations
are 1 × 1 and 3 × 3, respectively). The first and third convolutional layers are followed by a max-
pooling layer. Following these layers, a total of nine inception modules, with increasing channel
numbers, are employed. These nine inception modules are interjected by another two maximum
pooling layers causing a reduction of spatial dimensions. The network architecture is completed by
an average pooling layer, a dropout layer, one fully-connected layer, and, finally, a softmax layer.
The last layer consists of 1,000 neurons predicting class probabilities for each of ImageNet’s 1,000

28

3.3 Object Detection and Instance Segmentation

object categories. Image input resolution is 224 × 224 pixels, this spatial resolution is progressively
reduced to 7 × 7 after the last maximum pooling operation.

Figure 3.4: Inception module. Source: Szegedy et al. (2015)

Ioffe and Szegedy (2015) introduced a concept called batch normalization, and corresponding layers
for deep neural networks. The operation performed by these layers is a normalization of activation
values with respect to the training data batch, and the layers thereby act as powerful regularizers.

Assume 𝑥𝑖 , 𝑖 = 1, ..., 𝑡 are the activations of a single neuron for a training batch B of size 𝑡. To apply a
batch normalizing transform to these activations, mean 𝜇B and variance 𝜎B of the batch’s activation
are computed as

𝜇B =
1
𝑡

𝑡∑︁
𝑖=1

𝑥𝑖 (3.25)

𝜎B =
1
𝑡

𝑡∑︁
𝑖=1

(𝑥𝑖 − 𝜇B)2 (3.26)

The output activations are normalized:

𝑥𝑖 =
𝑥 − 𝜇B√
𝜎B + 𝜖

(3.27)

Finally, the transform’s output 𝑦𝑖 is computed as

𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽 (3.28)

where 𝛾 and 𝛽 are learnable parameters. The scale and shift of these parameters are introduced to
increase the space of transformations representable by batch normalization.

29

3 Basics of Computer Vision, Machine Learning and Artificial Neural Networks

Batch normalization transforms can be added to neural networks after arbitrary neurons, each such
operation introducing two additional learnable parameters.

In the same publication (Ioffe and Szegedy 2015), the authors use batch normalization to enhance
GoogLeNet to an architecture often referred to as Inception-v2. Inception-v2 uses slightly different
inception modules, replacing all 5 × 5 convolutions with two consecutive 3 × 3 convolutions. Apart
from that, fully-connected layers were removed and some pooling layers were replaced by stride 2
in convolutional operations. A total of 10 inception modules are employed. Batch normalization is
applied to the input of each nonlinearity (activation function). Inception-v2 does not only outperform
its predecessor on ImageNet (top-5-error of 4.9% compared to 6.7%), but it also trains significantly
faster needing 5 times fewer training steps, as reported by the authors.

The 2015 ImageNet challenge was won by He et al. (2016) with their Residual Network, short ResNet,
adding skip connections to convolutional layers. After that, the inception architecture described above
was improved further by Szegedy et al. (2016b) and Szegedy et al. (2016a).

Since 2017, additional improvements and ideas were incorporated into network designs, not all of
which will be covered here. For instance, Huang et al. 2017 propose DenseNet, an architecture
with additional skip connections between each pair of layers within the network. In 2019, Tan and
Le 2019 introduced EfficientNet, a CNN architecture with integrated scaling methods, to achieve
optimized depth, width and resolution of the network and its layers. The currently best-performing
network on the ImageNet challenge data is CoCa, which was introduced by Yu et al. 2022 (CoCa
reports a top-1-error of 9.0% as compared to Inception-v2 with 20.1%). Recent literature provides
more sophisticated overview of the most important CNN designs, for instance, see Alzubaidi et al.
2021, or Khan et al. 2020.

However, we employ the Inception-v2 network as a feature extractor CNN in the training and
evaluation of our algorithm. The reason for our choice is that the architecture is implemented
and readily available in tensorflow’s object detection library (Abadi et al. 2016). Additionally, its
computational complexity is comparably low and its training and run times are shorter than those of
many successor networks. Note that our work does not primarily focus on exploring the optimal CNN
for the task of packaging structure recognition. Rather, we aim to design an appropriate algorithm
for the use case, employing a reasonable CNN as image analysis tool, in the first place. We are
aware, that incorporating different, or even hand-crafted, deep learning models might yield improved
results. We start exploring this question in our last research question (RQ3) and we might elaborate
on it further in future research.

3.3.2 Object Detection

Object Representation

In multi-class object detection, object instances are represented, or localized, by the minimal rect-
angular area covering the whole object. Moreover, a bounding box 𝐵𝑥𝑜 ,𝑦𝑜 ,𝑤𝑜 ,ℎ𝑜 of width 𝑤𝑜 and
height ℎ𝑜, positioned at location (𝑥0, 𝑦0), is defined as

𝐵(𝑥0, 𝑦0, 𝑤0, ℎ0) = {(𝑥, 𝑦) ∈ 𝑃 |𝑥 ∈ [𝑥0, 𝑥0 + 𝑤0] ∧ 𝑦 ∈ [𝑦0, 𝑦0 + ℎ0]} (3.29)

30

3.3 Object Detection and Instance Segmentation

Thereby, it is assumed that 𝑥0, 𝑦0, 𝑤0, ℎ0 are chosen such that 𝑥0 + 𝑤0 and 𝑦0 + ℎ0 lie within image
plane 𝑃.

Metrics for Object Detection

Let 𝐵𝑑 and 𝐵𝑔𝑡 denote the bounding boxes of a model’s detection on an image, and of one of the
image’s ground-truth annotations, respectively. To decide whether the detected object with bounding
box 𝐵𝑑 can be matched to the annotated object with bounding box 𝐵𝑔𝑡 , the intersection over union
(IoU) of the two bounding boxes is computed as

IoU(𝐵𝑑 , 𝐵𝑔𝑡) =
∥𝐵𝑑 ∩ 𝐵𝑔𝑡 ∥
∥𝐵𝑑 ∪ 𝐵𝑔𝑡 ∥

(3.30)

where ∥ · ∥ denotes the size of the corresponding areas in 2-D Euclidean space. In the case of
discretized formulations, as is the case for pixel-based digital images, the number of pixels within
each set (area) can be counted. Using the IoU, and applying a decent threshold value (empirically
adjusted to the individual problem, data and network), the detections found by an object detection
model can be matched to the data annotations. Every detection can thus be classified as either true
positive (TP) or false positive (FP) detection. Hereby, one needs to be careful to assign at most one
detection to each ground-truth annotation (e.g. by application of suitable non-maxima suppression).
Further, object categories need to be respected in the case of multi-class object detection. Precision
and Recall are common performance measures for object detection models that can be computed
based on the TP/FP-categorization: The model’s precision is the number of true positive detections
divided by the total number of detections. The model’s recall is the number of true positive detections
divided by the number of annotated objects and can be seen as the model’s sensitivity.

Generally, a confidence threshold is applied when selecting the model’s object proposals. By
computing precision and recall for different confidence thresholds, a precision-recall-curve can be
created by plotting the two values against each other on the x- and y-axis. The area under this curve
(PR AUC) is a frequently used performance measure for detection models called Average Precision
(𝐴𝑃). In the case of multi-class detection problems, scores are often computed separately for each
object category. The mean average precision (𝑚𝐴𝑃) is then computed as the average value of all
categories’ 𝐴𝑃 values. The 𝑚𝐴𝑃 was originally introduced by the Pascal Visual Object Classes
(VOC) image recognition challenge in 2007 2 (Everingham et al. 2010). In its original version,
the computation is performed for a fixed, predefined IoU threshold, e.g. 0.5. In the course of the
common objects in context (COCO) object detection challenge (Lin et al. 2014), an evaluation metric
using multiple IoU threshold values was established: An overall performance measure is computed
by averaging the 𝑚𝐴𝑃 value for every IoU threshold value in {0.5, 0.55, ..., 0.9, 0.95}. We denote
this measure by 𝑚𝐴𝑃0.5:0.95 (whereas 𝑚𝐴𝑃0.5 denotes the 𝑚𝐴𝑃 at IoU threshold 0.5). Note, that the
𝑚𝐴𝑃 value generally decreases as the applied IoU threshold, and thereby the requirement regarding
detection accuracy, increases.

2 http://host.robots.ox.ac.uk/pascal/VOC/voc2007/

31

3 Basics of Computer Vision, Machine Learning and Artificial Neural Networks

R-CNN and CNN-Based Object Detection

State-of-the-art object detectors use CNNs for feature extraction from input images and generate
region proposals to localize object instances within the image. The earliest such model was the
Region-based Convolutional Network (R-CNN) proposed by Girshick et al. (2013). R-CNN uses
a selective search algorithm to generate 2,000 region proposals for an input image. For each region
proposal, an image crop is created and run through a CNN feature extraction network (AlexNet, see
Krizhevsky et al. (2012)). A subsequent support vector machine operates on the resulting 4,096-
dimensional feature vector to produce object category predictions. Simultaneously, the CNN feature
vector is fed into a bounding box regressor, which refines the initial region proposal.

One year later, Girshick (2015) improved the approach, introducing Fast R-CNN. The category
predicting SVM and bounding box regressor were replaced by fully connected layers, which perform
both tasks at once. Maybe even more important, the improved version only requires a single pass
through the feature extraction CNN. Selective search is now applied to the CNN’s output feature map.
Accordingly, crops are taken directly from the convolutional feature map, rather than the original
input image.

Another improvement to (Fast) R-CNN was proposed shortly after by Ren et al. (2017). They
replaced the selective search algorithms with another CNN that produces region proposals. This
region proposal network (RPN) employs a sliding window approach, as well as a set of anchor boxes:
The RPN is applied to a 𝑛 × 𝑛 window of the feature extraction CNN’s output feature map. At each
location, 𝑘 , anchor boxes, i.e. potential object regions of pre-defined sizes and aspect ratios are
applied. For each such anchor box, the probability of that box containing an object, as well as region
refining parameters, are predicted by subsequent layers. The improved algorithm was named Faster
R-CNN by the authors.

Lin et al. (2017) introduce Feature Pyramid Networks (FPN) to detect objects at different scales,
using Faster R-CNN on multiple feature maps of different scales.

Other CNN-based object detection algorithms, which require only a single pass through a CNN
detection network exist, e.g. Redmon et al. (2016) and Liu et al. (2016). As we opted for Faster
R-CNN in our implementations, these are not relevant to our work and they are not discussed here.

CornerNet

A little later, Law and Deng (2020) proposed CornerNet, a CNN-based object detector not relying
on anchor boxes or rectangular region proposals. Instead, the locations of bounding boxes’ top left
and bottom right corners are predicted independently. The grouping of two detected bounding box
corners to a single object instance is performed separately in a subsequent step.

Moreover, CornerNet mainly consists of two main components: A CNN feature extractor, and two
parallel corner prediction modules. This architecture is illustrated by Fig. 3.5.

In the original work, the CNN feature extractor is an hourglass network, as introduced by Newell et al.
(2016). The hourglass module was initially designed for the task of human pose estimation. Hourglass
networks perform aggressive downsampling of the input signal by alternating convolutional and max

32

3.3 Object Detection and Instance Segmentation

Figure 3.5: Schematic architecture of CornerNet. Source: Law and Deng (2020).

pooling layers, until a resolution as low as 4 × 4 pixels is reached. Subsequently, a symmetrical
upsampling to the original dimension is performed. Additionally, skip layers are added between
layers of identical resolution. Thus, on the upsampling path, upsampled features are combined (by
addition) with features on the same scale, taken from the downsampling path. In this way, the
architecture aims to detect features of different scales efficiently. Thereby, residual modules are used
throughout the network, whenever convolutional layers are incorporated. For more details, please
refer to Newell et al. (2016). In the case of CornerNet, two hourglass modules are used, and some
adjustments are made to the modules themselves. Instead of max pooling, stride 2 convolutions are
used to reduce feature resolution. Further, resolutions are reduced five times and the number of
feature maps is increased at lower resolutions, compared to the original hourglass design.

The hourglass feature extraction layers are succeeded by corner prediction modules. Each corner
prediction module consists of a novel kind of pooling layer, so-called corner pooling layers, followed
by three parallel prediction modules. Corner pooling is based on the apriori knowledge that top
left and bottom right corners of object bounding boxes are predicted: For top left corners, it can
be assumed that key object features can be found toward the bottom and the right of the image,
relatively. Thus, maximum pooling is exclusively performed in these directions to capture relevant
features. Correspondingly, left and top direction pooling are applied in the prediction module
concerning bottom right corners. Note again that corners of bounding boxes are predicted, i.e. the
predicted positions themselves are not necessarily part of the object as the bounding box generally
exceeds the object. The pooling layer is followed by three independent, parallel layers predicting
corner locations, corner offsets and embeddings. Corner locations are predicted by scalar heat maps,
indicating probabilities of corners of specific object categories. For each object category, one corner
heat map is predicted. Corner offset maps are class-agnostic 2-D maps predicting sub-pixel offsets
to corner locations indicated in the previously mentioned heat maps. This is necessary as the map
resolution at this point is lower than the original image’s resolution and high location accuracy is
required. The last module predicts embedding vectors at each location. These embeddings are used
to group individual corners into bounding boxes: Very similar embedding vectors indicate that two
corners can be assigned to identical objects. This procedure is based on the work on Associative
Embedding by Newell et al. (2017).

33

3 Basics of Computer Vision, Machine Learning and Artificial Neural Networks

CornerNet reported top accuracy values on the MS COCO dataset. The authors improved their
original work further in Law et al. (2020).

3.3.3 Instance Segmentation

Object Representation

In instance segmentation, objects are localized by their exact segmentation masks. In the case of an
image of size ℎ × 𝑤, a segmentation mask 𝑆𝑜 for an object 𝑜 can be written as a binary map of the
same dimensions:

𝑆𝑜 ∈ {0, 1}ℎ×𝑤 (3.31)

𝑆𝑜𝑖, 𝑗 =

{
1 if pixel 𝑖, 𝑗 belongs to object 𝑜
0 otherwise

(3.32)

Alternatively, in the case of convex objects, instance segmentation masks can be represented by a set
of points describing the mask contours:

𝑃𝑜 ⊂ {0, ..., 𝑤} × {0, ..., ℎ} (3.33)

In this case 𝑆𝑜
𝑖, 𝑗

= 1 if and only if pixel 𝑖, 𝑗 lies within the polygon described by 𝑃𝑜.

Metrics for Instance Segmentation

Basically, the same metrics as in object detection can be applied for the evaluation of instance
segmentation models: average precision (AP) and mean average precision (mAP) are commonly
used measurements.

Notably, the computation of IoU differs according to the relevant object representation. Instead of
rectangular bounding box regions, segmentation masks are considered:

IoU(𝑆𝑑 , 𝑆𝑔𝑡) =
∥𝑆𝑑 ∩ 𝑆𝑔𝑡 ∥
∥𝑆𝑑 ∪ 𝑆𝑔𝑡 ∥

(3.34)

where 𝑆𝑑 and 𝑆𝑔𝑡 are detected and annotated instance masks of a single image.

34

3.4 Summary

Mask R-CNN

Maybe the most famous CNN-based instance segmentation algorithm is Mask R-CNN, which is also
the algorithm we employ in our work, and which was introduced by He et al. (2017). Mask R-CNN
is based on Faster R-CNN and adopts most of its original architecture. The most important change is
the addition of fully convolutional layers for mask prediction. Further, a so-called region of interest
(RoI) align layer is added to preserve exact spatial locations despite the downsampling performed in
convolutional layers of the CNN. Thus, Mask R-CNN still performs the task of object detection but
additionally outputs accurate binary segmentation masks for each detected object.

Mask R-CNN’s mask prediction layers run in parallel to box and class predictors. For every object
category, a mask of fixed quadratic size is produced (e.g. 14×14 pixels in the original implementation
using ResNet (He et al. 2016) as feature extractor network). Only the mask for the predicted object
category is used further in training and inference.

The second significant novelty in Mask R-CNN is the introduction of the RoI align layer, which
is used instead of Fast R-CNN’s RoI pool layer. RoI align avoids rounding of coordinates and
quantization of feature map values when constructing small feature maps of RoIs for further processing
(e.g. classification). Instead, sub-pixel accuracy is used when constructing the feature map from the
backbone CNN’s output layer, and four values for each of the feature map’s bins are found by using
bilinear interpolation. The bin’s value is determined using an aggregation function like maximum or
average. The authors report accuracy improvements of up to 50% by the use of RoI align instead of
RoI pool.

3.4 Summary

In this chapter, the theoretical backgrounds and technical fundamentals relevant to our work were
discussed. In the following chapters, we will use these fundamentals to answer the three previously
formulated research questions regarding the use case of packaging structure recognition.

More precisely, we introduced the basics of machine learning and deep learning, leading to the
concrete architectures and techniques we employ in our learning-based image analysis components,
as implemented in our image analysis pipeline to answer our first research question (see Chapter 4).
We also discussed the preliminary work, which we use as fundamentals for our specialized detection
models incorporating geometrical apriori knowledge. With the design of these models, which are
presented in Chapter 6, we aim to answer our second research question. Further, the computer vision
techniques relevant to the experiments in the scope of our second research question, regarding the
algorithmic choices of our image analysis pipeline, were presented (see Chapter 5).

35

4 A Method for Automated Packaging Structure
Recognition in Single RGB Images

In this chapter, a possible solution to the problem of automated packaging structure recognition is
presented. The algorithm and part of the evaluations were previously published in Dörr et al. (2020a).
However, evaluation values differ slightly due to the refactoring of the dataset.

4.1 Research Question Elaboration

The research question (RQ1), which we tackle in this chapter was already introduced in Section 1.2,
and reads as follows:

(RQ1) How can information about the constitution, assembly and condition of a packed
transport unit be inferred from a 2D image?

We straightforwardly answer this research question by proposing an image processing pipeline
fulfilling the stated requirements: The pipeline’s input is a single 2D image showing at least one
packed transport unit. Its output contains information about the contained transport units and their
packaging structure, i.e. the type of packaging units, and their total number and arrangement.

To prove the solution to the research question, we implement the proposed pipeline, utilizing state-
of-the-art image recognition algorithms, i.e. CNNs for object instance segmentation. For training
and evaluation of these models, and validation of the image processing pipeline, we employ a custom
dataset of use case images, which is also introduced in this chapter.

To the best of our knowledge, we are first to formulate the task of automatic packaging structure
recognition based on single RGB images. Our contributions presented in this chapter include

• Acquisition of an extensive labeled dataset of 2D images for the use case of packaging structure
recognition.

• Design and implementation of an image processing pipeline for automatized packaging struc-
ture recognition, based on state-of-the-art image analysis algorithms.

• Evaluation of the proposed method on our own data.

37

4 A Method for Automated Packaging Structure Recognition in Single RGB Images

4.2 Related Work

This section gives a brief overview of publications and techniques relevant to the proposed algorithm.
Most of these have already been elaborated in Chapter 3, but are still mentioned here to summarize
the fundamentals of our work. Our work makes use of recent advances in the image processing
problems of object detection and instance segmentation. We employ Mask R-CNN, a state-of-the-
art neural network for instance segmentation, by He et al. (2017) for the segmentation of logistics
components. As feature extraction layers within the Mask R-CNN segmentation network, we use
Inception-v2 (Ioffe and Szegedy 2015). An overview of deep-learning-based instance segmentation,
as well as further introductions to artificial neural networks, is given by Minaee et al. (2022). As the
amount of data required to train an image instance segmentation model from scratch is tremendous,
a remedy often applied is transfer learning. This term refers to the idea of pre-training a prediction
model on a large dataset of a general task, before fine-tuning the previously learned weights on rather
few use-case-specific data. Not in itself a particular deep learning or image processing technique,
transfer learning is used in various contexts (Pan and Yang 2009). The method has been applied
to image object detection or instance segmentation tasks and use cases (Azizpour et al. 2015) from
various domains, such as medical imaging (Shin et al. 2016), airport security (Akçay et al. 2016),
and environmental engineering (Gao and Mosalam 2018), to name only a few examples. For most
image processing applications, pre-training is performed either on the image classification dataset
Image-Net (Russakovsky et al. (2015), Huh et al. (2016)) or on the common object in context (COCO)
object detection challenge’s dataset for object detection tasks (Lin et al. 2014). The latter is also the
case in our work.

4.3 Multi-Step Image Processing Pipeline

The proposed algorithm for extracting the packaging structure of a transport unit from a single image
is described in this section. The algorithm consists of three essential steps:

1. Transport Unit Detection: Inter-unit Segmentation

2. Packaging Unit Detection: Intra-unit Segmentation

3. Result Consolidation and Refinement

First of all, an inter-unit segmentation is performed to detect relevant transport units within the input
image. A convolutional neural network (CNN) is used to find and segment all transport units which
are completely visible in the image. In the next step, intra-unit segmentation is applied to each
cropped transport unit image. Here, two CNNs are used to find the unit’s pallet and to detect the
two distinct sides as well as all packaging units. Computer vision methods are used to consolidate
and refine the results. The whole process is illustrated by means of a single test image in Fig.
4.1. The original input image is depicted in part (a). Like all our images, it was acquired in a
logistics environment in the automotive industry, using a conventional smartphone camera. This
is in accordance with our objective to provide a readily accessible algorithm, which operates on a
simple RGB image. Other image sources, like fixated industrial cameras, could be used likewise,
as long as they provide images according to our prerequisites (see Section 2.2.4). All our images

38

4.3 Multi-Step Image Processing Pipeline

(a) (b) (c)

(d) (e) (f)

Figure 4.1: Illustration of the packaging structure recognition process. (a) Input image. (b) Inter-Unit Segmentation. (c), (d),
(e) Intra-Unit Segmentation. Transport unit sides and packaging unit faces are found. Subsequently, the number
and arrangement of packages for each transport unit side are determined. (f) Information Consolidation.

are downsampled in such a way, that the larger image dimension measures 1,000 pixels. The aspect
ratio is preserved in this resizing operation. Note that additional resizing is generally performed
before an image is passed into a neural network. For more details on our input images and dataset,
please refer to Section 4.4. The input image (a) is fed into the first step of inter-unit segmentation,
which detects and segments fully visible transport units (b). The output of this step are image crops
showing exactly one complete transport unit. These image crops are fed into the succeeding step of
intra-unit segmentation. In this step, transport unit sides (c) and package unit faces (d) are segmented.
The last step of results consolidation processes these detections and determines the arrangement of
package units for each transport unit side (e). This information is combined to determine the overall
packaging structure (f). In the following subsections, each of these three essential steps is discussed
in more detail.

4.3.1 Inter-Unit Segmentation

Given an adequate input image, the first step in our processing pipeline is the detection and segmen-
tation of all relevant transport units within the image. Precisely speaking, we want to extract how

39

4 A Method for Automated Packaging Structure Recognition in Single RGB Images

many transport units are fully contained in the image and which image regions and pixels belong to
which of those transport units. To solve this task, a deep learning instance segmentation model is
used. Namely, a Mask R-CNN (He et al. 2017) with an Inception-v2 (Ioffe and Szegedy 2015) back-
bone architecture is employed. The model only predicts objects of a single category: full transport
unit. Apart from bounding box predictions for relevant objects, Mask R-CNN prediction models
also output so-called confidence values within the interval [0, 1] for each prediction and each object
category. This value indicates how confident the model is, that an object of the corresponding object
category is present within the bounding box.

Simple checks and filterings are performed as post-processing steps on the instance segmentation
model’s predictions: Apart from confidence thresholding, the detections are checked for a minimum
size within the image, and detections, which have high bounding box overlaps with other higher-
confidence detections, are dropped. In all our experiments, a confidence threshold of 0.5 was applied,
i.e. only bounding box detections with a confidence score of 0.5 or higher are considered. This
value was chosen based on a simple grid search experiment (using a sampling distance of 0.05), in
which we determined the threshold value yielding the best results on our evaluation data. Further, the
minimum bounding box size for transport units is set to 10% of the total image area, as we assume
relevant transport units to cover a significant ratio of the image. The maximum acceptable bounding
box IoU for two transport unit detections is set to 0.4. Detections that are not compliant with these
thresholds are discarded. These parameters were chosen empirically based on simple comparisons
and evaluations during development.

Fig. 4.1 (b) shows exemplary results for the transport unit segmentation. For each detected transport
unit, a corresponding image crop is created. The crop region corresponds to the detection’s bounding
box, increased by a margin of 50 pixels in all four directions. This margin is employed to ensure the
whole transport unit is depicted within the crop and all edges and corners are clearly visible. The
image crops are used as input for the subsequent steps (compare 4.1 (c) which depicts the next step’s
results on the described image crop).

4.3.2 Intra-Unit Segmentation

For each image crop output by the inter-unit segmentation, the succeeding step of intra-unit segmen-
tation is performed independently. Intra-unit segmentation aims to further analyze and segment the
transport unit image. The objective is to identify the following regions:

• Base pallet

• Exactly two transport unit sides

• Package unit faces (not complete units)

Apart from the precise localization of the above components, the type of base pallet and packages
are also determined. One very important aspect of this segmentation process is the identification and
differentiation of the two visible, orthogonal transport unit sides. Only if both sides are segmented
correctly and the detected package unit faces are assigned to the correct transport unit sides, the
total package unit number can be calculated accurately. Note that package unit faces are detected

40

4.3 Multi-Step Image Processing Pipeline

rather than complete package units. This makes a difference only for the corner stack of packages
connecting the two visible transport unit sides. The reason for this decision is that we want to be able
to process each transport unit side independently and to assign each package unit detection to one of
the two transport unit sides unambiguously.

Analogously to the previous step, we use an instance segmentation deep-learning model to segment
the desired regions within the image. As image crops are input into this model, one can assume that
each image contains one base pallet and exactly two completely visible transport unit sides. Opposed
to that, the number of package unit faces per transport unit side may vary significantly.

Note that transport unit side faces, and package unit faces, are of rectangular shape in the real world.
Thus, their exact regions within the image can be described by four points within the image. This
is under the assumption that the transformation underlying the imaging process is the projective
transform. Consequently, the applied instance segmentation model’s outputs, i.e. arbitrary pixel
masks, are of unnecessarily high complexity for side region localization. In this first algorithm
design, the model was chosen nonetheless as the vast majority of image detection methods tackle
either bounding-box-based or if more accurate region information is required, segmentation-mask-
based object representations. In Chapter 6, more specialized detection models aiming to find transport
unit components based on a four-vertices-based representation are developed and analyzed.

Subsequent to the step of deep-learning-based image segmentation, simple consistency checks are
performed. First of all, a confidence threshold of 0.5 is applied to transport unit sides and package
unit detections. (Again, a simple grid search was performed to determine a suitable confidence
threshold.) Afterward, all detection regions are checked for overlaps with the previously extracted
transport unit region: Only detections with a bounding box of which at least 60% lies within the
transport unit’s bounding box are kept.

Additional post-processing of transport unit side and package unit regions is performed: All masks
are cut according to the inter-unit segmentation’s detection mask found for the considered transport
unit. This means, any pixels detected in this step, exceeding the transport unit mask, are cut off.

For each transport unit, it is ensured that exactly one base pallet and two transport unit sides are
found. In case of additional detections, only those with the highest confidence values are kept.
If fewer components than required are detected, the algorithm aborts without returning any result.
Transport unit side segmentation and packaging unit segmentation are illustrated in Fig. 4.1 (c) and
(d), respectively.

4.3.3 Information Consolidation

The goal of this final step is to use the previously extracted segmentation information to determine
the transport unit’s packaging structure, i.e. to calculate the total number of packages. The algorithm
works regardless of the type of packaging units present. The following steps are performed:

1. Assign each package unit face to one transport unit side

2. "Tetragonize" transport unit sides

3. Rectify both transport unit sides

41

4 A Method for Automated Packaging Structure Recognition in Single RGB Images

4. Calculate package number

Each of the above steps is explained hereinafter.

1) Assign each package unit to one transport unit side: For each packaging unit, the intersec-
tion of its mask with both transport unit sides masks is computed. If at least one of these intersections
is not empty, it is assigned to the side with the larger absolute mask intersection size. Packaging unit
detections not intersecting any of the transport unit sides are discarded.

2) ’Tetragonize’ transport unit side detections: To be able to calculate each transport unit
side’s package number in the succeeding step, the average packaging unit size has to be computed.
Due to perspective distortions, transport unit sizes of identical packages vary vastly within the image
depending on their position relative to the camera. Packaging unit and transport unit side regions are
rectified to overcome this issue. To perform the rectification, the mask of each transport unit side is
approximated by a tetragon shape. This is reasonable for the given case of cube-shaped package units
and assemblies thereof, as explained above. Subsequently, the resulting tetragonal-shaped image
patches are transformed to resemble rectangular regions using a suitable affine geometric transform.

To approximate the polygon describing the side’s mask, an optimization problem minimizing the
region difference for the detected transport unit side mask and the shape described by four corner
points is considered:

min
𝑝1 , 𝑝2 , 𝑝3 , 𝑝4∈𝑃

∑︁
(𝑖, 𝑗) ∈𝑃

��𝑠 (𝑖, 𝑗) − 𝑡 (𝑝1, 𝑝2, 𝑝3, 𝑝4, (𝑖, 𝑗))
�� (4.1)

where 𝑃 = {0, ..., 𝑚} × {0, ..., 𝑛} is the input image’s pixel space, and 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, 2, 3, 4
are four points in this pixel space, forming a tetragon (𝑝1, 𝑝2, 𝑝3, 𝑝4). 𝑠 ∈ {0, 1}𝑚×𝑛 is the binary
mask describing the transport unit side as output by the segmentation model. 𝑡 : 𝑃5 → {0, 1}
with 𝑡 (𝑝1, 𝑝2, 𝑝3, 𝑝4, (𝑖, 𝑗)) = 1 if pixel (𝑖, 𝑗) lies within the tetragon described by the corner points
(𝑝1, 𝑝2, 𝑝3, 𝑝4).

By connecting the tetragon corner points in order 𝑝1𝑝2𝑝3𝑝4𝑝1, an area within the image is described.
Arbitrary tetragonal shapes inside the image plane 𝑃 can be described by four such pixel coordinates.
On the other hand, note that the shape described in such a way is not necessarily a tetragonal one.
Thus, the order in which the four corner points are connected is not arbitrary. For our work, we
assume point orderings 𝑝1, 𝑝2, 𝑝3, 𝑝4 with:

𝑥1 ≤ 𝑥2 (4.2)
𝑥3 ≤ 𝑥4 (4.3)
𝑦1 ≤ 𝑦3 (4.4)
𝑦2 ≤ 𝑦4 (4.5)

42

4.3 Multi-Step Image Processing Pipeline

Figure 4.2: Illustration of the transport unit side mask simplification performed as sub-step of the Information Consolidation
process. The detected transport unit side region is indicated in red. The four black dots indicate the four corners
output by the post-processing optimization algorithm.

If these equations hold, it is ensured that the shape obtained by connecting 𝑝1𝑝2𝑝3𝑝4𝑝1 is a single
tetragon, and not two triangles in an hourglass-like arrangement.

In our implementation, the optimization problem in Equation 4.1 is solved numerically. OpenCV’s
implementation of the Douglas-Peucker algorithm (Douglas and Peucker 1973) is used on the polygon
described by mask𝑚 to find suitable starting points. For our example image, this mask post-processing
procedure and the results are illustrated in Fig. 4.2.

3) Rectify both transport unit sides: Using the approximated tetragon, i.e. the four transport
unit side corner points, the side and corresponding package unit detections associated with this
transport unit side are remapped in such a way, that the transport unit side is described by a rectangle
of size 𝑠𝑣 × 𝑠ℎ. This is illustrated in Fig. 4.1 (e). In our experiment, we used 𝑠𝑣 = 𝑠ℎ = 1000 for
visualization purposes. (As the transform can be computed with sub-pixel accuracy, the choice of 𝑠𝑣
and 𝑠ℎ is in general not relevant for result accuracy.)

4) Calculate package number: For each detected packaging unit 𝑖, the pixel mask is rectified
alongside the transport unit side it is assigned to. A bounding box around the rectified pixel mask
is determined, and this bounding box’s size is used to approximate the package unit’s extent. The
height and width of packaging unit 𝑖 is denoted by 𝑝𝑠𝑖

ℎ
and 𝑝𝑠𝑖𝑣 , respectively. Now, the average

43

4 A Method for Automated Packaging Structure Recognition in Single RGB Images

packaging unit height 𝑝𝑠ℎ and width 𝑝𝑠𝑣 of all packages of one transport unit side, relative to the
side’s size, can be calculated:

𝑝𝑠ℎ =
1
|𝐼 |

∑︁
𝑖∈𝐼

𝑝𝑠𝑖ℎ (4.6)

𝑝𝑠𝑣 =
1
|𝐼 |

∑︁
𝑖∈𝐼

𝑝𝑠𝑖𝑣 (4.7)

Hereby, 𝐼 ⊂ N denotes the set of packages assigned to the transport unit side.

The transport unit side’s numbers of horizontally and vertically stacked transport units, 𝑛ℎ and 𝑛𝑣 ,
are computed as

𝑛ℎ = ⌊ 𝑠ℎ
𝑝𝑠ℎ

+ 0.5 + 𝛿1⌋ (4.8)

𝑛𝑣 = ⌊ 𝑠𝑣

𝑝𝑠𝑣ℎ
+ 0.5 + 𝛿2⌋ (4.9)

Hereby, the additional summands 𝛿1, 𝛿2 > 0 account for the empirically discovered tendency towards
over-estimation of package unit sizes relative to transport unit side sizes. This tendency could be due
to the implementation of bounding boxes around the detected transport unit masks. Such bounding
boxes easily exceed the actual units’ extents in case of slight inaccuracies in the pixel masks. In
our experiments, the values were set to 𝛿1 = 0.0 and 𝛿2 = 0.1. In the computation of the vertical
package number, the additional summand 𝛿2 is larger than 𝛿1, which can be explained as follows: The
packaging units in a transport unit’s top row are often partly occluded by pallet covers (for example,
see Fig. 4.1 (c)). Thus, these packaging units are not completely visible and their regions detected
by the segmentation model are smaller than those of the other rows of packaging units. The larger
choice of 𝛿2 helps to account for these size underestimations.

Once the horizontal and vertical package numbers are calculated for both transport unit sides, the
overall package number can be determined. If the vertical package numbers for the two sides do not
coincide, the algorithm stops without returning any package number result. Otherwise, the package
number is calculated as

𝑛 = 𝑛
(𝑙)
ℎ

· 𝑛(𝑟)
ℎ

· 𝑛𝑣 (4.10)

where 𝑛(𝑙)
ℎ

and 𝑛(𝑟)
ℎ

are the horizontal package number for the left and right transport unit sides
within the image and 𝑛𝑣 = 𝑛

(𝑙)
𝑣 = 𝑛

(𝑟)
𝑣 is the vertical package number. Fig. 4.1 (f) exemplary shows

a comprehensive illustration of the packaging structure recognition results.

This completes the description of our image analysis pipeline for packaging structure recognition. In
summary, we explained the complete process of extracting one or multiple transport units’ packaging
structure, starting with a single RGB image. Before we move on to the training and evaluation of this
pipeline, we introduce our custom dataset in the following section.

44

4.4 Dataset

4.4 Dataset

In this section, we will describe our custom dataset for the use case of packaging structure recognition.
The dataset is used both for the development of our algorithm tackling packaging structure recognition
and for the evaluation of the latter. Particularly, we employ these data in the training of the learning-
based methods utilized in our approach. To enable proper evaluation of the resulting models and the
algorithm, part of the data set is not used in training or tuning the algorithm but is held back for final
evaluations.

4.4.1 Image Acquisition Details

For the creation of our dataset, we acquired and annotated 1.000 images of one or multiple transport
units in logistics environments. All images were taken in the incoming goods department of a German
component supplier in the automotive sector. As is common for such logistics surroundings, transport
units are spread throughout the entire location and acquiring pictures of isolated units is virtually
impossible. Consequently, the vast majority of images depict additional transport units in their
backgrounds. Conventional smartphones with integrated cameras were used for image acquisition
(namely, the following four models were used: Samsung Galaxy S5, Samsung Galaxy S8, Huawei
Y6, Huawei 701L). Depending on the device used, image aspect ratios vary slightly. All images were
resized in such a way, that the larger image dimension measures exactly 1,000 pixels. Images were
acquired in portrait mode, i.e. the larger image dimension is the vertical one in all cases. All images
were taken indoors in well-illuminated environments.

4.4.2 Packaging Components

The packaging components contained within the dataset are restricted to a few predefined types to
ensure the feasibility of the task of automatic packaging structure recognition (see Section 2.2.4).
The relevant kinds of both packaging units and base pallets to be recognized are described in this
section.

Transport and Packaging Units: Compliant with our prerequisites described previously (see
Section 2.2.4), each transport unit may only contain packaging units of a single kind and of equal
sizes. The data contains two different kinds of packaging units: KLT ("Kleinladungsträger") and tray
units. The sizes of the packages of each type vary, but single transport units include only package
units of the same size. Further, we assume that all transport units are packed uniformly, i.e. the
packages are arranged regularly to cover the whole base pallet and each row and column of packages
contains the same number of identical packages. Fig. 4.3 shows several example images for both
package types.

Each image shows transport units of one packaging type exclusively, i.e. there are no images showing
both packaging types. The number of images with KLT packaging types is significantly higher than
for the other packaging type, as is summarized in Table 4.1.

45

4 A Method for Automated Packaging Structure Recognition in Single RGB Images

Figure 4.3: Examples from our dataset of 1,000 images. Top row: KLT package unit type. Bottom row: Tray package unit
type.

Base Pallets: Each transport unit pictured in our dataset is built upon a standardized base pallet.
Though the base pallet materials and colors vary, the pallet size is always equal to 120 cm in length
and 80 cm in width. Moreover, the two visually distinguishable classes of base pallets present are
wooden Euro pallets and plastic pallets.

4.4.3 Annotations

Each image contains up to three fully visible and annotated transport units, which are expected to
be recognized. Additionally, arbitrary other transport units may be only partly visible within an

46

4.4 Dataset

image (these are not annotated). Data annotations consist of the following hierarchically organized
information:

1. Transport unit regions

2. Transport unit side regions

3. Packaging unit regions and class

4. Base pallet regions and class

Each image contains one or more transport units. Each transport unit contains exactly two transport
unit sides and one base pallet. Each transport unit side contains an arbitrary non-zero number of
package unit faces. An example for image annotations is given in Fig. 4.4.

(a) (b) (c) (d)

Figure 4.4: Data annotation examples on a single image from our dataset. (a) The image and its two transport unit annotations
(highlighted in red and green, respectively). (b) The two transport unit side annotations for the top transport unit
are highlighted (red: left transport unit side, green: right transport unit side). (c) The packages assigned to (b)’s
left transport unit side annotation are highlighted in red. (d) The base pallet of the top transport unit is highlighted
in red.

4.4.4 Dataset Splits and Statistics

Of the 1000 images in our dataset, 150 images containing 163 transport units are held back for
evaluation of the packaging structure pipeline. This corresponds to 15% of all images. The selection
of evaluation images was performed manually with the objective to assure that images of identical
transport units were not split up between evaluation and training datasets. More precisely, if several
images of one transport unit were available, either all of those or none of those, were assigned to the
evaluation data subset. Additionally, evaluation images were selected in such a way, that the relative
numbers of KLT and tray units in both dataset splits are similar. This is verified by Table 4.1.

47

4 A Method for Automated Packaging Structure Recognition in Single RGB Images

Table 4.1: Distribution of transport unit number and unit types within our data and its split sets.

Training Validation Evaluation Overall

Transport Unit Number
1 636 136 137 909
2 59 14 13 86
3 5 0 0 5

Package Unit Type
KLT 537 102 116 755
Tray 163 48 34 245

The remaining 850 images are used for training and validation of the segmentation models. To form
the validation subset, 150 of those images (15% of all images) were selected randomly.

Table 4.1 shows some basic statistics for the whole dataset and the three described subsets.

4.5 Evaluation

4.5.1 Segmentation Model Training and Evaluation

Model Training

All three segmentation models in use (transport unit segmentation, side and package segmentation,
base pallet segmentation) are standard Mask R-CNN (He et al. 2017) models using Inception-v2
(Ioffe and Szegedy 2015) feature extractors, as implemented in tensorflow’s object detection API
(Abadi et al. 2016). Once again, note that our focus in answering the research question (RQ1) was
to design a viable image processing pipeline for the use-case of packaging structure recognition, not
to find the single best deep learning model for those sub-tasks solving image analysis tasks. Thus,
no excessive model search and hyperparameter tuning were performed in training our CNN-based
models. Instead, a suitable CNN implementation with moderate computational complexity was
selected and tuning was terminated once further improvements could not be easily accomplished
using our data.

As our dataset of 1.000 images is rather small, heterogeneous transfer learning is used. Such
approaches have proven to be a powerful solution in case of limited training data (Weiss et al. 2016).
The models were initially trained on the COCO object detection challenge’s dataset (Lin et al. 2014)
of approximately 100 times the size of our data (123,287 annotated images). Subsequently, the
models were fine-tuned on our 700 training images for 200.000 training steps using gradient descent
with momentum (Qian 1999) and a batch size of one. Input image resolution was set to 512 pixels
for the larger image dimension, transforming the image in such a way that the original aspect ratio
was preserved. The Mask R-CNN’s output mask resolution is set to 25 x 25 pixels. The batch size

48

4.5 Evaluation

Table 4.2: Training Configuration and Hyperparameters

Configuration & Hyperparameters Value
Image input resolution 512 in larger dimension
Feature Extractor Faster R-CNN Invecption-v2
Batch Size 1
Optimizer Momentum Optimizer
Momentum Value 0.9
Training Steps 200,000
Learning Rate Step 1 - 120k: 2 · 10−4

Step 120k - 160k: 2 · 10−5

Step 160k - 200k: 2 · 10−6

Data Augmentation Options
Random horizontal flip Probability: 0.5
Random crop Minimum image area: 0.95

Probability: 0.9
Random pad Maximum image width: 612

Maximum image height: 612
Random brightness adjustment Maximum deviation: 0.3
Random RGB to gray Probability: 0.2

was chosen due to technical restrictions: The described image resizing approach results in differently
sized images, which can not be processed within a single batch by the CNN implementation at hand.
The number of training steps was chosen, as appeared sufficiently large to ensure convergence in our
experiments, while not prolonging the training process unnecessarily. Techniques like early stopping
were not implemented due to above stated reasons, even though such approaches might yield minor
performance improvements in some cases.

Several image augmentation methods were used in neural network training, namely random horizontal
flip, crop and pad, conversion to gray values, and brightness adjustments. We experimented with
additional augmentation methods, for instance, random adjustments of saturation and contrast, but
found that they did not lead to improvements in accuracy. We performed a sequence of training
experiments to find a suitable image augmentation configuration for our application. More precisely,
we monitored the resulting mAP of our transport unit side and package unit segmentation model
when activating different data augmentation options during training, and we picked those options
yielding the best results. This data augmentation configuration was applied in all our model trainings.

Table 4.2 summarizes our model configuration and hyperparameter choices.

49

4 A Method for Automated Packaging Structure Recognition in Single RGB Images

Figure 4.5: Training progress of the CNN model for transport unit segmentation.

Model Evaluation

For the trained CNN models, the model’s performance under the COCO Object Detection challenge’s
metric is measured; i.e. the Average Precision (AP), and mean Average Precision (mAP) (see Section
3.3.2), averaged for ten different intersection over union (IoU) thresholds of 0.5 to 0.95, is computed.

The training progress of both CNN models is illustrated in Figures 4.5 and 4.6. In both cases,
the top plot illustrates the mAP values on our validation data measured throughout the process of
200,000 training steps. The bottom plot illustrates the overall loss values. Note the differently scaled
y-axes in both plots. AP values generally range from 0.0 to 1.0, in case of perfect detections; loss
values are not easily interpretable. Still, one can observe the initially steep decrease in loss values,
which subsequently reach saturation within the 200,000 training steps. Analogously, validation
AP values initially increase significantly before plateauing after approximately 120,000 to 150,000

50

4.5 Evaluation

Figure 4.6: Training progress of the CNN model for transport unit side and package segmentation.

training steps. This indicates the saturation of the training process, with respect to the chosen training
configuration and hyperparameters.

Considering Fig. 4.5, one observes that the model reaches its best performance on validation data
after approximately 100,000 steps, and, subsequently, the model’s performance declines slightly. In
this case, an early stopping mechanism might yield a model with slightly better evaluation results by
stopping training prematurely, when the peak in performance is reached. Still, this potentially better
performance is neglectable in this case as the difference in performance measures less than 0.005
mAP points. Also, note that mAP values on validation and evaluation data do not always develop
analogously in the later phases of the training.

Models were evaluated on the 150 dedicated evaluation images and on the randomly selected set of
validation images of the same size. The results are listed in Table 4.3: For all three segmentation

51

4 A Method for Automated Packaging Structure Recognition in Single RGB Images

Table 4.3: Segmentation Models’ AP and mAP values on validation and evaluation data

Model/Class Validation images Evaluation images
Transport Units (AP) 0.978 0.935
Sides and Packages (mAP) 0.678 0.601
Sides (AP) 0.901 0.877
KLT units (AP) 0.635 0.573
Tray units (AP) 0.499 0.353

Base pallets (AP) 0.766 0.697

models the mAP is given. Additionally, the average precision for the individual classes (transport
units, transport unit sides, KLT packaging units, tray packaging units and base pallets) included in
the side and package segmentation model is listed.

Notable are all models’ slightly superior performance values on validation data when compared to
performance on evaluation data. This can be explained by the dataset split procedure: As explained
previously, the set of evaluation images is hand-picked and, importantly, either all or none of the
images of the same physical transport unit are contained. On the contrary, the split between training
and validation data was performed randomly. Consequently, some validation images may show
transport units, of which images were also contained in the training data set. Thus, the model can be
expected to perform overly well on such validation images. Different images of the same transport
unit may be very similar also in background elements, lighting conditions and perspective.

Statistical Significance

We perform additional training experiments to investigate the statistical significance, and the repro-
ducibility, of our previously reported training results. These experiments are performed on the 850
images of our dataset, which were designated for training and validation. The 150 evaluation images
were held back during training and only used for final evaluations.

We perform a Monte Carlo cross-validation (MCCV). Burman (1989) and Ramesan and Mathew
(2015, Chapter 3.6) discuss the concept of MCCV, which is sometimes also referred to as random
sub-sampling or repeated learning-testing methods. Similar approaches, like k-fold cross-validation,
could be employed alternatively. We opt for MCCV due to its flexibility regarding the choices of data
split ratios and training repetitions. In each MCCV iteration, a subset of a fixed number of samples
is selected from the training data at random, and held back as validation data set. A model is trained
on the remaining training data. This process is repeated several times to produce results regarding
the statistical significance of training results, and avoid overfitting on a specific training-validation
dataset split.

We perform an MCCV with 30 iterations for our two instance segmentation models, i.e. for the model
for transport unit detection, as well as the model for transport unit side and package detection, In
each iteration, we select 150 instances of our 850 training and validation images at random. We train
both our CNN models on the 700 remaining images. Subsequently, we evaluate the trained models

52

4.5 Evaluation

on the randomly selected 150 images which were not used in training, as well as on our dedicated
evaluation dataset.

Figure 4.7: Box plot showing the evaluation statistics [mAP] for our transport unit segmentation model on validation and
evaluation data.

Fig. 4.7 and Fig. 4.8 illustrate the statistics of the models’ evaluation results on validation and
evaluation data, utilizing box plots. As common, the box covers the range of the results’ 0.25-
quantile to 0.75-quantile. The orange line within the box corresponds to the median value. The
whiskers cover all the data points which lie within a maximum distance of 1.5 times the interquartile
range from the box. All outlier values, i.e. such values which have a greater distance from the box,
are illustrated as circles. The blue horizontal lines indicate the mAP values of the models used in
our PSR pipeline, as evaluated in the previous subsection. Note the different scaling and ranges of
the y-axes in the two plots. Table 4.4 summarizes the same evaluation results by stating the mean
and the standard deviation of the reported mAP values, for both models and datasets, respectively.
Note that each statistical evaluation is based on 31 values: the 30 MCCV runs, and our initial
training-validation split, as evaluated in the previous subsection.

In the case of the transport unit segmentation models, we observe very small values for the standard
deviation of the reported mAP values. All reported mAP values on the evaluation data lie within
the range of 0.922 and 0.944, with a mean value of 0.936. The model we use in our PSR pipeline
reported an mAP of 0.935. The variance of the mAP values for the same models on their respective
validation data is equivalently small. For the transport unit side and package segmentation models,
the mean mAP value for the 30 MCCV models is 0.596. The mAP value for the model trained on
our initial data split reads 0.601. The precisions’ standard deviation on evaluation data is as low
as for the transport unit detection model, whereas that of the validation data is somewhat higher.

53

4 A Method for Automated Packaging Structure Recognition in Single RGB Images

Figure 4.8: Box plot showing the evaluation statistics [mAP] for our transport unit side and package segmentation model on
validation and evaluation data.

This can be explained by the models’ poorer performance on the task of package unit detection, and
by the inconsistent number of instances per package type in different randomly selected validation
sets. As only approximately one-quarter of our training and validation images (211 out of 850)
contain tray transport units, the total amount of such instances within a randomly selected validation
dataset of 150 images varies broadly, and may be particularly small. Especially if the total amount
of comparably error-prone tray unit examples in a validation dataset is low, a higher deviation of the
resulting AP evaluation value from the mean and median values is more likely.

None of the mAP values, that we evaluated and reported in the previous chapter are ranked as
outliers in our box plots. The transport unit segmentation model performs somewhat below average
on evaluation data (see Fig. 4.7), whereas the transport unit side and package segmentation model
performs above average on evaluation data (see Fig. 4.8). Overall, the variance in our cross-
validation training results is very low, indicating the reproducibility of our results. More precisely, it
shows that the random split of training and validation data does not significantly influence the model
performance, and that the hyperparameters are not overfitted to our present training-validation split.

4.5.2 Pipeline Evaluation

The packaging structure recognition process is evaluated on our dedicated evaluation images, which
were not used in model training or validation. In this section, isolated parts of the recognition
pipeline, as well as the pipeline as a whole, are evaluated using adequate evaluation metrics.

54

4.5 Evaluation

Table 4.4: Mean and Standard Deviation of our evaluation results in the cross-validation of the two segmentation models for
transport units, and sides and packages.

Model/Class Validation images Evaluation images
Mean Median St. Dev. Mean Median St. Dev.

Transport Units (AP) 0.973 0.975 0.006 0.936 0.937 0.005
Sides and Packages (mAP) 0.665 0.666 0.014 0.596 0.597 0.005
Sides (AP) 0.894 0.892 0.010 0.870 0.871 0.008
KLT Packages (AP) 0.645 0.646 0.015 0.564 0.565 0.006
Tray Packages (AP) 0.457 0.452 0.036 0.354 0.353 0.009

Inter-Unit Segmentation

In a dedicated evaluation, we examine the results of the inter-unit segmentation, the recognition
pipeline’s first step, by computing an accuracy value for the resulting transport unit extractions. Note
that this step does not only include inference of the segmentation model, but also the post-processing
steps explained in Section 4.3.

The computed accuracy value, ACCinter, measures the number of correct detections, relative to the
total number of annotated transport units and erroneous detections:

ACCinter =
|TPinter |

|TPinter | + |FNinter | + |FPinter |
(4.11)

Where TPinter, FPinter, and FNinter, are the true positive, false positive, and false negative transport
unit detections of inter-unit segmentation. In this context, true positives are all correct detections,
which can be uniquely matched to a ground-truth annotation. False positives are transport unit
detections, which can not be matched to any ground-truth annotation. False negatives are transport
unit annotations for which no matching detection was found. To classify all detections and annotations
as true positive, false positive or false negative, the matching between ground-truth annotations and
detections was performed based on their pair-wise masks’ IoU values. Each detection and ground-
truth annotation can only be counted in one such matching and is ignored afterward.

When applying a quite low IoU threshold of 0.5 for a detection to be counted as true positive, all
transport units are detected. As the IoU requirement is increased, the accuracy value decreases only
slightly, as illustrated in Fig. 4.9 and Table 4.5. This is in accordance with the model’s high Average
Precision values found in the previous section.

The average IoU value for a true positive transport unit detection measures 0.948 for all transport
units. The average IoU for transport units with KLT-type packages measures 0.952, and is slightly
superior to that of transport units with tray-type packages, which measures 0.935. Additionally, the
standard deviation of the detected transport units’ IoUs is slightly higher for tray units, which explains
the inferior accuracy in the case of tray units for lower IoU thresholds. Table 4.6 summarizes these
statistics.

55

4 A Method for Automated Packaging Structure Recognition in Single RGB Images

Figure 4.9: Accuracy of the step of inter-unit segmentation for different intersections over union requirements.

Table 4.5: Accuracy 𝐴𝐶𝐶𝑖𝑛𝑡𝑒𝑟 of the step of Inter-Unit Segmentation for different IoU value requirements.

IoU threshold
Image Set 0.5 0.6 0.7 0.8 0.9 0.95
Evaluation All 1.000 1.000 0.994 0.988 0.920 0.724
KLT Images 1.000 1.000 1.000 1.000 0.929 0.732
Tray Images 1.000 1.000 0.972 0.944 0.889 0.694

Recognition Pipeline

We evaluate the whole packaging structure recognition pipeline by examining how many of the
recognized transport units were recognized correctly. For a transport unit to be recognized correctly,
several conditions must be fulfilled:

• The transport unit was detected accurately (IoU of at least 0.5)

• The package unit type was detected correctly

Table 4.6: Statistics regarding IoU distribution of transport unit detections.

Image Set Mean Standard Deviation
Evaluation All 0.948 0.039
KLT Images 0.952 0.023
Tray Images 0.935 0.069

56

4.5 Evaluation

Table 4.7: Pipeline evaluation results

Image Set Number of images Evaluation Error 𝑒
Evaluation All 150 0.150
KLT Images 116 0.065
Tray Images 34 0.441

• The total number of package units was recognized correctly

A recognition error 𝑒𝑖 for each evaluation image 𝑖 is computed independently as:

𝑒𝑖 = 1 − |TP𝑖 |
|TP𝑖 | + |FP𝑖 | + |FN𝑖 |

(4.12)

where |TP𝑖 |, |FP𝑖 | and |FN𝑖 | are the sets of true positive, false positive and false negative results
within the image. In this context, true positive means, an annotated transport unit was found and
the packaging structure was recognized correctly. False positive can mean two things: Either an
additional transport unit was found where there was no unit annotated, or the packaging structure
of an annotated transport unit was not recognized correctly. As usual, false negatives are annotated
transport units that were not recognized at all. The overall evaluation error 𝑒 is computed as the
mean error over all evaluation images:

𝑒𝐼 =
∑︁
𝑖∈𝐼

𝑒𝑖

|𝐼 | (4.13)

where 𝐼 is the set of evaluated images.

An overview of the evaluation results is given in Table 4.7. The evaluation dataset’s overall evaluation
error 𝑒 computes to 0.15, indicating that approximately 85% of all transport units were recognized
correctly. The algorithm’s success rate is significantly higher for transport units with KLT packages
compared to tray packages (93% vs. 56%). As is the case for the human eye, KLT package units
seem to be easier to recognize and differentiate for the neural network. This can also be seen in
the segmentation model’s result presented previously in Table 4.3. Reasons for this fact may be
the darker color and lower contrast of tray units compared to KLT units, which results in higher
uniformity in the values of the pixels assignable to the tray transport unit. Additionally, the number
of tray unit samples in our dataset is significantly lower than that of KLT units. This may result in
the neural network emphasizing the accurate detection of KLT units over that of tray units.

Patched Recognition Pipelines

In this section, exactly the same evaluations as described in the previous section are performed on
the complete recognition process, while replacing single steps of the pipeline. The goal of these
evaluations is to weigh the consequences of errors in single components of the pipeline. The following
modifications are explored:

• Insertion of ground-truth annotations of transport unit sides (PATCHsides)

57

4 A Method for Automated Packaging Structure Recognition in Single RGB Images

• Insertion of ground-truth annotations of packaging unit faces (PATCHpack)

• Insertion of both transport unit side and packaging unit faces (PATCHboth)

The resulting error values on evaluation images of these modified recognition pipelines can be found
in Table 4.8. Thereby, the same evaluation metric as previously introduced and applied in the pipeline
evaluation (see Equation 4.13) is used.

Table 4.8: Evaluation Error e of original and patched recognition pipelines.

Image Set Number of images Recognition Pipeline
Original PATCHsides PATCHpack PATCHboth

Evaluation All 150 0.150 0.170 0.050 0.000
KLT Images 116 0.065 0.099 0.052 0.000
Tray Images 34 0.441 0.412 0.044 0.000

As is expectable, when perfect transport unit side and package unit face detections are inserted
(PATCHboth), the algorithm correctly recognizes all transport unit’s packaging structures.

In the case of replacing packaging unit detections (PATCHpack), the error measure for transport units
of tray-type packages decreases significantly. The error value for KLT packages sees, at least, slight
improvements. This helps to identify the package unit segmentation as a major source of error in our
overall pipeline. At the same time, it shows that the recognition accuracy for tray units can resemble
the accuracy for KLT units if reliable package unit segmentation can be achieved. Overall, in this
scenario, the evaluation results in an accuracy value of 95%, and an even slightly higher value for
tray packaging units.

In the scenario (PATCHsides), interesting observations can be noted: The replacement of transport
unit side detections by allegedly perfect annotations does not result in a reduced error measurement.
On the one hand, this can be explained by the overall good performance of the transport unit side
segmentation model, as evaluated previously. Further, note, that transport unit side segmentation and
package unit face segmentation are performed simultaneously by one single neural network, using
the same image features. Thus, it seems likely, that systematic errors can occur. For instance, if a
transport unit side’s corner is misplaced by the model, the model may be likely to also misplace the
corresponding package face’s corner accordingly. This can result in slightly erroneous detections
canceling each other out at large. More precisely, if, for instance, both detected transport unit side
masks and package face masks are too short in horizontal direction, this will still allow for the correct
packaging structure to be recognized.

Manual Error Observations

Apart from the quantitative evaluations presented above, insights and model understanding can be
gained through qualitative observations. To this end, some error cases are analyzed in this subsection.
Altogether, 9 of 127 KLT transport units were not recognized correctly.

58

4.5 Evaluation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.10: Error cases for unit type ’KLT’ (exhaustive list). In (a) and (b) the lower unit is not recognized correctly. In (d),
the upper unit is not recognized correctly.

59

4 A Method for Automated Packaging Structure Recognition in Single RGB Images

All 9 error cases are illustrated in Fig. 4.10. In cases (a) and (b), the lower transport unit’s left side
was not recognized correctly (the detection does not span the whole transport unit side, but is shorter
in the horizontal direction). As the number of packaging units in each direction is computed as the
average packaging unit’s size relative to the transport unit side’s size, this results in an error in the
calculation of the number of packaging units in horizontal, or vertical, direction, respectively. In the
remaining seven cases, inaccurate package unit detections lead to errors in the results. In case (c),
the detection of packaging units was hindered by the foil applied to the transport unit. The packaging
strap applied to the transport unit in (e) and (f) resulted in a packaging unit being detected as two
units, split by the packaging strap. In the last three cases, we argue, that the imaging perspective was
far from ideal: Images (h) and (i) were taken from a significantly downward perspective (the camera
was not on level with the transport unit, as is desirable). In case (g), one of the transport unit’s sides
is only hardly visible due to a near-frontal perspective of the transport unit. (Compare to imaging
restrictions defined in Section 2.2.4.)

(a) (b)

(c) (d)

Figure 4.11: Example for erroneous packaging unit detection in case of tray packaging units. (a) Detected packaging units,
(b), (c) rectified images of detected transport unit sides and assigned package detections, (d) overall results.

The error rate for images showing transport units composed of tray packages was significantly higher
than for KLT packages: Errors occurred for 17 out of 36 transport units. In most of these cases,
these errors were, once again, due to inaccuracies in packaging unit detection. In accordance with

60

4.5 Evaluation

previous evaluation results (compare section 4.5.1), tray packages are harder to recognize, not only
for the human eye but also for the CNN detection model. Examples of such errors are illustrated in
Fig. 4.11. As one can see, the package unit detections on the right transport unit side are incomplete
and inaccurate. Moreover, present package unit detections are systematically too large in height,
leading to an underestimation of the number of vertically stacked units, and, thus, inaccurate results.

In other cases, the packaging structure detection failed due to inaccuracies in the pipeline’s first
step of inter-unit detection. Corresponding examples are illustrated in Fig. 4.12. In both examples,
transport units are placed next to additional, not fully visible transport units of very similar appearance
(i.e. same package type and number of units). Thus, the transport unit detection does not correctly
recognize the transport units’ horizontal extents and assigns part of neighboring background units
to a relevant unit. Note that these inaccuracies might, depending on the applied IoU threshold, not
even be classified as errors in the step of inter-unit detection as the detections’ IoU was nonetheless
relatively high relative to the images’ annotations. (The detected transport units have IoUs of 0.833
and 0.837 for examples in Fig. 4.12 (a), and IoU of 0.901 in for example in Fig. 4.12 (b).) Still,
the inaccurate results of the transport unit detection allow for further inaccuracies in the succeeding
steps of side and package unit detection, and in the computation of package unit numbers.

(a) (b)

Figure 4.12: Examples for erroneous packaging unit detection in case of tray packaging units, due to inaccurate detection of
the whole transport unit.

Overall, our analysis shows that diverse reasons for erroneous results of our pipeline exist. On one
hand, the involved instance segmentation models produce inaccurate results in some cases. This
could be overcome by employing additional training data, improving the model and training setup,
or, in some cases, construction and fine-tuning adequate post-processing steps. On the other hand,
some errors could be resolved by more thorough enforcement of our image acquisition restrictions,
i.e. enforcing desired imaging perspectives. The resolution of error cases for KLT packaging units
is more easily accessible as is the case for tray units, which are visually more difficult to recognize
and segment on 2D images.

61

4 A Method for Automated Packaging Structure Recognition in Single RGB Images

4.6 Result Discussion and Assessment

Our experiments have shown that it is possible to construct an image processing pipeline, which is
able to perform automated packaging structure recognition on 2D images with high success rates. The
accuracies achieved in our experiments read 85% for our dataset containing two common packaging
types, and 93% for the most-common packaging type of KLT units (for which a significantly higher
amount of training data was available). These values may not be sufficient to completely avoid human
efforts of packaging structure recognition, but can arguably be improved further. Further, common
experiences in deep learning methodology teach that results can often be significantly improved by
increasing the amount of training data available. Notably, our results show that the simultaneous
recognition of multiple, visually distinct packaging types is possible, despite the comparably rather
limited amount of training data. Accurate recognition results are possible, even in case of small
occlusions due to transport labels, packaging straps or other applications to the transport unit. We
achieved reliable results in a variant imaging setup, e.g. different imaging devices and backgrounds,
and did not need to enforce strong limitations regarding lighting conditions or exact imaging per-
spective. Still, some errors prospectively could be avoided by increasing imaging requirements, such
as the selection of favorable perspectives and distinguishable backgrounds (reduction of the amount
of disturbing background transport units).

In the current state of our packaging structure recognition pipeline, the most frequent source of error
is the step of package unit face segmentation. This step appears to be especially difficult for the tray
package type. The latter is visually harder to distinguish, also for the human observer. Apart from
that intuitive observation, this shows the shape, size, structure and color of package units to be crucial
for their recognizability by CNN detection models.

Arguably, we have only considered a small fraction of package types and transport unit appearances
relevant to the task of packaging structure recognition. A broader examination is hindered by the
limited availability of relevant training and evaluation images and the high efforts required for the
manual acquisition and annotation of such images. Synthetic training data generation can be a
resolution to this common obstacle of data availability.

In this chapter, we attended to our first research question by designing a functional procedure to extract
packaging structure information from 2D images. We also introduced a dataset for the novel use
case and evaluated our method on our data. The next chapter will focus on the technical algorithms
employed by our image processing pipeline, and thereby tackle the second research question.

62

5 Comparing Deep Learning and Computer
Vision Approaches - A Case Study

In this chapter, we aim to challenge the necessity of employing learning-based approaches to obtain
high-quality results for our task of packaging structure recognition. To that end, we investigate the
applicability of non-learning-based, more traditional computer vision approaches to the problem at
hand. Moreover, we first review literature discussing algorithmic choices for, and proposing solutions
to, related image analysis tasks. As our proposed method for packaging structure recognition is a
complex multi-step image processing pipeline, we explore the question of algorithmic choices based
on the sub-step of transport unit side detection.

Parts of this chapter’s experiments were already published in Dörr et al. (2020b). However, due to
a refactoring of the dataset and minor adjustments to our implementation, evaluation values differ
slightly. Interpretation and implication are not affected by these changes.

5.1 Research Question Elaboration

The research question (RQ2), which we tackle in this chapter was already introduced in Section 1.2,
and reads as follows:

(RQ2) Which algorithms and techniques are well-suited for the implementation of a
packaging structure recognition algorithm?

To answer this question, we investigate different algorithmic approaches toward the solution of the
problem of packaging structure recognition. This question is very complex, as diverse algorithm
choices and arbitrary complex algorithm compositions are possible. Thus, we cannot provide the
necessary resources to prove one algorithm or solution to be ideal. We limit the scope of the question,
and the considered tasks, in such a way, as to allow meaningful insights and a reliable assessment
regarding suitable algorithm choices.

In the following, we describe the scope limitations, assumptions and criteria we consider in our
elaboration of the research question.

First of all, we narrow the task for which the question is considered. Previously, we described our
approach to packaging structure recognition to be a multi-step image processing pipeline, solving a
series of related recognition tasks subsequently. In its original version, the research question considers
all image recognition steps. We decide to focus on the task of transport unit side recognition in this
chapter. This specific task was selected, as it appears to be most suitable for the application of

63

5 Comparing Deep Learning and Computer Vision Approaches - A Case Study

manually composed recognition algorithms, as the structure and placement of the objects (transport
unit sides) to be recognized are well known.

Fundamentally, when solving image recognition task, two basic algorithmic choices are viable:
Traditional computer vision or CNN-based approaches, i.e. deep learning. These are the natural
options we limit our investigations to. Our original implementation uses state-of-the-art CNN
methods for instance segmentation and custom post-processing operations (see Chapter 4). Thus, in
this chapter, we construct an algorithm based on traditional computer vision techniques only. We
compare the results and requirements of both approaches to answer the research question (RQ2).

In the implementation of our reference computer vision algorithm, we are limited regarding person-
nel and computing resources. Such limitations are realistic and common in the construction and
implementation of industrial solutions. Theoretically, it is possible to construct computer vision
algorithms performing on the same level as deep-learning-based approaches, as the fundamental
techniques are often identical (CNNs use convolutional operations which are also common in tra-
ditional computer vision, compare Chapter 3). Still, in practice, the potentials of both approaches
differ significantly, as it is not feasible to tune the high number of required convolutional weights
and parameters manually, without the use of learning algorithms. Consequently, we aim to answer
the question, of whether a competitive or at least promising computer-vision approach can be found
with very limited implementation resources.

Another relevant consideration regarding the elaboration of our research question is the algorithm’s
ability to generalize. As we know for deep learning algorithms, such models can be trained to
recognize relevant objects in highly variant appearances and environments (i.e. different perspectives,
backgrounds, components), if suitable training data is available. The same is not necessarily true for
hand-crafted computer vision approaches.

We summarize our contributions in this chapter as follows:

• We present a unique case study matching deep learning algorithms against traditional computer
vision approaches.

• We evaluate the performance of two rivaling approaches and discuss their advantages and
disadvantages.

• We conclude by finding the deep learning approach to be superior in the scope of our case
study, thereby providing guidance on similar recognition tasks.

5.2 Related Work

This section gives an overview of similar object detection problems and their solution approaches
using classic image processing techniques. Zou et al. (2023) give a comprehensive overview of the
evolution of object detection in images, having analyzed more than 400 relevant publications. They
note that the history of object detection can be split into two periods: one before and one after the
rise of deep-learning-based object detectors, which was triggered by Krizhevsky et al. (2012) and
related publications (compare Chapter 3, especially Section 3.2). In the earlier time period, object

64

5.3 Computer-Vision-Based Transport Unit Side Detection

detectors were constructed using handcrafted features, feature extraction methods like the scale-
invariant feature transform (SIFT) (Lowe 1999), and also image transforms like Haar wavelets or the
Hough transform. At the same time, most methods focused on a single use case, and one or a small
number of object classes. For instance, two of the most influential works of the time, Viola and Jones
(2001) and Dalal and Triggs (2005), focus on face recognition, and pedestrian detection, respectively.
The highest accuracy (𝑚𝐴𝑃0.5) achieved by a model of this era before the rise of CNNs for object
detection was 33.7% by Sadeghi and Forsyth (2014), as compared to 55.5% by the CNN-based model
RCNN by Girshick et al. (2013) in the same year, and 89.3% by the 2022 record entry Ghiasi et al.
(2021). Even though the accuracy and success of image recognition and object detection have seen
an enormous increase in the later time period (see Zou et al. (2023) and Everingham et al. (2010) for
details), this section is concerned with approaches not employing CNNs and deep learning.

More specifically, we consider related work aiming to detect objects of linear shapes, or based on
linear edges. Line detection as a problem in itself has attracted some attention as a research field.
Most approaches employ the Hough transform (Hough 1962). As early as the 1980s, image line
detection studies relying on the Hough transform were published. Inigo et al. (1984) detect pathways
and obstacles in images to enable autonomous vehicles to navigate more safely, and Skingley and
Rye (1987) investigate the usage of the Hough transform to detect lines in radar images. Numerous
improvements to the Hough transform, regarding both performance and result quality, were suggested,
including the randomized Hough transform (RHT) by Xu et al. (1990), and the probabilistic Hough
transform (PHT) by Kiryati et al. (1991). Aggarwal and Karl (2006) propose the formulation of
image line detection as an inverse problem using the Radon transform, which basically corresponds
to a continuous formulation of the Hough transform. They argue that their formulation allows for the
exploitation of apriori knowledge using regularizers. More recent works also employ deep learning
and CNNs for line detection in images, see for instance Lee et al. (2017) and Zhao et al. (2022). But
again, as we aim to find a learning-free approach to our problem, these are not in the scope of this
chapter.

Interestingly, O’Mahony et al. (2019) compare the performance of methods employing deep learning
for image analysis tasks to such relying on traditional computer vision in general. They make the
point, that deep learning is by far the mightier tool, and has recently led to significant progress in the
domain of Digital Image Processing. Still, they conclude some tasks can be solved more efficiently
by traditional computer vision means.

5.3 Computer-Vision-Based Transport Unit Side Detection

Our pipeline’s first implementation, which we discussed in Chapter 4, makes use of CNNs for instance
segmentation in images. The employment of such models requires large amounts of annotated training
data, which is in most cases not readily available. Additionally, other disadvantages of CNNs are
their computational complexity, as well as their black-box nature. Thus, we explore the construction
of learning-free approaches as alternatives to CNN-based instance segmentation models.

To examine the potential of traditional computer vision approaches for automated packaging structure
recognition, we exemplary consider the sub-task of transport unit side detection. The step of transport
unit side detection in our image processing pipeline is visualized in Fig. 4.1 (c). This task is especially

65

5 Comparing Deep Learning and Computer Vision Approaches - A Case Study

(a) (b)

Figure 5.1: Exemplary input image and transport unit side annotations (Green color: Annotation of left transport unit side,
red color: Annotation of right transport unit side.)

eligible for the application of computer vision methods, as the target structures are well-defined and
visual contrast is high.

We implemented an image-processing-based approach targeting the detection of transport unit sides
from cropped images showing a single logistics transport unit. Our approach is based on the
Hough transform (Hough 1962), a well-established method for detecting straight lines in images.
As package and transport unit faces are of regular, rectangular shapes, an image crop showing one
transport unit contains many linear structures. The approach’s objective is to detect these linear
structures, especially the edges of packaging units, to heuristically determine the transport unit side
regions within the image. Before we explain our approach step-by-step, we summarize the apriori
knowledge, which we aim to exploit.

Apriori Knowledge Fig. 5.1 (b) shows an example of transport unit sides to be detected: the
transport unit’s left side is highlighted in green, and its right side is highlighted in red. For both
transport unit sides, exactly four linear side boundaries of similar sizes are to be found. In the real
world, two of these boundaries are horizontally, and the other two are vertically orientated. In general,
the four boundary line segments’ lengths are of significant length compared to the whole transport
unit’s extent. Further, three of these lines segment image regions showing packaging unit’s from
others, showing either transport unit lid, base pallet or image background. Thus, in general, visual
differences in terms of color and structure are high and these segments are well distinguishable. The
last of these line segments is a shared boundary with the other transport unit side (the left side’s right
boundary, and the right side’s left boundary).

1. Pre-processing: The input image for the packaging structure recognition’s step of transport
unit side segmentation is a cropped image showing exactly one fully-visible transport unit. A very

66

5.3 Computer-Vision-Based Transport Unit Side Detection

simple pre-processing is performed on each input image to the algorithm. More precisely, images are
converted to grayscale. We experimented with the standardization of images (i.e. the transformation
of pixel values resulting in a distribution with pre-defined mean and standard deviation) but found
that such steps did not improve the overall results. Fig. 5.1 (a) shows an exemplary input image
before pre-processing.

2. Line Detection: The next step is to detect linear structures within the image. In order to be able
to capture all relevant line structures, and to enhance further processing possibilities, we choose a dual
approach: We aim to detect line structures depending on their orientation, processing near-vertical
and near-horizontal lines separately. This also allows for the exploitation of apriori knowledge about
the transport unit’s geometry and the image’s compositions and characteristics.

To detect qualifying horizontal and vertical structures, two different edge detection filter kernels are
applied to the image, and the resulting edge images are binarized. One of these kernels aims at
detecting horizontal edges, the other one on vertical edges. More precisely, the Hewitt operator was
used. Amer and Abushaala (2015) introduce and compare common edge detection methods. In this
case, we opted against the established edge detector by Canny (1986), which is a traditional approach
and is still widely used for various tasks involving edge detection in images. The reason for our
choice is that the Canny method detects edges with arbitrary orientation, whereas we aim to detect
horizontal and vertical structures separately. We use the following convolutional kernels in our edge
detector:

𝑃𝑟ℎ =
©«

1 1 1
0 0 0

−1 −1 −1

ª®®¬ (5.1)

𝑃𝑟𝑣 =
©«

1 0 −1
1 0 −1
1 0 −1

ª®®¬ (5.2)

Equation 5.1 states the kernel for the detection of horizontal structures, and Equation 5.2 contains
the kernel concerning vertical structures.

After binarization, the image foreground is restricted to the actual transport unit region using the
pixel mask which is input to the step of transport unit side segmentation. This is to avoid background
structures from being detected along the relevant transport unit lines. Exemplary resulting binary
edge images are shown in Fig. 5.2 (a) and (b).

The binary edge images are used as input for the Hough transform in order to find linear structures.
We set the Hough transform’s line sampling distances to 1 pixel, and 1°, respectively. Further
reduction of sampling distances did not yield improved results in our experiments. The minimum
length for edge structures to be classified as lines by the Hough transform is set to 0.4 times the
image height for vertical lines and 0.25 times the image width for horizontal lines. This minimum
length relative to the corresponding image dimension is smaller in the case of horizontal lines, as

67

5 Comparing Deep Learning and Computer Vision Approaches - A Case Study

we assume horizontal lines to be either part of the left, or of the right transport unit side. In both
cases, the corresponding transport unit side covers approximately half the image width. At the same
time, vertical lines cover the whole transport unit’s vertical extent, and thus a greater fraction of the
overall image extent in this direction. However, we define a minimum number of both horizontal
and vertical lines which need to be detected. In case fewer than the minimum acceptable number of
lines are detected, the minimum length for lines is decreased and the Hough transform is repeated,
iteratively, until the minimum line number is reached. This parameter is set to 25 for both classes of
lines. The maximum number of lines for both horizontal and vertical lines is set to 100. Additional
lines are discarded, thereby lines of greater length are preferred. Depending on viewpoint, distance
and perspective, the accurate direction of horizontal and vertical lines may deviate by several degrees
from 0°and 90°, respectively. Line filtering depending on the line angle is performed for vertical
lines: The maximum acceptable deviation from vertical direction is set to 10° for vertical lines.
Detected vertical lines with greater deviations are discarded. For horizontal lines, no filtering is
performed. The procedures, thresholds and parameters described above were found to yield the best
results in our experiments. The line detection results are illustrated in Fig. 5.2 (c) and (d).

(a) (b)

(c) (d)

Figure 5.2: Detection of horizontal and vertical lines. (a) Binary image of horizontal edge structures, (b) binary image of
vertical edge structures, (c) detected vertical lines, (d) detected horizontal lines.

68

5.3 Computer-Vision-Based Transport Unit Side Detection

3. Vanishing Point Estimation: After the line detection has been performed, we try to determine
the image’s vanishing points (Barnard 1983) for vertical lines and for the visible transport unit sides’
horizontal lines. To do so, we use a heuristic approach, again exploiting the knowledge of the
image’s contents and its geometric properties. We assume that the majority of vertical line segments
detected correspond to the vertical edges of the transport unit. After computing all intersection
points of these vertical lines, we use the mean value of all intersection points as the first guess for
the unit’s vertical vanishing point. Subsequently, we drop lines that do not get sufficiently close to
the current vanishing point estimate. Then, we refine the estimate based on the intersection points of
the reduced set of lines. For the two vanishing points of horizontal lines on our transport unit sides,
we proceed similarly. Following the computation of the intersection points of horizontal lines. After
all intersection points of horizontal lines are computed, we try to find two accumulation points of
horizontal line intersections: One on the left-hand side of the image and one on the right-hand side.
Then, each horizontal line is either assigned to the left or right transport unit side, depending on
its minimum distance to the vanishing point estimations. Once again, we refine the vanishing point
positions for left-side and right-side vanishing points by considering only intersections of the lines
assigned to the left side, or the right side, respectively. The step of line assignment and vanishing
point computation is repeated once again to improve result quality. Fig. 5.3 (c) illustrates vanishing
point estimation and line assignments.

Figure 5.3: Estimation of vanishing points.

69

5 Comparing Deep Learning and Computer Vision Approaches - A Case Study

In this step, we again rely on a suitable perspective of the input image: While generally a roughly
on-level view is requested, the step of vanishing point estimation requires the view of the pallet to be
slightly top-down or bottom-up. Otherwise, the transport unit’s vertical structures may be depicted
by virtually parallel lines within the image. In such a case, the estimation of a vanishing point of
these vertical lines becomes impossible, and our approach fails. In practice, it is rather difficult to
acquire such a perfectly aligned image, even if aiming to do so. Our dataset did not contain an image,
for which that problem occurred.

4. Side Boundary Estimation: Based on the vanishing points and corresponding lines, we try to
segment the transport unit sides. To do so, the start and end points for all horizontal line segments
are determined. This is done by first creating a binary image of the line under consideration. Using
the AND operator, the image is matched to the binary edge image which was created in step 1 (as
input to the Hough transform). The resulting binary edge segment image is filtered in such a way,
that only coherent structures of sufficient length are preserved. We then use the outermost points of
the filtered binary image as the start and end points for the corresponding line segment. Employing
the obtained line endpoints, we estimate the transport unit side boundaries by fitting regression lines
through the corresponding endpoints of each line set and the side’s corresponding vanishing point.
For instance, to find the left boundary of the left transport unit side, we regress a line through the
left side’s vertical vanishing point and the left endpoints of all horizontal lines assigned to the left
side. The regression line, in this case, is the line with minimal mean distance to applicable line
endpoints and the vanishing point. First, all vertical side boundaries are determined. Fig. 5.4 (a)
illustrates the vertical side boundary estimation: Red (green) lines indicate the left (right) side’s
line segments (as determined by the estimated endpoints), and the three black lines indicate the
determined side’s boundaries. Subsequently, for the upper and lower boundaries, a joint regression
for both sides is performed. This is illustrated again in Fig. 5.4 (b): The side’s vertical line segments
are illustrated in darker red and green color, respectively, the brighter red and green lines indicate the
side’s boundaries. By joint regression, we mean both upper and both lower boundaries are optimized
jointly, as we can assume both lines to intersect on the middle vertical side boundary, which we found
previously. This exploitation of apriori knowledge leads to significantly improved results. In the last
step, the transport unit side corner points are inferred by intersecting side boundary lines. Exemplary
overall side detection results are shown in Fig. 5.4 (c).

(a) (b) (c)

Figure 5.4: Trasnport unit side boundary estimation and side segmentation. (a), (b): Determination of vertical and horizontal
side boundary lines. (c): Resulting transport unit sides.

70

5.4 Results: Comparing Computer Vision and Deep Learning Approaches

Table 5.1: Transport unit side segmentation evaluation results: Average IoU values.

Method Average IoU
All units KLT Tray

CNN 0.9170 0.9113 0.9372
Image Processing 0.7914 0.7907 0.7939

Overall, there is a considerable number of thresholds and similar parameters contained in this
approach. For instance, in finding binary edge images, the parameters involved are kernel sizes
and patterns and binarization threshold. Further parameters are required when performing the
Hough transform, e.g. the minimum length of line segments to consider, as well as distance and
angle resolutions. Also, in vanishing point estimation and line assignments, and line endpoint
determination, numerous threshold parameters are involved.

5.4 Results: Comparing Computer Vision and Deep Learning
Approaches

In this section, we evaluate the method’s performance for the task of transport unit side segmentation
and compare the results to those of the CNN-based instance segmentation model. For all evaluation
images, the intersection over union (IoU) of the two predicted transport unit sides, relative to the
annotated sides, is computed. In a first evaluation, we compare the average IoU values of both
methods. If any of the methods failed to find an annotated transport unit side completely, this is
considered an IoU of 0. Table 5.1 shows the corresponding overall results, as well as the results by
packaging type. The computer vision approach is not able to achieve results as good as those of the
learning-based method. Averaged over all evaluation images, the average IoU of transport unit sides
predicted by the computer vision approach is 0.791, compared to 0.917 for the deep learning model’s
predictions. Both KLT and tray units are, on average, predicted more accurately by the deep learning
model.

Additionally, we compute an accuracy value as the relative number of correct detections based on
given IoU thresholds. Thereby, we consider different IoU threshold values between 0.5 and 0.95.
More precisely, the reported accuracy at IoU threshold 0.95 is the ratio of annotated transport unit
sides, for which detections with an IoU of at least 0.95, relative to present ground-truth annotations,
were found. The computed accuracy values for both methods in consideration are shown in Table
5.2.

Fig. 5.5 illustrates the distribution of the two method’s IoU values by means of corresponding
histograms. On the x-axis the IoU value range was sectioned into 20 equidistant bins of width 0.05.
The y-axis indicates the number of transport unit side instances, in each bin. Note the logarithmic
scaling of the figure’s y-axis, which was applied to allow for better countability of bins containing
only very few instances. If a transport unit side was not detected, this is accounted for with an IoU
value of 0. In part (a), we can see that the lowest reported IoU for our CNN implementation lies
within the bin ranging from 0.65 to 0.7. For our image processing pipeline, 11 transport unit sides

71

5 Comparing Deep Learning and Computer Vision Approaches - A Case Study

Table 5.2: Transport unit side segmentation evaluation results: Accuracy at different IoU thresholds.

IoU threshold
Method 0.5 0.6 0.7 0.8 0.9 0.95
CNN 1.000 1.000 0.997 0.985 0.709 0.212
Image Processing 0.951 0.911 0.819 0.693 0.215 0.018

could not be detected at all. Of the detected transport unit sides, the lowest reported IoU value
lies within the range of 0.25 to 0.3. As supported by the numbers in Tables 5.1 and 5.2, the total
number of very accurately segmented transport unit sides (i.e. IoU greater than 0.9) is significantly
higher for the CNN-based method. Quantifying confidence intervals for these statistics, the detected
transport side IoU for the CNN algorithm is greater than 0.864 with a probability of 90%. For the
image-processing-based algorithm, one has a 90% probability that the IoU exceeds a value of 0.614.

The values show that, in the current implementations, the CNN outperforms our image processing
approach by a great margin.

(a) (b)

Figure 5.5: Histograms of IoU values for the two implementations of transport unit side segmentation: (a) CNN and (b) Image
Processing. Note the logarithmic scale of the y-axis.

5.5 Discussion of Experiment Results and Implications

In our experiments, our computer vision algorithm for transport unit side detection proved to be very
sensitive to parameter choices. Results can fluctuate significantly if single parameters are slightly
varied. At the same time, it is extremely difficult to find near-optimal parameters for a whole set of
images. Parameters working well in some cases may yield underwhelming results on other images,
e.g. if other packaging types, packaging structure, packaging components, or different imaging
conditions are present. Even though it is possible to parameter-tune the image processing algorithm
to deliver precise results for single images or groups of images, we were not successful in finding

72

5.5 Discussion of Experiment Results and Implications

parameters yielding good results on the whole data set. The evaluation values shown are the best
values achieved by systematically varying the involved parameters. The CNN, on the other hand,
easily adapts to data as diverse as ours, due to the huge number of learnable parameters.

Notably, there are numerous possibilities to enhance our computer vision algorithm to yield better
results in a broad selection of images. The chain of individual steps in our algorithm was constructed
based on literature and existing approaches, task-specific knowledge and manual observations. Cer-
tainly, no exhaustive search of optimal processing steps was performed and a better algorithm design
could most probably be found. On the other hand, images could be split into different classes, based
on arbitrary compositional or visual features, and different parameter choices could be applied to each
class. Further, machine learning could be introduced to enhance the quality of parameter choices,
or even optimize the selection of processing steps, which are performed. Still, the implementation
and optimization efforts included in such improvements are not to be neglected. Additionally, the
application of machine learning approaches introduces the need for annotated training data, which
we aim to eliminate in this case study.

To summarize the results of our case study, we infer that it is not feasible to replace the deep-
learning-based algorithms with learning-free computer vision approaches. This does not necessarily
mean, that it is not possible to solve the task of transport unit side detection on our dataset by
means of traditional computer vision. Instead, we argue the effort required to find such a solution
is significant, and might even exceed the effort involved in the annotation and training of our CNN
model. Further, we anticipate the CNN model to be more robust against possible changes in imaging
parameters and perspective, packaging components, or environmental conditions. Regarding the
motivating research question (RQ2), we conclude that CNN algorithms for the implementation of
our packaging recognition pipeline are the best choice, given our conditions, criteria and objectives.
To our knowledge, we are the first to pit state-of-the-art deep-learning-based methods for image
analysis against traditional computer vision techniques utilizing a practical case study from a real-
world logistics problem. The provided insights may allow others to make similar design decisions
early on when building related recognition pipelines - inside or outside the domain of logistics.

In the next chapter, we will focus on our last research question (RQ3), and move in a different research
direction: We will leave traditional image processing techniques and design more sophisticated deep
learning models for object detection and instance segmentation tasks within the use case of packaging
structure recognition.

73

6 TetraPackNet: Specialized Deep Learning
Approaches for Packaging Structure
Recognition

The contents of this chapter were partially published in Dörr et al. (2021). This chapter does not
only elaborate on the same work at full length but also contains additional information, ideas and
experiments.

6.1 Research Question Elaboration

The research question (RQ3), which we tackle in this chapter was already introduced in Section 1.2,
and reads as follows:

(RQ3) How can available apriori knowledge about geometrical restrictions of transported
materials be utilized to design specific detection algorithms, yielding improved results in

packaging structure recognition?

As we investigate this research question, our focus remains on the use case of packaging structure
recognition, and the image processing pipeline, which we introduced in Chapter 4. One crucial
step in this pipeline is the recognition of two visible transport unit side faces, by finding the exact
positions of their four corner points. This is a reasonable objective, as transport unit side faces, as
well as packaging unit faces, are of rectangular shape in the real world (compare Section 4.3). In
this chapter’s experiments, we aim to exploit this apriori knowledge about our detection targets in
order to construct specific, purposeful detection models for the task of transport unit side detection.
This is necessary, as existing detection methods usually employ generic object representations like
bounding boxes, which are too inaccurate in our case, or segmentation masks, which incorporate too
many degrees of freedom for our purpose. Thus, we aim to design specific image object detection
models outputting exact object locations based on four characteristic feature points. The first step
toward the design and implementation of such a model is the proper definition of the targeted object
representation.

It is noteworthy, that similar assumptions about detection target geometry are also applicable in
other logistics use cases, such as package detection or transport label detection. The same holds for
non-logistics applications like the recognition of license plates or documents, and other cases where
objects of regular geometric shapes need to be segmented accurately to perform further downstream
processing steps, often like image rectifications or perspective transforms.

75

6 TetraPackNet: Specialized Deep Learning Approaches for Packaging Structure Recognition

In this chapter, we present a redesigned version of the object detection model CornerNet by Law
and Deng (2020), namely TetraPackNet, which segments objects by four arbitrary corner points
(i.e. tetragons) instead of bounding boxes or pixel masks. We evaluate the approach on our data
concerning the use case of logistics packaging structure recognition. Baselined against our previous
solution to the sub-task of transport unit side corner detection, we show that TetraPackNet can achieve
improved detection rates. Further, we observe that predictions made by TetraPackNet are in general
very accurate and corner positions are predicted precisely. For the use case of logistics packaging
structure detection, TetraPackNet represents a novel, promising method to achieve improved detection
results, prospectively.

Our contributions contained in this chapter can be briefly summarized as follows:

• We introduce an object representation based on four corner points (rather than bounding boxes
or pixel masks).

• We design a model, named TetraPackNet, for the detection of objects based on four corner
points, on the basis of the state-of-the-art model CornerNet.

• We evaluate TetraPackNet on our use case of transport unit side detection, and find its correct
detections to be of very high accuracy.

• We propose an alternative object grouping strategy, using object extent instead of predicted
embeddings, which is suitable for regularly arranged rigid objects (as is the case in packaging
structure recognition).

• We discuss the potentials of TetraPackNet and possible enhancements.

6.2 Related Work

This section covers existing work, which is in some way related to our approach to detecting specif-
ically shaped objects in packaging structure recognition. Related work regarding object detection
and instance segmentation, in general, was already covered in previous chapters and is not fully
elaborated at this point.

Liu et al. (2020) give an overview of the task of generic object detection and the most relevant
recent works regarding the topic. They also argue that metrics and the level of scene understanding
have been changing progressively: where early work on the topic mostly targets image classification,
the focus has gradually shifted to bounding box detection and, subsequently, to pixel-wise object
segmentation. The previously mentioned authors (Liu et al. 2020) mainly focus on bounding box
object representations. Minaee et al. (2022) provide a comprehensive survey into pixel-wise image
segmentation, both semantic and instance-based, using deep learning. Our approach aims to move
away from both of these common object representations.

Numerous less conventional approaches toward the detection of specifically shaped objects in images
exist. One of these approaches is the deep-learning-based cuboid detection by Dwibedi et al. (2016).
This work in the context of 3D reconstruction focuses on the detection of cuboid-shaped, class-
agnostic objects and the precise localization of their vertices. We refrain from comparing to this

76

6.2 Related Work

work for several reasons, one of which is the requirement for richer image annotations (cuboid based,
eight vertices per object). Further, we do not aim to reconstruct 3D models from our images but aim
to classify and interpret intra-cuboid information.

Most approaches to edge, contour and line detection are based on traditional computer vision tech-
niques (image gradients, feature detectors like SIFT, Hough transform). Recently, Huang et al. (2018)
proposed a deep-learning-based approach to detect so-called wireframes, consisting of straight line
segments and junctions, in images. While wireframes are generally very relevant for our task of
packaging structure recognition, we favor different detection methods. This is because the grouping
and interpretation of detected wireframes to relevant objects like transport unit sides and packaging
units is not at all trivial. Additionally, it may be complicated by background structures (i.e. other
transport units within the image or image crop).

An application in which ideas and approaches very similar to ours are frequently employed is
the popular one of human pose estimation. Conventionally, the task of human pose estimation
corresponds to the prediction of a fixed number of characteristic key points, such as, for instance,
head, shoulders, torso or wrists. Dang et al. (2019) provide a recent comprehensive survey on human
pose estimation using deep learning methods. State-of-the-art approaches are mostly based on similar
backbone CNNs as successful instance segmentation models, e.g. Inception ResNet v2 (Szegedy
et al. 2016a), Stacked Hourglass (Newell et al. 2016). The succeeding network layers may differ in
design. Often, heatmaps indicating keypoint positions are used (Xiao et al. 2018) (Chen et al. 2018),
but fully convolutional layers resulting in keypoint position regression are also common (Luvizon
et al. 2019, Toshev and Szegedy 2014).

This chapter’s approach builds on CornerNet by Law and Deng (2020), a state-of-the-art model
performing object detection without incorporating anchor boxes or other object position priors.
Instead, corner positions of relevant objects’ bounding boxes are predicted using convolutional
feature maps as corner heat maps. Corners of identical objects are grouped based on predicted object
embeddings, as proposed by Newell et al. (2017). This approach, which outperformed all previous
one-stage object detection methods on COCO Lin et al. (2014), was further developed and improved
by Duan et al. (2019) and Zhou et al. (2019). The follow-up work by Law et al. (2020), CornerNet-
Lite, introduced faster and even more accurate variations of the original CornerNet method. These
advancements of the original CornerNet are not in our scope, we build upon the original work (Law
and Deng 2020).

Our approach makes use of recent work by Newell et al. (2017). The authors perform instance
segmentation by outputting score pixel masks for each object category, where the score indicates
the probability that a pixel belongs to the associated object category. By subsequent grouping of
pixels of identical object categories by the similarity of predicted scalar tag values, object instances
are distinguished. We employ this proposed approach in our work to group a predefined number
of detected key points to object instances. Whereas the authors use traditional pixel-wise masks as
object instance representations, we use keypoint-based representations.

77

6 TetraPackNet: Specialized Deep Learning Approaches for Packaging Structure Recognition

6.3 Object Representations

6.3.1 Existing Object Instance Representations

Revisiting existing literature to object detection in 2D images, the majority of approaches employ
one of the following very common generic object representations:

• Bounding Boxes

• Instance-level Pixel Masks

• Semantic Pixel Masks

The first of these representations, bounding boxes can be applied to cases, where objects need to be
detected or counted in images, but exact object positions or pose are not required. In this setting
representing object positions by a rectangular image area that contains the whole object instance
is sufficient. Naturally, as objects are generally not rectangular-shaped, such bounding boxes can
contain significant amounts of non-object areas. Technically, bounding boxes are low-dimensional
simple shapes that can be parameterized by four scalar values. They can be fully described by a single
pixel position (upper left corner or center, for instance) and the bounding box’ width and height or,
equivalently, by two pixel coordinates (bounding box upper left and lower right corner, for instance).
Mathematically, a bounding box 𝐵(𝑥0, 𝑦0, 𝑤, ℎ) within an image plane 𝑃 = {0, ..., 𝑚} × {0, ..., 𝑛} can
be written as

𝐵(𝑥0, 𝑦0, 𝑤, ℎ) = {(𝑥, 𝑦) ∈ 𝑃 |𝑥 ∈ [𝑥0, 𝑥0 + 𝑤] ∧ 𝑦 ∈ [𝑦0, 𝑦0 + ℎ]} (6.1)

where 𝑥0, 𝑦0 ∈ 𝑃 and 𝑤, ℎ ∈ N such that (𝑥0 + 𝑤, 𝑦0 + ℎ) ∈ 𝑃.

Pixel masks are of significantly higher complexity and can, in theory, describe arbitrarily shaped
areas. In instance-level segmentation, fixed-shape binary maps are often used to parameterize masks.
This type of object representation is used when accurate pixel-based localization of objects in images
is required. For each object within an image, a distinct binary mask is used to describe the object’s
extent. A pixel mask 𝑀 in an image with pixel space 𝑃 = {0, ..., 𝑚} × {0, ..., 𝑛} is a mapping
𝑀 : 𝑃 → {0, 1} with 𝑀 (𝑥, 𝑦) = 1 if and only if (𝑥, 𝑦) belongs to the object described by pixel mask
𝑀 .

Semantic masks tackle slightly different object detection scenarios, where an instance-level distinction
of objects is not required. Instead, an object class is assigned to each pixel and thereby the image
is segmented into object class regions. Boundaries between two instances of identical objects can
not be detected. This is, for instance, adequate in many applications like autonomous driving: here,
the information where obstacles might be found is crucial but the counting of or distinction between
obstacles is not required. Technically, pixel masks as described above are used to represent this
segmentation output. But instead of using one individual mask for each object instance present
within an image, one single mask is sufficient to describe the whole image’s semantics. Semantic
segmentation is not sufficient for our use case requiring instance-based segmentation and will not be
considered further.

78

6.4 TetraPackNet

6.3.2 Feature-Point Based Object Representation

For our use case, none of the previously mentioned common object representations is ideal. Bounding
boxes, on the one hand, are not complex enough to accurately localize the objects of interest, i.e.
transport unit sides. Pixel masks, on the other hand, are highly complex and offer a too great amount
of freedom regarding output object shapes. The object representation targeted by our sub-tasks of
transport unit side and packaging unit face detection consists of exactly four pixel coordinates within
an image:

𝑝1 = (𝑥1, 𝑦1), 𝑝2 = (𝑥2, 𝑦2), 𝑝3 = (𝑥3, 𝑦3), 𝑝4 = (𝑥4, 𝑦4) ∈ 𝑃 (6.2)

By connecting these points in order 𝑝1𝑝2𝑝3𝑝4𝑝1, an area within the image is described. Arbitrary
tetragonal shapes inside the image plane 𝑃 can be described by four such pixel coordinates. Note
that the order in which four points are connected is not arbitrary. For our work, we assume point
orderings 𝑝1, 𝑝2, 𝑝3, 𝑝4 with:

𝑥1 ≤ 𝑥2 (6.3)
𝑥3 ≤ 𝑥4 (6.4)
𝑦1 ≤ 𝑦3 (6.5)
𝑦2 ≤ 𝑦4 (6.6)

If these equations hold, it is ensured that the shape obtained by connecting 𝑝1𝑝2𝑝3𝑝4𝑝1 is a single
tetragon, and not two triangles in an hourglass-like arrangement.

Notice that bounding boxes 𝐵(𝑥0, 𝑦0, 𝑤, ℎ) are a special case of such tetragons with 𝑦1 = 𝑦2, 𝑥3 = 𝑥2,
𝑦3 = 𝑦4 and 𝑥1 = 𝑥4. Similarly, every tetragon as described above can be described by a binary pixel
mask 𝑀 : 𝑃 → {0, 1}.

Subsequently, we design a task-specific convolutional neural network (CNN) detecting objects by
four arbitrary pixel coordinates rather than regular bounding boxes or pixel masks. To achieve that,
we build upon existing work by Law and Deng (2020), Law et al. (2020), enhancing the ideas
of CornerNet, moving to the higher-dimensional output object space of arbitrary tetragons. Fig.
6.1 illustrates the difference between commonly used object location representations, i.e. bounding
boxes, and our four-corner-based representation. The indicated object is one of the two transport units’
faces that need to be precisely localized for the motivating task of packaging structure recognition.

6.4 TetraPackNet

In this section, the architecture of our model TetraPackNet, and especially the modifications compared
to role model CornerNet are elaborated. This does not only include the design of the deep learning
model itself, but also the necessary post-processing steps which assemble the tetragonal detections
from the raw CNN outputs.

79

6 TetraPackNet: Specialized Deep Learning Approaches for Packaging Structure Recognition

Figure 6.1: Sample annotations. Left: Bounding box annotation. Right: Four-corner-based annotation. The example image
is taken from our use-case-specific dataset.

6.4.1 Network Design

We present a novel method for four-point-based object detection, based on the recent CNN object
detector CornerNet, introduced by Law and Deng (2020).

Whereas in most traditional object detectors, object locations are referenced by bounding boxes (i.e.
top left and bottom right corner position), we work with more detailed locations described by four
object vertices. The resulting shapes are not limited to rectangles but comprise arbitrary tetragons,
i.e. four-cornered polygons.

We use model, ground-truth and loss function designs very similar to those proposed as CornerNet
by Law and Deng (2020). All of these components, and our modifications for TetraPackNet, targeting
tetragon-based object detection, are explained in the following sections. Fig. 6.2 gives an overview
of our architecture. The additional components compared to CornerNet are highlighted.

Feature Extractor:
Hourglass Networks

Corner Module:
Top-Left Corners

Corner Module:
Bottom-Right Corners

Corner Module:
Top-Right Corners

Corner Module:
Bottom-Left Corners

Corner Module

Corner
Pooling

Heatmaps

Embeddings

Offsets

Figure 6.2: TetraPackNet architecture. Differences to CornerNet are highlighted.

As indicated, the main difference to the original architectures is the number of corner prediction
modules following the backbone network: While CornerNet employs two such prediction modules
resulting in adequate information to predict two diagonally opposed corners of bounding boxes,
TetraPackNet requires four corner prediction modules to precisely predict all four corners of tetragon-
shaped objects.

80

6.4 TetraPackNet

Notably, the characteristics of predicted points are fundamentally different in both models: CornerNet
predicts bounding box corners, which are in general not a feature point of the object itself, but often
are located outside the actual object region. TetraPackNet, on the other hand, aims to predict specific
object feature points or, more precisely, object vertices.

Backbone Network

As suggested and applied by Law et al. (2020), we use an hourglass network (Newell et al. 2016),
namely Hourglass-54, consisting of 3 hourglass modules and 54 layers, as backbone network. Hour-
glass networks are fully convolutional neural networks. They are shaped like hourglasses in that
regard, that input images are downsampled throughout the first set of convolutional and max pooling
layers. Subsequently, they are upsampled to the original resolution in a similar manner. Skip layers
are used to help conserve detailed image features, which may be lost by the network’s convolutional
downsampling.

In TetraPackNet’s network design, two instances of the hourglass network are stacked atop each other
as follows. After an initial block of four downsampling operations (7x7 convolution, stride 2, 128
channels) and one residual block (stride 2, 256 channels), the two hourglass modules are applied
subsequently. Each hourglass module reduces the spatial resolution five times while increasing the
number of channels from 256 to 512. More precisely, the channel number for the input layer and the
five subsequent downsampled layers are 256-384-384-384-512. Before and after the first hourglass
module, Batch Normalization is applied. The input to the second hourglass module is obtained from
the first module’s normalized inputs and outputs by applying a residual block (256 channels) to the
ReLU activation of the element-wise addition of both feature maps.

Corner Detection and Corner Modules

Following the backbone network’s hourglass modules, so-called corner modules are applied to predict
precise object corner positions. CornerNet utilizes two such corner modules to detect top left and
bottom right corners of objects’ bounding boxes. Our architecture includes four corner detection
modules for the four corner types top-left, top-right, bottom-left and bottom-right. We do not detect
corners of bounding boxes but precise corner locations of tetragon-shaped objects.

Analogously to the original CornerNet approach, each corner module is fully convolutional and
consists of specific corner pooling layers as well as a set of output feature maps of identical dimensions.
These outputs are corner heat maps, offset maps and embedding. They each work in parallel on
identical input information: the corner-pooled convolutional feature maps.

We shortly revisit CornerNet’s specific pooling strategy. It is based on the idea that important object
features can be found when starting at a bounding box’s top left corner and moving horizontally in
right or vertically in downward direction. More precisely, by this search strategy, object boundaries
will be hit by bounding box definition. In CornerNet, max pooling is performed in the corresponding
two directions for both bounding box corner types. The pooling outputs are added to one another
and the results are used as input for corner prediction components. The authors show the benefits of
this approach in several detailed evaluations. In our case, where precise object corners are instead

81

6 TetraPackNet: Specialized Deep Learning Approaches for Packaging Structure Recognition

of bounding box corners, one may argue that pooling strategies should be reconsidered. Still, for
our first experiments, we retain this pooling approach. The implementation of other experimental
pooling strategies is an interesting research opportunity, we will consider in future work on the topic.

The corner module’s three output sets are explained in the following. For each distinguished corner
type, i.e. top left, top right, bottom left and bottom right corners in our case, the model includes
one heat map predicting positions where the probability for a corner of the respective type is high.
As the resolution of the corner module’s feature maps is lower than that of the original input image,
additional location offsets are predicted for each potential corner candidate. To enable the assembly
of four corresponding object corners to an object, embeddings are predicted for each corner. These
embeddings aim to take such values that corners of the same object are as similar as possible,
while those of corners of distinct objects differ significantly. The before-mentioned components
corner pooling, corner heat map, offsets and embedding maps are combined to form a single corner
prediction module.

More precisely, each corner module is a set of fully convolutional layers including corner heat maps for
each object category, two offset maps for horizontal and vertical offset and, in case of one-dimensional
embeddings, one embedding map. Moreover, we extended the CornerNet architecture to include four
corner prediction modules instead of two. Additionally, TetraPackNet’s corner prediction modules
do not aim to detect bounding box corners, but vertices of tetragonal-shaped objects.

Ground-truth

Required image annotations are object positions described by the object’s four corner points, i.e.
top left, top right, bottom left, bottom right corner. It is required that both right corners are further
right as their counterparts and, equivalently, both top corners are further up as the corresponding
bottom corners. For each ground-truth object, one single positive location is added to each of the four
ground-truth heatmaps. To allow for minor deviations of corner detections from these real corner
locations, the ground-truth heatmaps’ values are set to positive values in a small region around every
corner location. As proposed by CornerNet, we use a Gaussian function centered at the true corner
position to determine ground-truth heatmap values in the vicinity of that corner.

In Fig. 6.3 ground-truth heatmaps and detected heatmaps and embeddings are illustrated. The
top row shows, cross-faded on the original input image, the ground-truth heatmaps for the four
different corner types. There are two Gaussian circles in each corner type heatmap as there are two
annotated ground-truth objects, i.e. two transport unit sides, in the image. The bottom row shows
TetraPackNet’s detected heatmaps (for object type transport unit side) and embeddings in a single
visualization: Black regions indicate positions where the predicted heat is smaller than 0.1. Wherever
the detected heat value exceeds this threshold, the color indicates the predicted embedding value. To
map embedding values to colors, the range of all embeddings for this instance was normalized to the
interval from 0 to 1. Afterward, Open CV’s Rainbow colormap was applied (Bradski and Kaehler
2008).

82

6.4 TetraPackNet

Top-Left Top-Right Bottom-Left Bottom-Right

Figure 6.3: Example heatmaps. Top row: Ground-truth. Bottom row: Detected heats and color-encoded embeddings.

Loss Function

The loss function used in the training of our TetraPackNet model consists of several components:

𝐿 = 𝐿det + 𝑤off · 𝐿off + (𝑤pull · 𝐿pull + 𝑤push · 𝐿push) (6.7)

In our experiments, the loss component weights were set to 𝑤pull = 𝑤push = 0.1 and 𝑤off = 1.0, as
proposed by Law and Deng (2020). The individual loss components are explained in the following.

Focal Loss 𝐿det: The loss term’s first component 𝐿det is a focal loss (Lin et al. 2018) variant, as
proposed by CornerNet. This term aims to optimize heatmap corner detections by penalizing high
heatmap values at points where there is no ground-truth corner location. Analogously, low heat
values at ground-truth positive locations are penalized. Let 𝑦𝑐𝑖 𝑗 be the ground-truth heat value for
class 𝑐 at location 𝑖, 𝑗 . As mentioned in Section 6.4.1 ground-truth heat values are not binary, but
positive-valued regions are drawn around each ground-truth corner location. To incorporate this in
the focal loss formulation, an additional factor (1 − 𝑦𝑐𝑖 𝑗) is added at locations where 𝑦𝑐𝑖 𝑗 < 1. The
focal loss for class 𝑐 at location 𝑖, 𝑗 is

𝐿det (𝑐, 𝑖, 𝑗) =
{
(1 − ℎ𝑐𝑖 𝑗)𝛼 log(ℎ𝑐𝑖 𝑗) 𝑦𝑐𝑖 𝑗 = 1
(1 − 𝑦𝑐𝑖 𝑗)𝛽 (ℎ𝑐𝑖 𝑗)𝛼 log (1 − ℎ𝑐𝑖 𝑗) otherwise

(6.8)

83

6 TetraPackNet: Specialized Deep Learning Approaches for Packaging Structure Recognition

where ℎ𝑐𝑖 𝑗 is the predicted heat value for class 𝑐 at position 𝑖, 𝑗 . The hyperparameters 𝛼 and 𝛽 are
set to 𝛼 = 2, 𝛽 = 4. Overall, the focal loss is computed as

𝐿det =
1
𝑁

𝐶∑︁
𝑐=1

𝐻∑︁
𝑖=1

𝑊∑︁
𝑗=1

𝐿det (𝑐, 𝑖, 𝑗) (6.9)

where 𝐶 is the overall number of classes and 𝐻 ×𝑊 is the model’s heat map resolution.

Offset Loss 𝐿off: The offset loss 𝐿off is used to penalize deviations in offset predictions in vertical
and horizontal directions. As proposed in CornerNet, a simple smooth L1 Loss, comparing predicted
and actual precise corner positions is used.

Pull and Push Loss 𝐿pull and 𝐿push: The last loss components, pull and push loss, are used
to optimize the embedding values predicted at each potential corner location. As the model itself
outputs candidate locations for object corners, the assignment of these corner predictions to complete
objects, consisting of four corners each, must be performed subsequently. In our case, each object
prediction is composed by finding a group of four suitable corner predictions (exactly one corner
prediction per corner type, i.e. one top left corner, one top right corner, and so forth). The predicted
embedding values serve as an indicator for corner affiliation: Corners are grouped into objects based
on the similarity of their embedding values. More precisely, the objective of embeddings is to predict
embedding values as similar as possible for all corners of the same object instance. At the same
time, embedding values of distinct objects’ corners should be as far apart as possible. To achieve the
first part of this objective, embedding similarity for corners of identical objects, the pull-loss 𝐿pull is
used. The pull loss is computed as

𝐿pull =
1
𝑁

𝑁∑︁
𝑘=1

∑︁
𝑖∈{𝑡𝑙,𝑡𝑟 ,𝑏𝑙,𝑏𝑟 }

(𝑒𝑖 (𝑘𝑖) − 𝑒(𝑘))2 (6.10)

where 𝑘 = 1, ..., 𝑁 enumerates the ground-truth objects and 𝑖 = 𝑡𝑙, 𝑡𝑟, 𝑏𝑙, 𝑏𝑟 indicate the four corner
types top left, top right, bottom left, bottom right. The position of corner 𝑖 of ground-truth object
𝑘 is denoted by 𝑘𝑖 . Further, 𝑒𝑖 denotes the embedding map for corner type 𝑖 and therefore 𝑒𝑖 (𝑘𝑖) is
the embedding value for corner 𝑖 of the ground-truth object 𝑘 . The average value of the embedding
values of all four corners of a ground-truth object 𝑘 is given by 𝑒(𝑘) = 1

4
∑

𝑖∈{𝑡𝑙,𝑡𝑟 ,𝑏𝑙,𝑏𝑟 } 𝑒𝑖 (𝑘𝑖).

The push loss penalizes average embeddings of different objects being similar to each other, thereby
"pushing" the embeddings of corners of different objects apart.

𝐿push =
1

𝑁 (𝑁 − 1)

𝑁∑︁
𝑘=1

𝑁∑︁
𝑗=1
𝑗≠𝑘

max {0, 1 − |𝑒(𝑘) − 𝑒(𝑗) |} (6.11)

84

6.5 Evaluation

6.4.2 Assembling Corner Detections to Objects

Once corner positions and their embeddings are predicted, these predictions need to be aggregated
to form tetragonal object detections. Compared to the CornerNet setup, this task appears more
complex as each object is composed of four corners instead of only two. However, the original
grouping implementation is based on Associative Embeddings (Newell et al. 2017), which is suitable
for multiple data points in general, i.e. more than two. The same approach can be applied in our
case.

To obtain an overall ranking for all detected and grouped objects, the four corner detection scores as
well as the similarity of their embeddings, i.e. the corresponding pull loss values, are considered.
This final score for a detection 𝑝 of class 𝑐 consisting of four corners 𝑝𝑡𝑙 , 𝑝𝑡𝑟 , 𝑝𝑏𝑙 , 𝑝𝑏𝑟 is computed
as

1
4

∑︁
𝑖∈{𝑡𝑙,𝑡𝑟 ,𝑏𝑙,𝑏𝑟 }

ℎ𝑖 (𝑐, 𝑝𝑖) + (𝑒𝑖 (𝑝𝑖) − 𝑒(𝑝))2 (6.12)

with 𝑒(𝑝) being the average embedding for a set of four corners as before. Further, ℎ𝑖 (𝑐, 𝑝𝑖) denotes
the predicted heat value for class 𝑐 and corner type 𝑖 ∈ {𝑡𝑙, 𝑡𝑟, 𝑏𝑙, 𝑏𝑟} at position 𝑝𝑖 .

Additionally, we only allow corners to be grouped which comply with the condition, that right corners
are further right in the image than their left counterparts. Analogously bottom corners are required
to be further down in the image than the corresponding top corners.

6.5 Evaluation

In this section, we examine the performance of TetraPackNet. First, TetraPackNet is trained for
transport unit side detection on our use case data, and results are compared to the previously introduced
baseline model. This evaluation is performed using standard and use-case-specific metrics. In an
additional section, we motivate and propose an alternative corner grouping strategy and evaluate the
approach.

6.5.1 Transport Unit Side Detection

To evaluate TetraPackNet for our use case, we compare its performance on the use-case-specific
dataset, described in Section 4.4, to a standard Mask R-CNN model. Both models were trained for
the single-class detection problem of transport unit side segmentation, as described in Section 2.2.

Setup: In both cases, the same dedicated training, validation and test splits were used. Training
and evaluation were performed on an Ubuntu 18.04 machine on a single GTX 1080 Ti GPU unit.

85

6 TetraPackNet: Specialized Deep Learning Approaches for Packaging Structure Recognition

Table 6.1: Instance segmentation evaluation results for the whole image scenario on our 150 evaluation images.

Model 𝐴𝑃 𝐴𝑃0.5 𝐴𝑃0.6 𝐴𝑃0.7 𝐴𝑃0.8 𝐴𝑃0.9 𝐴𝑃0.95

Mask R-CNN 80.8 97.0 97.0 96.0 93.3 49.0 4.0
TetraPackNet 86.1 91.6 90.4 90.4 89.4 85.7 52.5

Two different training scenarios are evaluated for both models: First, the models are trained to localize
transport unit sides within the full images. In a second scenario, the cropped images are used as
input instead: as implemented in our packaging structure recognition pipeline (see Section 4.3), all
images are cropped in such ways that each crop shows exactly one whole transport unit. For each
original image, one or multiple such crops can be generated, depending on the number of transport
units visible within the image. This second scenario is comparatively easier as exactly two transport
unit sides are present in each image and the variance of the scales of transport units within the image
is minimal.

Training Details: In both trainings, we tried to find training configurations and hyperparameter
assignments experimentally. However, due to the high complexity of CNN training and its time
consumption, an exhaustive search for ideal configurations could not be performed. Most likely,
improvements are possible in both cases. Still, we consider the results presented in the following an
affirmation of our proposed architecture TetraPackNet.

To achieve fair preconditions for both training tasks, the following prerequisites were fixed. Both
models were trained for the same amount of epochs: The training of the Mask R-CNN baseline model
included 200.000 training steps using a batch size of 1, whereas the TetraPackNet training included
100.000 training steps with a batch size of 2. Input resolution for both models was limited to 512
pixels per dimension. Images are resized such that the larger dimension measures 512 pixels and the
aspect ratio is preserved. Subsequently, padding to a quadratic shape is performed. We implemented
image augmentation methods analogously to the training of the Mask R-CNN models: random flip,
crop, scale, color distortions and conversion to gray values.

Figure 6.4 illustrates the training progress of the two TetraPackNet models by plotting the loss values
throughout the 100,000 training steps. As targeted in the training of CNN models, the loss values
seem to saturate before the end of the training period is reached.

Standard Metric Results: As a standard evaluation metric, the COCO (Lin et al. 2014) dataset’s
standards are used. As is common, we report average precision (𝐴𝑃) as the standard metric for
averaged IoU thresholds from 0.5 to 0.95 (𝐴𝑃). Additionally, intersection over union (IoU) at
selected thresholds from 0.5 (𝐴𝑃0.5) to 0.95 (𝐴𝑃0.95) are stated explicitly, to allow for differentiated
results interpretations. Remember, as the applied IoU threshold increases, the requirements regarding
segmentation accuracy increase, and, naturally, the AP value decreases. Tables 6.1 and 6.2 show the
corresponding results for the instance segmentation problem. Fig. 6.5 illustrates the same results to
provide a visual intuition.

86

6.5 Evaluation

Cropped image scenario Whole image scenario

Figure 6.4: Training process illustration of TetraPackNet for both trained models.

Table 6.2: Instance segmentation evaluation results for the cropped image scenario on our 163 evaluation image crops.

Model 𝐴𝑃 𝐴𝑃0.5 𝐴𝑃0.6 𝐴𝑃0.7 𝐴𝑃0.8 𝐴𝑃0.9 𝐴𝑃0.95

Mask R-CNN 87.7 100.0 100.0 100.0 98.8 73.3 13.4
TetraPackNet 92.8 98.0 98.0 98.0 95.7 91.4 60.2

Considering the average precision values at the lowest IoU threshold examined (0.5), the baseline
Mask R-CNN outperforms TetraPackNet by significant margins. E.g. in the scenario considering
uncropped images (Table 6.1), Mask R-CNN’s 𝐴𝑃0.5-value is 5.4 points higher than that of Tetra-
PackNet (97.0 vs. 91.6). However, as the IoU threshold for detections to be considered correct
increases, TetraPackNet gains the advantage. When regarding performance values at IoU threshold
0.8, Mask R-CNN, with an 𝐴𝑃0.8 of 93.3, still provides a higher amount of detections with bounding
boxes classified as correct. At IoU threshold 0.9, the 𝐴𝑃0.9 for the Mask R-CNN model experiences
a considerable drop to 49.0, whereas TetrPackNet’s 𝐴𝑃0.9-value remains comparably stable at 88.4.

Very similar observations can be made for the cropped image scenario: TetraPackNet clearly outper-
forms the reference model Mask R-CNN when high accuracies (IoU greater than 0.8) are required.
The corresponding evaluation results are shown in Table 6.2.

Overall, the results suggest that TetraPackNet does not detect quite as many ground-truth transport
unit sides as our Mask R-CNN baseline model on a low accuracy basis. At the same time, the
predictions made by TetraPackNet appear to be very precise, because average precision steadily
remains on a high level as IoU accuracy requirements are increased. For our use case of packaging
structure recognition, these should be desirable conditions, as our processing pipeline requires very
accurate transport unit side predictions.

87

6 TetraPackNet: Specialized Deep Learning Approaches for Packaging Structure Recognition

Figure 6.5: Average precisions at different IoU thresholds for TetraPackNet and Mask R-CNN baseline model. Top: Whole
image scenario. Bottom: Cropped image scenario.

Use Case Specific Results: To investigate the performance and benefits of TetraPackNet for our
specific use case, other metrics than standard COCO Average Precision are needed. Within our
use case of packaging structure detection, the precise localization of each transport unit side’s four
corner points is crucial. Therefore, we baseline our results against our previous approach, which
relies on Mask R-CNN to obtain transport unit side segmentation masks. In a post-processing step,
four corner points giving the best approximation of these masks were found by solving a suitable
optimization task. Input to the task in our image processing pipeline, and for these evaluations, are
cropped images showing exactly one full transport unit.

Evaluations are performed analogously to Sec. 5.4. The average IoU values for transport unit sides
are given in Table 6.3. Overall, the average IoU for TetraPackNet’s detections is slightly above the
average IoU of the baseline method based on Mask R-CNN and our custom post-processing. If only
considering Tray units, however, TetraPackNet performs slightly inferior. Note that in this evaluation,
the resulting IoU is averaged over all annotated transport unit sides, i.e. if a transport unit side is not
detected at all, this corresponds to an IoU value of 0.0.

88

6.5 Evaluation

Table 6.3: Transport unit side segmentation evaluation results: Average IoU values.

Method Average IoU
All units KLT Tray

CNN 0.917 0.911 0.937
TetraPackNet 0.937 0.938 0.933

Table 6.4: Transport unit side segmentation evaluation results: Accuracy at different IoU thresholds.

Accuracy IoU threshold
Method 0.5 0.6 0.7 0.8 0.9 0.95
CNN 1.000 1.000 0.997 0.985 0.709 0.212
TetraPackNet 0.988 0.988 0.985 0.957 0.902 0.672

Table 6.4 states the accuracy values of TetraPackNet, compared to our baseline method, for different
IoU thresholds. Similar to the previously presented results, TetraPackNet is superior when high
segmentation accuracy is required. More precisely, if an IoU of 0.9 is expected, TetraPackNet’s
accuracy still reads 90.2% whereas the baseline Mask R-CNN method’s accuracy drops to 70.9%.
The difference in accuracy increases even further if an even higher IoU of 0.95 is required (67%
compared to 21.2%).

The previously stated observations can be confirmed by considering transport side detection result
visualizations for both TetraPackNet and the baseline Mask R-CNN in Fig. 6.6. One can see here,
that Mask R-CNN’s detected masks (red) are kind of fuzzy and often cut corners or exceed the
transport unit side’s extent. TetraPackNet’s masks (green), on the other hand, are straight by nature
and align with the actual transport unit side’s edges accurately. As a result, the polygon corner points
placed by our post-processing (see Section 4.3) of Mask R-CNN’s outputs (black circles) are less
accurate than TetraPackNet’s output tetragon corner points.

Manual Error Analysis

To get an understanding of the situations, in which TetraPackNet fails to segment transport unit sides
correctly, we visually analyze some of these error cases. Fig. 6.7 shows manually selected error
cases. The four examples reflect TetraPackNet’s common sources of error, which are:

• Missing feature point detections

• Incorrect grouping of feature points

• Incorrectly located feature points

• Misclassified feature points

89

6 TetraPackNet: Specialized Deep Learning Approaches for Packaging Structure Recognition

Figure 6.6: Exemplary results of both methods for transport unit side detection under consideration (TetraPackNet and Mask
R-CNN). Left: Mask R-CNN, right: TetraPackNet.

90

6.5 Evaluation

(a) (b)

(c) (d)

Figure 6.7: Examples for cases in which TetraPackNet does not segment all transport unit sides correctly. (a) One transport
unit side is not found at all. (b), (d) A corner point of an adjacent background transport unit side is mistakenly
employed. In (d), the type of corner point is mistaken, too (top left instead of bottom left corner). (c) Corner
points are misplaced by a few pixels onto the transport unit lid instead of the packaging unit corner.

91

6 TetraPackNet: Specialized Deep Learning Approaches for Packaging Structure Recognition

Fig. 6.7, part (a), shows an example in which one of the transport unit’s sides was not detected at all.
In this case, the right side’s bottom right corner point was not detected as a relevant feature point by
TetraPackNet. Thus, even though the other three corner points were detected precisely, the model is
not able to detect the transport unit side under consideration. This is one of TetraPackNet’s drawbacks
which could possibly be corrected by adequate, yet extensive post-processing steps: If three out of
four corner points are detected properly, a reasonable approximation for the corresponding object’s
last corner point could be found, again by exploiting the geometrical apriori knowledge. Remember,
the object of interest is known to be of rectangular shape in the real world. As we further know the
image acquisition process to be a perspective transform (if disregarding camera distortions), a system
of equations yielding the missing corner point position can be constructed. The implementation of
post-processing steps solving this system of equations and approximating the missing corner point is
not trivial and outside the scope of our work.

Another common error type is the incorrect grouping of correctly detected feature points. Fig. 6.7,
part (b), depicts a corresponding example. The lower transport unit’s left side is detected incorrectly,
even though all of its corner points are detected in TetraPackNet’s heatmaps. Additionally, the bottom
left feature point of a neighboring transport unit’s side is also detected (which is not an error per se,
as the model is trained to detect all transport unit side corners). When grouping the detected feature
points into detection objects, the model chooses the incorrect bottom left feature point to be grouped
with the transport unit side’s other feature point. This results in a too-large detection spanning across
the neighboring transport unit.

Another error produced by TetraPackNet in our scenario is the incorrect placement of feature points.
A corresponding example is illustrated in Fig. 6.7 (c). In this case, both transport unit sides’ common
top point was placed incorrectly (top right point of the transport unit’s left side, and top left point of
the transport unit’s right side). It was placed in such a way that the transport unit sides include part
of the transport unit’s lid, instead of only including the instance’s packaging units.

Lastly, part (d) of Fig. 6.7 shows an example of two different error types at the same time: The
transport unit’s left side is segmented incorrectly due to an error in the grouping of the detected
feature points, and the misclassification of one of these feature points. More precisely, the bottom
left corner point of a background transport unit side is misclassified and assigned as top left corner
of the relevant transport unit side.

These examples show that the type and characteristics of errors in the case of TetraPackNet differ
from those of the baseline Mask R-CNN model. Errors are more often due to background transport
units. Such units lead to additional, oftentimes correct, feature point detections. These detections
can result in erroneous feature point groupings.

6.5.2 Experiment: Embedding-Free Detection to Object Grouping Method

The experiment of this section is motivated by an observation made by manual examination of
TetraPackNet’s detection errors. In the case of multiple packaging units being (partially) visible in a
single image, errors often occur in the grouping of objects from detected corner points. It seems to be
the case that embeddings are not always a reliable predictor for corner assignments. Especially in the
case of stacked transport units, the embeddings of both left (or right) transport unit sides seem to be

92

6.5 Evaluation

very similar for both transport units. This can be explained by the visual similarity often present for
highly standardized transport units. A corresponding example is shown in Fig. 6.8. In the left image,
individual detection results are indicated by differently colored tetragons. The light blue tetragon
represents an example with incorrectly assigned corners. The right image shows the color encoding
of the bottom-right corner embeddings. The hardly distinguishable greenish colors indicate that the
embeddings for the left transport unit sides are very similar for both top and bottom transport units.
This results in TetraPackNet confusing top and bottom transport units and erroneous transport unit
side detections.

Figure 6.8: False assignment of object corners to objects and color-encoded embedding values of botttom right corners.

Apart from that observation, one might argue that the prediction of embeddings might not be
necessary for our use case of packaging structure recognition: In our case, objects of interest are
assembled in order and do not overlap. At least, this is guaranteed for the transport unit to be analyzed
(both for its two transport unit sides, as well as its visible package unit faces). Background transport
units may yet again disturb this condition. Nevertheless, if non-overlapping and regularly assembled
objects of similar sizes are assumed, we suggest a different strategy for the grouping of transport
unit sides. This strategy is based on the fact that the order of the object’s feature points is fixed in
the case of transport unit side detection: The right corners are further right, and the bottom corners
are further down within the image. Based on these preconditions, we claim that the step of grouping
detected feature points to objects can be performed by preferring valid pairs of feature points with
smaller object circumference.

Formally, we implement an object grouping strategy proceeding as follows: For each given valid set
of four (refined) corner points 𝑝𝑡𝑙 , 𝑝𝑡𝑟 , 𝑝𝑏𝑙 , 𝑝𝑏𝑟 of identical class 𝑐 we compute the corresponding
object extent 𝐸 :

𝐸 (𝑝𝑡𝑙 , 𝑝𝑡𝑟 , 𝑝𝑏𝑙 , 𝑝𝑏𝑟) = |𝑝𝑡𝑟 − 𝑝𝑡𝑙 | + |𝑝𝑏𝑟 − 𝑝𝑡𝑟 | + |𝑝𝑏𝑙 − 𝑝𝑏𝑟 | + |𝑝𝑡𝑙 − 𝑝𝑏𝑙 | (6.13)

93

6 TetraPackNet: Specialized Deep Learning Approaches for Packaging Structure Recognition

Table 6.5: Results for the two object grouping strategies for the whole image scenario on our 150 evaluation images.

Model 𝐴𝑃 𝐴𝑃0.5 𝐴𝑃0.6 𝐴𝑃0.7 𝐴𝑃0.8 𝐴𝑃0.9 𝐴𝑃0.95

Group by Embedding 86.1 91.6 90.4 90.4 89.4 85.7 52.5
Group by Extent 85.5 92.0 91.9 90.9 90.8 83.7 40.9

Table 6.6: Results for the two object grouping strategies for the cropped image scenario on our 163 evaluation image crops.

Model 𝐴𝑃 𝐴𝑃0.5 𝐴𝑃0.6 𝐴𝑃0.7 𝐴𝑃0.8 𝐴𝑃0.9 𝐴𝑃0.95

Group by Embedding 92.8 98.0 98.0 98.0 95.7 91.4 60.2
Group by Extent 91.0 97.9 97.9 97.9 93.7 86.4 51.6

We compute an extent-sensitive object score as

©«
∑︁

𝑖∈{𝑡𝑟 ,𝑡𝑙,𝑏𝑟 ,𝑏𝑙}

ℎ𝑖 (𝑐, 𝑝𝑖)
4

ª®¬
0.25

+
(
1 − 𝐸 (𝑝𝑡𝑙 , 𝑝𝑡𝑟 , 𝑝𝑏𝑙 , 𝑝𝑏𝑟)

2 · (𝐻 +𝑊)

)
(6.14)

where ℎ𝑖 (𝑐, 𝑝) is the predicted heat value of heat map 𝑖 for class 𝑐 at point 𝑝, and 𝐻 ×𝑊 is the
heatmap resolution, as before.

We rank all possible corner groupings correspondingly. Objects are accepted in this order where it is
ensured that each corner point is assigned only once. Moreover, if an object grouping of four corners
is accepted, all other possible groupings of lower score containing one identical corner detection are
discarded.

The results for the scenario of transport unit side detection on complete images (without cropping)
in terms of the COCO standard metrics are shown in Table 6.5, the results for the cropped image
scenario are shown in Table 6.6. Overall, the suggested embedding-free approach "Group by Extent"
performs slightly inferior to the original implementation. The new strategy’s AP evaluates to 85.5,
as compared to 86.1 in the case of the embedding-based approach. The analogous observation for
the cropped image scenario is very similar: AP of 91.0 vs. 92.8.

Fig. 6.9 compares the results for both grouping strategies on three example evaluation images. The
first two examples ((a) and (b)) show how our new object grouping strategy can indeed solve the issue
of distinguishing and grouping multiple objects with similar embedding values, which was described
above. The last example, 6.9 (c), illustrates a case in which our new strategy did not improve the
results. In our new grouping strategy, the heat values indicating the probability for a feature point are
not as important when ranking possible the best corner groupings. Even though these heats are still
a factor in equation 6.14, this can in some cases lead to low-confidence false positive feature points
being selected over true positive detections (depending on their relative positions within the image).

94

6.5 Evaluation

(a)

(b)

(c)

Figure 6.9: Example results of TetraPackNet with grouping via embedding (left) and grouping via object extent (right). (a),
(b) Erroneous detections of the original TetraPackNet implementation could be corrected by the new grouping
method. (c) The new grouping method introduces a new error as a feature point of lower heat value is preferred
over the correct one.

95

6 TetraPackNet: Specialized Deep Learning Approaches for Packaging Structure Recognition

6.6 Result Discussion and Assessment

In this chapter, we implemented a novel algorithm, TetraPackNet, for the detection of tetragonal-
shaped objects in images, rather than relying on generic object representations like bounding boxes
or pixel masks. Applying this approach to the task of transport unit side detection, we proved it
to be a competitive option when requiring highly accurate segmentation. Our examination proved
the approach to be rather susceptible to missing complete objects in some cases. At the same time,
objects found by TetraPackNet are mostly very precise, which was the main objective of designing
the method. To enhance TetraPackNet’s recall values, elaborate post-processing steps exploiting the
given apriori knowledge could be designed.

In its current state, TetraPackNet is not able to boost the overall performance of our recognition
pipeline. This coincides with our experiments from Chapter 4, in which we found, that even replacing
the transport unit side detections by perfect ground-truth annotations does not yield increased overall
accuracy. To elevate the performance of TetraPackNet, further development toward the detection
of specifically shaped objects is targeted. In the case of packaging structure recognition, enhanced
detection models targeting both transport unit sides simultaneously (6 feature points), or even a whole
transport unit including base pallet and lid (12 feature points) may be applicable.

For our use case of packaging structure recognition, we proposed to replace the embedding predictions
adopted from the role model CornerNet in favor of an approach grouping feature points to objects
by minimizing the resulting object’s extent. Even though the replacement of the object grouping
strategy did not yield improved overall results for the task of transport unit side detection, the results
are promising and virtually at eye level with the original approach. Our experiment shows that a
simplified model, which does not predict any feature point embeddings, can be employed without
losing too much accuracy, even improving results in some cases. Further, we predict the approach
to be even more promising for the task of package unit face detection, which is just as relevant for
packaging structure recognition. This is, because the number of objects to detect in each image is
significantly higher in the latter task, while the placement of these objects is just as regular (aligned,
without gaps or overlaps). The higher the number of objects in an image, the harder it is to distinguish
these objects’ feature points via embedding values. The extent-based approach on the other hand
does not suffer from a large number of objects, as long as all relevant feature points are detected. We
aim to implement TetraPackNet-based package detection and verify these presumptions, in future
experiments.

This concludes our work on the research question (RQ3) and packaging structure recognition.
There are many opportunities and chances to continue research on the topic, which we partially
already highlighted. The succeeding last chapter will elaborate on possible future work and give a
comprehensive summary of our work until this point.

96

7 Conclusion

In this thesis, we aimed to introduce and investigate the problem of automated packaging structure
recognition on 2D images. We presented the use case and its relevance for logistics processes,
and developed solution approaches thereof. In this section, we summarize our findings and results.
Further, we give an outlook and present directions for future work regarding packaging structure
recognition.

7.1 Summary

From an economic perspective, we briefly introduced and explained the necessity and applications
of packaging structure recognition; it is a relevant task throughout logistics networks, for instance in
goods receipt or goods issue departments. In numerous logistics supply chains, standardized logistics
transport units are handled by different stakeholders and need to be checked for completeness and
integrity frequently. The manual counting and verification efforts involved in such checks can be
reduced by automatizing this mandatory task of packaging structure recognition. Even though our
work can not completely eliminate manual efforts from incoming goods checks, and similar use
cases, it incorporates an essential step towards the comprehensive automation of such processes.

In Chapter 1, we formulated three research questions to explore the technical problem of packaging
structure recognition on 2D images. To obtain a feasible problem formulation, restrictions regarding
materials and transport unit structure, as well as image acquisition and composition, were determined.
A large set of annotated use case images is required for testing, evaluation, and also for training
purposes. As the use case of packaging structure recognition has, to our knowledge, not yet been
systematically studied, and corresponding data is not readily available, we introduced our own set of
1,000 annotated images, respecting the previously defined restrictions.

Our first research question concerned the design of an image processing pipeline to solve the task of
packaging structure recognition on valid 2D images. We proposed a suitable multi-step algorithm,
based on state-of-the-art convolutional neural networks in Chapter 4. Further, optimization methods,
heuristic approaches and computations, are incorporated into our pipeline. In a quantitative evaluation
using our dedicated evaluation data, the solution achieved an accuracy value of 85%. The performance
was significantly higher for the first of our two packaging types, i.e. KLT units, which are mostly
larger and easier to recognize visually, also for the human observer. Most errors by the overall
algorithm are due to incorrect detection of packaging units.

There are considerable drawbacks to convolutional neural networks. On the one hand, they are
considered black-box algorithms and are not easily comprehensible, or handily tweakable according
to one’s ideas or requirements. Further, large amounts of annotated training data are required to
train convolutional neural networks in a setting of supervised learning. Last, state-of-the-art deep

97

7 Conclusion

learning algorithms have high resource requirements, and cannot be executed swiftly on arbitrary
hardware systems. For these reasons, we investigated the usage of alternative algorithms in our
second research question, in Chapter 5. Namely, we considered the employment of traditional image
processing techniques instead of the previously used deep learning approaches. As a comprehensive
analysis of the complete image processing pipeline is not practical for complexity reasons, we focused
our study on the step of transport unit side recognition. The latter task appears especially suitable for
traditional computer vision approaches, as the objects under consideration (package and transport
units) are rigid and outlined by geometrically straight lines. Thus, traditional image processing
tools, like gradient-based methods for line detection or Hough transforms, are reasonable choices
for the analysis of our transport unit images. Using the above-mentioned tools, we implemented a
learning-free approach to the sub-task under consideration. Our evaluations show that convolutional
neural networks are superior in segmenting transport unit sides on image crops depicting exactly
one transport unit. We certainly do not claim that it is not possible to design a superior image
processing approach to the latter task. However, we find image processing approaches not to be
feasible when considering requirements regarding algorithm design, implementation, and tuning, as
well as aspirations for robustness.

Our third and last research question focused on the specificity of the instance segmentation algorithms
used in our packaging structure recognition pipeline. One goal of our work at that end was to
incorporate the apriori knowledge about our objects of interest into the applied deep learning models.
Moreover, we aimed to design a CNN for object detection, which can accurately segment transport
unit sides by exploiting the fact, that package and transport units are rigid objects and of regular
cubic shapes. In Chapter 6, we proposed a detection algorithm adapted to the segmentation of
tetragonal-shaped objects, namely TetraPackNet. In our implementation of packaging structure
recognition, the accurate segmentation of objects of regular geometric shapes is crucial in multiple
sub-steps. For instance, we aim to segment cubically shaped packages and transport units, or more
specifically, rectangular faces thereof. Commonly used detection algorithms target either bounding
boxes or pixel-accurate masks. As both are not adequate object representations in our use case,
we identified this as a potential for performance increases, which can be achieved through the
design and employment of more specific detection methods. We designed TetraPackNet to perform
object detection based on four corner points and trained the model for the task of transport unit
side detection. When applying established standard metrics (Pascal VOC), the overall accuracy of
TetraPackNet still trails that of the established instance segmentation model, as objects are missed
completely more frequently. However, our evaluations also show, that our method is able to conduct
highly accurate object segmentation. When requiring high accordance between model predictions
and ground-truth annotations of transport unit sides (IoU greater than 0.8), TetraPackNet outperforms
the baseline model, which is based on a Mask R-CNN instance segmentation model. This shows
that TetraPackNet is a promising approach, which is especially suitable to perform high-accuracy
segmentation of geometrically shaped objects.

Overall, our work substantiates the presence of further automation potentials in logistics processes:
Manual effort in common operations like the checking of incoming and outgoing goods can be drasti-
cally reduced by the implementation of a system for fully-automated packaging structure recognition.
Even though a 100%-solution can not (yet) be the target of such a system, and manual checks will
still be required in difficult cases, significant savings regarding manual effort and time are possible.
Further, we are confident that our method for automated packaging structure recognition can be

98

7.2 Outlook and Future Work

further improved by purposeful advancements to the algorithm, and also the training data, which is a
significant contributor to result quality. We will elaborate on our ideas for such improvements in the
following section.

7.2 Outlook and Future Work

Throughout our work, some opportunities for improvements or further experiments regarding our
packaging structure recognition algorithm were identified. This is especially relevant for TetraPack-
Net, the novel object segmentation algorithm presented in Chapter 6. While the model’s detections
are generally of very high accuracy, objects are not detected by the model if only one of the necessary
feature points is missed by the detector. To increase the model’s detection rates, more sophisticated
post-processing methods could be tailored. Given the apriori knowledge about object shapes, ar-
rangement and alignment, missing feature points could be interpolated. This is even more applicable
when adapting TetraPackNet for the task of package unit detection, as packaging units are arranged
in a very regular pattern, and package unit corner points coincide with those of neighboring units.
Apart from that, improved detection rates and accuracies might be achievable by transitioning from
four-corner-point objects (i.e. transport unit sides or package unit faces) to downright transport unit
templates consisting of even more inherent feature points (including both transport unit sides as well
as base pallet and unit lid).

In its current implementation, quite a few restrictions and assumptions apply to our packaging
structure recognition pipeline. Hereinafter, we reflect the restrictions relevant to the real-world
application (our imaging restrictions do in our opinion not limit the applicability of our method), and
propose possible solutions thereof.

First, we restricted our work to a small number of standardized package types and packaging com-
ponents. While adaptation to other standardized package types, given suitable data, should not pose
a problem for our learning-based algorithm, the acquisition of such data sets can be very costly. The
synthetic generation of annotated training images is often seen as a resolution to this problem. Still,
the performance of models trained on synthetic data generally still trails that of models employing
real-world training data. In many cases, using a mixture of real-world and synthetic data can be a
powerful compromise to create accurate models with the ability to detect object classes of which not
a single real-world instance was seen during training. This seems to be a promising approach for
the expansion of our packaging structure recognition algorithm to additional packaging types, and
also packaging components or distractor objects (like transport or hazard labels, packaging foils or
straps).

We maintained further restrictions which limit the automation potential opened by our solution, i.e.
the assumption of uniformly packed transport units. In practice, non-uniformly packed units, i.e.
units that are either composed of multiple distinct package types or whose packaging layers consist
of different numbers of packages, are not unusual. To deal with such cases, additional improvements
to our image processing pipeline are necessary. Most importantly, improved accuracy in transport
unit side and package segmentation would be required. Currently, we exploit the knowledge that
all packaging units are of identical size by using mean package size to infer package numbers in
horizontal and vertical directions. If this assumption is no longer valid, it becomes essential that every

99

7 Conclusion

single packaging unit is segmented correctly. Further enhancements of TetraPackNet to become more
robust against missing feature point detections could prove to be a fundamental step toward this goal.
Additionally, a single RGB image may not be sufficient to recognize the transport unit’s packaging
structure in the case of non-uniformly packed units. At the very least, two images taken from
opposite sides would be required to tackle such transport units. Using such two images as input for
our packaging structure detection, and joining the information inferred from both inferences, can be
implemented on top of our algorithm easily. In other cases, it might not be possible to infer a transport
unit’s packaging structure from its outer appearance without disassembling it. Consequently, the task
of packaging structure detection from RGB images is no longer solvable. Other input information,
e.g. video streams of a transport unit’s assembly or disassembly may be a prospective remedy here
(requiring enhanced recognition algorithms and pipelines).

Apart from these technical restrictions, our experiments were limited to a restricted domain of images.
Although an aim for varying background settings was pursued, all images were taken in a single
facility. Only two package types were employed and the visual appearance of the instances of these
two package types was rather uniform (i.e. most packages were of identical manufacturing, though
the color and individual structure of KLT packages, for instance, can vary). To obtain more general
conclusions, similar experiments on data of broader variance have to be deduced. Such experiments
are not easily accessible as they require large amounts of labeled image data. For this reason, they
are not included within the scope of this work but might become the focus of future research in the
domain of packaging structure recognition.

On the other hand, even better results might be achieved by limiting the approach to an even
more restricted setting. If, for instance, implementing a system for automatic packaging structure
recognition in an incoming goods department, a very controlled setting can be achieved easily. The
camera can be fixed to a position where incoming goods can be overseen from an advantageous
perspective. For example, a gate through which incoming goods need to be transported on a forklift,
whilst being captured by an attached and properly adjusted camera, could be employed. In doing
so, disturbances by background units can be completely avoided, if choosing proper positioning. As
we have seen in our TetraPackNet experiments, many recognition errors of our packaging structure
recognition components are due to background transport units of similar appearances being present in
our dataset’s images. Further, issues due to variations in lighting and perspective could be minimized
in such a setting. The construction of such an experimental system for live packaging structure
recognition is an interesting direction for future work.

Overall, we provided a fundamental advance toward the automation of packaging structure recogni-
tion, and thereby, of several logistics processes like goods receipt checks or package empties counting.
Notably, our work is only one of the puzzle pieces required to fully automatize such use cases, and
additional developments are required to that end. Most importantly, the (partial) recognition and
reading of at least one of the attached transport labels would be required for a system to know which
order a transport unit is associated with. Further, at least a visual check for damages or tampering
would need to be incorporated. Additional checks, like the recognition of the base pallet’s serial
number or the verification of packaging instructions, may be required. Such checks could be imple-
mented alongside, or on top, of our packaging structure recognition. Still, other process steps may
be less readily automatized, for instance, manual package content inspections.

100

7.2 Outlook and Future Work

Disregarding the logistics use cases our work is focused on, it would be interesting to explore the
potential of our feature-point-based object detector, TetraPackNet, for other applications. The method
could be of relevance in many other cases where regularly shaped rigid objects need to be segmented
accurately, e.g. detection of labels, road signs or license plates, or package detection for grasping
point determination in robotics.

101

Bibliography

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M.
Devin, et al. (2016). “Tensorflow: Large-scale machine learning on heterogeneous distributed
systems”. In: arXiv preprint arXiv:1603.04467. doi: 10.48550/arXiv.1603.04467.

Aggarwal, C. C. (2018). Neural Networks and Deep Learning : A Textbook. Springer eBook Collec-
tion. Cham: Springer International Publishing. doi: 10.1007/978-3-319-94463-0.

Aggarwal, N. and W. C. Karl (2006). “Line detection in images through regularized Hough transform”.
In: IEEE transactions on image processing 15.3, pp. 582–591. doi: 10.1109/ICIP.2000.
899595.

Akçay, S., M. E. Kundegorski, M. Devereux, and T. P. Breckon (2016). “Transfer learning using
convolutional neural networks for object classification within x-ray baggage security imagery”.
In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE. Phoenix, AZ, USA,
pp. 1057–1061. doi: 10.1109/ICIP.2016.7532519.

ALPAC (1966). Language and Machines: Computers in Translation and Linguistics. Washington,
DC: The National Academies Press. doi: 10.17226/9547.

Alzubaidi, L., J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaría,
M. A. Fadhel, M. Al-Amidie, and L. Farhan (2021). “Review of deep learning: Concepts, CNN
architectures, challenges, applications, future directions”. In: Journal of big Data 8.1, pp. 1–74.
doi: 10.1186/s40537-021-00444-8.

Amer, G. M. H. and A. M. Abushaala (2015). “Edge detection methods”. In: 2nd World Symposium
on Web Applications and Networking (WSWAN). IEEE. Sousse, Tunisia, pp. 1–7. doi: 10.1109/
WSWAN.2015.7210349.

Azizpour, H., A. Sharif Razavian, J. Sullivan, A. Maki, and S. Carlsson (2015). “From Generic to
Specific Deep Representations for Visual Recognition”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition workshops. Boston, MA, USA, pp. 36–45. doi:
10.1109/CVPRW.2015.7301270.

Barnard, S. T. (1983). “Interpreting perspective images”. In: Artificial intelligence 21.4, pp. 435–462.
doi: 10.1016/S0004-3702(83)80021-6.

Borstell, H. (2018). “A short survey of image processing in logistics - How image processing
contributes to efficiency of logistics processes through intelligence”. In: Magdeburg, Germany.
doi: 10.13140/RG.2.2.11060.76168.

103

https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1109/ICIP.2000.899595
https://doi.org/10.1109/ICIP.2000.899595
https://doi.org/10.1109/ICIP.2016.7532519
https://doi.org/10.17226/9547
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1109/WSWAN.2015.7210349
https://doi.org/10.1109/WSWAN.2015.7210349
https://doi.org/10.1109/CVPRW.2015.7301270
https://doi.org/10.1016/S0004-3702(83)80021-6
https://doi.org/10.13140/RG.2.2.11060.76168

Bibliography

Bradski, G. and A. Kaehler (2008). Learning OpenCV: Computer vision with the OpenCV library.
Sebastopol, CA, USA: O’Reilly Media, Inc.

Breiman, L. (2001). “Random Forests”. In: Machine Learning 45, pp. 5–32. doi: 10.1023/A:
1010933404324.

Burger, W. and M. J. Burge (2016). Digital Image Processing : An Algorithmic Introduction Using
Java. 2nd ed. 2016. Texts in Computer Science. London: Springer London. doi: 10.1007/978-
1-4471-6684-9.

Burman, P. (1989). “A Comparative Study of Ordinary Cross-Validation, v-Fold Cross-Validation
and the Repeated Learning-Testing Methods”. In: Biometrika 76, pp. 503–514. doi: 10.1093/
biomet/76.3.503.

Canny, J. (1986). “A Computational Approach To Edge Detection”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence PAMI-8, pp. 679–698. doi: 10 . 1109 / TPAMI . 1986 .
4767851.

Cauchy, A. et al. (1847). “Méthode générale pour la résolution des systemes d’équations simultanées”.
In: Comptes Rendus de l’Académie des Sciences de Paris 25.1847, pp. 536–538.

Chauvin, Y. and D. E. Rumelhart (1995). Backpropagation: Theory, Architectures, and Applications.
New York: Psychology Press. doi: 10.4324/9780203763247.

Chen, Y., Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun (2018). “Cascaded Pyramid Network for
Multi-person Pose Estimation”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Salt Lake City, UT, USA, pp. 7103–7112. doi: 10.1109/CVPR.2018.00742.

Cognex (2022). Logistics Industry Solutions. Accessed: 2022-10-10. url: https://www.cognex.
com/industries/logistics.

Cortes, C. and V. Vapnik (1995). “Support-vector networks”. In: Machine Learning 20.3, pp. 273–
297. doi: 10.1023/A:1022627411411.

Dalal, N. and B. Triggs (2005). “Histograms of oriented gradients for human detection”. In: 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05).
Vol. 1. San Diego, CA, USA, 886–893 vol. 1. doi: 10.1109/CVPR.2005.177.

Dang, Q., J. Yin, B. Wang, and W. Zheng (2019). “Deep Learning Based 2D Human Pose Estimation:
A Survey”. In: vol. 24. 6. Peking: Tsinghua University Press, pp. 663–676. doi: 10.26599/
TST.2018.9010100.

Daxböck, C., J. Kröber, and M. Bergmann (2019). “Digitized performance management along the
supply chain”. In: Performance Management in Retail and the Consumer Goods Industry. Cham:
Springer, pp. 405–423. doi: 10.1007/978-3-030-12730-5_26.

104

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-1-4471-6684-9
https://doi.org/10.1007/978-1-4471-6684-9
https://doi.org/10.1093/biomet/76.3.503
https://doi.org/10.1093/biomet/76.3.503
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.4324/9780203763247
https://doi.org/10.1109/CVPR.2018.00742
https://www.cognex.com/industries/logistics
https://www.cognex.com/industries/logistics
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.26599/TST.2018.9010100
https://doi.org/10.26599/TST.2018.9010100
https://doi.org/10.1007/978-3-030-12730-5_26

Bibliography

Dörr, L., F. Brandt, M. Pouls, and A. Naumann (2020a). “Fully-Automated Packaging Structure
Recognition in Logistics Environments”. In: 2020 25th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA). Vol. 1. Vienna, Austria, pp. 526–533.
doi: 10.1109/ETFA46521.2020.9212152.

Dörr, L., F. Brandt, A. Naumann, and M. Pouls (2021). “TetraPackNet: Four-Corner-Based Object
Detection in Logistics Use-Cases”. In: Bauckhage, C., Gall, J., Schwing, A. (eds) Pattern
Recognition. DAGM GCPR 2021. Lecture Notes in Computer Science. Vol. 13024. Springer.
Cham. doi: 10.1007/978-3-030-92659-5_35.

Dörr, L., F. Brandt, M. Pouls, and A. Naumann (2020b). “An Image Processing Pipeline for Au-
tomated Packaging Structure Recognition”. In: Forum Bildverarbeitung. Karlsruhe, Germany:
KIT Scientific Publishing, p. 239.

Douglas, D. H. and T. K. Peucker (1973). “Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature”. In: Cartographica: The International
Journal for Geographic Information and Geovisualization 10.2, pp. 112–122. doi: 10.3138/
FM57-6770-U75U-7727.

Duan, K., S. Bai, L. Xie, H. Qi, and Q. Tian (2019). “CenterNet: Keypoint Triplets for Object
Detection”. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul,
Korea (South), pp. 6568–6577. doi: 10.1109/ICCV.2019.00667.

Dwibedi, D., T. Malisiewicz, V. Badrinarayanan, and A. Rabinovich (2016). “Deep cuboid detection:
Beyond 2d bounding boxes”. In: arXiv preprint arXiv:1611.10010. doi: 10.48550/arXiv.
1611.10010.

Everingham, M., L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman (2010). “The pascal visual
object classes (voc) challenge”. In: International journal of computer vision 88.2, pp. 303–338.
doi: 10.1007/s11263-009-0275-4.

Fradkov, A. L. (2020). “Early History of Machine Learning”. In: IFAC-PapersOnLine 53.2, pp. 1385–
1390. doi: 10.1016/j.ifacol.2020.12.1888.

Furmans, K. and C. Kilger (2019). Betrieb von Logistiksystemen. Heidelberg: Springer Vieweg. doi:
10.1007/978-3-662-57943-5.

Gao, Y. and K. Mosalam (2018). “Deep Transfer Learning for Image-Based Structural Damage
Recognition”. In: Computer-Aided Civil and Infrastructure Engineering 33. doi: 10.1111/
mice.12363.

Ghiasi, G., Y. Cui, A. Srinivas, R. Qian, T.-Y. Lin, E. Cubuk, Q. Le, and B. Zoph (2021). “Sim-
ple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation”. In: 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN,
USA, pp. 2917–2927. doi: 10.1109/CVPR46437.2021.00294.

105

https://doi.org/10.1109/ETFA46521.2020.9212152
https://doi.org/10.1007/978-3-030-92659-5_35
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1109/ICCV.2019.00667
https://doi.org/10.48550/arXiv.1611.10010
https://doi.org/10.48550/arXiv.1611.10010
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1016/j.ifacol.2020.12.1888
https://doi.org/10.1007/978-3-662-57943-5
https://doi.org/10.1111/mice.12363
https://doi.org/10.1111/mice.12363
https://doi.org/10.1109/CVPR46437.2021.00294

Bibliography

Girshick, R. (2015). “Fast R-CNN”. In: 2015 IEEE International Conference on Computer Vision
(ICCV). Santiago, Chile, pp. 1440–1448. doi: 10.1109/ICCV.2015.169.

Girshick, R., J. Donahue, T. Darrell, and J. Malik (2013). “Rich Feature Hierarchies for Accurate
Object Detection and Semantic Segmentation”. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. doi: 10.1109/CVPR.2014.81.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep learning.http://www.deeplearningbook.
org. Cambridge: MIT press.

He, K., G. Gkioxari, P. Dollar, and R. Girshick (2017). “Mask R-CNN”. In: 2017 IEEE International
Conference on Computer Vision (ICCV). Venice, Italy, pp. 2980–2988. doi: 10.1109/ICCV.
2017.322.

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep Residual Learning for Image Recognition”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV,
USA, pp. 770–778. doi: 10.1109/CVPR.2016.90.

Heistermann, F., M. ten Hompel, and T. Mallée (2017). BVL Positionspapier: Digitalisierung in der
Logistik. https://www.bvl.de/positionspapier-digitalisierung. Bundesverband
für Logistik (BVL).

Herold, D. M., M. Ćwiklicki, K. Pilch, and J. Mikl (2021). “The emergence and adoption of digi-
talization in the logistics and supply chain industry: an institutional perspective”. In: Journal of
Enterprise Information Management. doi: 10.1108/JEIM-09-2020-0382.

Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov (2012). “Im-
proving neural networks by preventing co-adaptation of feature detectors”. In: arXiv preprint
arXiv:1207.0580. doi: 10.48550/arXiv.1207.0580.

Hinxlage, J. and J. Möller (2018). “Ladungsträgerzahlung per Smartphone”. In: Jahresbericht Fraun-
hofer IML 2018, pp. 72–73.

Hough, P. V. (1962). Method and means for recognizing complex patterns. US Patent 3,069,654.

Huang, G., Z. Liu, L. V. D. Maaten, and K. Q. Weinberger (2017). “Densely Connected Convolutional
Networks”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Honolulu, HI, USA, pp. 2261–2269. doi: 10.1109/CVPR.2017.243.

Huang, K., Y. Wang, Z. Zhou, T. Ding, S. Gao, and Y. Ma (2018). “Learning to Parse Wireframes in
Images of Man-Made Environments”. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. Salt Lake City, UT, USA, pp. 626–635. doi: 10.1109/CVPR.2018.00072.

Huh, M., P. Agrawal, and A. A. Efros (2016). “What makes ImageNet good for transfer learning?” In:
arXiv preprint arXiv:1608.08614. doi: https://doi.org/10.48550/arXiv.1608.08614.

106

https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/CVPR.2014.81
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/CVPR.2016.90
https://www.bvl.de/positionspapier-digitalisierung
https://doi.org/10.1108/JEIM-09-2020-0382
https://doi.org/10.48550/arXiv.1207.0580
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2018.00072
https://doi.org/https://doi.org/10.48550/arXiv.1608.08614

Bibliography

Inigo, R. M., E. S. McVey, B. Berger, and M. Wirtz (1984). “Machine Vision Applied to Vehicle
Guidance”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 6, pp. 820–826.
doi: 10.1109/TPAMI.1984.4767606.

Ioffe, S. and C. Szegedy (2015). “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift”. In: Proceedings of the 32nd International Conference on
Machine Learning - Volume 37. ICML’15. Lille, France: JMLR.org, pp. 448–456.

Kerner, S., J. Leveling, O. Urbann, L. Weickhmann, M. Otten, and M. Vogel (2020). “Anwen-
dungsfelder von künstlicher Intelligenz in Industrie-4.0-Systemen”. In: Handbuch Industrie
4.0: Produktion, Automatisierung und Logistik. Berlin, Heidelberg: Springer Vieweg, pp. 227–
250. doi: 10.1007/978-3-662-45537-1_121-1.

Khan, A., A. Sohail, U. Zahoora, and A. S. Qureshi (2020). “A survey of the recent architectures
of deep convolutional neural networks”. In: Artificial Intelligence Review 53.8, pp. 5455–5516.
doi: 10.1007/s10462-020-09825-6.

Kiryati, N., Y. Eldar, and A. M. Bruckstein (1991). “A probabilistic Hough transform”. In: Pattern
Recognition 24.4, pp. 303–316. doi: https://doi.org/10.1016/0031-3203(91)90073-E.

Koonce, B. (2021). Convolutional Neural Networks with Swift for Tensorflow : Image Recognition and
Dataset Categorization. Berkeley, CA, USA: Apress. doi: 10.1007/978-1-4842-6168-2.

Krizhevsky, A., I. Sutskever, and G. Hinton (2012). “ImageNet Classification with Deep Convo-
lutional Neural Networks”. In: Neural Information Processing Systems 25. doi: 10.1145/
3065386.

Law, H. and J. Deng (2020). “Cornernet: Detecting Objects as Paired Keypoints”. In: International
Journal of Computer Vision. Vol. 128, pp. 642–656. doi: 10.1007/s11263-019-01204-1.

Law, H., Y. Teng, O. Russakovsky, and J. Deng (2020). “CornerNet-Lite: Efficient Keypoint based
Object Detection”. In: 31st British Machine Vision Conference 2020. Virtual Conference: BMVA
Press.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel (1989).
“Backpropagation Applied to Handwritten Zip Code Recognition”. In: Neural Computation 1.4,
pp. 541–551. doi: 10.1162/neco.1989.1.4.541. eprint: https://direct.mit.edu/
neco/article-pdf/1/4/541/811941/neco.1989.1.4.541.pdf.

LeCun, Y., Y. Bengio, and G. Hinton (2015). “Deep Learning”. In: Nature 521, pp. 436–44. doi:
10.1038/nature14539.

Lee, J.-T., H.-U. Kim, C. Lee, and C.-S. Kim (2017). “Semantic Line Detection and Its Applications”.
In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy, pp. 3249–
3257. doi: 10.1109/ICCV.2017.350.

107

https://doi.org/10.1109/TPAMI.1984.4767606
https://doi.org/10.1007/978-3-662-45537-1_121-1
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/https://doi.org/10.1016/0031-3203(91)90073-E
https://doi.org/10.1007/978-1-4842-6168-2
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1007/s11263-019-01204-1
https://doi.org/10.1162/neco.1989.1.4.541
https://direct.mit.edu/neco/article-pdf/1/4/541/811941/neco.1989.1.4.541.pdf
https://direct.mit.edu/neco/article-pdf/1/4/541/811941/neco.1989.1.4.541.pdf
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ICCV.2017.350

Bibliography

Li, H., B. Singh, M. Najibi, Z. Wu, and L. S. Davis (2019). “An Analysis of Pre-Training on Object
Detection”. In: arXiv preprint arXiv:1904.05871. doi: 10.48550/arXiv.1904.05871.

Lighthill, J. (1972). “Artificial Intelligence: A general survey”. In: Artificial Intelligence: A paper
symposium.

Lin, T., P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie (2017). “Feature Pyramid
Networks for Object Detection”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Honolulu, HI, USA, pp. 936–944. doi: 10.1109/CVPR.2017.106.

Lin, T.-Y., P. Goyal, R. Girshick, K. He, and P. Dollar (2018). “Focal Loss for Dense Object Detection”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 42 (2), pp. 318–327. doi:
10.1109/TPAMI.2018.2858826.

Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick
(2014). “Microsoft COCO: Common Objects in Context”. In: Fleet, D., Pajdla, T., Schiele, B.,
Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer
Science. Vol. 8693. Cham: Springer. doi: 10.1007/978-3-319-10602-1_48.

Liu, L., W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen (2020). “Deep Learning
for Generic Object Detection: A Survey”. In: International Journal of Computer Vision 128.2,
pp. 261–318. doi: 10.1007/s11263-019-01247-4.

Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg (2016). “SSD: Single
Shot Multibox Detector”. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds) Computer Vision
– ECCV 2016. ECCV 2016. Lecture Notes in Computer Science. Vol. 9905. Cham: Springer.
doi: 10.1007/978-3-319-46448-0_2.

Logivations (2022). KI-basierte Identifikation in der Logistik. Accessed: 2022-10-10. url: https:
//www.logivations.com/de/solutions/agv/camera_identification.php#count_
and_measure.

Lowe, D. G. (1999). “Object Recognition from Local Scale-Invariant Features”. In: Proceedings
of the IEEE International Conference on Computer Vision. Vol. 2. IEEE. Kerkyra, Greece,
pp. 1150–1157. doi: 10.1109/ICCV.1999.790410.

Luvizon, D. C., H. Tabia, and D. Picard (2019). “Human Pose Regression by Combining Indirect
Part Detection and Contextual Information”. In: Computers & Graphics 85, pp. 15–22. doi:
10.1016/j.cag.2019.09.002.

Masters, D. and C. Luschi (2018). “Revisiting small batch training for deep neural networks”. In:
arXiv preprint arXiv:1804.07612. doi: 10.48550/arXiv.1804.07612.

McCulloch, W. S. and W. Pitts (1943). “A logical calculus of the ideas immanent in nervous activity”.
In: The Bulletin of Mathematical Biophysics 5, pp. 115–133. doi: 10.1007/BF02478259.

108

https://doi.org/10.48550/arXiv.1904.05871
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/s11263-019-01247-4
https://doi.org/10.1007/978-3-319-46448-0_2
https://www.logivations.com/de/solutions/agv/camera_identification.php#count_and_measure
https://www.logivations.com/de/solutions/agv/camera_identification.php#count_and_measure
https://www.logivations.com/de/solutions/agv/camera_identification.php#count_and_measure
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1016/j.cag.2019.09.002
https://doi.org/10.48550/arXiv.1804.07612
https://doi.org/10.1007/BF02478259

Bibliography

Minaee, S., Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos (2022). “Image
Segmentation Using Deep Learning: A Survey”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 44.7, pp. 3523–3542. doi: 10.1109/TPAMI.2021.3059968.

Minsky, M. and S. Papert (1969). Perceptrons: An Introduction to Computational Geometry. Cam-
bridge, MA, USA: MIT Press.

Mitchell, T. M. (1997). Machine Learning. Vol. 1. 9. New York: McGraw-Hill.

Newell, A., Z. Huang, and J. Deng (2017). “Associative Embedding: End-to-End Learning for Joint
Detection and Grouping”. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. NIPS’17. Long Beach, California, USA: Curran Associates
Inc., pp. 2274–2284.

Newell, A., K. Yang, and J. Deng (2016). “Stacked Hourglass Networks for Human Pose Estimation”.
In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds) Computer Vision – ECCV 2016. ECCV 2016.
Lecture Notes in Computer Science. Vol. 9912. Cham: Springer. doi: 10.1007/978-3-319-
46484-8_29.

O’Mahony, N., S. Campbell, A. Carvalho, S. Harapanahalli, G. V. Hernandez, L. Krpalkova, D.
Riordan, and J. Walsh (2019). “Deep learning vs. traditional computer vision”. In: Advances
in Computer Vision. CVC 2019. Springer. Cham, pp. 128–144. doi: 10.1007/978-3-030-
17795-9_10.

Pan, S. J. and Q. Yang (2009). “A Survey on Transfer Learning”. In: IEEE Transactions on Knowledge
and Data Engineering 22.10, pp. 1345–1359. doi: 10.1109/TKDE.2009.191.

Polyak, B. (1964). “Some methods of speeding up the convergence of iteration methods”. In: USSR
Computational Mathematics and Mathematical Physics 4, pp. 1–17. doi: 10.1016/0041-
5553(64)90137-5.

Qian, N. (1999). “On the momentum term in gradient descent learning algorithms”. In: Neural
Networks 12.1, pp. 145–151. doi: 10.1016/S0893-6080(98)00116-6.

Quinlan, J. R. (1986). “Induction of decision trees”. In: Machine Learning 1.1, pp. 81–106. doi:
10.1007/BF00116251.

Ramesan, R. and J. Mathew (2015). Hydrological Data Driven Modelling. Cham: Springer Interna-
tional Publishing. doi: 10.1007/978-3-319-09235-5.

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi (2016). “You Only Look Once: Unified, Real-
Time Object Detection”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Las Vegas, NV, USA, pp. 779–788. doi: 10.1109/CVPR.2016.91.

109

https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-030-17795-9_10
https://doi.org/10.1007/978-3-030-17795-9_10
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/978-3-319-09235-5
https://doi.org/10.1109/CVPR.2016.91

Bibliography

Ren, S., K. He, R. Girshick, and J. Sun (2017). “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 39.06, pp. 1137–1149. doi: 10.1109/TPAMI.2016.2577031.

Rosenblatt, F. (1958). “The perceptron: A probabilistic model for information storage and organization
in the brain”. In: Psychological Review 65.6, p. 386. doi: 10.1037/h0042519.

Ruder, S. (2016). “An overview of gradient descent optimization algorithms”. In: arXiv preprint
arXiv:1609.04747. doi: 10.48550/arXiv.1609.04747.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Learning Representations by Back-
Propagating Errors”. In: Nature 323.6088, pp. 533–536. doi: 10.1038/323533a0.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M.
Bernstein, et al. (2015). “ImageNet Large Scale Visual Recognition Challenge”. In: International
Journal of Computer Vision 115.3, pp. 211–252. doi: 10.1007/s11263-015-0816-y.

Sadeghi, M. A. and D. Forsyth (2014). “30Hz Object Detection with DPM V5”. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes
in Computer Science. Vol. 8689. Springer. Cham, pp. 65–79. doi: 10.1007/978-3-319-
10590-1_5.

Samuel, A. L. (1959). “Some Studies in Machine Learning Using the Game of Checkers”. In: IBM
Journal of Research and Development 3.3, pp. 210–229. doi: 10.1147/rd.33.0210.

Schmidhuber, J. (2015). “Deep learning in neural networks: An overview”. In: Neural Networks 61,
pp. 85–117. doi: 10.1016/j.neunet.2014.09.003.

Sharma, S., S. Sharma, and A. Athaiya (2020). “ACTIVATION FUNCTIONS IN NEURAL NET-
WORKS”. In: International Journal of Engineering Applied Sciences and Technology 04,
pp. 310–316. doi: 10.33564/IJEAST.2020.v04i12.054.

Shin, H.-C., H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers
(2016). “Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Archi-
tectures, Dataset Characteristics and Transfer Learning”. In: IEEE Transactions on Medical
Imaging 35.5, pp. 1285–1298. doi: 10.1109/TMI.2016.2528162.

Skingley, J. and A. Rye (1987). “The Hough transform applied to SAR images for thin line detection”.
In: Pattern Recognition Letters 6.1, pp. 61–67. doi: 10.1016/0167-8655(87)90050-X.

Szegedy, C., S. Ioffe, V. Vanhoucke, and A. Alemi (2016a). “Inception-v4, Inception-ResNet and
the Impact of Residual Connections on Learning”. In: Proceedings of the AAAI Conference on
Artificial Intelligence 31. doi: 10.1609/aaai.v31i1.11231.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.
Rabinovich (2015). “Going deeper with convolutions”. In: 2015 IEEE Conference on Computer

110

https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1037/h0042519
https://doi.org/10.48550/arXiv.1609.04747
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/978-3-319-10590-1_5
https://doi.org/10.1007/978-3-319-10590-1_5
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.33564/IJEAST.2020.v04i12.054
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1016/0167-8655(87)90050-X
https://doi.org/10.1609/aaai.v31i1.11231

Bibliography

Vision and Pattern Recognition (CVPR). Boston, MA, USA, pp. 1–9. doi: 10.1109/CVPR.
2015.7298594.

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna (2016b). “Rethinking the Inception
Architecture for Computer Vision”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Las Vegas, NV, USA, pp. 2818–2826. doi: 10.1109/CVPR.2016.308.

Szeliski, R. (2022). Computer Vision : Algorithms and Applications. 2nd ed. Texts in Computer
Science. Cham: Springer. doi: 10.1007/978-3-030-34372-9.

Tan, M. and Q. Le (2019). “EfficientNet: Rethinking Model Scaling for Convolutional Neural Net-
works”. In: Proceedings of the 36th International Conference on Machine Learning. Vol. 97.
PMLR. Long Beach, CA, USA, pp. 6105–6114.

The European Pallet Association (EPAL) (2022). EPAL EURO PALLET. Accessed: 2023-01-09. url:
https://www.epal-pallets.org/fileadmin/user_upload/ntg_package/images/
Produktdownloads/Produktdatenbla__tter/GB/EPAL_Euro_Pallet_800x1200mm.
pdf.

Toosi, A., A. G. Bottino, B. Saboury, E. Siegel, and A. Rahmim (2021). “A Brief History of AI:
How to Prevent Another Winter (A Critical Review)”. In: PET Clinics 16.4, pp. 449–469. doi:
10.1016/j.cpet.2021.07.001.

Toshev, A. and C. Szegedy (2014). “DeepPose: Human Pose Estimation via Deep Neural Networks”.
In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA,
pp. 1653–1660. doi: 10.1109/CVPR.2014.214.

Verband der Automobilindustrie (VDA) (2013). 4530 VDA Einweg Kleinladungsträger System.
Accessed: 2023-01-09. url: https://www.vda.de/de/aktuelles/publikationen/
publication/4530-vda-einweg-kleinladungstr-ger-system.

Vernon, D. (1991). Machine Vision: Automated Visual Inspection and Robot Vision. Hemel Hemp-
stead, Hertfordshire: Prentice-Hall International (UK) Ltd.

Viola, P. and M. Jones (2001). “Rapid object detection using a boosted cascade of simple features”. In:
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001. Vol. 1. IEEE. Kauai, HI, USA, pp. I–I. doi: 10.1109/CVPR.2001.
990517.

Vitronic (2022). Warehouse Logistics & Distribution Logistics. Accessed: 2022-10-10. url: https:
//www.vitronic.com/en-us/logistics/warehouse-distribution.

Wei, F., C. Alias, and B. Noche (2019). “Applications of Digital Technologies in Sustainable Logistics
and Supply Chain Management”. In: Innovative Logistics Services and Sustainable Lifestyles.
Cham: Springer, pp. 235–263. doi: 10.1007/978-3-319-98467-4_11.

111

https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1007/978-3-030-34372-9
https://www.epal-pallets.org/fileadmin/user_upload/ntg_package/images/Produktdownloads/Produktdatenbla__tter/GB/EPAL_Euro_Pallet_800x1200mm.pdf
https://www.epal-pallets.org/fileadmin/user_upload/ntg_package/images/Produktdownloads/Produktdatenbla__tter/GB/EPAL_Euro_Pallet_800x1200mm.pdf
https://www.epal-pallets.org/fileadmin/user_upload/ntg_package/images/Produktdownloads/Produktdatenbla__tter/GB/EPAL_Euro_Pallet_800x1200mm.pdf
https://doi.org/10.1016/j.cpet.2021.07.001
https://doi.org/10.1109/CVPR.2014.214
https://www.vda.de/de/aktuelles/publikationen/publication/4530-vda-einweg-kleinladungstr-ger-system
https://www.vda.de/de/aktuelles/publikationen/publication/4530-vda-einweg-kleinladungstr-ger-system
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/CVPR.2001.990517
https://www.vitronic.com/en-us/logistics/warehouse-distribution
https://www.vitronic.com/en-us/logistics/warehouse-distribution
https://doi.org/10.1007/978-3-319-98467-4_11

Bibliography

Weiss, K., T. M. Khoshgoftaar, and D. Wang (2016). “A survey of transfer learning”. In: Journal of
Big data 3.1, pp. 1–40. doi: 10.1186/s40537-016-0043-6.

Wilson, D. R. and T. R. Martinez (2003). “The general inefficiency of batch training for gradient
descent learning”. In: Neural Networks 16.10, pp. 1429–1451. doi: 10.1016/S0893-6080(03)
00138-2.

Woschank, M., E. Rauch, and H. Zsifkovits (2020). “A review of further directions for artificial
intelligence, machine learning, and deep learning in smart logistics”. In: Sustainability 12.9,
p. 3760. doi: 10.3390/su12093760.

Xiao, B., H. Wu, and Y. Wei (2018). “Simple Baselines for Human Pose Estimation and Tracking”.
In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds) Computer Vision – ECCV 2018.
ECCV 2018. Lecture Notes in Computer Science. Vol. 11210. Cham: Springer, pp. 466–481.
doi: 10.1007/978-3-030-01231-1_29.

Xu, L., E. Oja, and P. Kultanen (1990). “A new curve detection method: randomized Hough transform
(RHT)”. In: Pattern Recognition Letters 11.5, pp. 331–338. doi: 10.1016/0167-8655(90)
90042-Z.

Ying, X. (2019). “An Overview of Overfitting and its Solutions”. In: Journal of Physics: Conference
Series 1168, p. 022022. doi: 10.1088/1742-6596/1168/2/022022.

Yu, J., Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu (2022). “Coca: Contrastive
captioners are image-text foundation models”. In: arXiv preprint arXiv:2205.01917. doi: 10.
48550/arXiv.2205.01917.

Zetes (2022). Zetes: Warenannahme und Versand. de. Accessed: 2022-10-10. url: https://www.
zetes.com/en/technologies-consumables/machine-vision.

Zhao, K., Q. Han, C.-B. Zhang, J. Xu, and M.-M. Cheng (2022). “Deep Hough Transform for
Semantic Line Detection”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
44.9, pp. 4793–4806. doi: 10.1109/TPAMI.2021.3077129.

Zhou, X., D. Wang, and P. Krähenbühl (2019). “Objects as points”. In: arXiv preprint arXiv:1904.07850.
doi: 10.48550/arXiv.1904.07850.

Zou, Z., K. Chen, Z. Shi, Y. Guo, and J. Ye (2023). “Object Detection in 20 Years: A Survey”. In:
Proceedings of the IEEE 111.3, pp. 257–276. doi: 10.1109/JPROC.2023.3238524.

112

https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1016/S0893-6080(03)00138-2
https://doi.org/10.1016/S0893-6080(03)00138-2
https://doi.org/10.3390/su12093760
https://doi.org/10.1007/978-3-030-01231-1_29
https://doi.org/10.1016/0167-8655(90)90042-Z
https://doi.org/10.1016/0167-8655(90)90042-Z
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.48550/arXiv.2205.01917
https://doi.org/10.48550/arXiv.2205.01917
https://www.zetes.com/en/technologies-consumables/machine-vision
https://www.zetes.com/en/technologies-consumables/machine-vision
https://doi.org/10.1109/TPAMI.2021.3077129
https://doi.org/10.48550/arXiv.1904.07850
https://doi.org/10.1109/JPROC.2023.3238524

List of Figures

1.1 Example of stacked transport-ready palletized transport units. 2

2.1 Illustration of the packaging structure recognition use case. 8
2.2 Examples of different transport unit types. (a) KLT units, (b) tray units. 12

3.1 Examples for image processing operations by convolution. Top: Smoothing kernel.
Bottom: Vertical line detection. Original images on the left, processed images on the
right. 17

3.2 Illustration of object representations, i.e. localization granularity, in the tasks of (a)
Object Detection and (b) Instance Segmentation. The object class to be detected are
complete transport units (including base pallet, packages, and lid). 27

3.3 Architecture of AlexNet. Source: Krizhevsky et al. (2012) 28
3.4 Inception module. Source: Szegedy et al. (2015) . 29
3.5 Schematic architecture of CornerNet. Source: Law and Deng (2020). 33

4.1 Illustration of the packaging structure recognition process. (a) Input image. (b) Inter-Unit
Segmentation. (c), (d), (e) Intra-Unit Segmentation. Transport unit sides and packaging
unit faces are found. Subsequently, the number and arrangement of packages for each
transport unit side are determined. (f) Information Consolidation. 39

4.2 Illustration of the transport unit side mask simplification performed as sub-step of the
Information Consolidation process. The detected transport unit side region is indicated
in red. The four black dots indicate the four corners output by the post-processing
optimization algorithm. 43

4.3 Examples from our dataset of 1,000 images. Top row: KLT package unit type. Bottom
row: Tray package unit type. 46

4.4 Data annotation examples on a single image from our dataset. (a) The image and its
two transport unit annotations (highlighted in red and green, respectively). (b) The
two transport unit side annotations for the top transport unit are highlighted (red: left
transport unit side, green: right transport unit side). (c) The packages assigned to (b)’s
left transport unit side annotation are highlighted in red. (d) The base pallet of the top
transport unit is highlighted in red. 47

4.5 Training progress of the CNN model for transport unit segmentation. 50
4.6 Training progress of the CNN model for transport unit side and package segmentation. 51
4.7 Box plot showing the evaluation statistics [mAP] for our transport unit segmentation

model on validation and evaluation data. 53
4.8 Box plot showing the evaluation statistics [mAP] for our transport unit side and package

segmentation model on validation and evaluation data. 54

113

List of Figures

4.9 Accuracy of the step of inter-unit segmentation for different intersections over union
requirements. 56

4.10 Error cases for unit type ’KLT’ (exhaustive list). In (a) and (b) the lower unit is not
recognized correctly. In (d), the upper unit is not recognized correctly. 59

4.11 Example for erroneous packaging unit detection in case of tray packaging units. (a)
Detected packaging units, (b), (c) rectified images of detected transport unit sides and
assigned package detections, (d) overall results. 60

4.12 Examples for erroneous packaging unit detection in case of tray packaging units, due to
inaccurate detection of the whole transport unit. 61

5.1 Exemplary input image and transport unit side annotations (Green color: Annotation of
left transport unit side, red color: Annotation of right transport unit side.) 66

5.2 Detection of horizontal and vertical lines. (a) Binary image of horizontal edge structures,
(b) binary image of vertical edge structures, (c) detected vertical lines, (d) detected
horizontal lines. 68

5.3 Estimation of vanishing points. 69
5.4 Trasnport unit side boundary estimation and side segmentation. (a), (b): Determination

of vertical and horizontal side boundary lines. (c): Resulting transport unit sides. . . . 70
5.5 Histograms of IoU values for the two implementations of transport unit side segmenta-

tion: (a) CNN and (b) Image Processing. Note the logarithmic scale of the y-axis. . . . 72

6.1 Sample annotations. Left: Bounding box annotation. Right: Four-corner-based annota-
tion. The example image is taken from our use-case-specific dataset. 80

6.2 TetraPackNet architecture. Differences to CornerNet are highlighted. 80
6.3 Example heatmaps. Top row: Ground-truth. Bottom row: Detected heats and color-

encoded embeddings. 83
6.4 Training process illustration of TetraPackNet for both trained models. 87
6.5 Average precisions at different IoU thresholds for TetraPackNet and Mask R-CNN base-

line model. Top: Whole image scenario. Bottom: Cropped image scenario. 88
6.6 Exemplary results of both methods for transport unit side detection under consideration

(TetraPackNet and Mask R-CNN). Left: Mask R-CNN, right: TetraPackNet. 90
6.7 Examples for cases in which TetraPackNet does not segment all transport unit sides

correctly. (a) One transport unit side is not found at all. (b), (d) A corner point of
an adjacent background transport unit side is mistakenly employed. In (d), the type of
corner point is mistaken, too (top left instead of bottom left corner). (c) Corner points
are misplaced by a few pixels onto the transport unit lid instead of the packaging unit
corner. 91

6.8 False assignment of object corners to objects and color-encoded embedding values of
botttom right corners. 93

114

List of Figures

6.9 Example results of TetraPackNet with grouping via embedding (left) and grouping via
object extent (right). (a), (b) Erroneous detections of the original TetraPackNet im-
plementation could be corrected by the new grouping method. (c) The new grouping
method introduces a new error as a feature point of lower heat value is preferred over the
correct one. 95

115

List of Tables

4.1 Distribution of transport unit number and unit types within our data and its split sets. . 48
4.2 Training Configuration and Hyperparameters . 49
4.3 Segmentation Models’ AP and mAP values on validation and evaluation data 52
4.4 Mean and Standard Deviation of our evaluation results in the cross-validation of the two

segmentation models for transport units, and sides and packages. 55
4.5 Accuracy 𝐴𝐶𝐶𝑖𝑛𝑡𝑒𝑟 of the step of Inter-Unit Segmentation for different IoU value re-

quirements. 56
4.6 Statistics regarding IoU distribution of transport unit detections. 56
4.7 Pipeline evaluation results . 57
4.8 Evaluation Error e of original and patched recognition pipelines. 58

5.1 Transport unit side segmentation evaluation results: Average IoU values. 71
5.2 Transport unit side segmentation evaluation results: Accuracy at different IoU thresholds. 72

6.1 Instance segmentation evaluation results for the whole image scenario on our 150 eval-
uation images. 86

6.2 Instance segmentation evaluation results for the cropped image scenario on our 163
evaluation image crops. 87

6.3 Transport unit side segmentation evaluation results: Average IoU values. 89
6.4 Transport unit side segmentation evaluation results: Accuracy at different IoU thresholds. 89
6.5 Results for the two object grouping strategies for the whole image scenario on our 150

evaluation images. 94
6.6 Results for the two object grouping strategies for the cropped image scenario on our 163

evaluation image crops. 94

117

List of Author’s Publications

List of Author’s Publications

Dörr, L., F. Brandt, A. Meyer, and M. Pouls (2019). “Lean Training Data Generation for Planar
Object Detection Models in Unsteady Logistics Contexts”. In: 2019 18th IEEE International
Conference On Machine Learning And Applications (ICMLA). Boca Raton, FL, USA, pp. 329–
334. doi: 10.1109/ICMLA.2019.00062.

Dörr, L., F. Brandt, M. Pouls, and A. Naumann (2020a). “Fully-Automated Packaging Structure
Recognition in Logistics Environments”. In: 2020 25th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA). Vol. 1. Vienna, Austria, pp. 526–533.
doi: 10.1109/ETFA46521.2020.9212152.

Dörr, L., F. Brandt, A. Naumann, and M. Pouls (2021). “TetraPackNet: Four-Corner-Based Object
Detection in Logistics Use-Cases”. In: Bauckhage, C., Gall, J., Schwing, A. (eds) Pattern
Recognition. DAGM GCPR 2021. Lecture Notes in Computer Science. Vol. 13024. Springer.
Cham. doi: 10.1007/978-3-030-92659-5_35.

Dörr, L., F. Brandt, M. Pouls, and A. Naumann (2020b). “An Image Processing Pipeline for Au-
tomated Packaging Structure Recognition”. In: Forum Bildverarbeitung. Karlsruhe, Germany:
KIT Scientific Publishing, p. 239.

119

https://doi.org/10.1109/ICMLA.2019.00062
https://doi.org/10.1109/ETFA46521.2020.9212152
https://doi.org/10.1007/978-3-030-92659-5_35

A Appendix

A.1 Citations of Our Prior Publications

We previously published significant parts of this work in Dörr et al. 2020a, Dörr et al. 2020b and
Dörr et al. 2021. The work at hand is more comprehensive than our previous publications but
still draws from them in content, formulations and graphics. In this section, we specify in detail
which paragraphs are complete citations, contain citations, or are partially adopted from previous
publications.

Section Element Prior Publication Citation Description
Abstract §1 Dörr et al. 2020a The first two sentences are a citation of our previous

work.
Abstract §2 Dörr et al. 2020a The last sentence is very similar to our previous work,

quantitative results differ due to a refactoring of the
data set.

121

A Appendix

Section Element Prior Publication Citation Description
2.1.1 §1 Dörr et al. 2020a The first sentence is a citation of our previous work. Ad-

ditional formulations may be similar, but the document at
hand is more thorough and extensive than our previous
work.

2.1.1 §4 Dörr et al. 2020a The first sentence is a citation of our previous work.
2.1.2 §1 Dörr et al. 2020a The second sentence is a citation of our previous work.
2.1.3 §1 Dörr et al. 2020a Apart from the first sentence, the whole paragraph is a

citation of our previous work.
2.1.3 §2 Dörr et al. 2020a The paragraph is a citation of our previous work, except

for the addition of the paragraph’s second sentence.
2.2 §1 Dörr et al. 2020a The first two sentences are a citation of our previous work.
2.2.1 §1 Dörr et al. 2020a The paragraph is a citation of our previous work, except

for the addition of the last sentence.
2.2.1 §2 Dörr et al. 2020a The paragraph is a citation of our previous work.
2.2.1 §3 Dörr et al. 2020a The paragraph is a citation of our previous work, except

for the addition of the last sentence.
2.2.1 §4 Dörr et al. 2020a The paragraph is a citation of our previous work.
2.2.2 §1 Dörr et al. 2020a The paragraph is a citation of our previous work.
2.2.2 §2 Dörr et al. 2020a The paragraph is a citation of our previous work.
2.2.2 Fig. 2.1 Dörr et al. 2020a The figure was already published in our previous work.
2.2.3 Dörr et al. 2020a The content is very similar to our previous publication,

but the precise formulations differ.
2.2.4 §1 Dörr et al. 2020a The paragraph is a citation of our previous work. Few

formulations were slightly altered but the contents are in
agreement.

2.2.4 §2 Dörr et al. 2020a The paragraph is a citation of our previous work.
2.2.4 §3 Dörr et al. 2020a The paragraph is a citation of our previous work.
2.2.4 §4 Dörr et al. 2020a The paragraph is a citation of our previous work. Bullet

point 3 was added for additional clarification.
2.2.2 Fig. 2.2 Dörr et al. 2020a The figure was already published in our previous work.

122

A.1 Citations of Our Prior Publications

Section Element Prior Publication Citation Description
4.2 Dörr et al. 2020a From the third sentence on, the paragraph is a citation of

our previous work.
4.3 Dörr et al. 2020a The beginning of the paragraph is a citation of our pre-

vious work. From line 12 onward, the content originates
from this work.

4.3 Fig. 4.1 Dörr et al. 2020a The figures were already published in our previous work.
4.3.1 §1 Dörr et al. 2020a The first three sentences are citations of our previous work.
4.3.1 §2 Dörr et al. 2020a The second sentence is an exact citation of our previous

work. The remainder contains more detailed formulations
as compared to the original publication.

4.3.1 §3 Dörr et al. 2020a The first two sentences are a citation of our previous work.
4.3.2 §1 Dörr et al. 2020a The beginning of the paragraph is a citation of our pre-

vious work. The last four sentences originate from this
work.

4.3.2 §4 Dörr et al. 2020a The last sentence is a citation of our previous work.
4.3.2 §6 Dörr et al. 2020a The paragraph is a citation of our previous work. The

second sentence was added for clarity.
4.3.3 §1 Dörr et al. 2020a The paragraph is mostly a citation of our previous work.

The enumeration was altered to allow for a more thorough
explanation of the described method.

4.3.3 1) Dörr et al. 2020a The paragraph is a citation of our previous work.
4.3.3 2), §1 Dörr et al. 2020a The paragraph is mostly a citation of our previous work.

The last two sentences were added for clarification.
4.3.3 2), §2 Dörr et al. 2020a The paragraph is a citation of our previous work.
4.3.3 Eq. (4.1) Dörr et al. 2020a The equation is a citation of our previous work.
4.3.3 2), §5 Dörr et al. 2020a The paragraph is a citation of our previous work.
4.3.3 3) Dörr et al. 2020a The first two sentences are a citation of our previous work,

slight re-formulations were applied to achieve consistent
wording throughout this work.

4.3.3 4), §1 Dörr et al. 2020a The last sentence is an exact citation of our previous work,
the remainder of the paragraph, as well as Equations (4.6)
and (4.7) were added as clarification.

4.3.3 Eq. (4.8),
(4.9)

Dörr et al. 2020a The equations are a citation of our previous work.

123

A Appendix

Section Element Prior Publication Citation Description
4.3.3 4), §3 Dörr et al. 2020a The paragraph is mostly a citation of our previous

work. Values of 𝛿1, 𝛿2 were adjusted in this work,
reflecting changes in the data.

4.3.3 4), §4 Dörr et al. 2020a The paragraph is a citation of our previous work.
4.3.3 Eq. (4.10) Dörr et al. 2020a The equation is a citation of our previous work.
4.4.1 Dörr et al. 2020a The paragraph is similar to parts of our previous

work, but details differ due to changes in the dataset.
4.4.3 §1 Dörr et al. 2020a The paragraph is a citation of our previous work.
4.5.1 §1 Dörr et al. 2020a The paragraph is mostly a citation of our previous

work. Details differ due to changes in the dataset
and our method.

4.5.1 §2 Dörr et al. 2020a The paragraph is a citation of our previous work.
4.5.1 §4 Dörr et al. 2020a From sentence three on, the paragraph cites our

previous work.
4.5.2 "Inter-Unit

Segmentation"
Dörr et al. 2020a The section is similar to our previous work but

contains more extensive in its explanations.
4.5.2 "Recognition

Pipeline", §1
Dörr et al. 2020a The first sentence is a citation of our previous work.

4.5.2 "Recognition
Pipeline", §2

Dörr et al. 2020a The paragraph is a citation of our previous work.

4.5.2 Eq. (4.12) Dörr et al. 2020a The equation is taken from our previous work.
4.5.2 Eq. (4.13) Dörr et al. 2020a The equation is taken from our previous work.
4.5.2 "Recognition

Pipeline", §3
Dörr et al. 2020a The paragraph contains citations of our previous

work. Exact results differ due to changes in the
dataset. Additional explanations were added.

4.5.2 "Manual Error
Observations"

Dörr et al. 2020a The paragraph is similar to our previous work but
more thorough and extensive.

124

A.1 Citations of Our Prior Publications

Section Element Prior Publication Citation Description
5.3 §3 Dörr et al. 2020b The paragraph is mostly a citation of our previous

work.
5.3 "2. Line Detec-

tion", §2
Dörr et al. 2020b The paragraph’s first sentence is a citation of our

previous work.
5.3 "2. Line Detec-

tion", §4
Dörr et al. 2020b The paragraph’s first sentence is a citation of our

previous work.
5.3 "2. Line Detec-

tion", §5
Dörr et al. 2020b The paragraph’s first sentence is a citation of our

previous work.
5.3 "3. Vanish-

ing Point Esti-
mation", §1

Dörr et al. 2020b The paragraph is mostly a citation of our previous
work.

5.3 "4. Side Bound-
ary Estimation"

Dörr et al. 2020b The paragraph contains citations of our previous
work (lines 1-3, lines 8-12), but further explana-
tions were added.

5.3 Last § Dörr et al. 2020b The paragraph is a citation of our previous work.
5.3 Fig. 5.2, (c), (d) Dörr et al. 2020b The figures were already published in our previous

work.
5.3 Fig. 5.3 Dörr et al. 2020b The figure was already published in our previous

work (colors were modified for better contrast).
5.3 Fig. 5.4 Dörr et al. 2020b The figure was already published in our previous

work (colors were modified for better contrast).
5.5 §1 Dörr et al. 2020b Beginning with the paragraph’s fifth sentence, it is

a citation of our previous work.

125

A Appendix

Section Element Prior Publication Citation Description
6.1 §4 Dörr et al. 2021 The paragraph is mostly a citation of our previous

work.
6.2 §3 Dörr et al. 2021 The paragraph is mostly a citation of our previous

work.
6.2 §6 Dörr et al. 2021 The paragraph is mostly a citation of our previous

work.
6.4.1 Fig. 6.1 Dörr et al. 2021 The Figure was published in our previous work.
6.4.1 §1-3 Dörr et al. 2021 The paragraph is a citation of our previous work.
6.4.1 Fig. 6.2 Dörr et al. 2021 The Figure was published in our previous work.
6.4.1 Backbone Net-

work
Dörr et al. 2021 The paragraphs are a citation of our previous work.

6.4.1 Corner Detec-
tion and Corner
Modules

Dörr et al. 2021 The paragraphs are a citation of our previous work.

6.4.1 Ground-truth Dörr et al. 2021 The paragraphs are a citation of our previous work.
6.4.1 Loss Function Dörr et al. 2021 The paragraphs are a citation of our previous work.
6.4.1 Fig. 6.3 Dörr et al. 2021 The Figure was published in our previous work.
6.4.2 Dörr et al. 2021 The subsection is a citation of our previous work.
6.5 §1 Dörr et al. 2021 The paragraph is a citation of our previous work.
6.5.1 §1 Dörr et al. 2021 The paragraph is a citation of our previous work.
6.5.1 Setup Dörr et al. 2021 The paragraph is a citation of our previous work.
6.5.1 Training De-

tails, §1-2
Dörr et al. 2021 The paragraph’s are mostly a citation of our previ-

ous work.
6.5.1 Standard Met-

ric Results
Dörr et al. 2021 The paragraphs are mostly a citation of our previous

work. Quantitative evaluation values differ slightly
due to a refactoring of the data set.

6.5.1 Use Case Spe-
cific Results, §1

Dörr et al. 2021 The paragraph is mostly a citation of our previous
work.

6.5.2 §1 Dörr et al. 2021 The paragraph is mostly a citation of our previous
work.

6.5.2 §1 Dörr et al. 2021 The paragraph is mostly a citation of our previous
work.

6.5.2 §3 Dörr et al. 2021 The paragraph is a citation of our previous work.
6.5.2 §4 Dörr et al. 2021 The paragraph is similar to our previous work,

adaptations to the method (Eq. 6.14) were made.
6.5.2 §5 Dörr et al. 2021 The paragraph is a citation of our previous work.
6.5.2 §6 Dörr et al. 2021 The paragraph’s first sentence is mostly a citation

of our previous work.

126

	Abstract
	Kurzzusammenfassung
	Introduction
	Motivation and Problem Description
	Research Questions and Objectives
	Scope and Organization of the Thesis

	Packaging Structure Recognition and Cognitive Systems in Logistics
	Related Work and Classification of our Work
	Digitalization of Logistics
	Computer Vision and Deep Learning in Logistics
	Goods Receipt Automation and Logistics Unit Recognition

	Introducing the Use Case of Packaging Structure Recognition
	Motivation and Applications for PSR
	The Idea of Automated Packaging Structure Recognition
	Terms and Definitions
	Prerequisites and Limitations

	Summary

	Basics of Computer Vision, Machine Learning and Artificial Neural Networks
	Computer Vision and Image Processing
	Machine Learning and Artificial Neural Networks
	A Short History of Machine Learning and Artificial Intelligence
	Deep Learning

	Object Detection and Instance Segmentation
	CNN Architectures for Image Analysis
	Object Detection
	Instance Segmentation

	Summary

	A Method for Automated Packaging Structure Recognition in Single RGB Images
	Research Question Elaboration
	Related Work
	Multi-Step Image Processing Pipeline
	Inter-Unit Segmentation
	Intra-Unit Segmentation
	Information Consolidation

	Dataset
	Image Acquisition Details
	Packaging Components
	Annotations
	Dataset Splits and Statistics

	Evaluation
	Segmentation Model Training and Evaluation
	Pipeline Evaluation

	Result Discussion and Assessment

	Comparing Deep Learning and Computer Vision Approaches - A Case Study
	Research Question Elaboration
	Related Work
	Computer-Vision-Based Transport Unit Side Detection
	Results: Comparing Computer Vision and Deep Learning Approaches
	Discussion of Experiment Results and Implications

	TetraPackNet: Specialized Deep Learning Approaches for Packaging Structure Recognition
	Research Question Elaboration
	Related Work
	Object Representations
	Existing Object Instance Representations
	Feature-Point Based Object Representation

	TetraPackNet
	Network Design
	Assembling Corner Detections to Objects

	Evaluation
	Transport Unit Side Detection
	Experiment: Embedding-Free Detection to Object Grouping Method

	Result Discussion and Assessment

	Conclusion
	Summary
	Outlook and Future Work

	List of Figures
	List of Tables
	Appendix
	Citations of Our Prior Publications

