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Abstract
Charge transport in metals and semiconductors is often dominated by
electron-impurity and electron–phonon scattering. Coulomb effects could be
found in small corrections to the leading behavior, drag effects in specially
fabricated samples, compensated semimetals, and hydrodynamic phenomena
in ultra-pure materials. In contrast, electrical resistivity in strongly correlated
systems is poorly understood. Understanding the fate of electron–phonon scat-
tering in these materials may offer a route towards future advancements.
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Coulomb’s law describes one of the four fundamental interactions known to modern physics. Out of the four interactions,
only Coulomb’s forces act on length scales relevant to condensed matter. Yet, many phenomena observed in solids can be
described by theories of “noninteracting” electrons[1,2] as most readily illustrated by the traditional theory of electrical
conduction.

Conventional conductors are typically described within the Landau Fermi-liquid paradigm.[3,4] The central principle
of the Landau theory is the concept of quasiparticles, namely, the statement that elementary excitations of an interacting
Fermi system can be described similarly to those in a free Fermi gas. Assuming that global symmetries of the Fermi gas
(particle number, energy, and momentum conservation, spin-rotation invariance, etc.) are preserved in the Fermi-liquid
state, quasiparticles are described by the same set of quantum numbers as the free fermions. However, quasiparticles are
not “free”: they do not correspond to exact eigenstates of the Hamiltonian. Quasiparticles interact with each other and
have a finite “lifetime.” As a result, physical properties of the quasiparticles (mass, compressibility, spin susceptibility,
etc.) differ from the properties of the free gas.

In its original form, the Fermi-liquid theory describes a physical liquid, 3He.[4] Applying the same concept to electrons
in solids brings about several significant changes.[5] In contrast to helium atoms, electrons carry charge and interact
by means of the long-ranged Coulomb potential; hence, screening effects need to be taken into account. Furthermore,
electrons in solids exist in the environment created by a crystal lattice and can scatter off both lattice imperfections (or
“disorder”) and lattice vibrations (phonons): the electronic momentum is not conserved. Assuming Galilean invariance,
the momentum defines the electric current and the above scattering processes provide natural mechanisms of current
relaxation leading to electrical resistance.

Resistance (and more generally, transport) measurements remain one of the most common experimental tools in
condensed matter physics. Measured within linear response, the electrical resistance satisfies the Ohm’s law.[1,6] At an
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elementary level, the phenomenon can be described using the Drude theory.[7] The resulting Drude formula for electrical
resistivity,

𝜌 = m
e2n𝜏

, (1)

is widely used to characterize conducting properties of materials[8] (e is the electron charge, n and m are the carrier density
and mass, and 𝜏

−1 is the “transport scattering rate”). The rate 𝜏−1 does not have a fundamental, model-independent
definition[9] (unlike n that can be extracted from the Hall coefficient and m that can, in principle, be found from the
specific heat) and can be taken as phenomenologically defined by Equation (1). Assuming temperature-independent n
and m, the measured temperature dependence 𝜌(T) can be assigned to 𝜏.

In conventional conductors, the above procedure can be justified by using the kinetic (Boltzmann) equation
approach.[1] The scattering rate could then be inferred from the collision integral. Taking into account the above two
mechanisms of momentum relaxation (disorder and electron–phonon scattering), one finds 𝜌(T) [or 𝜏(T)] in a reasonably
good agreement with experiment.

In copper (a conductor widely used in practice, e.g., for household wiring), the electrical resistivity exhibits three
clearly identified regimes[10]: (i) the low-temperature regime of roughly T-independent “residual resistance” (typically
attributed to disorder scattering); (ii) the phonon-dominated regime with 𝜌 ∼ T5; which at higher temperatures crosses
over to (iii) the linear-in-T resistance, 𝜌 ∼ T. The latter behavior begins at approximately 100 K and continues up to the
melting temperature, 1358 K. This behavior is typical for simple nonmagnetic metals[11] (in magnetic metals electrons
can also scatter on spin waves; in ordered alloys scattering on long-range fluctuation may be important).

The above phenomenology should be contrasted with the almost century-old discussion of the possible contribution
of electron–electron scattering to resistivity, with 𝜌 ∼ T2 being the most quoted expectation. Detailed experimental work
targeting such effect was performed in Ref. [12]. The authors cited Ref. [13] as the source of the original suggestion that
electron–electron interaction could contribute to resistivity, although that paper only reported that experimental data
on platinum were not in agreement with any existing theory represented either by a single power law[14–16] or a linear
combination of several of them.[17] The platinum data could be fitted to the T2 behavior in the interval T ≈ 1 ÷ 4 K and to
T4 at about 20 K. Ref. [12] reported an observation of a quadratic temperature dependence in aluminum and indium (in
contrast to potassium and sodium where such behavior was not observed). The data (measured in the interval T ≈ 1 ÷ 4 K)
were analyzed using the phenomenological expression (suggested in Ref. [18])

𝜌 = 𝜌0 + A2T2 + A5T5
. (2a)

A wider temperature range (T ≈ 6 ÷ 327 K) was explored in Ref. [19]. Data in vanadium, platinum, and copper were
analyzed using a more complex expression

𝜌 = 𝜌0 + A2T2 + A3(TD∕T)T5 + A5(TD∕T)T5
. (2b)

Fitting over the entire temperature range, the data did not support the inclusion of the quadratic term. Narrowing
down to the smaller interval T ≈ 6 ÷ 12 K, the authors did find an estimate for A2 in platinum that was comparable to
previous studies, while confirming A2 ≈ 0 in copper.

Theoretically, the T2 temperature dependence of resistivity is known to arise due to electron–magnon processes that
are beyond the scope of this paper or due to Umklapp scattering.[20] The resulting expression is

𝜌 ≈ m
e2n

T2

EF
, (3)

where EF is the Fermi energy, in most “simple” metals (except for transition metals) is subleading to the phonon
contribution and could be observed only at low temperatures. This conclusion is supported by the above experimen-
tal data as well as by the numerical analysis. In particular, Ref. [21] reports that a T2 contribution does not persist
at high temperatures, despite accurately describing resistivity in palladium below T = 5 K (although experimental
estimates of A2 vary depending on sample purity[22,23]). It is then not surprising that experimental observation of
the T2 contribution and especially its interpretation in terms of electron–electron scattering is difficult and at best
inconclusive.
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Comparing Equations (1) and (3), one may surmise the existence of “scattering rate” (in units with kB = 1)

𝜏
−1 ∼ T2

EF
,

related to the quasiparticle lifetime in the Fermi-liquid theory. It is important to stress that this is not the case. The quasi-
particle lifetime has nothing to do with electrical resistivity. The contribution described by Equation (3) appears only in
cases where the Fermi surface is open and crosses the Brillouin zone boundary. In that case, electrons can jump between
the opposite parts of the Fermi surface losing momentum to the lattice as a whole. The resulting resistance is by no means
universal and strongly depends on the details of the Fermi surface topology.

The brief historical overview presented so far was not intended to be comprehensive. It does however illustrate the fol-
lowing point. At the level of the leading approximation often assumed in literature, the electron–electron interaction does
not contribute to electrical resistivity. In the kinetic theory approach, this can be seen as a consequence of additivity of
the collision integral (which leads to the so-called Mathiessen’s rule[11,24]). Indeed, if one restricts the scattering probabil-
ity to the Golden Rule level, then contributions of different scattering mechanisms add up. A collision integral describing
electron–electron interaction (without the possibility to transfer momentum to the lattice) does not contribute to 𝜌 unless
the electric current is not determined by the momentum density (as is the case in intrinsic graphene[25–29]). This leaves
the following possibilities to observe the effects of electron–electron interaction in transport measurements: (i) “correc-
tions” to kinetic coefficients due to higher order processes[5,30]; (ii) drag effects[31]; (iii) materials with specific features
of the Fermi surface allowing, for example, for Umklapp scattering; (iv) compensated semimetals[25]; and (v) indirectly,
electronic hydrodynamics.[25,32–34]

The list of observed phenomena that do not fit in the above simplistic picture is too long to be included here. The effects
related to magnetic field (such as the fractional quantum Hall effect[35]) are deliberately left outside the scope of this
paper as are phenomena in mesoscopic (e.g., the Coulomb blockade)[36] and (quasi-) one-dimensional systems.[37] Trans-
port properties of strongly correlated systems[9,38–41] represent a major unsolved problem in modern physics. Over the
last several decades, a lot of attention was devoted to compounds exhibiting linear-in-T resistivity.[8,9,41] Despite certain
progress achieved in understanding various models of non-Fermi-liquid (NFL) behavior, many aspects of the observed
phenomenology remain puzzling. Experimentally, the linear behavior is observed only in a part of the (rather compli-
cated) phase diagram. A seemingly small change in doping may lead to a change of the exponent T → T𝛼 with a sizable
portion of the phase diagram exhibiting the quadratic behavior (𝛼 ≈ 2)[42,43] associated not with the Umklapp processes,
but rather with electron–phonon scattering (in the case of a cylindrical Fermi surface). Why would electron–phonon
scattering cease to contribute or, alternatively, undergo a significant change yielding a different exponent at different
doping levels is not completely understood. A recent attempt to explain the linear-in-T resistivity by electron–phonon
scattering with unusually low Bloch-Grüneisen temperature[44] does not account for the whole temperature range of the
observed effect.[41] A further puzzle is related to the nature of elementary excitations: angular-resolved photoemission
(ARPES) measurements seem to be pointing towards a novel quantum state where excitations cannot be decomposed into
individual quasiparticles,[40] while angle-resolved magnetoresistance (ADMR) data[45] are typically interpreted using the
Boltzmann equation approach. It is safe to assume that the nature of electronic structure in NFL metals and any possible
universality of its features have not been definitively established yet.

1 QUANTUM INTERFERENCE CORRECTIONS

The T2 behavior due to Umklapp scattering, Equation (3), is sometimes presented as the “Fermi-liquid” behavior (in con-
trast to, e.g., “non-Fermi-liquid” linear-in-T resistivity). It is therefore important to point out, that a standard disordered
Fermi liquid in two dimensions (2D)[5] is perfectly capable of exhibiting the linear temperature dependence,[46] albeit in
a relatively narrow temperature range.

A 2D electron gas (2DEG) is typically realized either in semiconductor heterostructures[47,48] or at an interface between
two oxide insulators.[49–52] In these systems, the carrier density is typically low such that the Fermi surface occupies a
relatively small volume in the center of the Brillouin zone. The low-temperature resistivity of a 2DEG strongly depends
on the carrier density and exhibits an apparent metal–insulator transition[47,48,52] (i.e., a change in the temperature
behavior from metallic with 𝜕𝜌∕𝜕T > 0 to insulating with 𝜕𝜌∕𝜕T < 0). The metallic behavior is associated with the resis-
tivity that is less than the “resistivity quantum,” h∕e2. In that case, the dimensionless conductance of the 2DEG (defined
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as the conductivity in units of e2∕h) is large, g = h∕
(

e2
𝜌

)
≫ 1, and one can develop a perturbation theory with the small

parameter 1/g[5,46] (in terms of the mean free path 𝜏dis, the dimensionless conductance may be expressed as g ∼ EF𝜏dis∕ℏ).
To the “zeroth” order of the perturbative expansion in 1∕g, one finds the T-independent “residual” resistivity due to

electron-impurity scattering. The leading temperature dependence arises due to quantum interference processes known
as the weak localization and interaction (or Altshuler-Aronov) corrections (one typically calculates conductivity)

𝜎(T) = 𝜎0 + 𝜎WL(T) + 𝜎ee(T). (4)

The term “corrections” reflects the fact that these contributions are small compared with the residual conductivity by
the factor of 1∕g (obtained in the “first” order of perturbation theory).

The weak localization correction[53,54] is always negative (“insulating”) and is generally considered to be the precursor
of Anderson localization.[55,56] In contrast, the interaction correction may change sign depending on the value of the
Fermi-liquid constant (Landau parameter) in the triplet channel[46,57,58] explaining the observed metallic (𝜕𝜌∕𝜕T > 0)
behavior. The explicit expression for the correction,

𝛿𝜎ee(T) = −
e2

𝜋h

[

4 −
3 ln

(
1 + F𝜎0

)

F𝜎0

]

ln ℏ

T𝜏dis

+ 2e2

h

[
1 +

3F𝜎0
1 + F𝜎0

]
T𝜏dis

ℏ
− e2

h
K
(

T𝜏dis;F𝜎0
)
, (5)

contains the logarithmic term dominating in the so-called “diffusive” regime (T𝜏dis ≪ ℏ), the linear term which is the
hallmark of the “ballistic” regime (T𝜏dis ≫ ℏ), and the crossover function. The two limiting expressions are in a good
agreement with experiment.[47,59]

The linear temperature dependence in the ballistic limit can be established at the level of a simple quantum mechan-
ical scattering problem, where one finds a correction to the scattering amplitude due to coherent scattering off Friedel
oscillations.[46] The scattering amplitude defines the transport scattering rate; hence, the obtained result is a correction
to the latter, the point that is not as clear within the diagrammatic approach. In fact, the notion of the “scattering rate”
lacks a precise (i.e., free from any approximation and interpretation) definition within any Green’s function formalism
(this problem becomes apparent when trying to specify the so-called Planckian scale[9,41]), although no such issue arises
within the quantum kinetic equation approach.[46]

The narrow temperature range where the linear dependence shown in Equation (5) is observed[47,59] is limited from
below by the crossover to the diffusive regime and from above by the onset of higher order corrections exhibiting higher
powers of temperature. At low carrier densities the dominant contribution is quadratic in T and comes from the so-called
drag effect.[31]

2 COULOMB DRAG

Drag effects appear in systems comprising two distinct types of carriers or interacting particles. Scattering between parti-
cles of different types leads to energy and momentum transfer between the two subsystems. In case one of them is carrying
the electric current, the other is being “dragged” along once it acquires the transferred momentum.

The earliest phenomenon of that type to be studied is the “phonon drag,”[60] which provides a correction to the stan-
dard transport theory typically observable in thermoelectric measurements (although affecting charge transport as well).
A “cleaner” observation of drag is possible in artificially fabricated samples comprising two closely spaced, but electri-
cally isolated, conductors (often referred to as “layers”). Passing a current through the “active layer” induces a voltage
(in an open circuit) in the “passive layer.” The effect is sometimes referred to as “mutual friction,” “frictional drag,” or
(especially in semiconductor heterostructures) “Coulomb drag.” The ratio of the induced voltage to the passed current
determines the “transresistivity” or the “drag coefficient” which can be described by the Drude-like formula with the
“drag scattering rate” 𝜏−1

D . If both layers are in the Fermi-liquid state, the usual phase-space argument yields the quadratic
temperature dependence 𝜏−1

D ∝ T2.[61]

The key physical feature of electronic systems in both layers required for drag is the electron–hole asymmetry. When
one passes a current through the active layer, the oppositely charged carriers, “electrons” and “holes,” move in opposite
directions. The active layer can then be characterized by a nonzero total momentum only if there is some asymmetry

 15213986, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ctpp.202300031 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [29/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NAROZHNY 5 of 11

between them. Similarly, the momentum is transferred equally to electrons and holes in the passive layer and hence the
resulting state can carry the current only in the case of electron–hole asymmetry.

In the Fermi-liquid state, the two types of carriers are the “electron-like” excitations with energies above the
Fermi energy 𝜀 > EF (i.e., the occupied states outside the Fermi surface) and “hole-like” excitations with 𝜀 < EF . The
electron–hole asymmetry appears due to curvature of the conduction band spectrum (leading to the energy dependence
of the density of states [DOS] and/or diffusion coefficient). In the Fermi-liquid theory, the electron–hole asymmetry can
be expressed[62] as a derivative of the single-layer conductivity with respect to the chemical potential (assuming either
a constant impurity scattering time or diffusive transport). The simple estimate 𝜕𝜎∕𝜕𝜇 ∼ 𝜎∕𝜇 then explains the typical
smallness of the effect. As a result, the drag effect in a single conductor is usually subleading, which is the reason why
one needs to fabricate double-layer samples to observe drag. Here, there are no competing contributions and the whole
effect is due to electron–electron interaction. The above smallness manifests itself in strong mesoscopic fluctuations at
low temperatures.[62–64]

3 ELECTRONIC HYDRODYNAMICS

Interaction effects discussed so far can be accounted for either within the kinetic approach or (equivalently)
within a diagrammatic perturbation theory. This method may fail in “strongly interacting” or “strongly correlat-
ed” systems. A universal description of strong electron–electron interactions in the long-time, long-wavelength limit
may be provided by hydrodynamics.[25] Indeed, several authors have suggested that the linear-in-T resistivity has
hydrodynamic origin.[65–67]

Conventional hydrodynamics relies on momentum conservation. In solids, electronic momentum is never truly con-
served (due to scattering off impurities, phonons, etc.). However, in ultra-pure materials,[68–72] it may be possible to find
an intermediate temperature range where electron–electron interaction is the dominant scattering process reflected in a
hierarchy of typical length scales 𝓁ee ≪ 𝓁dis,𝓁e−ph, … (in self-evident notations). At high temperatures, 𝓁ee is expected to
decrease and is especially short in “bad” metals,[73,74] making hydrodynamics potentially relevant for transport beyond
the Mott-Ioffe-Regel (MIR) limit.[75,76] Recently it was argued that hydrodynamics leads to a rigorous upper bound on
resistivity of an electronic fluid[67] if the system possesses a nonthermal diffusion mode, that is, the imbalance between
different bands.

Generalizing the hydrodynamic approach beyond conventional fluids, one may consider it in a broader sense of a
long-wavelength theory of small perturbations relative to an equilibrium state.[77] Then viscous flow and diffusion (with
Ohmic dissipation) could be discussed on equal footing. The two types of dissipative dynamics can be combined in a sin-
gle Gurzhi equation,[78,79] their relative strength being controlled by the Gurzhi length, 𝓁G =

√
𝜈𝜏dis (𝜈 is the kinematic

viscosity).
What can one expect from a hydrodynamic approach? Derived from the kinetic theory, the Gurzhi equation[78,79]

has two terms coming from the collision integral: (i) viscosity (due to electron–electron interaction) and (ii) Ohmic
decay due to “momentum non-conserving” scattering (electron-impurity or electron–phonon) as described by two
“kinetic coefficients”: the shear viscosity and conductivity. Even including quantum corrections,[30,46] the latter remains
a constant describing a diffusive flow that may be inhomogeneous in confined geometries.[80,81] Viscous terms describe a
different type of inhomogeneity in the current flow (due to sample geometry or close to sample edges).[79,81–83] However,
the kinetic coefficients (in particular, their temperature dependence) are not determined by hydrodynamics. Instead,
they have to be established on the basis of the underlying microscopic theory.[84–86] Without microscopic input, a
phenomenological hydrodynamic approach cannot fully account for the observed temperature dependence of trans-
port coefficients. What it can describe is the inhomogeneity of the current density and magnetotransport[87–90] (the
non-quantizing magnetic field affects electronic transport via the Lorentz force, while the collision integral remains
field-independent).

The hydrodynamic regime is apparently easiest to achieve in graphene.[25,32,33] This material can host two drastically
different types of hydrodynamic behavior: (i) “conventional” in the Fermi-liquid regime[32,78,79] and (ii) “unconventional”
at charge neutrality.[25] In graphene, the electronic momentum density defines the energy (not charge!) current. In “doped
graphene,” all currents are equivalent, leading to a Navier–Stokes-like equation for the electric current.[78,79] At charge
neutrality (B = 0), the energy and electric currents decouple.[91,92] The energy current may become hydrodynamic,[93,94]

while the electric current remains Ohmic,[92] leading to a strong violation of the Wiedemann-Franz law.[95] The diffusive
charge flow is nonuniform in confined geometries[94] exhibiting the anti-Poiseuille profile in a weak magnetic field.
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Intrinsic graphene is neither a strongly correlated system nor a Fermi liquid. The only energy scale in the
system is T. All timescales are proportional to T−1 with a factor depending on the interaction strength[26,29,92]

(unlike the Planckian limit[41]). In the clean limit, the resistivity (T-independent up to renormalizations) is due to
electron–electron scattering.[26–29] Optical conductivity has nearly the Drude-like shape.[85,96] Phonons also contribute to
resistivity showing the linear T dependence at low-enough temperatures.[97] In confined geometries, magnetoresistance
of neutral graphene is linear in B (in “classically strong” fields).[87,91] Finally, the system possesses an additional diffusive
mode[93] due to quasiparticle imbalance[98] (leading to the linear magnetoresistance).

4 PUZZLING TRANSPORT PROPERTIES OF STRONGLY
CORRELATED SYSTEMS

Unconventional transport properties remain the definitive feature of NFL that can be roughly defined as metallic systems
with a phenomenology incompatible with the predictions of the Fermi-liquid theory. Observed signatures of the NFL
behavior include[9,40,41] (i) single particle scattering rates as extracted from ARPES data[40] deviating from standard Fermi
liquid results (e.g., 𝜏−1 ∼ max(𝜔,T)[99,100]); (ii) an anomalous frequency dependence of the optical conductivity often
accompanied by 𝜔∕T scaling with 𝜎(𝜔) ∼ 𝜔−𝛾F(𝜔∕T)[101] (inconsistent with the usual Drude form); (iii) “bad” metallic
behavior with resistivity above the MIR limit[74]; and (iv) linear-in-T resistivity, 𝜌 = 𝜌0 + AT,[8,38,39,102] (although other
powers T𝛼 have also been observed[103,104]).

Linear-in-T resistivity may be related the to a “transport scattering rate” using the Drude formula Equation (1),[8]

leading to the Planckian limit (provided the effective mass and carrier concentration are T-independent). Elastic disorder
scattering leads to a nonzero rate at T = 0 (cf. the residual resistivity), so the concept of the Planckian dissipation should
only be applied to inelastic dynamics[41] (this is supported by ADMR data[45,105]). T-dependent optical timescale may also
have the Planckian form.[106] The Planckian limit has been argued to apply to the electron–phonon scattering rate[107]

(based on the thermal diffusivity measurements[108,109]).
The available experimental data (on a wide variety of strongly correlated materials) do not paint a clear physical

picture. Even combined with decades of theoretical research, several issues remain controversial hindering our under-
standing of these systems. Arguably the two most discussed points are the temperature dependence of resistivity and the
nature of elementary excitations.

The linear-in-T resistivity is often quoted as the defining property of NFL metals.[9,41] Yet, many different theoretical
models yield this behavior. Moreover, the linear resistivity is often contrasted with the “expected” quadratic behavior.[9]

Looking back at the known temperature dependence of simple metals,[10] the origin of this expectation remains unclear.
Significant efforts were devoted to develop theories involving a quantum-critical boson coupled with the electronic

Fermi surface.[110,111] The boson may represent either an order parameter (breaking the point group, time reversal,
or spin rotation symmetry) or a transverse component of an emergent gauge field. Within that framework, it was
established early on[112] that the electronic self-energy at the Fermi surface exhibits a sublinear frequency dependence
ImΣ(𝜔) ∼ 𝜔2∕3. The Fermi surface remains well defined (in momentum space), but quasiparticle excitations do not. How-
ever, where does the boson come from? At least in some cases, it was argued to originate with higher-energy electronic
modes.[113] This means that the electron-boson coupling ultimately represents electron–electron interaction which con-
serves momentum. Momentum conservation implies that the conductivity of a disorder-free theory is unaffected by the
anomalous self-energy.[114,115] Optical conductivity has the Drude form for clean systems, which can be traced to the
exact cancellation between the self-energy and vertex diagrams.[116,117] Non-zero resistance can be introduced by tak-
ing into account Umklapp scattering,[114,118] potential disorder,[116,119,120] or random fluctuations of the fermion-boson
coupling[115] inspired by the Sachdev-Ye-Kitaev (SYK) model.[9,121]

The absence of quasiparticle excitations is supported be several types of experiments. ARPES measurements provide
evidence for angular anisotropy in the quasiparticle scattering rate and suggest that the electron self-energy is linear in
the frequency for 𝜔 > T.[40,122] Optical conductivity studies show a shift of the spectral weight[106] towards frequencies
exceeding the scattering rate consistent with dc transport measurements. Resistivity exceeding the MIR limit[73,74] can
be interpreted in terms of a mean free path smaller than the Fermi length scale (or interatomic distance). The Hall angle
data are inconsistent with the conventional Boltzmann theory[123] (cot 𝜃H ∼ T2 in contrast with the expectation of the
same temperature dependence of cot 𝜃H and 𝜌). These results are often considered as evidence for a novel quantum state
where excitations cannot be decomposed into individual quasiparticles,[9] supported by experiments showing the lack of
well-defined plasmon modes.[124,125]
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NAROZHNY 7 of 11

On the other hand, ADMR measurements have been interpreted on the basis of the Boltzmann trans-
port approach[45,126]; observations of quantum oscillations appear to be in agreement with the Lifshitz-Kosevich
formula[127–129]; low-temperature thermal transport measurements[130,131] were interpreted as evidence for conventional
fermionic excitations carrying charge and heat; while resistivity data in lightly doped cuprates[132] show saturation at
high temperatures. Recent ARPES data[133] point towards the existence of a T-independent boundary between a strange
metal (at lower doping) and a conventional metal (at higher doping) in cuprates, a viewpoint that is inconsistent with
the idea of the underlying quantum critical point. Finally, magnetoresistance measurements[134] suggest coexistence of
two charge sectors within the single-band cuprate strange metal: one with coherent quasiparticles and another exhibiting
Planckian dissipation.

5 PERSPECTIVES IN ELECTRONIC TRANSPORT

Neither conventional methods nor theories based on the idea of quantum criticality underlying the unusual features
of strange metals can account for the full NFL phenomenology.[9,39,41] In the absence of a comprehensive theory,[39]

experimental data are often interpreted using Drude-type expressions for transport coefficients[8,66,135] (a controversial
approach[136] since the Drude formula involves an “effective mass,” which is not known a priori; at low tempera-
tures, it appears to diverge if extracted from specific heat[137]; on general grounds, it is unclear what is the meaning
of “mass” if there are no well-defined quasiparticles) and the generalized Einstein relation for conductivity defining
“diffusivity.”[66,107] The results can be expressed in terms of general bounds on the diffusivity, conductivity, and their
scaling with temperature.[66,138]

The role of the electron–phonon scattering in strongly correlated systems remains poorly understood. Recently, it was
suggested that the linear-in-T resistivity could arise entirely due to electron–phonon scattering (under the assumption
of a “dilute metal” with unusually low Bloch-Grüneisen temperature).[44] In fact, thermal diffusivity data[107] support
the role of electron–phonon scattering in establishing the Planckian scale at high temperatures and draws parallel with
heat transport in insulators, where a Planckian bound can be found.[139] However, it remains unclear how to explain
the linear resistivity data at even lower temperatures.[41] Neither the problem of coexistence of two different scattering
mechanisms (which somehow manage to yield the same slope in the temperature dependence of 𝜌) nor the possi-
bility of electron–phonon scattering not contributing to transport have been studied in sufficient detail.[41] It seems
that electron–phonon scattering represents a true puzzle behind the strange metal phenomenology. It seems unlikely
that a complete theory of NFL metals can be constructed without understanding the fate of the electron–phonon
scattering.

Another parallel exists with the conjectured lower bound on the shear viscosity to entropy density ratio[140] bringing
about interesting connections to “holographic metals”[141] (a direct calculation[142] of the optical conductivity in holo-
graphic metals support the Drude-type phenomenology) and the hydrodynamic approach to transport. Indeed, several
authors have suggested that the linear-in-T resistivity has hydrodynamic origin.[65–67,143]

To conclude, electronic transport phenomena are far from being well understood. Simple models where a single scat-
tering mechanism is responsible for the observed behavior may describe “simple” (or “conventional”) metals but seem to
fail in more complicated compounds. Even in simple cases, temperature dependence of resistivity is too crude of a mea-
sure: similar dependences could be achieved in multiple models, while specific results for particular mechanisms may be
strongly affected by material properties including the form of the Fermi surface.

A hydrodynamic approach to electronic transport may be a way forward. Long-wavelength physical proper-
ties are the most likely to be disentangled from short-distance complications of material structure (complexity of
the unit cell, etc.). Adding an additional scattering mechanism (such as the electron–phonon interaction with-
out which any theory of NFL metals will be incomplete) is relatively straightforward. The concept of a “relaxation
rate” is well defined and is independent of microscopic features, such as the effective mass. At the same time, the
temperature dependence of relaxation rates and hence the resulting resistivity has to come from an underlying
microscopic theory. But it seems that developing such a theory is easier with the macroscopic approach serving as a
guiding hand.
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