
Citation: Sänger, N.; Abeck, S. User

Authorization in Microservice-Based

Applications. Software 2023, 2,

400–426. https://doi.org/10.3390/

software2030019

Academic Editor: Manuel Mazzara

Received: 11 August 2023

Revised: 31 August 2023

Accepted: 5 September 2023

Published: 19 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

User Authorization in Microservice-Based Applications
Niklas Sänger * and Sebastian Abeck

Research Group Cooperation & Management, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
sebastian.abeck@kit.edu
* Correspondence: niklas.saenger@kit.edu

Abstract: Microservices have emerged as a prevalent architectural style in modern software develop-
ment, replacing traditional monolithic architectures. The decomposition of business functionality
into distributed microservices offers numerous benefits, but introduces increased complexity to the
overall application. Consequently, the complexity of authorization in microservice-based applications
necessitates a comprehensive approach that integrates authorization as an inherent component from
the beginning. This paper presents a systematic approach for achieving fine-grained user authoriza-
tion using Attribute-Based Access Control (ABAC). The proposed approach emphasizes structure
preservation, facilitating traceability throughout the various phases of application development.
As a result, authorization artifacts can be traced seamlessly from the initial analysis phase to the
subsequent implementation phase. One significant contribution is the development of a language to
formulate natural language authorization requirements and policies. These natural language autho-
rization policies can subsequently be implemented using the policy language Rego. By leveraging
the analysis of software artifacts, the proposed approach enables the creation of comprehensive and
tailored authorization policies.

Keywords: microservices; fine-grained authorization; ABAC; engineering; structure preservation

1. Introduction

The microservice architecture has become a widely popular architecture style in re-
search and industry [1–3]. Microservice-based applications replace monolithic applications
by dividing the business logic into smaller services that perform a well-defined, relatively
small task [4]. Each service exposes its functionality through a web Application Program-
ming Interface (API). There are several web API paradigms, such as Representational
State Transfer (REST) [5] or Remote Procedure Calls (RPC) [6], with their most popular
specifications, OpenAPI [7] and gRPC [8]. With well-designed API specifications, microser-
vices enable the creation of reusable services. In this paper, we follow an architectural
style presented by Hippchen et al. [9] and Sidler et al. [10]. The business functionality is
implemented in a microservice that resides in the application layer. A frontend located in
the presentation layer accesses the respective microservice. However, with the distribution
of business logic across multiple microservices, the overall complexity of the management
microservices increases [4]. This includes the integration of access control mechanisms.

The Open Web Application Security Project (OWASP) frequently publishes a list
of security risks in web applications. In their 2021 list, broken access control is listed
as the number one security risk [11]. In a microservice architecture, the complexity of
access control is further increased by the distribution of services and their responsibilities.
As de Almeida and Canedo [12] report, communication, trust, and access control between
microservices are major challenges. Authentication and authorization are aspects of access
control [13]. Authentication involves the process of verifying the identity of a subject, while
authorization determines the level of access an authenticated subject is granted.

Authorization for microservice-based applications has been primarily researched as a
technical aspect of evaluating and enforcing authorization decisions in the microservice

Software 2023, 2, 400–426. https://doi.org/10.3390/software2030019 https://www.mdpi.com/journal/software

https://doi.org/10.3390/software2030019
https://doi.org/10.3390/software2030019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/software
https://www.mdpi.com
https://orcid.org/0009-0000-0507-7195
https://doi.org/10.3390/software2030019
https://www.mdpi.com/journal/software
https://www.mdpi.com/article/10.3390/software2030019?type=check_update&version=2

Software 2023, 2 401

architecture [14,15]. The loose coupling of microservices offers a separation of concerns
between business logic and authorization logic. This allows the modification of authoriza-
tion logic without modifying the business logic. In this paper, we apply ABAC to perform
authorization decisions as it complements the loose coupling of microservices by adding
authorization components to the overall architecture [16].

Besides architectural challenges, the questions of what must be authorized and how au-
thorization can be systematically formulated and consequently enforced have not been fully
addressed. This implies changes to the software development process for a microservice-
based application. Authorization, as a subset of computer security, is a non-functional
requirement [13] which is often performed as an afterthought in software engineering [17].
To counteract this, authorization should be collected during the requirements analysis
and further realized throughout the design and implementation. However, there is no
widely established procedure to define authorization policies. While there are model-driven
approaches to derive ABAC policies based on Unified Modeling Language (UML) mod-
els [18,19], there is a lack of research on approaches to derive ABAC policies as an integral
part of a software engineering process. This also applies to the definition and creation of
authorization requirements, which are needed to define what needs to be authorized and
lack systematic structure [20].

We identify the integration of fine-grained authorization using ABAC in the develop-
ment of microservice-based applications as the primary research gap. To address this gap,
we establish four research questions investigated in this paper:

RQ1 How can ABAC policies be systematically formulated?

RQ2 How can requirements for authorization be formulated?

RQ3 How can we systematically implement authorization policies?

RQ4 How can we integrate authorization into the development of a microservice-based
application?

The leading research question is the formulation of ABAC policies (RQ1) as the central
authorization artifact. The definition of ABAC policies affects what must be collected during
the requirements analysis (RQ2) and how policies can consequently be implemented (RQ3).
The holistic integration into the development (RQ4) depends on the authorization artifacts.

To answer these research questions, the contributions of this paper are the follow-
ing: First, we propose an authorization policy language to provide a structure for the
formulation of natural language authorization policies. This is done with an Augmented
Backus–Naur Form (ABNF) structuring the necessary aspects of ABAC. Second, a subset of
the authorization policy language is provided to establish a formalization for the definition
of authorization requirements during the analysis phase. Third, we provide a structure
to implement authorization policies using the policy language Rego. Fourth, we provide
an authorization extension for a development process of a microservice-based application
spanning over the analysis, design, and implementation and test phases.

In this work, we focus on microservice-based applications using RESTful APIs, as they
have a fixed set of operations following the use of Create, Read, Update, and Delete (CRUD)
operations [5]. Further, authentication is not considered in this paper. That is, it assumes
that a human user is already authenticated (e.g., via Open ID Connect) and can prove it
(e.g., via a valid JSON Web Token (JWT) [21]).

The remainder of this article is structured as follows: Section 2 presents related work
on authorization and the state of the art on (fine-grained) authorization in (microservice-
based) applications. In Section 3, the authorization policy languages, the implementation
of authorization policies, and the authorization extension for a development process are
introduced. To demonstrate the contributions of this work, Section 4 introduces a case
study using the authorization artifacts and the authorization extension in a development
process. The results are discussed in Section 5. Finally, Section 6 summarizes this work.

Software 2023, 2 402

2. Related Work
2.1. Background

Access control is a fundamental aspect of security in IT systems [13]. It consists of
three aspects: authentication, authorization, and auditing [22]. In access control, a subject
(human or non-human) always attempts to perform an action on an object. A subject must
be authenticated before the access request can be authorized or not. The access request is
logged for auditing purposes. In this work, only the terms subject and object are used to
provide a common terminology and to avoid misconception (e.g., use of a subject instead
of a user).

Authorization is often divided into coarse-grained and fine-grained authorization [23].
Coarse-grained access control grants access to a system or resource to a broader set of
subjects. In contrast, fine-grained access control allows flexible access rights to specific re-
sources for individual users [24,25]. An overview presenting characteristics of fine-grained
and coarse-grained authorization is provided in Table 1. Popular authorization paradigms
are Role-Based Access Control (RBAC) and ABAC. RBAC ties a set of permissions (e.g., read
or write to a folder) to a role that can be assigned to a subject [26]. Thus, RBAC is typically
used to perform rather coarse-grained authorization. RBAC still allows creating roles
for individual resources or users. However, this can lead to a phenomenon called role
explosion, which implies an unmanageable number of roles in an access control system [27].

Table 1. Comparison of levels of authorization granularity adapted from [28].

Characteristic Fine Grained Coarse Grained

Granularity Highly detailed and specific
controls

Broader and generalized controls

Scope Control access to individual
resources or actions

Manage access at higher level
(e.g., functions, services)

Flexibility High Low

Manageability Complex Simple

Changing
Privileges Simple Complex

Popular
Paradigm ABAC RBAC

ABAC can perform an authorization decision based on a set of attributes that can
be received from a subject, an object, or an environment [29]. The attributes can be for-
mulated as a set of conditions. To perform authorization, the conditions are collected in
an authorization policy that can consequently be enforced. The collection of attributes
and conditions allows the creation of arbitrarily complex fine-grained access policies [30].
ABAC policies can be implemented in a policy language such as eXtensible Access Control
Markup Language (XACML) [31]. To enforce ABAC policies, there is a reference archi-
tecture consisting of four main components [29]: Policy Enforcement Point (PEP), Policy
Decision Point (PDP), Policy Information Point (PIP), and Policy Administration Point
(PAP). The PEP receives an authorization request from a client (e.g., web browser) and
forwards it to a PDP, which decides whether to allow or deny the request. The result is
returned to the PEP and the request is either granted or denied to the resource. To decide
if the request is valid, the PDP can use the PIP, which provides the attributes required to
make the decision. The PAP allows the formulation of authorization policies. While ABAC
allows the creation of fine-grained authorization policies, the complexity of introducing it
into applications and managing it is high, in part due to its distributed nature [28].

To define authorization policies, an Augmented Backus–Naur Form (ABNF) is used
in this paper. The ABNF is a modified version of the Backus–Naur Form (Backus–Naur

Software 2023, 2 403

Form) [32]. The ABNF is structured using rules and elements that represent the grammar of
a language. Each rule consists of a name, followed by an equals sign “=”, and the elements
that define the rule. Elements can be terminal symbols (literals) or references to other
rules. The notation allows for optional elements, repetition, and grouping, making it more
flexible than the traditional BNF. The ABNF is used in specification of internet protocols.
For example, the specifications of the HTTP protocol [33] or OAuth 2.0 [34] use the ABNF.

Listing 1 presents an excerpt from the HTTP 1.1 specification. The rule Request-Line
(line 1) refers to five other rules followed by a Carriage Return Line Feed (CRLF). Line 3
presents a rule defining how an HTTP version is specified, e.g., HTTP 1.1. Finally, the rule
Method in line 4 defines the available HTTP methods, e.g., GET.

Listing 1. Excerpt from the HTTP 1.1 specification [33].

1 Request−Line = Method SP Request−URI SP HTTP−Version~CRLF
2
3 HTTP−Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT
4 Method = "OPTIONS" | "GET" | "HEAD" | "POST" | ...
5 ..

2.2. State of the Art

Integrating authorization into a microservice-based application addresses a subset of
security that focuses on the application layer [35]. There are several approaches and solu-
tions for integrating authorization into a microservice-based application. Banati et al. [36]
propose an authorization orchestrator using JSON web tokens, OAuth, and OpenID. Each
microservice has an IAM module that communicates with the authorization orchestrator
and enforces decisions. Sauwens et al. [15] describe a distributed authorization middleware
called ThunQ that can perform authorization decisions early (i.e., when the first service
is reached) and lazily (i.e., evaluating decisions only when possible). ThunQ allows au-
thorization decisions to be made at the microservice level by including a query modifier.
Nehme et al. [14] present an access control solution for microservice architecture based on a
combination of OAuth 2.0 and XACML technologies. Their solution requires a centralized
access control server that holds the necessary data to evaluate a request. This contradicts
the loose coupling of microservices. Further, the solutions presented focus on the technical
implementation of authorization in a microservice-based application. They answer the
question of how to implement authorization in a microservice architecture. However,
these solutions neglect the question of what must be authorized. To answer this question,
authorization policies must be created based on user requirements. The process of creating
authorization policies is also called policy engineering.

Das et al. [37] provide a classification for engineering approaches for ABAC policies.
The classes to emphasize are the top-down and bottom-up approaches. Bottom-up ap-
proaches create policies based on mining past access requests, examining logs, or mining
existing role matrices. Bottom-up approaches require existing data to mine policies. Top-
down approaches start from scratch, with no prior data other than existing natural language
policy documents. The inherent complexity of these approaches is the transformation of
natural language documents into an authorization policy. Thus, the authors identify the
creation of authorization policies based on natural language documents as inexact.

Brossard et al. [20] propose a systematic life cycle for implementing ABAC based on
enterprise experiences. The approach structures the development of authorization policies
into the phases of a software development process. This includes gathering authorization
requirements, identifying relevant attributes, implementing and testing policies, and de-
ployment. To define an authorization requirement, the authors suggest the use of use
cases. The authorization requirement is written in a natural language format. The authors
use XACML to implement the authorization policies. The process by Brossard et al. [20]
provides a promising structure for developing authorization policies. However, the process
is rather coarse and lacks details on how to systematically create artifacts. For example,

Software 2023, 2 404

the authors do not provide a structure for the creation of authorization requirements or
authorization policies. Alohaly et al. [38] focus on automating the extraction of attributes
based on those presented by Bossard et al. using natural language processing.

Another approach to automating ABAC policy development is presented by
Narouei et al. [39], who describe a policy engineering framework for deriving ABAC
policies from natural language documents using natural language processing. Similar
to [20], the authors use existing requirements documents to identify and extract rele-
vant policy elements (e.g., subject and object). Attributes are then extracted from the
elements and formatted into an XACML policy. The approach of Narouei et al. does
not include the definition of how the authorization requirements are documented in the
requirements analysis.

Zolotas et al. [19] present RESTSec, which enables the generation of secure RESTful ser-
vices using low code. The authors use model-driven engineering with a Unified Modeling
Language (UML) metamodel for ABAC to generate XACML policies. Fatemian et al. [40]
also propose a model-driven engineering approach that uses a UML metamodel for ABAC
to generate XACML policies. This approach allows the creation of XACML policies based
on the transformation of the UML metamodel. The authors provide a graphical interface
to create the policies which can then be transformed. These approaches require manual
definition of authorization requirements. In addition, the authorization requirements must
still be analyzed for their objects, actions, and attributes, which leaves room for inaccuracy.

The approaches of Brossard et al., Narouei et al., Zolotas et al., and Fatemian et al.
can be classified as top-down policies because they require existing documents to extract
relevant information. In addition, Brossard et al. neglect the process of creating the
required natural language documents. A bottom-up mining approach is proposed by
Talukdar et al. [41]. The authors examine existing access requests and create authorization
rules accordingly. For the development of new microservice-based applications, bottom-up
mining approaches cannot be applied, as there are no existing data to derive policies.
However, the creation of additional authorization policies based on, e.g., logs, can further
strengthen the security of a microservice-based application.

3. Authorization in Microservice-Based Applications

The creation of authorization policies can take several forms. According to [29],
Natural Language Policies (NLPs) and Digital Policies (DPs) should be considered. NLPs
are statements governing the management and access of objects that are human readable,
which can subsequently be transformed into machine-enforceable access control policies.
Digital policies are access control rules that can be compiled into machine executable
code [29]. Subject, object, attributes, and rules are the building blocks for a digital policy.
The digital policy can be enforced by a PDP. Throughout the development phases of a
microservice-based application, the available information regarding the authorization
changes in clarity and structure. We address this by introducing three artifacts which range
from a natural language policy to a digital policy.

Figure 1 provides an overview of the introduced artifacts in the respective development
phases. The authorization requirement is an NLP which is created in the analysis phase.
To create an authorization requirement, we propose an Augmented Backus–Naur Form
(ABNF) providing a structure for natural, human-readable sentences. With the design
phase, the knowledge regarding authorization is more consolidated and the relevant ABAC
terms (e.g., subject and object) are known. Therefore, we introduce an artifact authorization
policy which is a further defined authorization requirement containing the building blocks
for the digital policy. Similar to the authorization requirement, we propose an ABNF
containing more structured rules to create a further structured authorization policy. Thus,
we classify an authorization policy as a natural language policy and an intermediate artifact
to a digital policy. Finally, in the implementation and test phase, the authorization policy is
transformed into a digital policy by implementing the policy using Rego.

Software 2023, 2 405

ABNF

Authorization
Requirement

Authorization
Policy

Policy
Implementation

ABNF Rego

Analysis Design Implementation
and Test

Natural Language Policy Digital PolicyPolicy Type

Artifact

Language

Development
Phase

Figure 1. Classification of policy types and policy artifacts.

Since the authorization policy is an intermediate artifact between NLP and DP, we first
introduce the ABNF for authorization policies in Section 3.1. Based on the authorization
policy, we introduce the ABNF for the authorization requirement as a simplified authoriza-
tion policy in Section 3.2. The implementation in Rego based on is introduced in Section 3.3.
Finally, the integration into a development process is introduced in Section 3.4.

Complementing the introduction of the proposed authorization artifacts, we introduce
two running examples:

1. Alice is working in the finance department of the Berlin branch of a company. She
is only allowed to retrieve a list of projects she is assigned to. Following company
guidelines, Alice is only allowed to access the records from Germany.

2. Bob wants to see the overview of a horror book in a digital book library. To perform
that request, Bob must have less than EUR 10 debt at the library and meet the age
restriction of the requested book.

These examples are created to cover the access to a single object as well as the access
to a set of objects. Both commonly occur in microservice-based applications when using
RESTful APIs.

3.1. ABNF for Authorization Policy

The purpose of the ABNF for authorization policies is to provide a uniform structure
for natural language authorization policies. Authorization policies defined using this
language are an intermediate step before the implementation of an ABAC policy using a
corresponding policy language.

Listing 2 provides the authorization policies for the running examples using the ABNF
introduced in Listing 3. In the first authorization policy, shown in line 2, the subject wants
to see every project they are assigned to. There are two subject conditions for this policy.
The first condition compares the subject’s department with a value; the second condition
compares the branch the subject is employed in with a location. The action is set to GET.
Since a set of projects is being accessed, the text every object in is used to note that the
authorization rules are applied to every project which is part of the object. The object is
set to the HTTP path the projects can be reached at (i.e., /projects). To check the ownership
of the project, the ID of the subject is compared with the attribute assignee of the object.
Finally, the location from which the request is made is checked, which is equal to Germany.
The second authorization policy evaluates whether the debt of the subject is less than 10
and the performed action is GET. The object is a single object located in the path /book/{id}.
Finally, the attribute rating of the object is compared to the age of the subject.

To create the policy language, we must first identify the aspects that are required by
ABAC. According to [29], we need to address the aspects of a subject, an action, an object,
and their attributes. Since the policy is a representation of rules and relationships, the rules
must also be defined. In addition, the environmental conditions must be defined in a
policy language. The policy language is presented in Listing 3. The general structure of
the authorization policy is written in natural language and thus readable for developers

Software 2023, 2 406

without prior knowledge. Line 1 represents the initial ABNF rule of the authorization
policy. The goal is to define what a subject can do to an object given a set of conditions.

Listing 2. Example authorization policies.

1 #AuthorizationPolicy1
2 A subject with subject.department == Finance AND subject.branch == Berlin can perform

action GET on every object in /projects for which subject.id = object.assignee AND
environment.location == Germany

3 #AuthorizationPolicy2
4 A subject with subject.debt < 10 can perform action GET on /book/{id} IF object.rating <=

subject.age

Listing 3. Augmented Backus–Naur form for authorization policies.

1 AuthorizationPolicy = "A subject " subAttributes " can perform action " action " on "
objectDecision conditions

2 action = "GET" / "POST" / "PUT" / "PATCH" / "DELETE"
3 object = *VCHAR
4 operator = "<" / "<=" / "==" / ">" / ">=" / "is" / "not" / "contains" / ..
5 attribute = *VCHAR
6 value = *VCHAR
7
8 subAttributes = "" / "with" subCond
9 subCond = "subject." attribute operator value

10 subCond =/ subCond " AND " subCond / subCond " OR " subCond / " (" subCond " OR "
subCond ") " / " (" subCond " AND " subCond ") "

11
12 objectDecision = object / object " IF " / " every object in " object " for which~"
13
14 conditions = "" / conditions " AND " conditions / conditions " OR " conditions / " ("

conditions " OR " conditions ") " / " (" conditions " AND " conditions ") "
15 conditions =/ "subject."attribute operator "object."attribute / "object."attribute operator value
16 conditions =/ "environment."attribute operator value

The first rule is called subAttributes and is used to identify the subject attributes. A sub-
ject can either have no attributes or one or more attributes. This distinction is made in line 8.
If a single subject attribute is used, another rule called subCond is used. As shown in line 9,
a structure for the conditions of a subject attribute is provided. A subject attribute with the
notation “subject.”attribute. The rule attribute is shown in line 5. In ABNF, *VCHAR allows
us to write an arbitrarily long (*) set of all printable characters (VCHAR). The subject at-
tribute must be compared to a value. Thus, the rules operator and value are created. The rule
operator is presented in line 4. It contains a set of comparison operators such as <, >, or ==.
Finally, the rule value is similar to the rule attribute, presenting an arbitrarily long amount
of printable characters. Using these rules in place, a subject attribute can be compared to a
value. However, if multiple subject attributes are required, the rule subCond depicted in line
9 is not sufficient. ABNF allows a rule to be extended by providing increment alternatives,
which are presented by the notation “=/”. Line 10 presents the alternatives for the subject
conditions which provide logical operators such as AND and OR. Applying the logical
operators allows the creation of a complex chain of statements to describe subject attributes.
For example, the statement (subject.age > 10 AND subject.age < 18) OR subject.age > 30 al-
lows restricting access in a policy to a specific range of ages.

Following the subject attributes, the authorization policy has the rule action. Since
the authorization policy language is created for RESTful APIs, the rule action presented
in line 2 provides HTTP operations (e.g., GET, POST). Using the HTTP operations in the
authorization policy allows simplification of the implementation in a policy language.

Software 2023, 2 407

Next, the object needs to be defined. Therefore, the rule objectDecision is used. In REST-
ful APIs, the request is always performed on a single resource that returns either a single
object or a set of objects. For example, the endpoint GET /projects returns a list of projects,
while the endpoint GET /projects/{id} returns a specific project. This behavior must be taken
into account when creating an ABAC policy. In general, a subject should only perform an
action (e.g., view) on the objects they have access to. To that end, the rule objectDecision
provides three alternatives. First, the request is only performed for a single object without
conditions. Second, the request is performed on an object with conditions which is char-
acterized by an IF. Third, the request is performed on a set of objects which is marked by
the statement "every object in" object "for which". Similar to the definition attributes and
values, the rule object (line 3) defines the name of an object as an arbitrarily long set of
printable characters.

Finally, the conditions for the access decisions must be defined. For this, the ABNF
provides the rule conditions (lines 14 to 16). Similar to the conditions of subject attributes,
the object conditions can be concatenated using logical operations such as and and or.
Additionally, the conditions allow comparing subject attributes with object attributes,
or object attributes with a specific value. The conditions use the rules operators and values
presented in lines 4 and 6, respectively. Finally, environmental conditions (line 16) can be
created by comparing the attributes with a given value.

3.2. Authorization Requirements Language

During the analysis phase of a software development project, functional and non-
functional requirements are collected. Functional requirements describe what a system
should be able to do [42]. At this stage of the project, the exact details are not defined
and are rather coarse. Typically, the details are added during the design phase. However,
throughout the requirements analysis, it is important to think about what actions a user
can perform under what circumstances. This can be done by using use cases [43]. Firesmith
calls the collection of such requirements authorization requirements [44].

To support the capture of authorization requirements throughout the analysis phase,
we propose a further formalization using an ABNF presented in Listing 4. Compared to
the authorization policies, the ABNF of the authorization requirements only provides a
coarse structure that can be used in the design phase to formulate authorization policies.
For this purpose, the ABNF for the authorization requirement can be seen as a subset of
the ABNF of the authorization policies. The initial rule of the authorization requirement is
presented in line 1. An authorization requirement provides a natural language structure
similar to [20]. The primary goal of the authorization requirement is to capture the action,
the object, and the conditions. Thus, for each of these aspects, a separate rule is created. The
action (line 2) is an arbitrarily long amount printable characters (*VCHAR). Compared to
the authorization policy, the action is constructed openly. In the analysis phase, the HTTP
operation is unknown. Thus, an action might be add or update. The structure of the object
(line 3) is the same as the action (i.e., *VCHAR). For example, an object could be projects
or books. Finally, the conditions are either an arbitrary number of characters (line 5) or the
concatenation of multiple conditions using the logical operators and and or.

Listing 4. Augmented Backus–Naur Form for authorization requirements.

1 AuthorizationRequirement = "A subject can perform action " action " on object " object " IF "
condition

2 action = *VCHAR
3 object = *VCHAR
4 condition = *VCHAR
5 condition =/ condition " AND " condition / condition " OR " condition / " (" condition " OR "

condition ") "

Software 2023, 2 408

Listing 5 contains two authorization requirements for the running example. The first
authorization requirement is presented in line 2. The subject can only view their projects
if they are assigned to the project, work in the finance department, and perform the
request from Germany. Compared to the authorization policy presented in Listing 2,
the authorization requirement is less formalized and primarily structures the content of
the analysis artifacts. The second authorization requirement is presented in line 5. As can
be seen from the authorization requirements, throughout the analysis phase, the exact
names of the attributes, e.g., as necessary design artifacts, are not yet available. However,
the authorization requirements allow the collection of requirements during the analysis
phase, which can consequently be transferred to authorization policies.

Listing 5. Exemplary authorization requirements using the ABNF.

1 #AuthorizationRequirement1
2 A subject can perform action retrieve on object list of projects IF subject is in the finance

department AND subject is assigned to project AND action is performed from~Germany
3
4 #AuthorizationRequirement2
5 A subject can perform action read on object book IF debt of subject has less than EUR 10 debt

AND subject meets age restriction

3.3. Authorization Policy Implementation

The authorization policy using the ABNF presented in Listing 3 can be implemented
directly in a policy language. We use the Open Policy Agent (OPA), an open-source policy
engine supported by the Cloud Native Computing Foundation (CNCF) [45]. The OPA
provides the policy language Rego, which allows policies to be written as code artifacts [46].
When using the OPA as a PDP, proxies such as Envoy [47] or Traefik [48] can be used as a
PEP as they provide an integration for the OPA. This allows us to access the details of an
HTTP request in a JSON format.

Listing 6 presents the structure for implementing an authorization policy. Each autho-
rization policy is encapsulated by an allow statement (lines 1 and 13), which becomes true
if all of its enclosed statements are true. The structure from the authorization policy can be
transferred to implement the authorization policy in Rego. Lines 2 to 4 evaluate the subject
attributes. Then, the action is evaluated in line 6 followed by the object in line 8. Finally,
each condition from an authorization policy can be evaluated.

Listing 6. Authorization policy implemented in Rego.

1 allow {
2 # Subject Conditions
3 subject.attribute1 == X
4 Y in subject.attribute2
5 # Action
6 action == input.attributes.request.http
7 # Object
8 object := input.attributes.request.path
9 # Conditions

10 # condition1
11 data[object.id].owner == subject.id
12 # alternative
13 response := http.send({
14 "method" : "GET",
15 "url": <PIP>
16 })
17 response.owner == subject.id
18 }

Software 2023, 2 409

In Rego, it is possible to define variables outside an allow statement. In this case, the
subject (line 3) is a variable that contains subject attributes, e.g., by extracting the content
of a JWT. The action can be received from the variable input (line 6), which contains the
content of the HTTP request performed by the client (i.e., user). The content of the HTTP
request is provided by the PEP (e.g., Envoy). In line 6, the HTTP operation is retrieved from
the variable input.attributes.request.http. In lines 7 and 8, the object is evaluated by matching
the HTTP path. Starting in line 9, the conditions are evaluated, for example, by comparing
the object owner to the subject identifier (line 11). To perform the evaluation, the attribute
data of the object must be known. In ABAC, the attributes are provided by a PIP [29]. The
OPA provides several options to access attribute data. One option is to store the required
data in a JSON format in the OPA itself, which is utilized in line 11 through the variable
data. An alternative is to perform an HTTP request to a dedicated PIP as displayed in lines
13 to 16. The result can then be compared to the identifier of the subject (line 17).

Using helper functions in Rego allows creating more sophisticated policy implemen-
tations by creating functions for common reusable logic. Listing 7 shows an overview of
helper functions. For example, to identify the subject, a JSON Web Token (JWT) can be
used [21]. A JWT can be verified in Rego by checking its signature. The claims of a JWT
can be extracted from the JWT’s payload (lines 14 through 22). This allows the creation
of statements such as subjectIsInFinanceDepartment (lines 5 through 7) that can be used in
multiple policies. Other examples include a statement for an action (lines 1 through 3)
or a method for the determination of a project assignment (lines 9 through 12). By using
helper functions, authorization policies can be structured in a simpler and more compact
way. For example, the authorization policies described in Listing 2 are implemented using
helper functions in Listing 8.

Listing 7. Helper funtions implemented in Rego.

1 actionIsGet {
2 "GET" = http_request.method
3 }
4
5 subjectIsInFinanceDepartment {
6 claims.department == "Finance"
7 }
8
9 subjectIsAssignedToProject {

10 input.parsed_path = ["projects", projectid]
11 data[projectid].assignee == claims.sub
12 }
13
14 claims := payload {
15 [_, payload, _] := io.jwt.decode(bearer_token)
16 }
17
18 bearer_token := t {
19 vs. := http_request.headers.authorization
20 startswith(v, "Bearer ")
21 t := substring(v, count("Bearer "), −1)
22 }

Software 2023, 2 410

Listing 8. Example authorization policy implementation utilizing helper functions.

1 #AuthorizationPolicy1
2 allow {
3 subjectIsInFinanceDepartment
4 subjectBranchIsBerlin
5 actionIsGET
6 objectIsProjects
7 subjectIsAssignedToProject
8 locationIsGermany
9 }

10 #AuthorizationPolicy2
11 allow {
12 subjectDebtLessThan10
13 actionIsGET
14 objectIsBooks
15 objectRatingSmallerEuqualSubjectAge
16 }

3.4. Development Process Integration

To integrate fine-grained authorization into the development of a microservice-based
application, the development process for creating such an application must be adapted.
The development of such an application is highly individual and will vary between different
developers. To support developers in using the previously presented authorization artifacts,
we propose an extension to an existing development process.

Figure 2 provides an overview of the microservice-based application development
process following the analysis, design, and implementation and test phases. Microservice-
based application development creates analysis artifacts (e.g., use cases) during the analysis
phase. In the design phase, the analysis artifacts are used to structure the microservice-
based application into a set of microservices [9]. In addition, design artifacts such as
API specifications or class diagrams are created for each microservice. Finally, in the
implementation and test phase, the design artifacts are implemented in a programming
language and tested (e.g., unit tests, component tests, and E2E tests) [49].

Analysis Design Implementation
and Test

Microservice
Application
Development

Authorization
Extension

Analysis
Artifacts

Authorization
Requirements

input

Support Tables

Class Diagram
API

Specification

Microservice #1

Authorization
Policies

Design Artifacts

Microservice #1

Authorization
Policies

Source Code

Tests

Microservice #1

Policy
Implementation

Source Code

Tests

Microservice #1

Policy
Implementation

Figure 2. Analysis and design of a microservice-based application with artifacts for authorization
extension.

To extend the development with authorization, each phase is complemented with the
presented authorization artifacts. During the analysis phase, the authorization require-
ments are created. As described in Section 3.2, the authorization requirements provide a

Software 2023, 2 411

basic structure for formulating authorization requirements in natural language. To write
such an authorization policy, the analysis artifacts can be used as an input, since the analysis
artifacts should define what the application can do under what circumstances [42]. Based
on the authorization requirements, authorization policies are created for each microser-
vice. Additionally, we propose the use of support tables that contain information about
attributes between multiple microservices. Finally, the policies are implemented in the
implementation and test phase.

To create the authorization artifacts presented in Figure 2, one or more steps must
be performed in each development phase. Figure 3 provides an overview of the tasks
to be performed. In the analysis phase, the authorization requirements must be elicited
to understand what needs to be authorized. This is performed by applying a process
to existing analysis artifacts to extract the required information. In the design phase,
the attributes required to enforce an authorization requirement with an ABAC policy are
extracted from the design artifacts. Next, the authorization requirement is transformed into
an authorization policy. Finally, in the implementation phase, the policy is implemented
in Rego. We propose to preserve the structure in the integration of authorization into the
development by creating one authorization policy for one authorization requirement and
create one policy implementation for one authorization policy.

Authorization
Policy

Authorization
Requirement

1

Policy
Implementation

1

1

1

Analysis

Design

Implementation
and Test

Attribute Extraction
from Authorization

Requirements

Formulate Authorization
Policy

Map Design Artifacts

Analysis
ArtifactsIdentify

Subject/Object/Action

Identify Object Ownership

Identify Conditions

Formulate Authorization
Requirement

Figure 3. Development of authorization artifacts.

3.4.1. Analysis

The left side of Figure 3 shows the derivation process to create an authorization re-
quirement. The basis for authorization requirements is the analysis artifacts of the software
engineering approach. The quality and completeness of the authorization requirements
strongly depend on the information present in the analysis artifacts. The first step is to
identify the required aspects of ABAC. As described in Section 3.2, the subject, object,
and action need to be identified. Second, the conditions for the access request must be
defined. This includes conditions related to the subject, object, or the environment, which
must be identified from the analysis artifacts. Third, the ownership of the object must be
identified; while this is a condition itself, ownership is an important attribute for managing
the access to an object [29]. Thus, developers should determine whether a single user or a
large group is accessing an object. Depending on this, design decisions about the placement
of attributes must be made in the design phase. Finally, the authorization requirement can
be formulated by using the ABNF for an authorization requirement.

Software 2023, 2 412

3.4.2. Design

Once the authorization requirements have been created, authorization aspects must
be incorporated into the design of the application to maintain the overall structure. The
right side of Figure 3 illustrates the tasks for creating an authorization policy. For each
authorization requirement created in the analysis phase, one authorization policy is cre-
ated. This allows us to maintain structure throughout the development. Further, if an
authorization requirement changes, the authorization policy and the policy implementation
can consequently be changed. Before the authorization policies can be formulated, the at-
tributes are extracted from the authorization requirements, as also proposed in [20,38]. The
conditions of the authorization requirements contain the names of the attributes. For exam-
ple, the condition age of subject is over 13 implies the subject attribute age. The condition
subject is assigned to project implies an attribute assignee for an object project. The extraction
of attributes based on the authorization requirements is individual and depends on the
formulation of these authorization requirements. The second step is to map the authoriza-
tion requirements to the design artifacts of a microservice. This step is necessary because
the names may vary between the analysis phase and design phase, e.g., due to different
stakeholders responsible for each phase. For example, the class diagram or the API spec-
ification may contain the attribute projectAssignee, while it is only named assignee in the
authorization requirement. Furthermore, the names of objects may vary between the phases.
For example, an object is called book in the analysis, is called BookEntity in a class diagram,
and is accessible through the API endpoint /books/{id}. Finally, the authorization policy can
be formulated by applying the ABNF for each component of the authorization requirement.

We propose the use of support tables to store data (e.g., attributes and examples)
required for the formulation of authorization requirements. The tables provide an overview
for all participating developers. A list of attributes is also proposed by Brossard et al. [20],
who introduced a single table including a short name, a namespace, a category, a data type,
and a value range. However, compared to Brossard et al., we propose the use of one support
table for each attribute type (i.e., subject, object, and environment). The format for the object
support table can be found in Table 2 and contains four rows: The first is object, which
contains the name of the object as found in the design artifacts (e.g., API specification) of the
microservice. The second is the path to the REST endpoint of the microservice providing
the object. The third is the name of the attribute as specified in the design artifacts. The
fourth is example values for the attribute. The attributes for subjects and the environment
are stored in separate tables. The tables contain the name of an attribute and an example
value to provide information to developers.

Table 2. Structure of the object support table.

Object Path Attribute Example

Projects /projects - -

Project /project/{id} assigne subject@mail.com

Book /book/{id} rating 12

.

3.4.3. Implementation and Deployment

Any authorization policy can consequently be implemented in an authorization policy
language. As described in Section 3.3, we propose an implementation using the policy
language Rego. To deploy the microservice with ABAC, the deployment architecture
needs to be extended with the necessary logical components to enforce authorization
decisions. Figure 4 provides a software architecture that includes the necessary logical
ABAC components. The PEP communicates with the PDP, which requests the necessary
attribute data from the PIP. The PEP enforces the decision and forwards the request to the
microservice. The PAP provides the necessary policies to the PDP. The aspect of a software

Software 2023, 2 413

architecture for a microservice-based application requires additional work in the future.
This affects the number of PEPs, PDPs, or PIPs present in the architecture, which can affect
the overall scalability or resource consumption.

Microservice

Policy Enforcement Point Policy Decision Point

Policy Information Point

...

... Policy Administration Point

Figure 4. Exemplary software architecture including logical authorization components.

4. Case Study: FleetManagement

To validate the use of the authorization artifacts and the introduced extension of
the development process, we perform a case study [50]. In our case study, we develop a
connected car application that provides several business functionalities. One of the business
functionalities is the management of fleets, which is selected as an example to describe
the systematic implementation of authorization in this section. The targeted architecture
of the connected car application is a microservice architecture. The business functionality
management of fleets is provided by the microservice FleetManagement.

4.1. Analysis

For the requirements analysis, we apply use cases as primary analysis artifacts to
formulate user requirements. Alternatively, other types of requirement analysis artifacts
can be utilized, provided they contain the necessary information for authorization. The
functionalities of the microservice FleetManagement are shown in the use case diagram
presented in Figure 5. In total, there are two actors, the FleetAdministrator and the Fleet-
Manager, and four use cases. The FleetAdministrator can create a new fleet for a set of
existing fleets. The FleetManager can view an overview of the fleets they are affiliated with.
If the FleetManager has an affiliated fleet, they can view an overview of the cars within
a fleet. A car can be deleted from a fleet by the FleetManager. The use case View Fleets is
shown in Listing 9. An additional condition is that the request must be performed from
the same location at which the fleet is located (line 6). The use case does not include a
post-condition relevant for the authorization (line 8). The main flow in line 10 is omitted.
However, the actors requests to view all fleets (step 1). Consequently, the system will search
for the fleets belonging to the actor (step 2) and present the actor with the results (step 3).

Software 2023, 2 414

FleetManager

Management of Fleets

View Fleet Overview

Remove Car from Fleet

View FleetsFleetAdministrator

Add Fleet to Fleets

«extends»

Figure 5. Use case diagram for the system FleetManagement.

Listing 9. Description of the “View Fleets” use case.

1 Title: View Fleets
2 Primary Actors: FleetManager
3 Secondary Actors: −
4 Preconditions:
5 − Actor can only see fleets they manage
6 − Request is performed in same location as fleet location
7 Postconditions:
8 − ...
9 Main Flow:

10 ...

For each use case shown in the use case diagram in Figure 5, an authorization re-
quirement is created in Listing 10. The primary objects, marked in blue, are a fleet and
a set of fleets called fleets. The actions, marked in yellow, can be identified as add, view,
and remove. The primary actors are marked in green. The conditions are either that the
subject is a FleetAdministrator (line 1) or that the subject is the manager of the fleet on
which it performs an action on (lines 2 through 4). For the use case View Fleets, only the
fleets from the request’s location should be returned.

Listing 10. Authorization requirements of the case study.

1 AuthZReq-10: A subject can perform action Add on object Fleets IF the subject is
FleetAdministrator

2 AuthZReq-20: A subject can perform action View on object Fleets IF the subject is
FleetManager for this Fleet AND location is same as Fleet location

3 AuthZReq-30: A subject can perform action View on object Fleet IF the subject is FleetManager
for this Fleet

4 AuthZReq-40: A subject can perform action Remove on object Fleet IF the subject is
FleetManager for this Fleet

4.2. Design

The class diagram for the microservice FleetManagement is presented in Figure 6.
The FleetCollection contains a set of fleets. Further, it contains functions for the use cases
Add Fleet to Fleets, View Fleets, and View Fleet Overview. The fleet contains an identifier and

Software 2023, 2 415

attributes for a FleetManager, a location, and a set of cars which are managed by the fleet.
The fleet also contains a function to remove a for the use case Remove Car from Fleet.

FleetCollection
fleets: Fleet[]
AddFleetToFleets(Fleet f)
ViewFleets(String fleetManager) :Fleet[]
ViewFleetOverview(String fleetid): Fleet

Fleet
fleetID: String
fleetManager: String
fleetLocation: String
cars: Car[]
RemoveCar(Car c): Boolean

Car
vin: String
..
..

1
*

 1 *

Figure 6. Class diagram for the microservice FleetManagement.

Following the process extension introduced in Section 3.4, the attributes are first
extracted from the authorization requirements before the authorization policies are created.
The support tables are used to store the extracted subject and object attributes and provide
a coherent overview of attributes among developers.

The object support table for the case study is presented in Table 3. The identified objects
from the authorization requirements are fleets and fleet which are called FleetsCollection
and Fleet, respectively, in the class diagram. The object FleetCollection does not have an
attribute that is required for the authorization. The object Fleet has an attribute fleetManager
that holds an identifier of a subject. Further, the attribute location is called fleetLocation in
the class diagram. The paths for the objects FleetCollection and Fleet are derived from the
API specification and are added as /fleets and /fleets/{fleetID}, respectively.

Table 3. Object support table.

Object Path Attribute Example

FleetCollection /fleets - -

Fleet /fleets/{fleetID}
fleetManager subject@mail.com

fleetLocation Germany

Table 4 presents the subject support table, which contains the attributes required by
the authorization requirements. Since authorization requirements mandate a check to
determine if a subject is a FleetManager for a fleet (e.g., AuthZReq-30), it is imperative to
accurately identify the subject. There are several options available to access the attributes of
a subject, which depend on the employed technologies. During the design of the case study,
a decision was made to utilize JWTs provided by an Identity and Access Management
(IAM). The JWT contains an identifier referred to as sub, which corresponds to the subject’s
email address. As a result, the attribute sub has been incorporated into the subject support
table. Additionally, for illustrative purposes, an example email address has been included
in the support table. Given that the use case Add Fleet to Fleets can only be executed
by a FleetAdministrator, it becomes necessary to assign a role for subject identification.
The JWT also features a field called roles, which can encompass a role designation for
the FleetAdministrator. Proper configuration of the IAM system is essential to ensure the
provision of the appropriate role. In the context of this case study, the role is denoted as
cs-fleetAdm, and an entry for roles has been established within the subject support table.
Considering that a subject can possess multiple roles, the attribute roles includes example
values represented using array notation enclosed in square brackets (i.e., []). Alternatively,

Software 2023, 2 416

an attribute such as department could be employed if all employees within a department
are deemed fleet administrators.

Table 4. Subject support table.

Attribute Example Values

sub fleet@manager.com
roles [cs-fleetAdm]

department FleetDepartment

Utilizing the authorization requirements and the information located in the support
tables, authorization policies can be formulated. The authorization policies for each autho-
rization requirement are presented in Listing 11. The first authorization policy, shown in
line 1, requires the subject attribute roles, but no other conditions. The second authorization
policy aims to return a set of fleets to which the subject has access to while taking the
location into account. For each fleet, the condition whether the subject is fleetManager is
checked. The authorization policies in lines 3 and 4 also require that the fleetManager is
equal to the subject’s identifier in order to perform the respective operation.

Listing 11. Authorization policies of the case study.

1 AuthZPolicy-10: A subject with FleetAdministrator in subject.roles POST on object /fleets
2 AuthZPolicy-20: A subject can perform action GET on every object fleet in objects /fleets IF

fleet.fleetManager == subject.sub AND environment.loc == fleet.fleetLocation
3 AuthZPolicy-30: A subject can perform action GET on object /fleets/{fleetID} IF fleet.

fleetManager == subject.id
4 AuthZPolicy-40: A subject can perform action DELETE on object /fleets/{fleetID} IF fleet.

fleetManager == subject.id

4.3. Implementation

Based on the authorization policies in Listing 11, the authorization policies are imple-
mented in the Rego policy language in Listing 12. Exactly one Rego policy is implemented
for each natural language authorization policy. An authorization policy is represented by
an allow statement. Within an allow statement, multiple statements must be evaluated to
true for the policy to become true. In the policies presented in Listing 12, the default value
for allow is false (see line 1). As described in Section 3.3, support functions are used to
implement the policies by offloading common functionality. For example, the statement
actionIsPost checks whether the HTTP operation is POST.

For the first authorization policy, only the role FleetAdministrator must be present
in the JWT of the subject represented by the helper statement subjectIsFleetAdministrator.
Regarding the second authorization policy, the microservice should return only the fleets
that a subject actually owns. There are several options to implement such a behavior,
depending on the degree of authorization externalization and attribute management. In the
case of the policy presented in lines 7 through 12, an HTTP header containing the subject’s
identifier is returned. This is called partial evaluation and allows the actual microservice
to perform the filtering and return the correct fleet objects (see [15]). Another option is to
tell the microservice which objects to return by filtering with Rego within the OPA. This
could potentially lead to higher latency and an increased complexity when evaluating more
complex requests [46]. The final two authorization policies in lines 13 and 17 evaluate the
HTTP operation and the manager of the fleet, which is provided by a helper statement
(lines 21 through 25).

Software 2023, 2 417

Listing 12. Authorization policies implemented in Rego.

1 default allow = false
2 allow { # AuthZPolicy−10
3 subjectIsFleetAdministrator
4 actionIsPost
5 objectIsFleets
6 }
7 allow { # AuthZPolicy−20
8 actionIsGet
9 objectIsFleets

10 object.fleetLocation == input.loc
11 response_headers_to_add["x−fleetManager] := subject.id
12 }
13 allow { # AuthZPolicy−30
14 actionIsGet
15 subjectIsManagerOfFleet
16 }
17 allow { # AuthZPolicy−40
18 actionIsDelete
19 subjectIsManagerOfFleet
20 }
21 subjectIsManagerOfFleet {
22 fleetID := getFleetID(input)
23 fleet := data[fleetID]
24 subject.id == fleet.fleetManager
25 }
26 ..

4.4. Excursus: Deployment and Performance Evaluation

This section provides an example deployment architecture and an evaluation of
performance through latency testing. However, we do not discuss the process of deploying
a microservice-based application including the required ABAC components. A Continuous
Integration and Continuous Deployment (CICD) pipeline can streamline the deployment
process to a Kubernetes cluster [51]. Given that Kubernetes describes deployments in
manifest files, typically in YAML format, the necessary manifests can be generated using
Helm charts within the pipeline [52]. This approach enables the creation of a single
deployment configuration that remains adaptable to multiple microservices. Subsequently,
the CICD pipeline can deploy the Helm chart to the cluster using Helm (i.e., “helm install”).
Additionally, any implemented authorization policy can be automatically copied to OPA
by the CICD pipeline. Leveraging a CICD pipeline alongside Helm charts effectively
simplifies the complexity of deployment and configuration, facilitating the swift rollout of
new changes, including updates to authorization policies.

The nodes presented in Figure 7 can be deployed in a Kubernetes cluster within a single
Kubernetes pod. This can be executed using the sidecar pattern [53]. The microservice
FleetManagement runs as the main container, and its functionality is extended by the
sidecars Envoy and Open Policy Agent. The proxy Envoy acts as PEP and provides an
authorization plugin that can route HTTP requests [54]. Envoy forwards the request to the
PDP Open Policy Agent which holds the authorization policies from Listing 12. The OPA
evaluates the request and returns the result to Envoy. Depending on the result, the request
is routed to the microservice FleetManagement. If the result is positive, Envoy can add
additional headers to the request if necessary such as in the authorization policy in line
11 of Listing 12. The final node is the load generator k6, which allows writing load tests
using JavaScript.

Software 2023, 2 418

«load generator»
k6

«pdp»
Open Policy Agent

«pep»
Envoy

«microservice»
FleetManagement

Policies

Data

Kubernetes Pod

HTTP

HTTP2

HTTP

Figure 7. Case study deployment.

To evaluate the impact of authorization on the latency of the microservice FleetMan-
agement, three implementations were compared. First, as a baseline, the microservice
FleetManagement was implemented without authorization. Second, a naive implementa-
tion of authorization within the code of the microservice FleetManagement was executed.
Third, fine-grained authorization using envoy and OPA was implemented. For load tests,
the use case View Fleet Overview was used. The functionality for the load test was retrieved
via the REST endpoints GET /fleets/{fleet-id}, respectively. The microservice FleetManage-
ment was implemented in Golang. A PostgreSQL database was employed to store the data
required by the microservice and comprises two tables. The first table contains informa-
tion about the fleet, including a fleet ID as the primary key, along with the fleet manager.
The second table is dedicated to storing car data, encompassing attributes such as an ID
(primary key), a Vehicle Identification Number (VIN), the brand, and a reference to the
corresponding fleet through its fleet ID (i.e., foreign key). A relational database was selected
to model the relation between a car and a fleet. Other options, such as MongoDB, would
also have been possible. However, the impacts of the database on the overall results should
be comparable. The same database was utilized across all implementations.

The load tests present a synthetic load that is intended to produce comparable results
for the different implementations. The goal is not to test the maximum throughput of the
microservice but rather to capture the median latency for an authorization implementa-
tion. To provide comparable results, each load test contained the same configuration and
lasted for 30 seconds. The target rate was set to 100 requests per second. The resources
were selected according to the synthetic load applied to them. To ensure comparability,
each component of the load test environment, including the load generator, was run in a
container with a fixed set of resources within a Kubernetes cluster presented in Table 5.
Throughout the load tests, the containers were assigned to the same Kubernetes node to
ensure consistent latency. The PostgreSQL database (v15.2) has four CPU cores and 20 GB
of RAM. The microservice FleetMangement has three CPU cores and 5 GB of RAM. The En-
voy proxy (v1.23) has 2.5 CPU cores and 5 GB of RAM. OPA (v0.51.0) has 2.5 CPU cores
and 5 GB of RAM. Finally, to avoid bottlenecks at the load generator k6 (v0.43.1), six CPU
cores and 20 GB of RAM were allocated. During the load tests, the load on the allocated
resources was monitored and found to be sufficient to perform 100 requests per second
without running into a resource bottleneck. The database is populated with 2500 users for
the experiment. Each user is responsible for four fleets, for a total of 10,000 fleets. Each fleet
contains four cars. For the baseline implementation of the microservice FleetManagement,
the database contains only four fleets with four cars each. Otherwise, the microservice
would return all 10,000 fleets, resulting in incomparable results.

Software 2023, 2 419

Table 5. Parameters for load testing components.

Component CPU RAM Version

FleetManagement 3 5 GB -
PostgreSQL 4 20 GB 15.2

Envoy 2.5 5 GB 1.23
OPA 2.5 5 GB 0.51.0

k6 6 20 GB 0.43.1

The results of the load tests are shown in Figure 8. The x-axis represents the elapsed
time of the load tests in seconds. The y-axis represents the response time of the load tests in
milliseconds. For each authorization architecture, the load tests were run 25 times and a
line was plotted showing the median response time for that time frame. The median was
chosen to remove outliers with a very high or low response time. The hue around each
median response time represents the 90% quantile (Q90) of the response latency. Table 6
complements the results shown in Figure 8 with the 95% quantile (Q95) and the Requests
Per Second (RPS). The baseline implementation (blue) without authorization has a median
latency of 2.2 ms. The naive authorization (orange) has a median latency of 8.152 ms, which
is a significant increase over the baseline implementation. The increase in latency can be
explained by the larger amount of data that must be filtered by the microservice. In addition,
the microservice must also validate a JWT to authorize the request. Compared to the naive
implementation, the externalized authorization (green) adds ≈2 ms to the median latency.
This increase is due to the additional components required for the authorization using
an OPA.

0 5 10 15 20 25 30
Time (s)

2

4

6

8

10

12

14

La
te

nc
y

(m
s)

No Authorization
Naive
OPA

Figure 8. Results of load tests performed on the microservice FleetManagement.

Table 6. Results presenting response latency for executed load tests.

Implementation Median Q90 Q95 RPS

No
Authorization 2.207 ms 2.579 ms 2.698 ms 100.001

Naive 8.152 ms 10.831 ms 11.280 ms 100.012
OPA 10.243 ms 12.934 ms 13.594 ms 100.010

k6 collects additional metrics, including the amount of data sent and received during
the load tests. These metrics are presented in Table 7. For all implementations, ≈77,500 re-
quests were sent during the load tests. A difference occurs in the data sent by the different
implementations. Since the baseline implementation does not require JWT tokens, the over-

Software 2023, 2 420

all data sent is only 7.36 MB. In contrast, both the naive and OPA implementations transmit
26.89 MB and 26.96 MB, respectively. The difference in data sent between the naive im-
plementation and OPA likely arises due to the random selection of JWT tokens which can
have a slightly different size. The data received for the baseline and naive implementation
total ≈62 MB. Compared to the other implementations, the OPA implementation returns
an additional 4 MB of data. This is likely due to additional data (e.g., headers) added by
the Envoy proxy. Throughout the load tests for both the naive and OPA implementations,
every individual request undergoes successful authorization.

Table 7. Further metrics for executed load tests.

Implementation Total HTTP
Requests Data Sent Data Received

No Authorization 77501 7.36 MB 62.07 MB
Naive 77509 26.89 MB 62.25 MB
OPA 77508 26.96 MB 66.26 MB

5. Discussion

In this paper, we investigate user authorization in the development of microservice-
based applications. To answer how ABAC policies can be systematically formulated (RQ1),
we propose an ABNF to structure authorization policies. The methodology using the ABNF
allows one to create authorization policies by structuring the aspects of ABAC to authorize
a user request. This includes the subject, object, action, and the respective attributes. It
provides developers with a natural language artifact. The authorization requirements are
an intermediate technology-agnostic artifact. For the formulation of authorization require-
ments (RQ2), a syntax for authorization requirements is introduced to capture the aspects
of authorization during the requirements analysis phase. The authorization requirements
are formulated using an ABNF; while the process of deriving authorization requirements
will be highly individual and depend on the individual stakeholders, the authorization
requirement provides a structure among developers. Furthermore, using authorization
requirements allows further derivation of an authorization policy. To systematically imple-
ment authorization policies (RQ3), we propose a systematic implementation by employing
an OPA and its policy-as-code language Rego. Using the authorization policies defined
with our ABNF, the content of an authorization implementation can be derived step by
step. To answer the systematic integration of authorization into the development of a
microservice-based application (RQ4), we propose an authorization extension to a generic
development approach for a microservice-based application. The extension ranges from
the analysis to the implementation and test phase and places the introduced authorization
artifacts in the respective phases. In addition, a procedure for deriving the authorization
artifacts is introduced.

By performing the introduced approach in a case study, we present that the approach
is feasible by employing a UML use case diagram and use case descriptions. Furthermore,
we presented a comparison between authorization implementations, which shows that
externalizing the authorization logic from a microservice using an OPA and Envoy is
a viable option. The overall increase in latency is acceptable and will not hinder the
performance of microservice-based applications.

Compared to the previous work on authorization in microservice-based applications,
which maintain a primarily technical focus on performing authorization, we provide a
systematic approach to create authorization artifacts [14,15]. This approach can support
developers in reducing the reported complexity of ABAC [28] while gaining a uniform
understanding of what to authorize. The generation of policies based on UML models is an
intriguing research area [40]. Nevertheless, to create high-quality models, developers must
possess a firm understanding of what to authorize, beginning at the requirements analysis.
Having a dedicated requirement authorization artifact will provide support and prevent
the integration of authorization as an afterthought. With the emergence of advanced large

Software 2023, 2 421

language models such as ChatGPT, the formulation of authorization policies, as outlined
in the approach by [39], will likely become more sophisticated and dependable. However,
given that authorization is a highly sensitive aspect in terms of security, the human factor
(i.e., developer) is likely to remain prominent. This, in turn, underscores the necessity of
possessing a sound understanding of what requires authorization.

5.1. Threats to Validity

In accordance with the research conducted by Wohlin et al. [50], we acknowledge and
address the following threats to validity in relation to empirical software engineering and
the implementation of our findings in our specific case study.

Construct Validity. The primary concern regarding the construction of the case study lies
in the potential lack of overall complexity. There is a possibility that the provided
example may be too small, thereby neglecting certain edge cases that were not consid-
ered during the creation of authorization requirements or authorization policies. This
could impact the comprehensiveness and effectiveness of the derived authorization
policies. In this case, the ABNF of the authorization requirements or authorization
policies lacks completeness and the respective ABNF can be extended.

Internal Validity. Throughout the development of authorization policies, a strong depen-
dency exists between the various authorization artifacts; while this interdependence is
necessary for deriving effective authorization policies, an incorrect or poorly defined
analysis artifact can result in insufficient policies, e.g., missing conditions. Hence,
the experience and proficiency of developers in conducting thorough and precise
requirements analysis pose a threat to internal validity.

External Validity. The successful application of authorization policies in an external context
relies on the similarity of the development process structure. However, variations
in the development process, including the creation of development artifacts, may
exist. Consequently, certain artifacts required by the process may be absent, and the
adoption of agile development methods like Scrum could potentially impact policy
development. Although it is possible to adapt the process to different microservice
development approaches, the derivation of authorization policies would not be
straightforward and would necessitate modifications.

Reliability. The consistency of results when applying the authorization extension on a
development process should ideally be independent of the individual developer.
However, due to the presence of subjective decisions throughout the process (e.g.,
application structure and naming conventions for development artifacts), different
developers may yield varying results. Nevertheless, the overall number of policies
should remain constant, as the structure preservation principle ensures that each
authorization requirement ultimately corresponds to one implemented authorization
policy. However, the amount of authorization requirements will be subject to the
individual developer, as the derivation of authorization requirements is not prescribed
and depends on the requirements analysis.

5.2. Limitations

This paper assumes a structured development approach for a microservice-based
application. The definition of analysis artifacts is a highly individual topic. Therefore,
the derivation of authorization requirements is also highly individual, which will lead
to different results among developers. The analysis artifacts must contain all necessary
information regarding the authorization. Further, the proposed development process
extension cannot provide a solution for every edge case. However, it provides a structure
that can be extended by appropriate artifacts or derivations. Furthermore, the ABNF
and Rego allow one to write policies of an arbitrary complexity. In its current state,
the use of REST APIs limits the possible actions when creating authorization policies.
Other API paradigms such as gRPC or GraphQL are not supported by the results of this

Software 2023, 2 422

work. To use such APIs, changes to the authorization artifacts must be investigated and
(possibly) performed.

The overall complexity of introducing attribute-based access control to a microservice-
based application is increased compared to embedding authorization decisions into the
code of the microservices. Thus, the question arises whether using ABAC is a suitable
option. For small projects, the complexity of ABAC will most likely outweigh its benefits.
When working in an enterprise project with a large team, the overall complexity will have
a less significant effect on the overall workload.

In a real-world enterprise scenario, the complexity introduced by ABAC in a microser-
vice architecture can present several challenges in operations; while the excursus presented
only a small increase in added latency, the management of the overall architecture will
likely increase due to the additional components. This will also impact factors such as
scalability and maintenance, which are highly relevant in modern cloud environments.

5.3. Future Work

To further support developers using the approach presented in this paper, the au-
tomation the processes should be investigated to reduce overall complexity. For instance,
exploring the automated creation of authorization requirements derived from use case
descriptions could be valuable. This would require natural language processing to iden-
tify aspects relevant for authorization such as subjects, objects, or conditions. Moreover,
the generation of authorization policies based on authorization requirements should also
be investigated since the structures of the ABNFs are similar. This can also include the
creation of support tables. Lastly, we should delve into exploring Rego implementations
generated from the structured authorization policies. This way, developers would not need
an extensive comprehension of Rego.

To implement the proposed approach within an enterprise environment that already
encompasses a range of established protocols, tools, and security practices, additional
research is necessary. For instance, the utilization of subject attributes is likely to be
contingent upon the existing IAM solutions, which concurrently serve as the means for
authentication. In the case study, we employed JWT tokens issued by an OAuth provider.
Thus, exploring the potential incorporation of other protocols, such as the widely employed
Security Assertion Markup Language (SAML) in enterprise contexts, should be addressed
in future research.

Additionally, we have identified three challenges to successfully integrate user au-
thorization into the development of microservice-based applications. These challenges
should be addressed in future work. First, in order to perform authorization based on
ABAC, the attributes are essential and must be known. This is typically performed through
the Policy Information Point. When using an Open Policy Agent as a PEP, access to the
attribute data needed for authorization must be orchestrated. This raises several questions,
such as where to store the attribute data, how to access the data, and how current the
data need to be. In this context, the coupling between business logic and authorization
logic must be investigated. Depending on the desired level of coupling, the involved
components and the overall architecture may change. To distribute attribute changes in the
architecture, additional components might be necessary. Second, there are several ways
to integrate the required ABAC components into the deployment of a microservice-based
application. For example, a single API proxy can be used as the policy enforcement point
for all microservices. In contrast, the exemplary deployment presented in Figure 7 has a
single PEP and PDP for each microservice deployment. This may have implications for scal-
ing, as well as for the availability and topicality of attributes across multiple deployments.
Thus, future work should explore different deployment architectures for authorization
in microservice-based applications. Third, this publication focuses on user authorization.
However, in a microservice architecture, requests between microservices also need to be
authorized. This is especially important when implementing a zero-trust architecture which
requires removing implicit trust among microservices [55]. Among other things, service-to-

Software 2023, 2 423

service authorization requires specifying what resources a microservice can access and who
owns those resources. In the context of ABAC, requests performed to the authorization
components (e.g., PIP) must also be authorized.

6. Conclusions

The development of microservice-based applications and the use of cloud platforms
to distribute them has become an established practice in modern software engineering.
However, the integration of security mechanisms such as authentication and authorization
remains a major challenge in the development of such applications.

In this paper, we propose a syntax for authorization requirements and authoriza-
tion policies and a systematic, top-down process for the integration of authorization into
the development of a microservice-based application. To enforce comprehensive user
authorization, fine-grained authorization decisions must be made, for example, grant-
ing access to an object only to a specific user. To enforce such decisions, ABAC is used
by the systematic process. ABAC and its required mechanisms fit into the distributed
microservice architecture style by decoupling the necessary components. It enables the
externalization of authorization for microservices by removing the authorization logic from
the implementation of a microservice, which in turn reduces the microservice to providing
its core business functionality. Additionally, externalization allows aspects of authorization
to be changed without necessarily changing the logic of a microservice, thus providing
greater flexibility. The authorization development spans all development phases and allows
authorization policies to be derived from existing development artifacts. In the analysis
phase, authorization requirements are created. Based on the authorization requirements,
authorization policies are created in the design phase using support tables. Finally, in the
implementation phase, the authorization policies are implemented in Rego. By doing this,
we address the inherently complex problem of integrating fine-grained authorization into a
microservice-based application. Our approach may provide a starting point for software
developers to systematically address this topic to create reliable and secure software.

Author Contributions: Conceptualization, N.S. and S.A.; methodology, N.S.; software, N.S.; val-
idation, N.S.; investigation, N.S.; data curation, N.S.; writing—original draft preparation, N.S.;
writing—review and editing, N.S.; supervision, S.A.; project administration, S.A. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in KITopen at
https://doi.org/10.35097/1744.

Acknowledgments: The authors would like to thank Rudy Ailabouni and David Boschert for the
valuable discussions and the contributions to this work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ABAC Attribute-Based Access Control
ABNF Augmented Backus–Naur Form
API Application Programming Interface
BNF Backus–Naur Form
CICD Continuous Integration Continuous Deployment

https://doi.org/10.35097/1744

Software 2023, 2 424

CNCF Cloud Native Computing Foundation
CRLF Carriage Return Line Feed
CRUD Create Read Update Delete
IAM Identity and Access Management
JWT JSON Web Token
NLP Natural Language Policy
OPA Open Policy Agent
PAP Policy Administration Point
PDP Policy Decision Point
PEP Policy Enforcement Point
PIP Policy Information Point
Q90 90% Quantile
Q95 95% Quantile
RBAC Role Based Access Control
REST Representational State Transfer
RPC Remote Procedure Call
RPS Requests Per Second
SAML Security Assertion Markup Language
UML Unified Modeling Language
VIN Vehicle Identification Number
XACML eXtensible Access Control Markup Language

References
1. Swoyer, M.; Loukides, S. Microservices Adoption in 2020. Available online: https://www.oreilly.com/radar/microservices-

adoption-in-2020/ (accessed on 20 June 2023).
2. Berardi, D.; Giallorenzo, S.; Mauro, J.; Melis, A.; Montesi, F.; Prandini, M. Microservice Security: A Systematic Literature Review.

PeerJ Comput. Sci. 2022, 7, e779. [CrossRef] [PubMed]
3. solo.io. Microservices, Kubernetes and Istio—2022 Adoption Trends. Available online: https://www.solo.io/resources/

infographic/microservices-kubernetes-and-istio-2022-adoption-trends/pdf/ (accessed on 24 August 2023).
4. Newman, S. Building Microservices: Designing Fine-Grained Systems, 1st ed.; O’Reilly Media: Beijing, China; Sebastopol, CA,

USA, 2015.
5. Fielding, R.T. Architectural Styles and the Design of Network-based Software Architectures. Ph.D. Thesis, University of

California, Irvine, CA, USA, 2000.
6. Birrell, A.D.; Nelson, B.J. Implementing Remote Procedure Calls. ACM Trans. Comput. Syst. 1984, 2, 39–59. [CrossRef]
7. Open API Initiative. Open API Specification—v3.1.0. Available online: https://spec.openapis.org/oas/v3.1.0 (accessed on 24

August 2023).
8. Google LLC All. Protocol Buffers Documentation. Available online: https://protobuf.dev/programming-guides/proto3/

(accessed on 24 August 2023).
9. Hippchen, B.; Giessler, P.; Steinegger, R.H.; Schneider, M.; Abeck, S. Designing Microservice-Based Applications by Using a

Domain-Driven Design Approach. Int. J. Adv. Softw. 2017, 10, 432–445.
10. Sidler, J.; Braun, E.; Schmitt, C.; Schlachter, T.; Hagenmeyer, V. Microservice-Based Architecture for the Integration of Data

Backends and Dashboard Applications in the Energy and Environment Domains. In Advances and New Trends in Environmental
Informatics; Wohlgemuth, V., Naumann, S., Behrens, G., Arndt, H.K., Eds.; Springer International Publishing: Cham, Switzerland,
2022; pp. 37–48. [CrossRef]

11. OWASP Foundation. OWASP Top 10:2021. Available online: https://owasp.org/Top10/ (accessed on 15 July 2023).
12. de Almeida, M.G.; Canedo, E.D. Authentication and Authorization in Microservices Architecture: A Systematic Literature

Review. Appl. Sci. 2022, 12, 3023. [CrossRef]
13. Gollmann, D. Computer Security. WIREs Comput. Stat. 2010, 2, 544–554. [CrossRef]
14. Nehme, A.; Jesus, V.; Mahbub, K.; Abdallah, A. Fine-Grained Access Control for Microservices. In Proceedings of the 11th

International Symposium (FPS 2018), Montreal, QC, Canada, 13–15 November 2018; Zincir-Heywood, N., Bonfante, G., Debbabi,
M., Garcia-Alfaro, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 11358, pp. 285–300.

15. Sauwens, M.; Heydari Beni, E.; Jannes, K.; Lagaisse, B.; Joosen, W. ThunQ: A Distributed and Deep Authorization Middleware
for Early and Lazy Policy Enforcement in Microservice Applications. In Proceedings of the 19th International Conference (ICSOC
2021), Virtual Event, 22–25 November 2021; Hacid, H., Kao, O., Mecella, M., Moha, N., Paik, H.Y., Eds.; Springer International
Publishing: Cham, Switzerland, 2021; Volume 13121, pp. 204–220.

16. Yarygina, T.; Bagge, A.H. Overcoming Security Challenges in Microservice Architectures. In Proceedings of the 2018 IEEE
Symposium on Service-Oriented System Engineering (SOSE), Bamberg, Germany, 26–29 March 2018; pp. 11–20. [CrossRef]

17. Devanbu, P.; Stubblebine, S. Software Engineering for Security: A Roadmap. In Proceedings of the Conference on the Future of
Software Engineering, Limerick, Ireland, 4–11 June 2000; pp. 227–239.

https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.oreilly.com/radar/microservices-adoption-in-2020/
http://doi.org/10.7717/peerj-cs.779
http://www.ncbi.nlm.nih.gov/pubmed/35111904
https://www.solo.io/resources/infographic/microservices-kubernetes-and-istio-2022-adoption-trends/pdf/
https://www.solo.io/resources/infographic/microservices-kubernetes-and-istio-2022-adoption-trends/pdf/
http://dx.doi.org/10.1145/2080.357392
https://spec.openapis.org/oas/v3.1.0
https://protobuf.dev/programming-guides/proto3/
http://dx.doi.org/10.1007/978-3-030-88063-7_3
https://owasp.org/Top10/
http://dx.doi.org/10.3390/app12063023
http://dx.doi.org/10.1002/wics.106
http://dx.doi.org/10.1109/SOSE.2018.00011

Software 2023, 2 425

18. Busch, M.; Koch, N.; Masi, M.; Pugliese, R.; Tiezzi, F. Towards Model-Driven Development of Access Control Policies for
Web Applications. In Proceedings of the Workshop on Model-Driven Security, Innsbruck, Austria, 1–5 October 2012; pp. 1–6.
[CrossRef]

19. Zolotas, C.; Chatzidimitriou, K.C.; Symeonidis, A.L. RESTsec: A Low-Code Platform for Generating Secure by Design Enterprise
Services. Enterp. Inf. Syst. 2018, 12, 1007–1033. [CrossRef]

20. Brossard, D.; Gebel, G.; Berg, M. A Systematic Approach to Implementing ABAC. In Proceedings of the 2nd ACM Workshop on
Attribute-Based Access Control—ABAC ’17, Scottsdale, AZ, USA, 24 March 2017; pp. 53–59. [CrossRef]

21. RFC 7519; JSON Web Token (JWT). Internet Engineering Task Force, Fremont, CA, USA, 2015. Available online: https:
//www.rfc-editor.org/rfc/rfc7519 (accessed on 15 June 2023). [CrossRef]

22. Sandhu, R.; Samarati, P. Access Control: Principle and Practice. IEEE Commun. Mag. 1994, 32, 40–48. [CrossRef]
23. Kizza, J.M. Access Control and Authorization. In Guide to Computer Network Security; Springer: London, UK, 2015; pp. 185–204.

[CrossRef]
24. Goyal, V.; Pandey, O.; Sahai, A.; Waters, B. Attribute-Based Encryption for Fine-Grained Access Control of Encrypted Data. In

Proceedings of the 13th ACM Conference on Computer and Communications Security, Alexandria, VA, USA, 30 October 2006;
pp. 89–98. [CrossRef]

25. Ghotbi, S.H.; Fischer, B. Fine-Grained Role- and Attribute-Based Access Control for Web Applications. In Software and Data
Technologies; Cordeiro, J.; Hammoudi, S.; van Sinderen, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 411,
pp. 171–187. [CrossRef]

26. Sandhu, R.; Coyne, E.; Feinstein, H.; Youman, C. Role-Based Access Control Models. Computer 1996, 29, 38–47. [CrossRef]
27. Elliott, A.; Knight, S. Role Explosion: Acknowledging the Problem. In Proceedings of the 2010 International Conference on

Software Engineering Research & Practice (SERP 2010), Las Vegas, NE, USA, 12–15 July 2010; pp. 349–355.
28. Aftab, M.U.; Qin, Z.; Zakria; Ali, S.; Pirah; Khan, J. The Evaluation and Comparative Analysis of Role Based Access Control and

Attribute Based Access Control Model. In Proceedings of the 2018 15th International Computer Conference on Wavelet Active
Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 14–16 December 2018; pp. 35–39. [CrossRef]

29. Hu, V.C.; Ferraiolo, D.; Kuhn, R.; Schnitzer, A.; Sandlin, K.; Miller, R.; Scarfone, K. Guide to Attribute Based Access Control (ABAC)
Definition and Considerations; Technical Report NIST SP 800-162; National Institute of Standards and Technology: Gaithersburg,
MD, USA, 2014. [CrossRef]

30. Yuan, E.; Tong, J. Attributed Based Access Control (ABAC) for Web Services. In Proceedings of the IEEE International Conference
on Web Services (ICWS’05), Orlando, FL, USA, 11–15 July 2005; p. 569. [CrossRef]

31. eXtensible Access Control Markup Language (XACML) Version 3.0. OASIS Standard. 22 January 2013. Available online:
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html (accessed on 20 June 2023).

32. RFC 5234; Augmented BNF for Syntax Specifications: ABNF. Internet Engineering Task Force, Fremont, CA, USA, 2008. Available
online: https://www.rfc-editor.org/rfc/rfc5234.html (accessed on 22 March 2023). [CrossRef]

33. RFC 2616; Hypertext Transfer Protocol—HTTP/1.1. Internet Engineering Task Force, Fremont, CA, USA, 1999. Available online:
https://www.rfc-editor.org/rfc/rfc2616?data1=dwnsb4B&data2=abmurltv2b (accessed on 20 July 2023). [CrossRef]

34. RFC 6749; The OAuth 2.0 Authorization Framework. Internet Engineering Task Force, Fremont, CA, USA, 2012. Available online:
https://www.rfc-editor.org/rfc/rfc6749 (accessed on 15 June 2023). [CrossRef]

35. Chandramouli, R. Security Strategies for Microservices-Based Application Systems; Technical Report NIST SP 800-204; National
Institute of Standards and Technology, Gaithersburg, MD, USA, 2019. [CrossRef]

36. Banati, A.; Kail, E.; Karoczkai, K.; Kozlovszky, M. Authentication and Authorization Orchestrator for Microservice-Based
Software Architectures. In Proceedings of the 2018 41st International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 1180–1184. [CrossRef]

37. Das, S.; Mitra, B.; Atluri, V.; Vaidya, J.; Sural, S. Policy Engineering in RBAC and ABAC. In From Database to Cyber Security;
Samarati, P., Ray, I., Ray, I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 11170, pp. 24–54. [CrossRef]

38. Alohaly, M.; Takabi, H.; Blanco, E. Automated Extraction of Attributes from Natural Language Attribute-Based Access Control
(ABAC) Policies. Cybersecurity 2019, 2, 2. [CrossRef]

39. Narouei, M.; Khanpour, H.; Takabi, H.; Parde, N.; Nielsen, R. Towards a Top-down Policy Engineering Framework for Attribute-
based Access Control. In Proceedings of the 22nd ACM on Symposium on Access Control Models and Technologies, Indianapolis,
IN, USA, 21–23 June 2017; pp. 103–114. [CrossRef]

40. Fatemian, A.; Zamani, B.; Masoumi, M.; Kamranpour, M.; Ladani, B.T.; Rahimi, S.K. Automatic Generation of XACML Code
Using Model-Driven Approach. In Proceedings of the 2021 11th International Conference on Computer Engineering and
Knowledge (ICCKE), Mashhad, Iran, 28–29 October 2021; pp. 206–211. [CrossRef]

41. Talukdar, T.; Batra, G.; Vaidya, J.; Atluri, V.; Sural, S. Efficient Bottom-Up Mining of Attribute Based Access Control Policies. In
Proceedings of the 2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC), San Jose, CA, USA,
15–17 October 2017; pp. 339–348. [CrossRef]

42. Lethbridge, T.C.; Laganiere, R. Object-Oriented Software Engineering; McGraw-Hill: New York, NY, USA, 2005; Volume 11.
43. Cockburn, A. Writing Effective Use Cases; Pearson Education India: Noida, India, 1999.
44. Firesmith, D. Engineering Security Requirements. J. Object Technol. 2003, 2, 53. [CrossRef]

http://dx.doi.org/10.1145/2422498.2422502
http://dx.doi.org/10.1080/17517575.2018.1462403
http://dx.doi.org/10.1145/3041048.3041051
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7519
http://dx.doi.org/10.17487/RFC7519
http://dx.doi.org/10.1109/35.312842
http://dx.doi.org/10.1007/978-1-4471-6654-2_9
http://dx.doi.org/10.1145/1180405.1180418
http://dx.doi.org/10.1007/978-3-642-45404-2_12
http://dx.doi.org/10.1109/2.485845
http://dx.doi.org/10.1109/ICCWAMTIP.2018.8632578
http://dx.doi.org/10.6028/NIST.SP.800-162
http://dx.doi.org/10.1109/ICWS.2005.25
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://www.rfc-editor.org/rfc/rfc5234.html
http://dx.doi.org/10.17487/RFC5234
https://www.rfc-editor.org/rfc/rfc2616?data1=dwnsb4B&data2=abmurltv2b
http://dx.doi.org/10.17487/RFC2616
https://www.rfc-editor.org/rfc/rfc6749
http://dx.doi.org/10.17487/RFC6749
http://dx.doi.org/10.6028/NIST.SP.800-204.
http://dx.doi.org/10.23919/MIPRO.2018.8400214
http://dx.doi.org/10.1007/978-3-030-04834-1_2
http://dx.doi.org/10.1186/s42400-018-0019-2
http://dx.doi.org/10.1145/3078861.3078874
http://dx.doi.org/10.1109/ICCKE54056.2021.9721518
http://dx.doi.org/10.1109/CIC.2017.00051
http://dx.doi.org/10.5381/jot.2003.2.1.c6

Software 2023, 2 426

45. Cloud Native Computing Foundation. Open Policy Agent (OPA). Available online: https://www.cncf.io/projects/open-policy-
agent-opa/ (accessed on 16 March 2023).

46. Cloud Native Computing Foundation. Open Policy Agent: Documentation. Available online: https://www.openpolicyagent.
org/docs/latest/ (accessed on 16 March 2023).

47. Envoy Project. Envoy Documentation: What Is Envoy? Available online: https://www.envoyproxy.io/docs/envoy/latest/
intro/what_is_envoy (accessed on 24 April 2023).

48. Traefik Enterprise Middleware: OPA—Traefik Enterprise. Available online: https://doc.traefik.io/traefik-enterprise/
middlewares/opa/ (accessed on 4 July 2023).

49. Schneider, M.; Zieschinski, S.; Klechorov, H.; Brosch, L.; Schorsten, P.; Abeck, S.; Urbaczek, C. A Test Concept for the Development
of Microservice-based Applications. In Proceedings of the The Sixteenth International Conference on Software Engineering
Advances (IARIA), Barcelona, Spain, 3–7 October 2021; pp. 88–97.

50. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software Engineering; Springer:
Berlin/Heidelberg, Germany, 2012. [CrossRef]

51. Throner, S.; Hutter, H.; Sanger, N.; Schneider, M.; Hanselmann, S.; Petrovic, P.; Abeck, S. An Advanced DevOps Environment
for Microservice-based Applications. In Proceedings of the 2021 IEEE International Conference on Service-Oriented System
Engineering (SOSE), Oxford, UK, 23–26 August 2021; pp. 134–143. [CrossRef]

52. Cloud Native Computing Foundation. Helm Documentation. Available online: https://helm.sh/docs/ (accessed on 24
August 2023).

53. Burns, B.; Oppenheimer, D. Design Patterns for Container-Based Distributed Systems. In Proceedings of the 8th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 16), Denver, CO, USA, 20–21 June 2016.

54. Envoy Project. Envoy Documentation: HTTP Filters—External Authorization. Available online: https://www.envoyproxy.io/
docs/envoy/v1.26.3/api-v3/extensions/filters/network/ext_authz/v3/ext_authz.proto, (accessed on 29 March 2023).

55. Teerakanok, S.; Uehara, T.; Inomata, A. Migrating to Zero Trust Architecture: Reviews and Challenges. Secur. Commun. Netw.
2021, 2021, 9947347. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.cncf.io/projects/open-policy-agent-opa/
https://www.cncf.io/projects/open-policy-agent-opa/
https://www.openpolicyagent.org/docs/latest/
https://www.openpolicyagent.org/docs/latest/
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://doc.traefik.io/traefik-enterprise/middlewares/opa/
https://doc.traefik.io/traefik-enterprise/middlewares/opa/
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1109/SOSE52839.2021.00020
https://helm.sh/docs/
https://www.envoyproxy.io/docs/envoy/v1.26.3/api-v3/extensions/filters/network/ext_authz/v3/ext_authz.proto
https://www.envoyproxy.io/docs/envoy/v1.26.3/api-v3/extensions/filters/network/ext_authz/v3/ext_authz.proto
http://dx.doi.org/10.1155/2021/9947347

	Introduction
	Related Work
	Background
	State of the Art

	Authorization in Microservice-Based Applications
	ABNF for Authorization Policy
	Authorization Requirements Language
	Authorization Policy Implementation
	Development Process Integration
	Analysis
	Design
	Implementation and Deployment

	Case Study: FleetManagement
	Analysis
	Design
	Implementation
	Excursus: Deployment and Performance Evaluation

	Discussion
	Threats to Validity
	Limitations
	Future Work

	Conclusions
	References

