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Urban growth monitoring and assessment are essential for the sustainable natural resources planning &
optimum utilization and reducing the risk of problems arising from unplanned urban growth like pollu-
tion, urban heat island and ecological disturbances. Cellular Automata (CA) based modelling techniques
have become popular in recent past for simulating the urban growth. Present study is aimed to evaluate
the performance of the CA based SLEUTH model in simulating the urban growth of a complex and rela-
tively more heterogeneous urban area, Ajmer city of Rajasthan (India) which is quite different as com-
pared to areas where SLEUTH has been tested in developed countries. Seven multispectral satellite
imageries spanning over 21 years have been processed and used for SLEUTH parameterisation. Results
of urban growth predicted by SLEUTH has been compared with other methods of land use/land cover
extraction. The study has been proved to be successful in giving significant insight into issues contribut-
ing uncertainties in forecasting of urban growth of heterogeneous urban areas.
� 2017 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

Economic development and population growth have triggered
rapid changes to earth land use/land cover as a result of urbaniza-
tion & industrialization in last two centuries and there is every
indication that the pace of these changes will accelerate in the
future. Urban growth is the expansion of city area with respect
to the increase in number and size of the settlement. Urban expan-
sion chiefly depends upon the human desires for their betterment,
need of better livelihood, facilities and employment (Brueckner
and Helsley, 2011). Unplanned growth is one of the major factors
responsible for many problems like urban heat islands, pollution,
climate change, over-exploitation of natural resources and inade-
quate infrastructure facilities leading to unsustainable develop-
mental situation. Understanding of urban dynamics is difficult for
more heterogeneous urban areas as compared to relatively less
heterogeneous urban areas. Heterogeneity is associated with dif-
ferent form of development, land use planning, constructions using
different type of building & roofing materials, size of built-up units,
cultural issues, human behavioural differences and their distribu-
tion. Urban areas are comparatively more heterogeneous in devel-
oping countries and their assessment, monitoring and prediction is
difficult (Sakieh et al., 2015). The lack of knowledge of urban
dynamics in developing countries attributed to, poor land use plan-
ning, pathetic resource allocation, wretched policy making, and
despicable budget allocation (Xian et al., 2005).

In early days, cadastral maps (scale, usually 1: 4000) were uti-
lized in mapping land use/land cover and to detect their changes.
From the 20th century onwards land use mapping was replaced
by preparation of land use/land cover maps using aerial pho-
tographs, which have later replaced by multispectral satellite
images. In recent past different type of digital image processing
and other mathematical techniques have been utilized for the
assessment of urban growth through preparation of land use/ land
cover maps using different type of remote sensing data products.
Spectral methods, pixel to pixel classification of satellite imageries
using supervised classification was in patronage, though, super-
vised classification has its limitation of overlapping or very similar
signatures of different land use classes. For the enhancement of
digital image quality, various methods have been used like image
differencing, image rationing, differencing of NDVI images and
the combined effect of both (photo & digital) type of image prod-
ucts offered better visibility and feature extraction. However, no
single image enhancement technique is sufficient for mapping all
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the land use classes and for correct assessment of urban growth
(Prakash and Gupta, 1998). Also, spectral information based meth-
ods lacked in capturing urban structures of concrete, asphalt and
various kind of roof top materials. Rather doing pixel to pixel image
analysis, texture based classification methods and spectral-
structural image differencing methods improved the accuracy of
urban change analysis (Zhang et al., 2002; El-Asmar et al., 2013).
Many land use/ land cover change detection methods were also
developed for monitoring landscape change and urban growth in
recent past. Efforts have also made to extract correct land use/ land
cover and urban growth through analysis of data from different
sources in GIS. Level of uncertainties in the results from available
methods of land use extraction depends on a variety of issues like
resolution of data, radiometric quality of data, level of heterogene-
ity at a particular place and local climatic characteristics. There-
fore, correct mapping (with good accuracy) and land use/ land
cover extraction from remote sensing images using different digital
image processing methods is still a challenge for complex and
heterogeneous areas like urban fringes in developing countries
(Jat et al., 2008).

In recent past, new methods of urban growth assessment and
prediction have been reported in the literature which include land-
scape metrics, knowledge based expert systems, agent based mod-
elling, Cellular Automata based algorithms, artificial intelligence
and machine learning based techniques. Use of landscape metrics
like Number of patches (NP), the Mean patch size (MPS), the Land-
scape shape index (LSI), Shannon’s Diversity index (SHDI), the
Mean patch fractal dimension (MPFD) and the Total edge contrast
index (TECI) have been used to understand urban growth phe-
nomenon in many studies (Bhatta et al., 2010; Jat et al., 2008;
Petit and Lambin, 2001). Landscape metrics are algorithms that
quantify specific spatial characteristics of patches, classes of
patches, or entire landscape (Butt et al., 2015; Gustafson, 1998;
McGarigal & Marks, 1995; Rawat et al., 2013). However, landscape
metrics are lacking in quantification of urban growth and its
prediction.

In recent past, various models have been reported in the litera-
ture which have been used for assessment and prediction of urban
growth like statistical models, GIS-based models, cellular
automata-based models, agent-based models, rule based models,
artificial intelligence based modelling and hybrid models. Few
models have been used for the monitoring and assessment of
growth and some of them used for growth predictions (Batty,
2001; Verburg et al., 2004; Silva and Wu, 2012).

Spatial Interaction models takes into account the human envi-
ronment interactions in the form of growth influencing variables.
But due to subjective weighting process, fragmented growth can-
not be estimated through such models (Fang et al., 2005). Linear
or Logistic regression based models are an enhanced approach in
spatial modelling which examines the relationships between urban
land uses and independent variables. Weighted regression tackle
urban dynamics by calculating regression coefficient of spatial
weights. Such models lack in calculating fragmented and heteroge-
neous urban growth due to its dependability on spatial weights.
Also, linear and logistic regressions do not offer high modelling
capabilities and they fail to capture non-linearity in spatial growth
(Hu and Lo, 2007). For enhancing the performance of logistic
regression model another model came into existence for example
rule based model. As, logistic model rely on the empirical data like
other models so, there were no scope of reflecting new growth
policies into the scenario. Moreover, rule based models provide
higher accuracy as compared to logistic regression modelling.
However, implementing complex land use change behaviour in
the form of rules did not imply its suitability for heterogeneous
urban areas (Thapa and Murayama, 2010). Another modelling
techniques is Agent based modelling, which have been used for
modelling and prediction of urban growth. It follows a framework
in which simulation of urban dynamics is done by the interaction
among mobile agents. Also, growth influencing variables like land
prices, traffic problem, and landscape attractiveness were included
into the framework. In spite of the less computational complexity,
initial conditions and interaction rules of agents lead to high uncer-
tainties in the growth simulation results (Matthews et al., 2007).
Another technique i.e., Fractal Based Modelling was developed to
consider spatio-temporal patterns of urban change. But, due to dif-
ferences in fractal dimension measurements of the same object
using different techniques and sharing the same fractal dimension
for different morphological characteristics of objects may not offer
reliable results (Weng, 2001; Wu et al., 2009; Dimitrios, 2012).
Also, it has limited capability to include the spatial heterogeneity
in the modelling process (Triantakonstantis et al., 2013). In recent
years, artificial intelligence techniques based urban growth mod-
elling approach have been reported in the literature. Artificial neu-
ral network (ANN) was used for the forecasting of urban growth in
few studies. Despite the fact of including spatial heterogeneity into
the model, it lacked in modelling accuracy due to its tendency to
overfit the data (Li and Yeh, 2002). Moreover, ANNs are unable to
explicitly identify the contribution of each variable and it encom-
passes black-box behaviour which limits understanding of urban
evolution, and noise tolerance, especially for small sample sizes
(Guan et al., 2005). Cellular Automata (CA) based techniques and
methods are another widely used approaches for urban growth
assessment and forecasting (Candau, 2000).

The Cellular Automata (CA) based SLEUTH model (Silva and
Clarke, 2002; Dietzel and Clarke, 2006; Onsted and Clarke, 2012)
has been used extensively for the simulation and modelling of
urban growth, especially in developed countries. The very first
reported application of SLEUTH model was for San Francisco Bay
area (Clarke and Gaydos, 1998) and later SLEUTH has been used
for the assessment and prediction of urban growth for many other
urban areas in different countries most of the developed one. The
SLEUTH was tested for different areas with different constraints
and growth scenarios for understanding the behaviour and com-
plexity of urban growth phenomenon (Al-shalabi et al., 2013;
Herold et al., 2003; Jantz et al., 2004; Oguz et al., 2007). In previous
studies, it has been noticed that SLEUTH model is computationally
inefficient, sensitive to spatial scale and not able to capture the
fragmented urban growth (Silva and Clarke, 2002).

In recent past, improvements have been done in SLEUTH model
for making it computationally efficient and for improving accuracy
(Chaudhuri and Clarke, 2013). Parallel raster processing (pSLEUTH)
has been proposed in SLEUTH for reducing the time constraint in
the calibration of model by incorporating decomposition algo-
rithms like QTB (Guan and Clarke, 2010). Efforts have been made
to integrated GIS and artificial intelligence (AI) techniques like
ANNwith cellular automata for minimizing the complexity of tran-
sition rules by providing linking among automatic transient neu-
rons and parameter values generated automatically, which was
rather difficult in traditional model (Guan et al., 2005; Li and
Yeh, 2002; Pijanowski et al., 2002). Additionally, for testing the
suitability of the model at fine resolution, SLEUTH model was cal-
ibrated for multi-resolution satellite images. Model is very sensi-
tive to the resolution of input land use land cover maps generally
prepared from satellite data. Model has performed better in growth
simulation with fine resolution data, however, at finer resolutions,
it becomes computationally inefficient (Dietzel and Clarke, 2007).
Resolution of the input data should be decided based on the aver-
age size of housing unit, which is very different from place to place.
Form of the development is also very different in different parts of
the world. The SLEUTH model has been implemented and found to
be satisfactory in simulating the urban growth for the urban areas
of developed countries which are less heterogeneous, well planned
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and having relatively larger size of average unit of built form
(Candau, 2000; Clarke et al., 1996; Clarke and Gaydos, 1998;
Dietzel and Clarke, 2007; Silva and Clarke, 2002; Syphard et al.,
2007). So far, very few studies have been reported about urban
growth simulation for relatively more heterogeneous urban areas
and smaller unit size developments, which is very common in
developing countries. Also, performance of SLEUTH in simulating
the urban growth using different resolution of input data and effect
of resolution on accuracy of model results have not been discussed
well.

Urban area in developing countries including India are rela-
tively more heterogeneous in absence of proper land use planning,
infrastructure development and lack of funding. Proper growth
assessment and prediction can help policy planners in optimum
land use planning, resource & fund allocation and optimum utiliza-
tion of natural resources. In Indian context, few studies of urban
growth assessment and monitoring using comparison of classified
remote sensing images, landscape metrics have been reported (Jat
et al., 2008). Very fewmodelling efforts have been done to simulate
the urban growth in Indian conditions such as, for Pune city and
Hyderabad cities of India (Gandhi and Suresh, 2012; KantaKumar
et al., 2011). The performance and sensitivity of SLEUTH model
results against different input parameters including different reso-
lution of satellite data has not been discussed well for heteroge-
neous urban developments. Therefore, an effort has been made
to in the present study to investigate the SLEUTH model’s perfor-
mance in modelling and prediction of heterogeneous urban growth
of an urban fringe, which happened due to different socio-
economic, neighbourhood, climatic, cultural and human beha-
vioural factors, as compared to prevailing urbanization factors in
developed countries, where SLEUTH has been extensively tested
and used. Further, an effort has been made to examine the sensitiv-
ity of SLEUTH to the spatial resolution of input variables and scale,
which has not been discussed and examined well.
2. Materials and method

2.1. Study area

Ajmer city and surrounds has been selected for the present
study which is situated in central part of Rajasthan State of India.
Ajmer one of the important city having great historical and cultural
importance. This is one of the few cities in India which have been
selected to develop as smart cities by the Govt. of India. Location of
the study area has been shown in Fig. 1. The study area is located
between 26�200N to 26�350N latitudes and 74�330E to 74�450E lon-
gitudes. Ajmer is the 5th largest city of the Rajasthan State. Ajmer
is situated in the articulation of two valleys, one formed by the
Taragarh and Madar Hills and the other by the Madar Hill and Bhu-
tia Dungar. Ajmer has a hot and semi-arid climate with over 55 cm
(25.4 in) of rainfall every year, but most of the rain occurs in the
Monsoon months (i.e. between June and September). Tempera-
tures remain relatively high throughout the year, with the summer
months of April to early July having an average daily temperature
of about 30 �C (86 �F). Ajmer has witnessed an exponential urban
growth in recent past being a cultural and educational hub in the
State. Thousands of peoples also visit Ajmer throughout the year
for prayers to religious places.
2.2. Input data

For the present study, satellite data, Survey of India toposheet
(SOI), Ajmer district map, contour map and other secondary infor-
mation has been used. Required data was collected from Govern-
ment organizations, private companies and available online
resources. Seven multispectral satellite images spanning over last
21 years (from 1989 to 2009) have been classified and used for
SLEUTH model parameterization (Figs. 2a, 2b). Survey of India
toposheet (1:25,000 scale) and a city plan map of Ajmer have been
used for digitizing excluded area. An AutoCAD map of year 2002
prepared from aerial survey has been used for digitizing roads
layer. A high resolution satellite image of year 2015 obtained from
GeoEye satellite has been used for the accuracy assessment of sim-
ulated results.

2.3. Image processing

Standard image processing methods like image pre-processing,
geo-referencing, signature selection, refining, generation of error
matrix, classification and accuracy assessment have been used
for the preparation of land use land cover maps for different years.

2.3.1. Image pre-processing
Satellite data was acquired from various sources in the form of

multispectral data. First of all False Colour Composite (FCC) images
have been prepared through layer stacking. Then the satellite
images were georeferenced with UTM projection (43 Zone) and
WGS 1984 ellipsoid parameters. Images used in the study area
have been selected corresponding to similar illumination condi-
tions which means acquired approximately in same month and
at same time to have similar radiometric characteristics. No atmo-
spheric or radiometric corrections have been applied to the images
during pre-processing stage. The study area have been defined sur-
rounding to the Ajmer Fringe. FCC’s of different years have been
shown in Figs. 2a and 2b.

2.3.2. Image classification
Satellite images have been classified to obtain land use land

cover maps for the parameterisation of urban growth model. Seven
land use/land cover classes have been identified based on the study
of reference data of the study area i.e., open land, barren land,
rocks, water body, river_bed, vegetation and settlement. First of
all images (FCC) have been studied in detail with the help of spec-
tral and spatial profiles to have an idea about Seperability of differ-
ent targeted land use/land cover classes. Unsupervised
classification was carried out using Iterative Self-organising Data
Analysis Technique algorithm (ISODATA) again to understand
seperability of selected land use/land cover classes and possible
areas of misclassification. Misclassification can be imputed to the
heterogeneity of land use classes and also spectral confusion
between various land use classes (Bruzzone and Prieto, 2001;
Islam et al., 2017). Further, supervised classification method has
been used to classify the images. Suitable signatures have been
selected for different targeted land use/land cover classes for train-
ing of classification algorithm in ERDAS Imagine software. Signa-
tures have been examined and refined subsequently to the
satisfaction. Further, error matrices have been generated to ascer-
tain misclassification in selected signatures. The maximum likeli-
hood classifier (MLC) has been used for the classification of the
images (Maselli et al., 1994). Further, accuracy assessment has
been done to determine the percentage accuracy of classification
by comparing randomly selected pixels and comparing land use/
land cover of such pixels with reference data. The accuracy per-
centage of classified outputs have been discussed in Table 1. Clas-
sified images i.e., land use land cover maps of different years have
been shown in Figs. 3a and 3b.

Due to similar reflectance characteristics among land use/land
cover classes such as, between vegetation & rocks, between rocks
& barren land and rocks & settlement some misclassification have
been observed in the classified outputs.



Fig. 1. Study Area.
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2.4. Methodology

SLEUTH model has been implemented for the assessment and
prediction of urban dynamics using different resolution satellite
data obtained from different sources. First of all, the spatio-
temporal data has been pre-processed using standard image pro-
cessing and geo-spatial techniques. Urban growth assessed using
CA based SLEUTH model involves first model parameterization,
calibration and urban growth prediction, subsequently. Detailed
methodology has been presented in Fig. 4. The detailed methodol-
ogy has been explained in three sections; model parameterization,
calibration and growth prediction.
1 http://www.ncgia.ucsb.edu/projects/gig/Imp/implement.htm
2.4.1. SLEUTH model
SLEUTH is a cellular automata based urban growth model which

comprises of two modules; Clarke Urban growth Model (UGM) and
Land cover Deltatron Model (LCD). The UGM is used to simulate
the urban growth of an area and LCD is used to simulate land
use change and land transitions. The LCD is tightly coupled with
the urban code but UGM can run independently. SLEUTH is an
acronym for; Slope Land use Exclusion Urbanization Transporta-
tion Hillshade (Clarke & Gaydos, 1998; Silva and Clarke, 2002).

The model basically works based on five growth coefficients
(diffusion, spread, breed, slope resistant and road gravity) for
determining four types of growth rules; spontaneous growth,
new spreading growth, edge growth and road influenced growth.
Other level of growth rules i.e. self-modifying growth rules have
instigated by an unusually high or low growth rate (Clarke et al.,
1996). It have been incorporated into the SLEUTH model to pro-
duce S curve growth till the land is available to transform into
urban areas. SLEUTH model runs in three phases i.e., test, calibra-
tion and prediction. Test phase runs to verify that the initial condi-
tions and data set are complete and meets the desired conditions.
It is very important to run test phase before calibrating the model
unless it would be a waste of time if initial conditions or input data
do not satisfy desired conditions. SLEUTH have two methods of
model parameter estimation in the calibration phase i.e., brute
force calibration method and genetic algorithm. Brute force algo-
rithm works in three phases to derive optimum coefficient values.
On the other hand, genetic algorithm involves searching of coeffi-
cient space in an adaptive manner.1

The calibration phase involves sequentially refining growth
coefficient values from one phase to another phase (KantaKumar
et al., 2011). At the end of each calibration phase run the model
produces values for each growth parameter in the form of least
square regression metrics such as, Composite Score, Compare
value, Population, Edges, Mean Cluster Size, Leesalee, Slope, Urban
Clusters etc. Each metric symbolizes the goodness fit between
actual and modelled growth. The coefficient ranges for each cali-
bration phase are selected on the basis of these metrics values. Var-
ious approaches are used to derive coefficient space, such as
sorting of metrics in descending order, by assigning weightage to
the metrics in which higher weightage metrics used to decide coef-
ficient space (Dietzel and Clarke, 2007; Gandhi and Suresh, 2012;



Fig. 2a. FCC of satellite Imageries.

M.K. Jat et al. / Egypt. J. Remote Sensing Space Sci. 20 (2017) 223–241 227
KantaKumar et al., 2011). As recommended in previous studies
that Leesallee metric has been used in the present study to decide
the growth coefficient range for each phase of calibration run
(Bhatta et al., 2010; Clarke, 2008). The refined values of growth
coefficients from each calibration phase are then used for subse-
quent calibration runs. Further, values of growth coefficients
obtained from final phase calibration will be used for growth pre-
diction phase.
2.4.2. Parameterization of SLEUTH model
First of all, standard image processing techniques, such as

image extraction, rectification, restoration, and classification have
been used for the analysis of the satellite imageries, using the
ERDAS imagine software. Study area extent was decided after
examination of Ajmer fringe and surrounding. For parameteriza-
tion of SLEUTH model different input files have been prepared
from the classified satellite images and GIS database layers cre-
ated through manual digitization. Seven multispectral satellite
images of different years have been classified using standard dig-
ital image processing techniques like image classification using
supervised method. The accuracy of classified outputs have been
tested by comparing land use /land cover of selected random
pixels in classified outputs with corresponding land use from ref-
erence data.



Fig. 2b. FCC of satellite Imageries.

Table 1
Kappa Coefficient and Accuracy Percentage of each Classified Satellite Image.

S.no Satellite Image Year Kappa coefficient Accuracy Percentage

1 1989 0.77 80%
2 1994 0.80 82%
3 1997 0.79 81%
4 2000 0.78 79%
5 2002 0.85 86%
6 2005 0.84 86%
7 2009 0.88 89%
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Stratified random sampling was used to generate test pixels.
Accuracy assessment statistics in the form of percentage accuracy
and kappa coefficient has been presented in Table 1. Classification
accuracy has been found to be satisfactory as percentage accuracy
ranges from 80% to 90% for all seven images. Kappa statistics found
to be satisfactory with a range of 0.77 for year 1989 to 0.89 for year
2009. Accuracy of classification can be considered as satisfactory
for such a heterogeneous urban fringe from the medium resolution
satellite images. However, at few locations misclassification is
clearly evident.
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For implementing SLEUTH model for the study area six type of
input maps (slope, land use, exclusion map, urbanmap, transporta-
tion map and hillshade map) of different years are required. For
initiating SLEUTH model at least four years of built-up maps, at
least two years of transportation map, one exclusion map (which
includes, protected land, water body, reserved forest etc.), one hill-
shade map (no role in SLEUTH processing, just for viewing topo-
graphical purposes) and two land use maps (if running Deltatron
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model) are required. (Dietzel and Clarke, 2007; Herold et al., 2003;
KantaKumar et al., 2011).

Urban built-up maps have been prepared by extracting built-up
areas from classified images of seven years (Table 1). Two trans-
portation maps have been prepared by digitizing roads from refer-
ence maps (SOI toposheet & AutoCAD map and satellite images) in
ArcGIS. Exclusion maps have been prepared as a polygon map of
reserved forests, protected land, other restricted areas and areas



Fig. 4. Methodology flow chart.
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having topographical slope more than 20%. Topographic slope (in
percentage) and hillshade maps were prepared from Digital Eleva-
tion Model (DEM), which was prepared from a topographic map
having contours at 1.0 m interval.

Further, all input data layers (slope, urban, transportation, hill-
shade and excluded maps) (Figs. 5a and 5b) have been resampled
to same extent and radiometric resolution (8 bit). Three sets of
input data has been prepared at 80 m spatial resolution for coarse
calibration phase, 50.0 m for fine calibration phase and 25.0 m for
final calibration phase spatial resolution for the three phases of
model calibration.
2.4.3. SLEUTH calibration
Calibration is the one of important phase of urban growth sim-

ulation using SLEUTH (Dietzel and Clarke, 2006). Brute force
parameter estimation algorithm has been used in the present
study for the calibration of SLEUTH model. Details regarding cal-
ibration of cellular automata has been found in Barredo et al.,
2003; Clarke et al., 1996 and Clarke and Gaydos, 1998. Calibration
has been performed in three phases, coarse, fine and final. Coarse
phase calibration has been performed using coarse resolution
input dataset (slope, urban, transportation, hillshade and
excluded maps considered here with 80 m spatial resolution), ini-
tial values of growth coefficients and selected number of Monte
Carlo iterations (5). Then after, on the basis of computed statisti-
cal metrics, growth coefficient values were derived for the next
phase calibration using 50 m spatial resolution input dataset
and increased number of Monte Carlo iterations, as compared to
coarse phase calibration (8). Again, for final phase of calibration,
statistical metrics obtained from fine calibration phase were used
to select value of growth coefficients. Final phase calibration was
performed with finer resolution input data set (25 m spatial res-
olution) and increased number of Monte Carlo iterations (10).
After final calibration, final refined values of growth coefficients
have been obtained. Detailed calibration results have been dis-
cussed in subsequent sections.



Fig. 5a. SLEUTH Input Data Layers.

232 M.K. Jat et al. / Egypt. J. Remote Sensing Space Sci. 20 (2017) 223–241
2.4.4. SLEUTH prediction
Prediction phase of SLEUTH model includes running model in

prediction phase on finer resolution dataset by setting the number
of Monte Carlo iterations equal to or greater than 100 and by defin-
ing best fit growth coefficients obtained from final phase of calibra-
tion. It is a single run phase process produces prediction images
and also statistical data files used for forecasting future urban
growth. In the present study, SLEUTH model has been developed
for year 2040 for the prediction of urban growth.
3. Results

Results of the urban growth modelling using SLEUTH model
have been presented below. Parameterization and calibration of
model has been discussed in previous sections. Model was
implanted in three phases; test phase, calibration phase and pre-
diction phase.
3.1. Test phase

The SLEUTH model was successfully run in test phase, which
signify that desirable preliminary conditions of the model are
achieved and model is ready for the calibration phase.
3.2. Calibration phase

The first phase of calibration i.e. coarse calibration was per-
formed by taking full value of growth coefficient space (i.e. 100),
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iteration step of 25 and starting value of 0 with 5 Monte Carlo iter-
ations. From coarse phase, growth coefficient values corresponding
to top three values of Leesallee metrics (i.e. 0.36058, 0.35975 and
0.35968) were considered. The next, fine calibration was per-
formed by utilizing the output of coarse calibration in which step
values is taken as 1 for diffusive and breed coefficient, 10 for
spread coefficient, 15 for slope coefficient, 20 for road gravity coef-
ficient with 8 Monte Carlo iterations. Again top three values of Lee-
salee metrics (i.e. 0.45567, 0.45555 and 0.45369) were used for
deciding coefficient values for final calibration with a step value
of 1 for diffusive and breed coefficient, 5 for spread coefficient, 6
for slope coefficient and 7 for road gravity coefficient with 10
Monte Carlo iterations. This phase produced better Leesalee met-
rics (i.e. 0.54805, 0.54650 and 0.54556) as compared to previous
phases. The best fit coefficient values i.e. 1 for diffusive coefficient,
53 for breed coefficient, 1 for spread coefficient, 32 for slope coef-
ficient and 83 for road gravity coefficient were decided based on
performed calibration. Details of optimum urban growth coeffi-
cients obtained from different phases have been presented in table
Tables 2a–2c.

The comparison score of the modelled final urban area and the
urbanization of the historical control years gives the comparison
score of 0.80 which indicates that the prediction on the basis of
refined modelled values of urban growth would be very much sim-
ilar to what actually happened in reality. The final calibration value
for urban edges is 0.83, which seems to confirm that there is much
similarity between modelled urban edges and urban edges of con-
trol years. Also, urban area clustering value is 0.60 which indicates
the comparison between modelled urban clustering and urban
clustering of control years. Urban clustering comparison value is
not very good (1.00 in the case of perfection) which reveals that
the SLEUTH model is not very much efficient in capturing hetero-
geneous urban clusters of small sizes. As, in Indian scenario urban
development is very heterogeneous and also of small unit size
development, which are not captured by the model. The shape
index is representing the similarity between shape characteristics
of modelled urban growth and urban growth of control years. For
Ajmer fringe, the Leesalee metrics, which is a shape index showing
the comparison between shapes of modelled urban areas over
urban areas of control years which has been found to be as 0.54,
which is satisfactory for such a heterogeneous urban area. There-
fore, a value of 0.54 can be considered as satisfactory
(KantaKumar et al., 2011). These statistical metrics were computed
to test the sensitivity of the SLEUTH model towards incorporating



Table 2a
Coefficient values from coarse calibration.

Leesalee Diffusive Bread Spread Slope Road Gravity

0.36058 1 1 50 1 100
0.35974 1 1 50 25 50
0.35968 1 1 50 25 100
0.35560 1 1 50 75 100
0.34504 1 1 25 1 100
0.34490 1 1 25 1 25
0.34185 1 1 25 25 75

Table 2b
Coefficient values from fine calibration.

Leesalee Diffusive Bread Spread Slope Road Gravity

0.45567 1 1 45 18 45
0.45555 1 1 45 18 85
0.45369 1 1 45 33 85
0.45071 1 1 35 3 85
0.45003 1 1 35 18 85
0.44593 1 1 35 33 85
0.44546 1 1 35 3 85
0.44429 1 1 35 48 85

Table 2c
Coefficient values obtained from final calibration.

Leesalee Diffusive Bread Spread Slope Road Gravity

0.54805 1 1 44 26 68
0.54650 1 1 39 8 82
0.54556 1 1 39 14 33
0.54104 1 1 34 14 61
0.54095 1 1 34 14 40
0.54082 1 1 34 14 47
0.54054 1 1 34 14 82
0.54053 1 1 34 14 68
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their local characteristics. So, from the above discussed metrics, it
states that the model successfully replicates the historical urban
growth.

3.3. Prediction phase

After successful calibration and validation corresponding to
year 2002 and 2015, urban growth of Ajmer has been predicted
for different years up to 2040. The prediction phase was run using
100 Monte Carlo iteration. Best fit values of growth coefficients
obtained from calibration phase and used for the prediction phase
are mentioned in Table 3. In present study, year 1989 has been
taken as seed year for predicting the growth of Ajmer fringe con-
sidering restricted area i.e. protected reserved forests, steep slope
regions, and water bodies like Ana Sagar and area around 3rd,
4th and 5th order streams.

SLEUTH has simulated urban growth through year 2009 (which
has been shown in Fig. 6a) and predicted for the year 2040. The
study reveals some variation in actual urban growth and modelled
urban growth, it may be due to some misclassification occurred
during classification of satellite images.

Model simulated for calibration period and predicted growth
has been presented in Figs. 6a & 6b respectively. Significant urban
growth has happened in Ajmer fringe during year 1990 to 2009
Table 3
Prediction best fit values.

Diffusive Breed Spread Slope Road Gravity

1 53 1 32 83
period and model satisfactorily simulated the same. The pale yel-
low colour in the Fig. 6b indicates the urban area in the seed year
while light orange colour is showing less growth, green colour is
showing medium growth and dark red colour is showing the high-
est probability of growing urban areas. The visual interpretation
and comparison between actual urban growth (obtained from
satellite images or reference maps) and model simulated urban
growth for year 2002, 2005 2009 and 2015 of study area have been
shown in Figs. 7a–7d. A red ring indicates differences in actual
and model simulated urban growth. Such errors in simulated
growth may be attributed to the relatively low accuracy of the land
use/land cover maps used as input during the calibration phase,
heterogeneity in construction material used in construction, smal-
ler size of built-up units, lack of open spaces, improper land use
planning and inadequate roads.

Since, land use/land cover maps have been prepared from the
classification of medium resolution remote sensing images using
maximum likelihood classifier (MLC). The MLC uses only spectral
reflectance values for classification. Misclassification has been
observed due to similar reflectance characteristics of few land
use and land cover classes (like built-up areas and exposed rocky
terrain, dry sand and barren land etc.) and heterogeneity in built-
up areas due to different type of construction material & practices
and lack of open spaces between built-up units.

Model simulated urban growth for the Ajmer fringe for year
2040 has been shown in the Fig. 8. By the year 2040 significant
urban growth (more than 90 percent probability) will take place
along the Jaipur road (NH8), area nearby highway and bypass roads
(40 percent probability), (Fig. 8). As per the results, area around
Ana Sagar Lake have 70 percent probability of getting developed
in upcoming years as built-up density in the area is growing. Area
nearby Foy Sagar have 80 percent probability of getting developed
in upcoming years which might be due to the availability of devel-
opable relatively flat land. In recent past also, development of new
housing colonies have been started in this area. Pushkar bypass
road is also showing significant road influenced growth with 30
percent probability as new development will likely to take place
in this area. Also, many new educational institutes and universities
are coming up in this area. Madar area which is in North-East side
of Ajmer will also project to grow significantly with 20 percent
probability in near future. A huge road influenced urban growth
has been projected by the year 2040 along with the Beawar road
with 90 percent probability, which is in south of Ajmer. So, the
study area will be developing at faster rate in upcoming years. Also,
20 percent chances of getting road influenced urban growth along
the Nasirabad Road as predicted by the SLEUTH model. Area
around Bisal Sagar will be grown with 80 percent probability by
the year 2040 due to increased industrial activities. Areas nearby
Khanpura Pond is also likely to get developed at smaller pace (with
40 percent probability) as many industrial activities are taking
place at this region. The Pushkar region is one of the most impor-
tant places in Ajmer fringe which is depicting higher growth (with
more than 90 percent) in upcoming years. Pushkar region is a reli-
gious and popular place, commercialization is getting increased
and also the urban density will increase in these areas.

SLEUTH generated various type of growth statistical measures
for two years i.e., 2015 and year 2040 have been presented in
Table 4. These are the measures which in turn determine the
appropriateness of the used statistical analyses and these are
obtained by statistical average log file produced after completing
the prediction phase of the SLEUTH model run.

Results revealed that (Table 4), cumulative number of urban
pixels by spontaneous growth (‘sng’) increases from 6.80 in year
to 8.46 in year 2040, indicating the increase in new urban settle-
ments in undeveloped areas. Cumulative organic growth pixels
(‘og’) indicates relatively less development in existing developed



Fig. 6a. Simulated Urban growth from seed year to 2009.
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urban settlements as compared to surrounding localities in year
2040. The rate of road influenced growth (‘rt’) is 2.64 in year
2015 to 1.58 in year 2040, which indicates that growth will slow
down along the roads by the year 2040. This may be due to reason
that scattered growth in outer areas may not be captured by the
model due to coarse resolution of input data and simulation i.e.,
25 m. Urban area within the selected extent around the Ajmer
has been projected to increase from 52837.72 ha in year 2015 to
90261.58 in year 2040. Urban edges, which indicates rate of scat-
tered growth or pixels represent urban areas with other land use
classes, slightly reduced from 7531.75 in year 2015 to 7630.26 in
year 2040. Such decrease in edges may be due to heterogeneous
urban growth not captured by the model on account of coarse res-
olution. Also, increased urban clusters showing the growth of
urban areas and radius of the urban enclosed circle (‘rad’) increases
which definitely indicates the urban expansion of the study area.
Urban growth in higher slope topographic areas in year 2040
remains almost same as in year 2015. Moreover, outward expan-
sion of urban growth will also be there and new settlements will
also be developed at large by year 2040, as indicated by the
increase in diffusion coefficient. However, urban growth rate is
declining in year 2040 as compared to year 2015 (refer Table 4)
which may be attributed to vertical growth in built-up areas.
4. Discussion

Looking at the historical and cultural importance of the Ajmer
City, Government of India has selected Ajmer as one of the city
to be developed as smart city. Therefore, this city has become a sig-
nificant area for urban growth studies. The results showed that, the
urban growth is taking place rapidly in the north-east part of
Ajmer. But, the road influenced urban growth will also take place
along the highways like Beawar road, Jaipur Road and Nasirabad
Road In addition, it is observed that the percentage growth rate
which is represented in term of horizontal coverage decreasing
through the year 2040 and the main reason can be the vertical
growth in built-up activities like multi-storeyed housing. The
SLEUTH model uses the information of past urban extent in pre-
dicting the future growth for urban areas, the third dimension
development is not considered. This factor can be taken into
account in land cover change predictions by SLEUTH model. There-



Fig. 6b. Predicted urban growth up to year 2040.

236 M.K. Jat et al. / Egypt. J. Remote Sensing Space Sci. 20 (2017) 223–241
fore, the parameters used in the SLEUTH model may vary from one
urban area to another since every urban retains its own properties.

Main outcomes of the study can be categorized into two groups
which are technological and application. Study has demonstrated
the utility of GIS, remote sensing and the cellular automaton based
modelling for urban growth assessment and prediction.

SLEUTH is capable in handling the land use restriction along
drains, rivers etc., in simulating the growth. By manipulating
SLEUTH input data layers, self-modification rules, and growth con-
trol coefficients, SLEUTH can be used to generate different land use
planning scenarios. Moreover, these outcomes would be useful for
urban planning, land use policy planning, resources budgeting and
resource allocation for the urban areas.
Performance of the CA based SLEUTH model has been found to
be satisfactory in simulating the urban growth of Ajmer fringe.
However, scattered urban growth in the form of smaller size
built-up units seems to be underestimated by the model due to
coarse resolution of input data used in calibration phase and while
predicting the growth. In addition, model is computationally inef-
ficient at finer resolution and requires longer computational time
to complete even a single phase of calibration.

Average size of built-up units in Ajmer particularly housing
units is less, that the spatial resolution of input data considered
during the three phases of calibration i.e., 80 m, 50 m and 25 m
leading to mixed pixels of built-up and non-built-up areas. Also,
urban development is very heterogeneous in terms of different



Fig. 7a. Modelled and actual urban growth for year 2015.

Fig. 7b. Modelled and actual urban growth for year 2002.
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type of construction, lack of planning and inadequate infrastruc-
ture like roads. Therefore, smaller built-up units may have not
detected by the SLEUTH, especially in newly developed areas,
where urban growth is scattered (Figs. 7a–7d). Also, some frag-
mented construction are of very small sizes which has not been
detected by the model as shown in Figs. 7a–7d. Densely developed
areas have been well detected by the model because of less prob-
lems of mixed pixels i.e., built-up/non-built-up. Coarse spatial res-
olution have been adopted for the input data sets to avoid
computational complexities and longer processing time as sug-
gested by the various researchers (Candau, 2000; Dietzel and
Clarke, 2007; KantaKumar et al., 2011; Silva and Clarke, 2002).

Still, urban growth simulation and prediction is challenging
because of dynamic nature of urbanization process. Urbanization
is a function of different explanatory variables such as, neigh-
bourhood, proximity, demographic, socio-economic, institutional,



Fig. 7c. Modelled and actual urban growth for year 2005.

Fig. 7d. Modelled and actual urban growth for year 2009.
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Suitability, Bio-physical and restrictive variables. Neighbourhood
variables like a person would be more interested in constructing
his/her house on the basis of neighbouring conditions like near
residential areas, city centre etc. Proximity, distance to market,
distance to road, distance to hospitals, distance to railways, dis-
tance to highways, distance to schools etc. are the factors which
everyone consider. Demographic, according to statistics of popula-
tion demand is estimated and included as driving factor into the
model. Socio-economic variables, decision of development may be
based on some socio-economic factors like, land cost, time to tra-
vel, opportunity cost, Tradition, Status, Education etc. Institutional
variable, may comprise the decision taken by managerial author-
ities of or relating to the construction nearby already established
industries and institutions. Suitability, land suitability factor for
building houses, agriculture etc. Economic variables, land tenure,
farm size, income may be the important factors to be considered.



Fig. 8. Urban growth of the study area for year 2040.
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Climatic drivers, climatic variability, life zones are the factors
which one consider while building their houses. Bio-Physical dri-
vers, Topography, Elevation, Slopes, Soil types, Altitude are the
variables which are considered while making decision of or relat-
ing to construction (especially in disaster prone areas.) and
Restriction variables, may comprise prohibited area for develop-
ment such as, reserved forest, green belt, historical places, airport
side area etc. The model behaviour would be different for differ-
ent surroundings, geographical settings and practices. Also, cali-
bration would be different as explanatory variables would be
different for different regions. Therefore, understanding influence
of such factors on urban growth is still a challenge due to their
dynamic nature. The SLEUTH model has been widely tested for
developed countries but very few studies have been made in
developing countries like scenario where housing unit size are
very small and fragmented. Also, different type of urban develop-
ment in developing countries having different socio-economic,
cultural and human behavioural characteristics instigate the
urban growth modelling in developing country KantaKumar
et al. (2011). Moreover, temporal variations in urban growth con-
trolling factors makes it further complex. Incorporating vertical
growth into model simulations is still an issue of research.
SLEUTH is computationally inefficient in simulating the urban
growth at finer resolution. Therefore, urban growth simulation
is still very challenging especially for the heterogeneous urban
areas. Uncertainties in model results can be reduced by improv-
ing accuracy of input datasets prepared from classified satellite
data.



Table 4
Comparison of growth statistical Measures.

Statistical
Measures

Definition of Abbreviations 2015 2040

sng Cumulative number of urbanized pixels
by spontaneous neighbourhood growth.

6.80 8.46

og Cumulative number of urbanized pixels
by organic growth.

1588.23 1405.05

rt Cumulative number of urbanized pixels
by road influenced growth.

2.64 1.58

area Total number of urban pixels 52837.72 90261.58
edges Number of urban to non- urban pixel

edges
7531.36 6730.26

clusters Number of urban pixel clusters 477.60 549.38
rad The radius of cluster which encloses the

urban area
129.69 169.50

slope Slope coefficient 2.31 2.13
diffusion Diffusion coefficient 1.28 1.64
spread Spread coefficient 67.97 87.17
breed Breed coefficient 1.28 1.64
Road

gravity
Road gravity coefficient 86.30 90.76

Percent
urban

Percent of urbanized pixels divided by
the number of pixels available for
urbanization

15.63 20.12

Growth
rate

Urban growth rate 2.64 1.58

Growth
pixels

Number of growth pixels each year 1597.77 1415.35
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5. Conclusion

Economic development and population growth have triggered
rapid changes to land use/land cover, as a result of urbanization
& industrialization. Urban growth assessment and prediction are
essential components of urban development and planning, which
helps in better land use planning and sustainable use of resources.
In developing countries like India, urban growth assessment and
modelling is not common which leads to heterogeneous and
unplanned urban growth. SLEUTH model has been tested and its
performance was examined for the modelling of heterogeneous
growth, which is quite different from the developed countries
where SLEUTH was tested extensively. Model performance has
been found to be satisfactory. However, few issues have been iden-
tified related to the sensitivity of the SLEUTH with respect to spa-
tial resolution of input variables and scale. Model results further
indicates that SLEUTH is not able to capture small unit size devel-
opment i.e., in the form of fragmented growth in outer areas, which
is very common in developing countries. Study have also con-
cluded that further model sensitivity need to be studied to various
model constants to capture small size fragmented growth. More-
over, fragmented urban growth has been underestimated by the
model, which may be attributed to the coarse resolution adopted
during the calibration and prediction phases, smaller average size
of built-up units (less than the resolution) and errors in input data
due to misclassification of satellite images because of heterogene-
ity in the form of development and construction material.
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