
Verification of Red-Black Trees in KeY –
A Case Study in Deductive Java Verification

Bachelor’s Thesis by

Johanna Stuber

at the KIT Department of Informatics

Institute of Information Security and Dependability (KASTEL)

Reviewer: Prof. Bernhard Beckert

Advisor: Dr. Mattias Ulbrich

Second advisor: Wolfram Pfeifer, M. Sc.

09.05.2023 – 11.09.2023

Karlsruher Institut für Technologie

KIT-Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I hereby declare that the work presented in this thesis is entirely my own. I con�rm that

I speci�ed all employed auxiliary resources and clearly acknowledged anything taken

verbatim or with changes from other sources. I further declare that I prepared this thesis

in accordance with the rules for safeguarding good scienti�c practice at Karlsruhe Institute

of Technology (KIT).

Karlsruhe, 11.09.2023

. .

(Johanna Stuber)

Abstract

While thorough testing of software reduces the likelihood of errors, formal veri�cation can

guarantee the correct behaviour of programs for all inputs through proofs. Consequently,

for the ubiquitous data structures and algorithms like those found in standard libraries,

used by thousands of applications, formal veri�cation is especially desirable.

In this case study, we specify and verify a Java implementation of red-black trees with

KeY. The KeY system is a tool for the formal veri�cation of Java programs, and uses dynamic
frames for memory reasoning, that is, framing. Red-black trees are a popular data structure

for the e�cient storage and retrieval of ordered elements, for example implemented in the

class java.util.TreeMap of the Java Class Library. There exist various case studies in both

areas – those in KeY, however, rarely consider tree structures, and existing red-black-tree

veri�cations use di�erent approaches to framing compared to KeY.

In this work, we conclude that successful reasoning over tree structures with dynamic

frames is possible, yet very work-intensive compared to other framing approaches. Apart

from this, we explore general strengths and limitations of KeY and give suggestions on how

to improve its usability. Furthermore, we test out methods for automising and persisting

proofs with the new KeY features of JML Scripts and Proof Caching.

v

Zusammenfassung

Während das ausführliche Testen von Software das Auftreten von Fehlern unwahrscheinli-

cher macht, kann mit formaler Veri�kation durch Beweise garantiert werden, dass sich ein

Programm für sämtliche Eingaben korrekt verhält. Besonders für tausendfach verwendete

Grundelemente wie die Datenstrukturen und Algorithmen einer Standardbibliothek ist

eine formale Veri�kation daher erstrebenswert.

In dieser Fallstudie spezi�zieren und veri�zieren wir eine Java-Implementierung von Rot-

Schwarz-Bäumen mit KeY. KeY ist ein Tool zur formalen Veri�kation von Java-Programmen,

und verwendet dabei Dynamic Frames für Aussagen über Speicherbereiche, also das

Framing. Rot-Schwarz-Bäume sind eine beliebte Datenstruktur für das e�ziente Speichern

und Auslesen von Elementen und sind zum Beispiel in der Klasse java.util.TreeMap der

Java Class Library umgesetzt. In beiden Bereichen existieren verschiedenste Fallstudien –

die in KeY betrachten jedoch kaum Baumstrukturen und existierende Rot-Schwarz-Baum-

Veri�zierungen gehen auf andere Weise als KeY mit Framing um.

In dieser Arbeit kommen wir zu dem Schluss, dass die Veri�kation von Baumstrukturen

mit Dynamic Frames möglich ist, jedoch im Vergleich zu anderen Ansätzen viel zusätzlichen

Aufwand mit sich bringt. Darüber hinaus erkunden wir generelle Stärken und Schwächen

von KeY und machen einige Vorschläge zur Verbesserung der Benutzbarkeit. Außerdem

testen wir mit JML Scripts und Proof Caching neue Methoden zur Beweis-Automatisierung

und -Persistierung.

vii

Contents

List of Figures and Tables xi

List of Listings xiii

1 Introduction 1
1.1 Motivation . 1

1.2 Contributions . 2

1.3 Outline . 2

2 Background 3
2.1 Red-Black Trees . 3

2.1.1 Binary Search Trees . 3

2.1.2 Red-Black Properties . 4

2.1.3 Inserting an Element . 4

2.2 JML . 6

2.3 KeY . 9

2.4 The Frame Problem . 11

2.5 Related Work . 13

3 Implementation and Specification 15
3.1 Design Decisions . 15

3.1.1 General Simpli�cations . 15

3.1.2 Iterative vs. Recursive Add Method 16

3.1.3 Preservation of the Root Node by Rotations 16

3.2 Classes . 17

3.2.1 Client . 17

3.2.2 RBTree . 18

3.2.3 Tree . 18

3.3 Modelling the Tree Structure and Properties 19

3.3.1 Recursion Measure heightVariant 19

3.3.2 Framing Speci�cation footprint 20

3.3.3 Abstract Tree Representation treeSet 20

3.3.4 Binary-Search-Tree Property . 21

3.3.5 Instance Invariant . 22

3.3.6 Red-Black Properties . 22

3.3.7 RBTree Model Methods . 24

3.4 Methods and their Contracts . 24

3.4.1 Contracts for Model Methods . 25

ix

Contents

3.4.2 RBTree Method Contracts . 25

3.4.3 Tree::contains . 27

3.4.4 Tree::add . 27

3.4.5 isRed . 29

3.4.6 recolour . 31

3.4.7 setHeight . 31

3.4.8 Rotations . 31

4 Verification 35
4.1 General Approach . 35

4.2 Proof Search Strategy Settings . 36

4.3 Assertions . 36

4.4 JML Scripts . 38

4.5 Proof Caching . 40

4.6 Proof Statistics . 41

5 Insights 45
5.1 Framing . 45

5.2 KeY’s Proof Search Strategy . 46

5.3 Bugs in KeY . 47

5.4 Desirable Features . 48

6 Conclusion and Future Work 51

Bibliography 53

A Appendix 57
A.1 Java Source Code . 57

A.1.1 Client.java . 57

A.1.2 RBTree.java . 58

A.1.3 Tree.java . 58

A.2 iSet.key – Custom Integer Set . 61

A.3 Veri�cation Examples . 63

A.3.1 Assertions in rightRotate . 63

A.3.2 Script for Proving \invariant_for(right) in rightRotate 65

x

List of Figures and Tables

2.1 Examples of (in)valid red-black trees . 5

2.2 Right rotation . 5

2.3 Rotations and recolouring after insertions 6

3.1 Right rotation with preservation of the root node 16

4.1 Executed script from Listing 4.1 as shown in KeY 39

4.2 Lines of code and speci�cation . 41

4.3 Number of rule applications . 43

5.1 Lines of assertions and scripts by purpose 45

xi

List of Listings

2.1 A simple method contract . 7

2.2 An instance invariant for a simple class TodoList 8

2.3 The validRBSubtree model method in the Tree class 9

2.4 Interplay of assignable and accessible clauses 12

3.1 The Client class that uses an RBTree . 17

3.2 The RBTree class . 18

3.3 The Tree class with its �elds and most important methods 19

3.4 De�nition of a Tree’s footprint . 20

3.5 De�nition of a Tree’s treeSet . 20

3.6 De�nition of the binary-search-tree property 21

3.7 Modelling of a lemma for the binary-search-tree property 21

3.8 The instance invariant of Tree . 22

3.9 De�nition of a Tree’s blackHeight . 23

3.10 De�nition of the exceptionally allowed doubleRedLeft 23

3.11 The model methods of RBTree . 24

3.12 Contract of the treeSet model method in Tree 25

3.13 Mehtod contracts for RBTree . 26

3.14 Tree’s contains with its contract . 28

3.15 Tree’s add with its contract . 28

3.16 addRight with its contract . 30

3.17 isRed with its contract . 31

3.18 recolour wit its contract . 32

3.19 setHeight with its contract . 33

3.20 rightRotate with its contract . 34

4.1 An example of JML Scripts with assertion labels 39

xiii

1 Introduction

1.1 Motivation

The standard libraries of programming languages are an indispensable part of modern

software development. Immense trust is put in the correct behaviour of, among other

things, basic data structures and their access operations, as tens of thousands of applications

rely on them. Yet, there are no guarantees that they indeed provide what we are expecting.

This is where formal methods can be of great value. Applied to standard library imple-

mentations, they can uncover existing issues or prove intended properties to hold true.

Ideally, they result in formally veri�ed guarantees that fully legitimise the trust that is

currently only based on testing – which can reduce the likelihood of errors, but not prove

the absence thereof.

One tool enabling the use of formal methods for Java code is the KeY system (Ahrendt

et al., 2016)
1
. Developed since 1998, it has recently been used for a number of case studies

looking at implementations in the Java standard library, for example by de Gouw et al.

(2015), de Boer et al. (2022), and Hiep et al. (2022). However, until now none of these more

elaborate e�orts have dealt with tree structures, a basis for many advanced data structures.

This thesis conducts a case study about the use of KeY for the veri�cation of red-black

trees. These are a particularly e�cient version of self-balancing binary search trees and, as

such, are a fundamental data structure widely used for the e�cient storage and retrieval of

ordered elements. With its class java.util.TreeMap, the Java Class Library (JCL) provides

an implementation of red-black trees; in addition, it uses them internally in the class

java.util.HashMap.
2

Red-black trees are also a popular goal for formal veri�cation. With VACID-0, Leino

and Moskal (2010) even propose them (amongst four other data structures) as a means to

benchmark veri�cation systems. To the best of our knowledge, this work is the �rst to

verify red-black trees with a tool that uses dynamic frames for memory reasoning.

The main goal of this thesis is thus to contribute to a growing collection of formally

veri�ed data structures and algorithms – working towards those of the JCL – while pushing

the limits of KeY in order to gain insights into its strengths as well as potential for further

improvements.
3

1https://www.key-project.org/
2
The source code of TreeMap and HashMap can be found on GitHub at

https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util
3
The complete source code with speci�cations and the proofs resulting from this thesis are available at

https://github.com/gewitternacht/rbtree-verification

1

https://www.key-project.org/
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/TreeMap.java
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/HashMap.java
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util
https://github.com/gewitternacht/rbtree-verification

1 Introduction

1.2 Contributions

With this thesis, we present a case study that makes the following contributions:

• We specify and successfully verify a Java implementation of the contains and add

methods of red-black trees. In doing so, we work towards the veri�cation of real-

world code from the Java Class Library. Even the simpli�ed (but comparably e�cient)

code we use for our study already contributes to a fully veri�ed algorithmic “Basic

Tool Box”. This also paves the way for future veri�cation e�orts dealing with similar

structures.

• We explore and push the limits of KeY, in particular regarding its approach to framing,

and conclude that successful reasoning over tree structures with dynamic frames is

possible, yet very work-intensive. We demonstrate its limitations, and strategies to

deal with arising problems.

• With the heavy use of assertions and JML Scripts, and a look at Proof Caching, we

test out new ways to automate and persist proofs in KeY, and give suggestions on

how to further improve them.

• Generally, we gain insights into strengths, limitations, and also some bugs of KeY and

give pointers to potential improvements regarding usability and functionality. By

approaching one of the proposed VACID-0 data structures, we enable the benchmark-

ing and comparison of di�erent veri�cation systems based on relatively complex

real-world examples.

1.3 Outline

The remainder of this thesis is structured as follows: Chapter 2 introduces red-black trees

on an algorithmic level, as well as the necessary basics of JML and KeY that are used in

this case study. It further discusses the frame problem and its relevance for this thesis, and

gives an overview of related work. Next, Chapter 3 describes the design decisions made for

the implementation and the fundamental de�nitions for the speci�cation. It also de�nes

the method contracts that constitute the goals to be veri�ed. Chapter 4 then deals with the

most important steps and challenges of the veri�cation process with KeY and illustrates

this by providing a few concrete examples of proof situations. In addition, statistics are

given for all proofs. The insights gained during the course of this thesis are detailed in

Chapter 5, which includes some desirable new features for KeY. Chapter 6 concludes with

a summary of the most important results of this work and gives an outlook for possible

future work.

2

2 Background

This chapter starts by introducing red-black trees and the insertion operation on them

on an algorithmic level. The explanations in the �rst section are based on Introduction to
Algorithms (Leiserson et al., 1994, Chapter 12 and 13). The next three sections, dealing

with the basics of JML and KeY, as well as the important frame problem, are based on The
KeY Book (Ahrendt et al., 2016). Finally, an overview of existing related work concludes

this chapter.

2.1 Red-Black Trees

2.1.1 Binary Search Trees

As red-black trees are a version of self-balancing binary search trees, we start by looking

at the properties and usage of this more general concept.

Property Generally, search trees are used for ordered storage of elements, often for the

entries of a map data structure, that is, a set of key-value pairs. In binary search trees,

these entries are structured as a tree where each node contains one key (and possibly

additional data) and two references to child nodes. The binary-search-tree property states

that these keys must be ordered in a way that if a node = contains the key :=

• every key :; in the left subtree of = must not be greater than := , i.e. :; ≤ :=

• every key :A in the right subtree of = must not be smaller than := , i.e. :A ≥ := .

Search With that, we only have to traverse a tree once from the root node to a leaf to

check whether it contains a speci�c key : : By comparing : with the key of the node we

are currently looking at, we can determine if our search must be continued in the left or

right subtree of the node. We do this until we have found a node with the requested key :

or until we reach a leaf of the tree, in this case concluding that : is not present in the tree.

Insertion The same approach can be used to correctly insert a new element with key :′

into the tree: We traverse the tree in the same manner down to a leaf where we would

have expected :′ in a valid binary search tree. We then simply attach a new node in this

place. In order to ensure unique keys for map-like data structures, we can decide to abort

the insertion or opt for a replacement if we detect that :′ is already contained in the tree.

3

2 Background

Complexity The search and insertion operations consequently run in a time proportional

to the height of the tree. For balanced trees, which have a height that is logarithmic in the

number of elements = they contain, the complexity of these operations thus is in $ (log=).
However, the naive insertion described above could lead to trees far from balanced, in the

worst case resulting in a tree consisting of a single branch, resembling a linked list. It is

therefore desirable for modifying operations to rearrange the elements of the tree into a

balanced structure; the implementation of such operations is what makes a search tree

self-balancing.

2.1.2 Red-Black Properties

Properties Red-black trees are binary search trees where each node is additionally

coloured either red or black. Non-existent children of nodes are called leaves – depending

on the concrete implementation, this could be null pointers or a designated NIL-node.

The following constraints on the possible combinations of colours in the tree guarantee

that a valid red-black tree is approximately balanced:

• All leaves must be black.

• The root node must be black.

• no double red: No two adjacent nodes may be red; in other words: both children of a

red node must be black.

• black balanced: The black heights of both children of a node must be equal, where

the black height of a subtree is de�ned as the maximum number of black nodes on

a path from the root node of the subtree to any leaf. An alternative formulation of

this property states that “for each node, all paths from the node to descendant leaves

contain the same number of black nodes” (Leiserson et al., 1994, p. 273).

Figure 2.1 illustrates some exemplary (in)valid red-black trees.

Consequence Intuitively, the combination of no double red and black balanced ensures

that the longest possible path in a tree (alternating red and black nodes) is at most twice

as long as the shortest possible path in a tree (only black nodes). As a consequence, the

height of a tree with = elements is in$ (log=)1 and thus the tree is approximately balanced

if it satis�es all red-black properties. A formal proof of this fact can be found in Leiserson

et al. (1994, p. 274). For red-black trees to be self-balancing, the insertion and deletion

operations therefore have to ensure that the red-black properties hold again afterwards.

2.1.3 Inserting an Element

For the insertion of an element into a red-black tree, the �rst step is to perform a naive

insertion as described for binary search trees in Section 2.1.1. The newly added node

is always coloured red. This, however, could violate the no double red property if the

1
to be precise, a valid red-black tree with = nodes has a height of at most 2 log(= + 1)

4

2.1 Red-Black Trees

5

2 7

11

16

6

(a)

5

2 7

11

16

1

2

23 3 2

3

3 3

(b)

5

2 7

11

16

6

(c)

Figure 2.1: Three examples of red-black trees: (a) violates the no double red property and does

not have the required black root; (b) violates the black balanced property as indicated

by the numbers counting the black nodes on each branch; (c) is a completely valid

red-black tree, however with maximum imbalance

e

d

A B

C

e

d

A

B C

Figure 2.2: A right rotation: The nodes with keys d and e “pivot” around their link, swapping their

roles of parent and child. The pointers to the subtrees A and C do not change, but B is

reattached from the former to the new child node. One can easily see that the rotation

preserves the binary-search-tree property.

parent of the new node is also red, resulting in a double red. Because of that, di�erent local

�x operations have to be performed to restore this property and make the tree a valid

red-black tree again, while also preserving the binary-search-tree property. Depending

on the speci�c situation, this could mean only changing the colours of nodes or actually

modifying the tree structure with tree rotations.

Tree Rotations The concept of rotations on parts of binary search trees is also used for

other variants of self-balancing search trees, e.g. AVL trees (Adel’son-Velskii and Landis,

1962). Rotations locally change a constant number of pointers in the tree and can help

restore balance while keeping the search-tree structure valid. Figure 2.2 depicts a right

rotation – the other kind of rotation, a left rotation, is the inverse thereof. Essentially, two

nodes that are parent and child swap their roles through a rotation, with the former child

becoming the new root node of the rotated subtree.

Fix Operations After the naive insertion of a new node G , the handling of the potential

double red depends on the colour of G ’s uncle D, that is, the sibling of G ’s parent. If D is

5

2 Background

3

2 6

9

(a)

3

2 6

9

8

(b)

3

2 6

8

9

(c)

3

2 8

96

(d)

3

2 8

96

4

(e)

3

2 8

96

4

(f)

Figure 2.3: (a) a valid red-black tree with four nodes; (b) the insertion of 8 produces a double red
and as its uncle is null, thus black (see �rst property in Section 2.1.2), rotations are

performed: (c) the right rotation on 9 is a sometimes necessary “normalisation rotation”

to transform the inner double red (here right and right.left) to an outer double red
(here right and right.right); (d) the outer double red is �xed by a left rotation on 6;

(e) the insertion of 4 produces another double red and as the uncle of 4 (that is, 9) is red,

recolouring is performed: (f) after the recolouring, the violation is �xed completely,

but in other cases could have been propagated two levels up (to 3-8 being double red)

black, either one or two tree rotations resolve the violation completely, as illustrated in

Figure 2.3(a)-(d). If D is red, recolouring is performed, as shown in Figure 2.3(e)-(f). This

potentially propagates the double red up the tree, necessitating the same procedure two

levels closer to the root of the tree. If the double red eventually reaches the root node, it is

resolved by simply colouring the root node black again.

Complexity The worst case for the cost of the insertion is to traverse the tree once

from the root node down to a leaf and then all the way up to the root node again while

performing the �x operations. Since recolouring and rotations have a constant cost and

red-black trees are balanced, the insertion thus runs in $ (log=) for a tree with = elements.

2.2 JML

To be able to formally prove correctness of code, we need a way to precisely de�ne what

“correct” means for a given program. The Java Modeling Language (JML) is one way

to provide such speci�cations for Java programs. It uses easy-to-understand syntax to

describe the intended behaviour in annotations (starting with /*@ or //@), mostly in so-

called method contracts. The most important features and concepts of JML, with a focus

on those used in this work, are described in the following.

6

2.2 JML

1 /*@ public normal_behaviour

2 @ requires x > 0;

3 @ ensures \result == 7 * x;

4 @ measured_by x;

5 @ assignable \strictly_nothing;

6 @*/

7 public int sevenTimes(int x) {

8 if (x == 1)

9 return 7;

10 else

11 return sevenTimes(x - 1) + 7;

12 }

Listing 2.1: A simple method contract

JML Expressions The expressions allowed in JML speci�cations can contain standard

Java expressions as well as JML speci�c keywords and symbols. In a method contract,

this includes expressions over the method’s parameters and the object’s �elds, a \result

keyword to access the value returned by the method and an \old keyword to refer to

expressions in the state before the method call. In addition, side-e�ect-free, terminating

(/*@ pure @*/) methods can be invoked.

Furthermore, Boolean expressions can be combined with an implication ==> or equiva-

lence <==> besides the standard Java connectives conjunction &, disjunction | and negation

!. They can also be quanti�ed with \forall and \exists quanti�ers. For example, to

specify that an integer array a should only contain positive entries, we could write:

(\forall int i; 0 <= i & i < a.length; a[i] > 0)

Method Contracts Method contracts are the central concept for modular speci�cation

with JML and serve as a contract between the caller and the callee of the method. They

document which preconditions have to hold prior to the method invocation in order for it

to guarantee the speci�ed postconditions after its execution. The modularity means that

methods can be speci�ed and veri�ed independently of each other.

Listing 2.1 gives an example of a simple contract for a method that uses recursion for

multiplying a given x by seven. The contract starts with the keyword normal_behaviour2
,

which speci�es that the method has to terminate normally (that is, not due to an exception)

and ensure that all postconditions hold in the �nal state. Afterwards, the content of the

contract is given in a number of di�erent clauses. Preconditions are Boolean expressions

preceded by the keyword requires and impose obligations on the caller of the method. In

our example, line 2 speci�es that the method must be called with a positive argument x

for the contract to take e�ect. Postconditions similarly start with the keyword ensures

and describe the obligations of the callee. In the example, line 3 guarantees that the result

equals 7 · G .

2
An alternative is exceptional_behaviour, which is never used in this thesis and not explained here.

7

2 Background

1 class TodoList {

2 private String[] items;

3 private String nextTask;

4 private int nextTaskPos;

5

6 /*@ public instance invariant

7 0 <= nextTaskPos && nextTaskPos <= items.length

8 && nextTask == items[nextTaskPos];

9 @*/

10 }

Listing 2.2: An instance invariant for a simple class TodoList

In (mutually) recursive methods, the measured_by clause (line 4) is used to specify a

termination witness. This could be an integer expression or a pair or tuple thereof, in which

case the lexicographical ordering is used for comparisons. In order to prevent circular

reasoning, the termination witness needs to be strictly decreasing for called methods and

have a lower bound of 0.

Finally, being of great importance in this work and explained in more detail in Section 2.4,

there are the accessible and assignable clauses, both of type locset (location set). The

framing clause introduced by assignable describes which locations on the heap the method

may modify at most. The accessible clause, in turn, speci�es which heap locations the

result of a method can at most depend on – the method’s dependency contract.

Instance Invariants Another central concept of JML are instance invariants (a type of

class invariants, also called object invariants) which constrain the valid object state in the

form of a Boolean expression. An example can be seen in Listing 2.2. Every constructor has

to make sure it establishes these invariants and every method contract implicitly contains

them as a pre- as well as a postcondition – except for methods declared as helper. The

invariant for an object o can be explicitly referenced with \invariant_for(o).

Model Methods Model methods
3

are speci�cation-only class members that, similarly

to instance invariants, are evaluated with respect to the current object state – they are

observer symbols. Just like Java methods, they can take arguments and have an arbitrary

return type, but their method body is restricted to a single return statement and must be

side-e�ect free. Their behaviour can be speci�ed with a method contract as described

above, only that it starts with the keyword model_behaviour. For an example of a model

method that appears in this case study, see Listing 2.3.

Ghost Fields Another kind of speci�cation-only class members are ghost �elds. They are

preceded by the ghost keyword and de�ned just like normal Java �elds. In contrast to

model methods, they do not depend on the state of the object, but extend it and have to

3
There are also model �elds, a closely related concept which is not discussed further here.

8

2.3 KeY

1 /*@ model_behaviour

2 requires \invariant_for(this);

3 accessible \set_minus(footprint(), heightVariant);

4 helper model boolean validRBSubtree() {

5 return blackBalanced() && noDoubleRed(); // also model methods

6 }

7 @*/

Listing 2.3: The validRBSubtree model method in the Tree class

be set explicitly by a set statement during the execution of a method. Like regular Java

�elds, they are part of the heap and need to be considered for framing clauses.

Loop Specifications If a method contains a loop, usually an additional speci�cation called

a loop invariant is necessary for a successful veri�cation. This invariant has to hold before

entering the loop and must be maintained by a single iteration of it. As such, it allows

reasoning over the loop without knowing the concrete number of executions. If the method

is speci�ed to terminate, an additional decreasing clause is necessary, describing a variant

that decreases with every loop iteration. An assignable clause (\strictly_nothing if the

loop only works on local variables) is used to preserve the knowledge about the heap.

Block Contracts Similarly to loop invariants, block contracts are not strictly necessary,

but can facilitate the veri�cation immensely. They allow for the speci�cation of any Java

block in the same manner as it is done for methods, which can prevent an unnecessary

large number of case distinctions.

Assertions JML assertions are another way to assist the veri�cation process, given as

assert %; in a method body. When we reach this assert statement while proving the

method, we have to show that % holds in the current state and can afterwards safely use it

for further reasoning. In Section 4.4, we talk about JML Scripts, a way to further automise

and persist proofs by giving instructions on how to prove each assertion.

2.3 KeY

The KeY system, being developed since 1998, is a formal veri�cation tool for the Java

language
4
. It uses JML* for speci�cations, a KeY-speci�c extension of JML that supports all

features described above. The properties given in method contracts de�ne proof obligations

that are translated into a sequent, using Java Dynamic Logic (JavaDL) formulas, which

then can be proven with KeY in a (semi-)automatic or interactive manner. To handle the

semantics of Java programs, KeY uses symbolic execution, and taclets are used to generally

reason about formulas. All this is explained in more detail in the following.

4
The supported Java features include basic Java 1.2 features such as inheritance, loops, recursion, etc., but

KeY does for example not support multithreading or Java 8 features like lambdas.

9

2 Background

JavaDL JavaDL, being an instance of dynamic logic, integrates formulas and programs

within a single language. The programs must be a sequence of legal Java statements, and

Java �rst-order logic (JFOL) is used for the formulas. JFOL is an extension of classical

�rst-order logic enriched with a type hierarchy – including booleans, integers, class types

from the Java code, location sets and heaps – for reasoning about a single state of a Java

program. JavaDL formulas can then use the box and diamond modalities, with ? being

a program and k being a JFOL formula: [?]k means that if ? terminates, k has to hold

afterwards; 〈?〉k means that ? terminates and k has to hold afterwards.

To express a normal_behaviour method contract this way, we can write q → 〈?〉k . This

means that, starting in a state where the preconditions q hold, the method with body ?

terminates in a state where the postconditionsk hold. The formulas q andk in reality not

only consist of the speci�ed pre- and postconditions, but also some additional fragments

taking care of things like framing and recursion or implicit pre- and postconditions.

Sequents and Taclets To prove that a method contract is valid – that a formula like the

one above holds, KeY uses a sequent calculus. With this, structured implications called

sequents are manipulated by a set of schematic rules called taclets. A sequent is of the form

q1, . . . , q< =⇒ k1, . . . ,k=

with JavaDL formulas q8 (the antecedent) and k 9 (the succedent) and 0 ≤ <, 0 ≤ =. The

semantics of the sequent is that under the assumption of all the formulas in the antecedent,

one of the formulas in the succedent holds, that is,

∧<
8=1 q8 →

∨=
9=1k 9 is valid.

The initial sequent for the proof of a method contract always has an empty antecedent

and one formula like q → 〈?〉k as the succedent – we have to show its validity without

any additional assumptions. Starting from that, di�erent rules can be applied to rewrite the

sequent, preferably simplifying it step by step and resulting in a proof tree with possibly

multiple branches. The impLe� rule for example, read from bottom to top, generates two

new branches from a sequent with an implication in the antecedent:

Γ =⇒ q,Δ Γ,k =⇒ Δ
impLe�

Γ, q → k =⇒ Δ

with Γ and Δ being sets of formulas. There are many more such rules, most of them a lot

more sophisticated for a multitude of proof situations. Eventually, some special rules can

close branches and if all branches of a proof tree are closed, the initial sequent has been

successfully proven.

In KeY, every of these schematic rules is de�ned by a taclet, providing a way to describe

the rule itself as well as some additional information like heuristics when it should be

applied automatically. New taclets can even be added by the user, in which case their

soundness obviously has to be considered carefully.

Symbolic Execution and Updates In order to reason about formulas containing Java state-

ments in modalities, such as the aforementioned q → 〈?〉k , KeY must somehow know

their semantics and interpret them accordingly. This is done by symbolic execution taclets,

which are applied to the modality and extract or simplify the statements one by one

10

2.4 The Frame Problem

to eventually reach an empty modality that can be eliminated. During this extraction,

assignment statements are transformed into parallel updates, denoted by curly braces. In

the end, these accumulated updates can all be applied simultaneously on the remaining

formula. An example of symbolic execution and update simpli�cation could look like this,

being simpli�ed a little:

y � x→ 〈y = y + 1;〉y � x + 1

 y � x→ {y := y + 1}〈〉y � x + 1

 y � x→ y + 1 � x + 1

This way, we obtain a formula that now only makes statements about a single state of

execution, namely the pre-state of the method. We can then continue reasoning about �rst-

order formulas with only arithmetic, having handled the “dynamic” part with modalities

and Java code.

Automated Proof Search and Interaction KeY has an automated proof search strategy that

applies taclets on the existing proof branches and tries to close them by some heuristic.

How likely which kind of rules are applied can be in�uenced by the user through proof

search strategy settings, which can strongly in�uence the likelihood of success, as we

will see in Section 4.2. There also exist several macros, which a user can select to only

perform a speci�c task automatically, like �nishing the symbolic execution. One macro

important for us is the Full Auto Pilot, which �nishes the symbolic execution, separates the

proof obligations, expands invariant de�nitions and closes all goals that are automatically

provable within a given number of steps.

However, KeY’s proof search strategy is not always powerful enough, and needs some

guidance by the user on how to successfully close a goal. For this, manual interaction with

the proof in the KeY GUI is possible: There, we can select a node from the current proof

tree and manually apply taclets on formulas present in the corresponding sequent. This

might for example be necessary to instantiate quanti�ers, expand a needed model method

de�nition, or cut the proof, in essence inserting a manual assertion.

2.4 The Frame Problem

In the context of formal methods, the frame problem refers to the challenge of specifying

what a program does not do, speci�cally which locations on the heap are not changed

by a method call. For object-oriented languages, this is challenging because references

between objects create complex compound data networks and di�erent references could

be aliases to the same object. Thus, we can not assume the e�ects of a piece of code to

be local to some object, which is problematic for modular veri�cation. KeY addresses this

problem by introducing dynamic frames, abstract sets of heap locations that are “�rst-class

citizens” of the speci�cation language.

For this work, the frame problem manifests as follows: A method called on a tree node

may only change heap locations “belonging” to this node and its subtree. It must leave the

heap locations of its sibling unchanged. To prove this, we need to know – that is, specify –

11

2 Background

1 //@ public instance invariant left == null || right == null ||

\disjoint(left.footprint(), right.footprint());

2

3 /*@ model_behaviour

4 requires \invariant_for(this);

5 accessible footprint();

6 helper model boolean validRBSubtree() { ... }

7 @*/

8

9 /*@ normal_behaviour

10 @ ...

11 @ assignable footprint();

12 @*/

13 public void add(int key) {

14 ...

15 right.add()

16 //@ assert left == null || left.validRBSubtree() ==

\old(left.validRBSubtree());

17 ...

18 }

Listing 2.4: Interplay of assignable and accessible clauses: Due to the assignable clause

of add() in line 11, we know that right.add() in line 15 writes at most to heap

locations in right.footprint(). Together with the instance invariant, which

speci�es that left.footprint() and right.footprint() are disjoint, the assertion in

line 16 can now be proven relatively easy by invoking the dependency contract of

left.validRBSubtree(), which restricts its result to depend on left.footprint() at

most (see line 5).

that the location sets of the left and the right subtree of a node are always disjoint, which

we achieve through the usage of dynamic frames. The desired behaviour of a method

can then be proven by using the framing clauses and dependency contracts mentioned

in Section 2.2. The assignable keyword speci�es the frame of a method (the set of heap

locations it can at most write to) and the accessible keyword speci�es the footprint (the

location set the method’s result may at most depend on). An example with pro�table

interplay of these two speci�cation fragments, a simpli�ed version of actual speci�cations

of this work, is shown in Listing 2.4.

There are various alternative approaches to dealing with the frame problem, which

are described in more detail in The KeY Book (Ahrendt et al., 2016, Section 9.6): Standard

JML supports data groups, but these are not suitable for modular veri�cation. Another

approach is the concept of ownership, which introduces a type system with universe types.
This prevents complex aliasing by restricting the topology of a system to a hierarchical

tree structure with at most one owner per object – a more scalable but also more restrictive

approach compared to dynamic frames. Similarly restricted to hierarchical structures is

separation logic, an alternative that allows explicit reasoning about the heap by blending

12

2.5 Related Work

separation properties with the functional speci�cation. VerCors is a veri�cation system

that uses such separating conjunctions and implications among other constructs, generally

making the speci�cation more concise but less straightforward.

2.5 RelatedWork

Permission-Based Verification of Red-Black Trees and Their Merging Very similar to this

work is the case study of Armborst and Huisman (2021), a continuation of the master thesis

of Nguyen (2019). They were able to successfully specify and verify a Java implementation

of red-black trees, including an insertion and a deletion operation and a parallel merging

algorithm for two trees. However, the veri�cation tool used by them is VerCors (Blom

et al., 2017), which uses permission-based separation logic and thus a fundamentally

di�erent approach to the frame problem described in Section 2.4. Also, some basic design

decisions di�er from those of our implementation, which are described in Section 3.1.

Nonetheless, we were able to adapt many of the speci�cations concerned with the actual

red-black properties and the reasoning over them.

Deletion inaTree A work that deals with tree structures in KeY is that of Bruns, Mostowski,

and Ulbrich (2015). As part of the veri�cation competition held at the Formal Methods

2012 conference, it includes, among other things, a solution to the Deletion in a Tree
challenge. This challenge asked to specify and verify a method performing the deletion of

the minimum element in a binary search tree. We were able to use some speci�cations

from that work as a starting point for the representation of the tree structure and extended

them to our needs.

Specification of Red-Black Trees in KeY With the work of Bruns (2011), there exists an

attempt on a speci�cation of red-black trees for KeY. However, this was done more than

ten years ago, with very limited features of KeY compared to what was developed since,

and Bruns concludes that “actual (feasible) veri�cation using KeY is not yet possible”.

Although we now were able to verify an insertion operation on red-black trees with KeY,

we suspect that the use of parent pointers in Bruns’ implementation still might present a

major challenge today due to framing issues (cf. Section 3.1.2). Due to these and other

fundamental di�erences in the implementation, and the incompleteness of the speci�cation,

we unfortunately could not build on this work at all.

Other Works on Red-Black Tree Verification Red-black trees are a popular goal for formal

veri�cation, as indicated by the signi�cant number of other works that exist in this area.

However, these di�er more from ours than the ones mentioned above in that they use

other programming and speci�cation languages, and other veri�cation tools with di�erent

logical foundations. Also, some of them consider non-standard variants of red-black trees.

One such work is that of Peña (2020), where a variant of red-black trees is veri�ed in

an assertional proof with the tool Dafny (Leino, 2010). Dafny supports object-oriented

programs and for such makes use of dynamic frames like KeY– the work of Peña, however,

avoids complex memory reasoning altogether by using a purely functional subset of Dafny

13

2 Background

for its implementation. It instead uses abstract algebraic data types (ADTs) to focus on

algorithmic correctness.

Other veri�ed functional red-black tree implementations exist in Coq (Bertot and

Castéran, 2004) by Filliâtre and Letouzey (2004) and, a more e�cient version, by Ap-

pel (2011), and in Haskell by Kahrs (2001), which also employs ADTs. On an even more

abstract level are the works of Nipkow (2016), proving functional correctness (only re-

garding the search tree invariant) of di�erent functional search trees with Isabelle/HOL
(Nipkow, Paulson, and Wenzel, 2002), of Manna, Sipma, and Zhang (2007), working with

decidable �rst-order theories of term algebras with Presburger arithmetic, and several

others. All these functional works do not have to consider memory issues with pointer

structures, in contrast to our work, where we aim to gain insights about exactly these

issues by looking at a more practical object-oriented implementation.

One work that aims to bridge the gap between such veri�cations working with abstract

data types, and real-world implementations, is that of Schellhorn et al. (2022a). It uses

data re�nement to consider functional correctness on an algebraic level separate from

reasoning about pointer structures, using the theorem prover KIV (Schellhorn et al., 2022b).

Like the work in VerCors described above, this is based on separation logic, while our

work, to the best of our knowledge, is the �rst to verify red-black trees with a tool that

uses dynamic frames for memory reasoning.

14

3 Implementation and Specification

For this thesis, the overall goal is to de�ne and prove method contracts for the contains

and add methods of a Java implementation of red-black trees. In this chapter, we look at

our implementation of these and other necessary methods, and how they are speci�ed. The

complete source code without any speci�cation can be found in the appendix, Section A.1;

code including speci�cations can be found in the corresponding subsections of this chapter

and on GitHub
1
.

3.1 Design Decisions

This section describes some fundamental design decisions we made for our implementation

of red-black trees, and how these di�er from the JCL implementation and those of related

works. These decisions were taken in order to make the speci�cation and veri�cation

feasible, for example regarding framing aspects. It is important to note that, despite these

di�erences, the core algorithm for rebalancing the tree remains the same.

3.1.1 General Simplifications

Compared to the java.util.TreeMap in the JCL, we made a number of simpli�cations.

Firstly, due to the limited time available, we naturally couldn’t look at all the numerous

methods provided by this class and concentrate on one simple constructor, a contains

method checking the presence of a given element and an add method inserting a new one.

Also, while JCL’s TreeMap<K,V> can store generic keys and values, we only allow Java’s

primitive int for keys. Allowing arbitrary objects as keys would require a lot of additional

reasoning regarding framing, because these objects are part of the heap and potentially

hold references to other objects. The restriction to integers also frees us from having to

deal with custom Comparators – whose treatment in KeY would require some fundamental

considerations. We further do not consider any values at all so that the data in a node

consists only of the key. Due to them not interacting with the tree structure in any way,

we do not deem them necessary for a formal veri�cation, but merely distracting.

Some additional decisions consistent with the JCL but di�erent from the implementation

of Bruns (2011) are the uniqueness of keys in the tree, the use of null instead of special

NIL nodes and the absence of default values.

1https://github.com/gewitternacht/rbtree-verification

15

https://github.com/gewitternacht/rbtree-verification

3 Implementation and Speci�cation

e

d

A B

C

e

d

A

B C

Figure 3.1: Our version of a right rotation (see Figure 2.2 for the standard version): As indicated by

the colours that represent the object identities, the parent of the light blue node does

not have to change the reference to its child. The rotation is realised by swapping the

values d and e and moving the dark blue node from the left to the right. The pointers

to the subtrees A, B and C have to be modi�ed accordingly.

3.1.2 Iterative vs. Recursive Add Method

One major di�erence of our add method to the corresponding one in java.util.TreeMap is

the mechanism by which the tree is traversed upwards during the rebalancing operations.

The implementation of the JCL, a mostly exact adaption of the pseudocode in Leiserson

et al. (1994), uses a loop to iteratively follow parent pointers up the tree. However, we

suspect this to impose major challenges on the handling of framing, as these parent

pointers present circular references. It would not be possible for all objects (indirectly)

referenced in a node to “belong” to this node, and the interplay of dependency contracts

and framing clauses would not work out as nicely as it does without parent pointers.

Hence, we decided for an equivalent recursive version where the rebalancing operations

are performed while returning from recursive calls, so no references to parent nodes are

needed. Since the tree height always stays comparatively small, this should not cause any

problems with recursion depth.

3.1.3 Preservation of the Root Node by Rotations

The last adjustment made by us is one in the implementation of tree rotations (cf. Sec-

tion 2.1.3). Normally, by performing a rotation on a subtree, the root node of this subtree

changes. The parent of the subtree therefore needs to adapt its corresponding child

reference to point to a di�erent object.

However, we found a way
2

to preserve the root node of the subtree during a rotation

by swapping the keys of the two “rotated” nodes and only changing some references

below the root node. Figure 3.1 illustrates this process. Our approach makes the rotations

self-contained, which facilitates the reasoning regarding framing and also avoids the need

for a return value of the rotation method to inform callers about the changed root. This

avoidance of return values is what distinguishes our implementation from that of Armborst

and Huisman (2021), where they also opted for a recursive insertion, but used “standard”

rotations, resulting in return values being necessary for all methods.

2
inspired by the use of swap operations in a Rust implementation: https://github.com/dbyr/rb_tree

16

https://github.com/dbyr/rb_tree

3.2 Classes

1 public class Client {

2 public static void main(String[] args) {

3 RBTree t = new RBTree();

4

5 /* -3 -3 5 5

6 \ / \ / \

7 ~> 5 ~> -3 9 ~> -3 9

8 /

9 7 */

10 t.add(-3);

11 t.add(5);

12 t.add(9); // rotation

13 t.add(7); // recolouring

14

15 /*@ assert (\forall int k; t.contains(k)

16 <==> (k == -3 || k == 5 || k == 9 || k == 7)); *@/

17 //@ assert t.validRBTree();

18 }

19 }

Listing 3.1: The Client class that uses an RBTree

3.2 Classes

With this section, we begin looking at the concrete code of our implementation, starting

with the basic structure. We use three classes, two of them for the actual red-black tree

implementation, and one client class.

3.2.1 Client

The Client class is a simple example of a client that uses our red-black tree implementation.

It contains a main method that creates an RBTree and calls add a few times. The purpose of

this class is to make sure that the implementation is usable in practice and that our method

contracts are strong enough to show desirable features from a client’s point of view. In

our case, the overall goal is to provide the client with contracts of add and contains that

together can ensure the following: A red-black tree consists of exactly those elements that

were inserted before, and it ful�ls the binary-search-tree and red-black properties from

Section 2.1.

The two assertions shown in Listing 3.1 can be considered to be the actual speci�cation

of the client, ensuring that the aforementioned properties can be shown. To be able to

load the main method into KeY, we additionally annotate it with an “empty” contract that

requires and ensures true.

17

3 Implementation and Speci�cation

1 final public class RBTree {

2 /*@ nullable @*/ Tree root;

3

4 public boolean contains(int key) {

5 return root != null && root.contains(key);

6 }

7

8 public void add(int key) {

9 if (root == null) {

10 root = new Tree(key);

11 } else {

12 root.add(key);

13 }

14 fixRootColour();

15 }

16

17 private void fixRootColour() {

18 root.isRed = false;

19 }

20 }

Listing 3.2: The RBTree class

3.2.2 RBTree

The RBTree class provides the interface to create empty red-black trees, add elements to

existing ones, and query them for speci�c keys. It consists of just a few lines of code, which

are shown in Listing 3.2. Being essentially a wrapper for the Tree class, it only has one

�eld, the root of the red-black tree, which is of type Tree. This �eld needs to be annotated

with the JML keyword nullable, since JML assumes all �elds to be non-nullable by default,

but the root might be null if the tree is empty. The RBTree class is necessary in addition

to Tree to handle this special case for the root. It also makes sure that the colour of root

is always black, as required by the second red-black property listed in Section 2.1.2.

The speci�cation of RBTree’s methods is postponed to Section 3.4.2, until after we have

seen some basic de�nitions of used model methods.

3.2.3 Tree

An object of the Tree class corresponds to a node in a red-black tree.
3

The �elds of a

Tree consist of its left and right child (also of type Tree), an integer key and a boolean

isRed, as shown in Listing 3.3. Missing children are represented as null and therefore, the

nullable annotation is necessary for left and right. The isRed �eld stores the node’s

colour, with the value true representing red and false black.

3Node might have been a better name, but we stuck with Tree for “historical reasons”.

18

3.3 Modelling the Tree Structure and Properties

1 final public class Tree {

2 /*@ nullable @*/ Tree left;

3 /*@ nullable @*/ Tree right;

4 int key;

5 boolean isRed;

6

7 public Tree(int key) { ... }

8 public boolean contains(int key) { ... }

9 public void add(int key) { ... }

10

11 private void rightRotate() { ... }

12 ...

13 }

Listing 3.3: The Tree class with its �elds and most important methods

Tree implements the contains and add methods we already encountered in Listing 3.2

and additional internal methods, for example to handle recolouring or rotations. All

methods and their speci�cations are explained in detail in Section 3.4.

3.3 Modelling the Tree Structure and Properties

This section deals with the fundamental de�nitions for the representation of the structure

and properties of a red-black tree. These de�nitions abstract from the concrete data

structure and allow us to reason about the properties of a tree more comfortably
4
. We use

them in method contracts, for example to talk about “the set of all keys contained in the

tree” or to ensure that the binary-search-tree or red-black properties hold.

As the Tree class is where “the magic happens” (where the algorithms are actually

implemented), the things described below are all part of Tree. The last subsection then

shows how the RBTree lifts these de�nitions, similarly to the normal Java methods, up to

the top level view of complete red-black trees.

The de�nitions concerned with the tree structure – footprint and treeSet – are based

on the work of Bruns, Mostowski, and Ulbrich (2015), though modi�ed and expanded to

our needs. For the de�nitions of the red-black properties, we were able to adapt a lot from

the VerCors speci�cation of red-black trees by Armborst and Huisman (2021).

3.3.1 Recursion Measure heightVariant

As the add method as well as most of the model methods described below are de�ned

recursively, they need to specify a decreasing variant in a measured_by clause (see Sec-

tion 2.2). The height of a subtree is the obvious choice for a value decreasing towards

children: It is zero for leaves and increases by at least one for each step upwards to the

root node.

4
Frankly, “comfortable” here means that these abstractions make the veri�cation feasible at all.

19

3 Implementation and Speci�cation

Thus, we introduce an integer ghost �eld heightVariant, that extends the object state

and keeps track of an overapproximation of a subtree’s height:

//@ ghost instance int heightVariant;

Always keeping track of the actual height would have been unnecessarily complex, as this

�eld needs to be set explicitly during the execution of an insertion or rotation. How this is

done is explained in the detailed descriptions of the according methods in Section 3.4. The

properties we require of the heightVariant are captured in an instance invariant, shown

in Listing 3.8, line 3, 4 and 7.

3.3.2 Framing Specification footprint

Being the very central concept of this work, the de�nition of a node’s footprint might be

surprisingly simple. It is a model method specifying all heap locations belonging to the

node, and thus is of the built-in type \locset. It consists of the �elds of the node itself,

denoted by this.*, and recursively the footprints of its children:

1 /*@ helper model \locset footprint() {

2 return \set_union(this.*,

3 \set_union(left == null ? \empty: left.footprint(),

4 right == null ? \empty: right.footprint()));

5 }

6 @*/

Listing 3.4: De�nition of a Tree’s footprint

Like Section 2.4 explains, we need this footprint for framing purposes, to reason that

operations on subtrees only make local changes. For this, we de�ne the disjointness of

footprints in an instance invariant, see Listing 3.8, line 5, 8 and 12. It generally ensures

the well-formedness of the subtree by also requiring that the left and right child of the

node must not be equal (line 2).

3.3.3 Abstract Tree Representation treeSet

1 /*@ helper model \free treeSet() {

2 return \dl_iSet_union(left == null ? \dl_iSet_empty() : left.treeSet(),

3 \dl_iSet_union(\dl_iSet_singleton(this.key),

4 right == null ? \dl_iSet_empty() : right.treeSet()));

5 }

6 @*/

Listing 3.5: De�nition of a Tree’s treeSet

The set of all keys contained in the tree is de�ned by the model method treeSet. Syntacti-

cally, the method has the return type \free, which is a built-in “customisable” data type.

In our case, we de�ne a type iSet for integer sets that was already used in previous works

20

3.3 Modelling the Tree Structure and Properties

and the source code of which can be found in the appendix in Section A.2. We refrain from

using the built-in \seq type used by Bruns, Mostowski, and Ulbrich (2015) for a similar

method because we want to abstract from the concrete place of an element in the tree.

The de�nition of treeSet is similar to that of footprint in consisting of the key of the

node itself and recursively the treeSets of its children.

3.3.4 Binary-Search-Tree Property

There are di�erent ways to formulate the binary-search-tree property given in Section 2.1.1.

Depending on the speci�c proof situation, either of them might be more suited for easy

reasoning. This is why we de�ne two versions, both as model methods of a node that take

an integer key k as a parameter and return a boolean:

1 /*@ helper model boolean invLessNotInRight(int k) {

2 return k < key ==> (right == null || !\dl_in(k, right.treeSet()));

3 }

4 @*/

5

6 /*@ helper model boolean invLessInTreeIffLeft(int k) {

7 return k < key ==> (left == null ||

8 (\dl_in(k, treeSet()) <==> \dl_in(k, left.treeSet())));

9 }

10 @*/

Listing 3.6: De�nition of the binary-search-tree property

The �rst one, invLessNotInRight, speci�es that a k smaller than the node’s key cannot

be contained in the right subtree. The second one, invLessInTreeIffLeft, speci�es that

such a key is contained in the treeSet of the node if and only if it is contained in the

treeSet of the left subtree. Both methods exist symmetrically for the case k > key (called

invGreaterNotInLeft and invGreaterInTreeIffRight).

These methods are then universally quanti�ed to fully express the binary-search-tree

property. However, only the �rst versions are used in an instance invariant, as can be

seen in Listing 3.8, line 10 and 11. We do this to avoid the extra e�ort of always having to

prove both versions to hold whenever we have to show the preservation of the instance

invariant. Instead, to be able to use the second versions if needed, we make use of model

methods again and de�ne a lemma invLemmaLess:

1 /*@ model_behavior

2 requires (\forall int k; invLessNotInRight(k));

3 ensures (\forall int k; invLessInTreeIffLeft(k));

4 helper model boolean invLemmaLess() {

5 return true;

6 }

7 @*/

Listing 3.7: Modelling of a lemma for the binary-search-tree property

21

3 Implementation and Speci�cation

If invLessNotInRight holds for all k, then – under the implicit assumption of the complete

instance invariant, including the disjointness of the footprints of left and right – the

invLessInTreeIffLeft version also holds for all k. Again, this is symmetrically de�ned

for the case k > key. The contracts of these “lemma model methods” can then be proven

individually and used in another proof as described in Section 4.3.

3.3.5 Instance Invariant

1 /*@ public instance invariant

2 (left != right || left == null || right == null)

3 && 0 < heightVariant

4 && (left == null || (left.heightVariant < heightVariant

5 && \disjoint(this.*, left.footprint())

6 && \invariant_for(left)))

7 && (right == null || (right.heightVariant < heightVariant

8 && \disjoint(this.*, right.footprint())

9 && \invariant_for(right)))

10 && (\forall int k; invLessNotInRight(k))

11 && (\forall int k; invGreaterNotInLeft(k))

12 && (left == null || right == null || \disjoint(left.footprint(),

right.footprint()));

13 @*/

Listing 3.8: The instance invariant of Tree

All the invariants mentioned above are summarised in a single instance invariant, as

shown in Listing 3.8, together with one important addition in line 6 and 9: The complete

invariant, that is, decreasing of the heightVariant, well-formedness and binary-search-

tree property, has to hold recursively for the node’s children. This makes sure that a node

is only in a valid state if both its children are too.

This instance invariant is virtually never violated in any intermediate state, and implicitly

is part of the pre- and postcondition of every method contract (see Section 2.2). Separate

from this, the red-black properties are summarised in their own “invariant” that is explained

below. This is because these properties may be temporarily violated during the insertion,

and separating them from the really invariant properties allows us to precisely de�ne

what violations are possible in which state.

3.3.6 Red-Black Properties

Several further model methods specify the black balanced and no double red properties

from Section 2.1.2.

Black Height The black height of a node is determined by a static model method taking a

nullable Tree t as its parameter and returning an integer. It is not an instance method

because that would require lengthy case distinctions during the calculation, checking if

one or both of the children are null. With the static version and in the case that t is

22

3.3 Modelling the Tree Structure and Properties

non-null, its black height is always calculated as the maximum black height of its children,

increased by one if t is black. Evaluating blackHeight for a null child is allowed and

de�ned as 1 – remember that leaf nodes are always black.

Although this static implementation saves some case distinctions, we refrain from using

it for the other model methods below due to a bug in key concerning nullable arguments

of model methods (see Section 5.3).

1 /*@ helper model static int blackHeight(nullable Tree t) {

2 return t == null ? 1

3 : (t.isRed ? 0 : 1)

4 + (blackHeight(t.left) > blackHeight(t.right)

5 ? blackHeight(t.left)

6 : blackHeight(t.right));

7 }

8 @*/

Listing 3.9: De�nition of a Tree’s blackHeight

Black Balanced The blackBalanced model method is rather simple: It is an instance

method, takes no arguments and returns a boolean – like all model methods that follow

below. It returns true if the black height of its children are equal and they recursively are

black balanced themselves (if existing), and false otherwise.

No Double Red Similarly, the noDoubleRed method is not complicated either: For this

method to return true, both the left and the right child (if existing) must not be red if the

node itself is red, and they have to ful�l the noDoubleRed property themselves.

However, as this is the property that might be violated during an insertion, we also

de�ne alternative doubleRedLeft and doubleRedRight methods that describe the speci�c

violations that might occur:

1 /*@ helper model boolean doubleRedLeft() {

2 return isRed

3 && left != null && left.isRed && left.noDoubleRed()

4 && (right != null ==>

5 (!right.isRed && right.noDoubleRed()));

6 }

7 @*/

Listing 3.10: De�nition of the exceptionally allowed doubleRedLeft

This method returns true if the node and its left child are both red while all other nodes

continue to ful�l the noDoubleRed property; doubleRedRight is de�ned symmetrically.

Additionally, doubleRedTop summarises the two previous violations by being true if either

of them is true.

(Almost) Valid Red-Black Subtree Finally, the validRBSubtree model method (which is

shown in Listing 2.3) is the conjunction of blackBalanced and noDoubleRed, describing a

23

3 Implementation and Speci�cation

1 /*@ model_behaviour

2 requires \invariant_for(root);

3 accessible footprint();

4 helper model boolean validRBTree() {

5 return root == null || (

6 \disjoint(this.*, root.footprint())

7 && \invariant_for(root)

8 && root.validRBSubtree()

9 && !root.isRed);

10 }

11 @*/

12

13 /*@ helper model \locset footprint() {

14 return \set_union(this.*, (root == null) ? \empty : root.footprint());

15 }

16 @*/

17

18 /*@ helper model \free treeSet() {

19 return (root == null) ? \dl_iSet_empty(): root.treeSet();

20 }

21 @*/

Listing 3.11: The model methods of RBTree

fully valid red-black subtree regarding the constraints on its colours. As mentioned earlier

in Section 3.3.5, this method can be seen as an additional invariant that can be weakened in

certain situations. For this, validRBSubtreeExceptRedTop is de�ned as the subtree either

being completely valid or having the one violation speci�ed through doubleRedTop.

3.3.7 RBTreeModel Methods

Similarly to the normal Java methods, RBTree lifts the model methods of the Tree class to

the level of a complete red-black Tree, as shown in Listing 3.11. From this top-level view,

a valid red-black tree must always ful�l the validRBTree model method: The root must

satisfy its invariant and be a validRBSubtree and, in accordance with the second property

in Section 2.1.2, it must be black. Also, this.* must be disjoint from the root’s footprint.

The footprint and treeSet of RBTree are wrappers for those of Tree with special

handling for the case root = null.

3.4 Methods and their Contracts

This section describes the code and contracts of all methods. Section 3.4.1 starts with the

contracts for the model methods, of which the de�nitions were already given in Section 3.3.

Next, Section 3.4.2 deals with the methods of RBTree. Each following section then explains

one of the more complex methods of Tree.

24

3.4 Methods and their Contracts

1 /*@ model_behavior

2 requires \invariant_for(this);

3 accessible \set_minus(footprint(),

4 \set_union(isRed,

5 (left == null? \empty: \singleton(left.isRed)),

6 (right == null? \empty: \singleton(right.isRed)),

7 heightVariant));

8 measured_by heightVariant;

9 helper model \free treeSet() { ... }

10 @*/

Listing 3.12: Contract of the treeSet model method in Tree

3.4.1 Contracts for Model Methods

The instance invariant, the footprint and treeSet model methods, and those for the

black balanced and no double red properties in the Tree class all have approximately the

same contract: An accessible clause restricts the result to the footprint of the node –

depending on the speci�c method, this is further re�ned, for example by excluding the

colour of the node and other �elds for treeSet (see Listing 3.12). This makes it as com-

fortable as possible to reason about model methods’ results not changing through speci�c

method calls and assignments. Because the methods are de�ned recursively, a measured_by

clause speci�es the heightVariant as the recursion measure. The \invariant_for(this)

is required because only then is it guaranteed that the heightVariant is in fact decreasing

towards children nodes.

The validRBSubtree(ExcpetRedTop) model methods have similar contracts as well, but

are not recursive and therefore do not need a measured_by clause. In RBTree, each model

method may access the tree’s complete footprint and requires the \invariant_for(root)

for this.

3.4.2 RBTreeMethod Contracts

The method contracts of the RBTree methods are what is visible from an outside perspective

like our Client (see Section 3.2.1). As they are only called on fully valid red-black trees

and not in any intermediate state, they are relatively simple. For the implementation of

the methods, see Listing 3.2. The speci�cation is given in Listing 3.13.

Constructor RBTree’s constructor is simply a default constructor, taking no arguments

and creating an empty red-black tree with a null root (see line 6 in Listing 3.13). It is made

explicit in order to be able to specify a method contract. According to this contract, the

constructor has to ensure that the resulting red-black tree is valid and empty, and consists

only of newly allocated heap locations (denoted by the fresh keyword).

RBTree::contains The contains method takes an integer key as an argument and for-

wards the query to the root node if it is currently not null. It may not modify the heap

25

3 Implementation and Speci�cation

1 /*@ public normal_behavior

2 @ ensures validRBTree();

3 @ ensures treeSet() == \dl_iSet_empty();

4 @ ensures \fresh(footprint());

5 @*/

6 public RBTree() {}

7

8 /*@ normal_behavior

9 @ requires validRBTree();

10 @ ensures validRBTree();

11 @ ensures \dl_in(key, treeSet()) <==> \result == true;

12 @ accessible footprint();

13 @ assignable \strictly_nothing;

14 @*/

15 public boolean contains(int key) { ... }

16

17 /*@ normal_behavior

18 @ requires validRBTree();

19 @ ensures validRBTree();

20 @ ensures treeSet() == \dl_iSet_union(\old(treeSet()), \dl_iSet_singleton(key));

21 @ ensures \new_elems_fresh(footprint());

22 @ assignable footprint();

23 @*/

24 public void add(int key) { ... }

25

26 /*@ normal_behavior

27 @ requires root != null;

28 @ requires \invariant_for(root);

29 @ requires root.validRBSubtreeExceptRedTop();

30 @ ensures validRBTree();

31 @ ensures treeSet() == \old(treeSet());

32 @ ensures footprint() == \old(footprint());

33 @ assignable root.isRed;

34 @*/

35 private void fixRootColour() {

36 root.isRed = false;

37 }

Listing 3.13: Mehtod contracts for RBTree

26

3.4 Methods and their Contracts

at all, and its result may only depend on the heap locations contained in the footprint

of the red-black tree. Said result must be true if and only if the queried key is part of the

tree’s treeSet. The validRBTree model method is added to the contract as an “invariant”.

RBTree::add The add method also wraps that of Tree and afterwards makes sure the

root colour is always black by calling fixRootColour(). It may write to heap locations

in the footprint and, denoted by \new_elems_fresh(footprint()), extend it by newly

allocated locations. As expected of an add method, the given key should be added to the

existing treeSet, which otherwise should remain the same. The validRBTree invariant is

added here, too.

fixRootColour The root node potentially violates the no double red property with one

of its children after calling Tree::add and thus satis�es validRBSubtreeExceptRedTop. A

validRBTree can be restored by simply colouring the root node black, which fixRootColour

does. This method in addition requires the invariant of the non-null root to hold and

ensures that nothing besides the root colour changes.

Together, the ensures clauses talking about the treeSet (line 11 and 20 of Listing 3.13)

make sure that a client can prove a red-black tree to contain exactly those elements that

were previously added. It is also ensured that the tree is in a valid state at all times.

Additionally, the accessible clauses of contains and of the model methods, together with

the fresh clauses regarding the footprint, allow a client to create multiple red-black trees

and know that they do not in�uence each other.

3.4.3 Tree::contains

The contract of the contains method in Tree (see Listing 3.14) is almost exactly the same

as that of its RBTree counterpart, only omitting the validRBTree invariant. The instance

invariant that is implicitly part of the contract is all the method needs to work correctly.

The algorithm described in Section 2.1.1 is implemented with a while loop, traversing

the tree downwards until the given key or a leaf is reached. For this loop, we provide a loop

invariant to guide the prover: While the current node is not null, its invariant holds and

the key is part of the corresponding subtree if and only if it also is part of the whole tree –

we successively narrow down its possible position in the tree. If we reach null, the key is

not contained in the tree at all. The decreasing clause speci�es the node’s heightVariant

as the loop variant.

3.4.4 Tree::add

The add method and its contract are a lot more complex than its RBTree wrapper and the

part of this work that was the most time-consuming to prove. Because all the �x operations

described in Section 2.1.3 need to be done symmetrically for a “left” and a “right” case, we

split it up into two methods addLeft and addRight, as can be seen in Listing 3.15. This

introduces more modularity, which has the practical advantages of decreased proof size

27

3 Implementation and Speci�cation

1 /*@ normal_behavior

2 @ requires true;

3 @ ensures \dl_in(key, treeSet()) <==> \result == true;

4 @ accessible footprint();

5 @ assignable \strictly_nothing;

6 @*/

7 public boolean contains(int key) {

8 Tree node = this;

9

10 /*@ maintaining node == null ==> !\dl_in(key, treeSet());

11 @ maintaining node != null ==> (\invariant_for(node) &&

12 @ (\dl_in(key, treeSet()) <==> \dl_in(key, node.treeSet())));

13 @ decreasing node == null ? 0 : node.heightVariant;

14 @ assignable \strictly_nothing;

15 @*/

16 while (node != null && node.key != key) {

17 if (key < node.key) {

18 node = node.left;

19 } else {

20 node = node.right;

21 }

22 }

23 return node != null;

24 }

Listing 3.14: Tree’s contains with its contract

1 /*@ normal_behavior

2 @ ... same requires and ensures clauses as addLeft and addRight ...

3 @ measured_by heightVariant, 1;

4 @*/

5 public void add(int key) {

6 if (key == this.key) {

7 return;

8 } else if (key < this.key) {

9 addLeft(key);

10 } else {

11 addRight(key);

12 }

13 }

Listing 3.15: Tree’s add with its contract

28

3.4 Methods and their Contracts

with greater clarity and easier redoing of proofs. Also, due to the two methods being

completely symmetric, once a proof is found for one of them, the other can be proven

analogously. In this work, we actually only prove addRight, but we are con�dent that the

addLeft proof would be very doable, though laborious, with all the gained knowledge.

Therefore, we will now look at the addRight method and its contract in more detail,

which is shown in Listing 3.16. It has the exact same requires and ensures clauses

as add, with the additional precondition that the key to be inserted must be greater

than the node’s key. The only other explicit requirement is that the method must be

called on a validRBSubtree. Then, the contract ensures that the resulting tree is a

validRBSubtreeExceptRedTop, maintains its blackHeight, and adds the given key to the

treeSet, while only changing heap locations in the footprint or newly allocating some.

The measured_by clause of this method is (heightVariant, 0), a pair of integers. This is

because it is in mutual recursion with add, which does not descend to a child node but

only decreases the second integer from 1 to 0.

In the case that there currently is no right child, a new node is created and added in

its place, the heightVariant of the node is increased by one, and we return. Otherwise,

right.add is called recursively. As this could increase the heightVariant of right to a

value greater than that of the node itself, setHeight (see Section 3.4.7) is called afterwards

to restore the instance invariant.

Then, the �x operations illustrated in Figure 2.3 are executed, but only at a level “above”

the actual no double red violation: If the current node is red, we immediately return and

let the parent node (or the RBTree wrapper) do the work. If the current node is black and

its right child is red, the violation could occur with right.left or right.right and the

appropriate measure (recolouring or one to two rotations) is taken. It is not possible that

this, right and a grandchild are all red at the same time, which the “helper” clause in

line 6f. ensures – either the colour of right did not change during the recursive call (in

which case this and right can’t be both red), or the colour changed to red, but then both

grandchildren are known to be black. After the �rst normalisation rotation, setHeight is

called again to restore the invariant, as rotations can increase the heightVariant of a tree.

A remark about the checks for di�erent colour combinations in the if statements: We

use non-short-circuiting logical connectives here, which might make the implementation

a little less e�cient. However, this facilitates the proof of the method a great deal, because

short-circuiting connectives introduce additional proof branches we don’t need here. The

part of the checks that needs short-circuiting is separated into the isRed method (see

Section 3.4.5) for this reason.

3.4.5 isRed

The static isRed method is used for case distinctions during addRight (see Listing 3.16). It

takes a nullable Tree t as its parameter and summarises two checks: As the null leaves

of a tree are regarded to be black, it returns true if and only if t is non-null and red. The

contract is a copy of the statement in the method body, with canonical accessible and

assignable clauses, see Listing 3.17.

29

3 Implementation and Speci�cation

1 /*@ normal_behavior

2 @ requires key > this.key;

3 @ requires validRBSubtree();

4 @ ensures validRBSubtreeExceptRedTop();

5 @ ensures blackHeight(this) == \old(blackHeight(this));

6 @ ensures isRed == \old(isRed)

7 @ || (isRed && !isRed(left) && !isRed(right));

8 @ ensures treeSet() == \dl_iSet_union(\old(treeSet()), \dl_iSet_singleton(key));

9 @ ensures \new_elems_fresh(footprint());

10 @ assignable footprint();

11 @ measured_by heightVariant, 0;

12 @*/

13 private void addRight(int key) {

14 if (this.right == null) {

15 Tree newRight = new Tree(key); // separated creation and assignment of new

16 this.right = newRight; // node for easier handling of assertions

17 //@ set heightVariant = heightVariant + 1;

18

19 } else {

20 this.right.add(key);

21 setHeight();

22

23 // ----------- fix operations -----------

24 if (!isRed & right.isRed) {

25

26 // recolouring if uncle red -> potentially moves double red up the tree

27 if (isRed(left) & (isRed(right.left) | isRed(right.right))) {

28 recolour();

29 return;

30 }

31

32 // rotations if uncle black -> fixes double red completely

33 // rotation for normalisation (make double red "outer")

34 if (isRed(right.left)) {

35 right.rightRotate();

36 setHeight();

37 }

38 // rotation to fix double red

39 if (isRed(right.right)) {

40 leftRotate();

41 return; // return statement for easier handling of assertions

42 }

43 }

44 }

45 }

Listing 3.16: addRight with its contract

30

3.4 Methods and their Contracts

1 /*@ normal_behaviour

2 @ ensures \result == (t != null && t.isRed);

3 @ accessible t == null ? \empty : t.footprint();

4 @ assignable \strictly_nothing;

5 @*/

6 private static boolean isRed(/*@ nullable @*/ Tree t) {

7 return t != null && t.isRed;

8 }

Listing 3.17: isRed with its contract

3.4.6 recolour

The recolour method is straightforward, both regarding its implementation and speci�ca-

tion, as shown in Listing 3.18: The node itself has to be black and blackBalanced, each child

has to be red and a validRBSubtreeExceptRedTop, and one grandchild must violate the no
double red property. Under these circumstances, the method guarantees a validRBSubtree

with a red root and black children, not changing the blackHeight, treeSet or footprint.

3.4.7 setHeight

Although the setHeight method is present in the normal Java code, it exists only for

speci�cation purposes. As already seen in Listing 3.16, it is called twice in addRight (and

addLeft) to restore the invariant regarding the heightVariant. Like shown in Listing 3.19,

setHeight realises this by setting the heightVariant of the node to the maximum of those

of its children, increased by one.

There are two reasons for factoring this out in its own method: Firstly, the calculation

includes several case distinctions – implemented with ternary operators here – for which

the symbolic execution during a proof introduces several new branches. However, the only

thing we really need to know is that the invariant is restored, which is equally provided by

all branches. The method contract of setHeight speci�es this (line 2-6)
5
, summarising all

branches in a single one from a caller’s perspective. Secondly, we address a framing issue:

Though it may be obvious to humans, KeY needs to somehow realise that a change of the

heightVariant has no impact on the results of all our model methods. This is what the

rest of the contract speci�es, facilitating the proof of methods that call setHeight further.

Because the aforementioned multiple branches would now be an issue for proving all

the ensures clauses regarding results of model methods, we additionally enclose the three

lines of the method in a block contract, essentially repeating line 2-6.

3.4.8 Rotations

There are two rotation methods, for a left and a right rotation, of which we also only

veri�ed the rightRotate version shown in Listing 3.20. As described in Section 3.1.3, this

5
Also note the helper annotation, which prevents the invariant from being implicitly part of the contract.

31

3 Implementation and Speci�cation

1 /*@ normal_behaviour

2 @ requires right != null && left != null;

3 @ requires left.validRBSubtreeExceptRedTop() &&

right.validRBSubtreeExceptRedTop();

4 @ requires blackBalanced();

5 @ requires !isRed && left.isRed && right.isRed &&

6 @ (isRed(left.left) || isRed(left.right) || isRed(right.left) ||

isRed(right.right));

7 @ ensures validRBSubtree();

8 @ ensures isRed && !isRed(left) && !isRed(right);

9 @ ensures blackHeight(this) == \old(blackHeight(this));

10 @ ensures treeSet() == \old(treeSet());

11 @ ensures footprint() == \old(footprint());

12 @ assignable isRed, left.isRed, right.isRed;

13 @*/

14 private void recolour() {

15 isRed = true;

16 left.isRed = false;

17 right.isRed = false;

18 }

Listing 3.18: recolour wit its contract

implementation preserves the root node of the subtree by reattaching some nodes beneath

it and swapping keys. In addition, we need to update the heightVariant of the two rotated

nodes, increasing that of the root by one.

Besides left being non-null, the method contract only requires blackBalanced to hold,

as rotations are performed in an intermediate state where noDoubleRed is violated. How-

ever, one of two conditions speci�ed in line 4f. must be met, corresponding to the two

speci�c situations in which a rotation might be performed. Depending on which of these

actually holds, a di�erent property can be guaranteed afterwards: The �rst option is

that the rotation serves as a normalisation from an “inner” to an “outer” double red –

doubleRedLeft to doubleRedRight – during the addRight method (see line 13). The alter-

native is that the rotation completely �xes the violation during an addLeft call, resulting

in noDoubleRed (see line 11f.).

The blackBalanced property as well as the colour, blackHeight, footprint and treeSet

of the node are always preserved. Furthermore, the following is ensured: right is now

non-null and has the former colour of left, the heightVariant is increased by at most

one and only heap locations contained in the footprint may be assigned.

32

3.4 Methods and their Contracts

1 /*@ normal_behaviour

2 @ requires ... instance invariant except for part about heightVariant ...

3 @ ensures heightVariant > 0;

4 @ ensures left == null || heightVariant > left.heightVariant;

5 @ ensures right == null || heightVariant > right.heightVariant;

6 @ ensures \invariant_for(this);

7 @ ensures footprint() == \old(footprint());

8 @ ensures treeSet() == \old(treeSet());

9 @ ensures blackHeight(this) == \old(blackHeight(this));

10 @ ensures blackBalanced() == \old(blackBalanced());

11 @ ensures left == null || left.noDoubleRed() == \old(left.noDoubleRed());

12 @ ensures right == null || right.noDoubleRed() == \old(right.noDoubleRed());

13 @ ensures noDoubleRed() == \old(noDoubleRed());

14 @ ensures doubleRedTop() == \old(doubleRedTop());

15 @ ensures left == null || left.validRBSubtreeExceptRedTop() ==

\old(left.validRBSubtreeExceptRedTop());

16 @ ensures right == null || right.validRBSubtreeExceptRedTop() ==

\old(right.validRBSubtreeExceptRedTop());

17 @ ensures validRBSubtreeExceptRedTop() == \old(validRBSubtreeExceptRedTop());

18 @ ensures validRBSubtree() == \old(validRBSubtree());

19 @ assignable heightVariant;

20 @ helper

21 @*/

22 private void setHeight() {

23

24 /*@ requires left == null || (\disjoint(this.*, left.footprint()) &&

\invariant_for(left));

25 @ requires right == null || (\disjoint(this.*, right.footprint()) &&

\invariant_for(right));

26 @ ensures heightVariant > 0;

27 @ ensures left == null || heightVariant > left.heightVariant;

28 @ ensures right == null || heightVariant > right.heightVariant;

29 @ signals_only \nothing;

30 @ assignable heightVariant;

31 @*/

32 {

33 //@ ghost int leftHeight = left == null ? 0 : left.heightVariant;

34 //@ ghost int rightHeight = right == null ? 0 : right.heightVariant;

35 //@ set heightVariant = 1 + (leftHeight > rightHeight ? leftHeight :

rightHeight);

36 }

37 }

Listing 3.19: setHeight with its contract

33

3 Implementation and Speci�cation

1 /*@ normal_behavior

2 @ requires left != null;

3 @ requires blackBalanced();

4 @ requires !isRed && left.doubleRedLeft() && (right == null || !right.isRed &&

right.noDoubleRed())

5 @ || doubleRedLeft();

6 @ ensures footprint() == \old(footprint());

7 @ ensures treeSet() == \old(treeSet());

8 @ ensures heightVariant <= \old(heightVariant) + 1;

9 @ ensures isRed == \old(isRed);

10 @ ensures right != null && right.isRed == \old(left.isRed);

11 @ ensures \old(!isRed && left.doubleRedLeft() && (right == null || !right.isRed

&& right.noDoubleRed()))

12 @ ==> noDoubleRed();

13 @ ensures \old(doubleRedLeft()) ==> doubleRedRight();

14 @ ensures blackBalanced();

15 @ ensures \old(blackHeight(this)) == blackHeight(this);

16 @ assignable footprint();

17 @*/

18 private void rightRotate() {

19 Tree l = left;

20 Tree ll = left.left;

21 Tree lr = left.right;

22 Tree r = right;

23

24 left = ll;

25 right = l;

26 right.left = lr;

27 right.right = r;

28

29 int t = key;

30 key = right.key;

31 right.key = t;

32

33 //@ set right.heightVariant = heightVariant;

34 //@ set heightVariant = heightVariant + 1;

35 }

Listing 3.20: rightRotate with its contract

34

4 Verification

As already mentioned in Section 2.3, KeY can �nd proofs of method contracts with an

automated proof search. Its strategy can only work with general heuristics, though, while

a human prover tends to have an intuition about how a proof can be closed successfully.

This is especially true for more complex proof situations, where the automatic can get

easily “distracted” by the sheer number of available formulas to work with. In this chapter,

we therefore describe the most important aspects of our interactive veri�cation process

with KeY for the contracts speci�ed in Section 3.4. In addition, Section 4.6 presents some

statistics on the proofs. All proofs are available on GitHub
1

together with the source code

and speci�cations.

4.1 General Approach

Our general approach was to do the following: First, after loading a method contract into

KeY, we would run the Full Auto Pilot (see Section 2.3) so that all proof obligations get

neatly separated. Some of them could be further split manually, for example an invariant

into all of its parts. On this �ner level of granularity, we experimented with di�erent

settings for the proof search strategy to close as many goals as possible automatically,

which is detailed in Section 4.2. We would then analyse the goals still left open, looking

for what information the automatic is missing, and guide the prover interactively with

our knowledge. This could for example be the expansion of needed de�nitions, manual

cuts or the use of dependency contracts.

However, speci�cations – and with them their proofs – usually go through several

iterations while working on them: Sometimes, the missing information to close a goal is

really an additional requires clause; or a called method has to ensure more properties about

its �nal state. This often necessitates a complete redo of the proof. Also, we intentionally

chose a bottom-up approach, in which we �rst proved that the binary-search-tree property

is preserved by a naive insertion, and only then started to look at the �x operations and

the subsequent restoration of the red-black properties. This allowed us to establish a solid

foundation of basic speci�cation fragments, before re�ning it for more complex reasoning

tasks, without having to deal with everything at once.

To be able to properly build on the knowledge we gained in earlier iterations of the

proof and to not “throw away” all the manual interactions carefully applied there, we used

some (only recently developed) techniques to persist and automise proofs. We mainly

worked with assertions and JML Scripts, described in more detail in Section 4.3 and 4.4,

and also tried out Proof Caching, detailed in Section 4.5.

1https://github.com/gewitternacht/rbtree-verification

35

https://github.com/gewitternacht/rbtree-verification

4 Veri�cation

4.2 Proof Search Strategy Settings

The success of KeY’s automated proof search turned out to be highly sensitive to the settings

chosen for the proof search strategy. As a basis, we used the prede�ned Java verif. std.
strategy, with settings that are generally sensible for Java veri�cation. We had to make

some adjustments, though:

Class Axiom Rule This setting controls when the de�nitions of class axioms, such as

invariants or model methods, are expanded. It is set to Delayed by default, which is

unsuitable for us. As we use many model methods and most of them are de�ned recursively,

the automatic very quickly in�ates the sequent by repeatedly expanding the de�nition

of e.g. footprint, instead of expanding other de�nitions that would advance the proof.

Therefore, we set the Class Axiom Rule to O� most of the time and manually expanded

exactly those de�nitions that were needed in the speci�c situation. Occasionally, though,

switching the setting back to Delayed could close a few goals automatically.

Proof Splitting Sometimes, goals that closed automatically in an earlier iteration of the

proof would no longer close after small (unrelated) modi�cations in the sequent. In some

of these situations, the proof was found again after setting the Proof Splitting option –

by default Delayed – to O�. This option controls the applications of rules that split the

proof, that is, lead to several proof branches, for example making a case distinction for an

if-then-else expression.

Settings while Running the Auto Pilot For long runs of the Auto Pilot, we found that at

some point – mid-symbolic execution – the automatic strategy would completely focus on

the use of dependency contracts and the expansion of local queries. Queries are methods

used as a function in the logic, and our “local queries” getting expanded would typically

be calls to isRed. This cluttered the sequent with unnecessary formulas and prevented

real progress. Therefore, we set the Dependency Contracts and Expand Local Queries to O�
during the Auto Pilot execution. As they are generally needed in some situations, though,

we switched them back to their default of On afterwards.

4.3 Assertions

We added many assertions to almost all methods for the veri�cation of their contracts.

They serve various purposes, which are described below.

Structuring the Proof The use of assertions allows us to structure a proof more clearly,

since we can create one designated branch in the proof tree for each proof obligation

and keep track of them more easily. Also, we can order the individual goals in a speci�c

way that facilitates things – the “easy” ones �rst, the “harder” ones building thereon later.

Similarly, if we observe that the same cut is necessary on several of these branches –

for example, this could be the fact that right == \old(left) in rightRotate – we can

capture this in its own assert and access it in all following assertions. Finally, they are also

36

4.3 Assertions

useful for breaking down complex obligation into smaller subgoals: In the rightRotate

method, for instance (see Figure 3.1 and Listing 3.20), we need to show that the rotation

preserves the blackHeight of the tree. This is done by incrementally proving that

1. left was red in the prestate, and right is red now

2. the blackHeights of left.left, left.right and right were all equal in the prestate

3. the blackHeights of the three subtrees starting at these nodes didn’t change

4. therefore, now left, right.left and right.right all have the same blackHeight

5. based on all of this, we can conclude that the overall blackHeight is preserved

With an approach like this, it is more likely that the automated proof search strategy �nds

proofs on its own, as we guide it by providing desired intermediate results that facilitate

the subsequent reasoning. In the appendix in Section A.3.1, the complete list of assertions

for the rightRotate method is given to illustrate their heavy usage.

Capturing the State of Model Methods Most of the assertions are for framing purposes,

though, stating that “untouched” parts of the tree did not change. After the recursive

right.add call in addRight (see Listing 3.16), for example, it is important to know for the

rest of the proof, that none of left’s model methods were a�ected by this. Therefore, we

use a number of assertions like

//@ assert left == null || left.footprint() == \old(left.footprint());

to capture the result of model methods in such an intermediate state. In the end, this allows

us to “chain” equalities stemming from these assertions, together with information that

the contracts of called methods provide (for example that of setHeight, see Listing 3.19),

in order to reason about the overall change that model method’s results have gone through.

The three assertions that are needed for item 3 above are also of this kind – in such a case,

they are used to express that subtrees “further down” didn’t change and therefore, we can

concentrate on the local changes for subsequent reasoning.

UsingLemmas Lastly, the contracts of the “lemma model methods” de�ned in Section 3.3.4

can be “invoked” in another proof with the use of assert statements:

//@ assert invLemmaLess();

When the prover reaches this assertion, it can easily prove its validity by expanding the

method’s de�nition, which is simply true. For the subsequent reasoning, it can then

use the additional information provided by the method contract. In this case, the lemma

provides an alternative formulation of the binary-search-tree property, which facilitates

closing some of the branches in the proof of Tree::contains.

37

4 Veri�cation

4.4 JML Scripts

Motivation All the assertions described in the previous section also serve one purpose

not explicitly mentioned there: They help in persisting proofs between several revisions

of the speci�cation. Without them, it would be a lot harder to recreate the already

successful parts of the proof that were found interactively. Still, manual interaction is

often necessary to prove the validity of these assertions, which poses the challenge of, for

example, remembering which de�nition expansions were needed in which situation or

what was changed in the strategy settings to close a branch automatically. This, as well as

the fact that many of the “framing assertions” have very similar proofs, is addressed by

JML Scripts.

Concept JML Scripts are a new and, as of now, experimental addition to KeY (they are not

available in a released KeY version yet), and were used on a larger scale for the �rst time

in this work. They existed prior to this case study, but were shaped by the needs arising

over the course of it, in constant dialogue with the KeY developers. Manually executed

proof steps can be documented directly in the source code with one JML Script per assert.

A script is introduced by the keyword \by, surrounded with curly braces, and consists of a

semicolon-separated list of prover directives indicating how to prove the validity of the

corresponding assertion. It can be invoked during a proof by running the Script-Aware
Auto Pilot macro.

Assertion Labels Listing 4.1 shows an example of two JML Scripts that are part of the

addRight method (in line 18 of Listing 3.16) and together prove that left.noDoubleRed

still holds after the insertion of a new right node. The short one in line 1 simply invokes

the automated search strategy with the auto command, which su�ces in this situation.

Additionally, this assertion uses another new feature of KeY that was introduced by the

KeY developers for this work: An assertion label, which allows us to name the assertion

(here left_eq) and reference it again later with a dynamically generated taclet (here

recall_le�_eq). This is important because assertions that are “obvious” enough have often

disappeared from the sequent by the time they are needed, due to KeY’s simpli�cations.

Commands In the following, we will explain the available script commands that were

most important for us by stepping through the more complicated script of the assertion

left_nodoublered that starts in line 3 of Listing 4.1. The result of the executed script

as shown in the proof tree in KeY can be seen in Figure 4.1. First, the rule command

is used to state an arbitrary taclet, in this case the aforementioned recall_le�_eq, that

should be applied on the current sequent. Next, the oss command performs One Step
Simplifications where applicable (two in this case) and the macro command calls a prede�ned

macro
2
. These preparations allow us to apply the left_eq equality on the formula of

left_nodoublered (which is needed for the dependency command later), again using the

rule command, but this time specifying additional necessary parameters, namely the

2nosplit-prop decomposes propositional top-level formulas, but without splitting the goal

38

4.4 JML Scripts

1 //@ assert left_eq: left == \old(left) \by { auto; }

2 /*@ assert left_nodoublered: left == null || left.noDoubleRed() \by {

3 rule recall_left_eq;

4 oss;

5 macro nosplit-prop;

6 rule applyEq on="self.left@heapAT" occ=1;

7 rule applyEq on="self.left@heapAT" occ=1;

8 expand on="self.validRBSubtree()";

9 expand on="self.noDoubleRed()";

10 rule unlimit_Tree_noDoubleRed on="Tree::noDoubleRed$lmtd(heap,

Tree::select(heap, self, Tree::$left))";

11 expand on="self.<inv>";

12 expand on="self.left.<inv>" occ=0;

13 dependency on="(self.left@heap).noDoubleRed()@heapAT";

14 auto classAxioms=false steps=500;

15 }

16 @*/

Listing 4.1: An example of JML Scripts with assertion labels

Figure 4.1: Executed second script from Listing 4.1 as shown in the proof tree in KeY

39

4 Veri�cation

formula to apply the rule on and its occurrence in the sequent.
3

After this, we use the

expand command four times, which can expand the de�nition of given model methods

or invariants. The �rst two expansions “dig up” the left.noDoubleRed from the prestate

– the rule application thereafter is a technicality that we won’t examine further here –

and the latter two expose necessary information contained in the instance invariants.

Finally, we can apply the dependency contract of left.noDoubleRed on the now present

(self.left@heap).noDoubleRed()@heapAT and self.left.noDoubleRed(). The branch

can then be closed by an invocation of the automated proof search with a su�cient

number of steps, and with the Class Axiom Rule temporarily turned o� (cf. Section 4.2).

This can be considered a script of average length for this work, others ranging from 1

to 50 lines, of which an example can be found in the appendix, Section A.3.2.

4.5 Proof Caching

Proof Caching is another new feature of KeY with the purpose of reducing the amount of

work that is necessary for proving a slightly modi�ed speci�cation. It was developed not

long before this case study and we were the �rst to test it on a larger scale. A typical use

case would be the following: We successfully closed (part of) a proof, but some adaptions

needed to be made that necessitate a redo of most of the proof. Now, if there is an already

closed branch in the old proof that is (in some speci�c way) similar to a new, open one,

Proof Caching can automatically detect this and reuse the corresponding rule applications

to close the new branch analogously to the old one. This is based on the observation that,

with some restrictions, the following holds for sequents:

if Γ =⇒ Δ is valid, then Γ,Φ =⇒ Δ,Ψ is valid,

with Γ,Δ,Φ,Ψ all being sets of JavaDL formulas. Meaning: A sequent in the new proof is

“similar” to one in the old proof if it consists of the same, and possibly additional formulas.

For the addRight method, there were situations where we would have liked to make

use of Proof Caching, but couldn’t do so because of the aforementioned restrictions: If

there are modalities or queries on the sequent, which was the case due to several isRed

queries, the observation above about the validity of sequents does not necessarily hold,

and Proof Caching cannot be applied.

For the proof of the setHeight method, however, we were in a situation ideal for Proof

Caching and tested it out. Speci�cally, we added some of the ensures clauses seen in

Listing 3.19 only after proving the method contract for the �rst time. Proving all the

ensured properties wasn’t too complicated, but nevertheless required quite a few manual

interactions that all would have had to be applied again. Luckily, Proof Caching worked

very well and saved a lot of time. It detected virtually all of the already previously existing

proof obligations as “cached”, and we only needed to close the additional branches by

hand.

3
For better readability, heapAT represents the heap in the current state here, being an abbreviation for

heapAfter_Tree[self.right := self_0][self.heightVariant := 1 + self.heightVariant].

Abbreviations were very recently added to JML Scripts, but not yet tested in this thesis.

40

4.6 Proof Statistics

code spec #asserts script total JML

T
r
e
e

model methods etc. - 149 - - 149

Tree constructor 4 12 0 0 12

contains 11 11 6 6 25

add 9 11 1 2 16

addRight 23 13 44 247 370

addLeft 21 13 - - 13

rightRotate 13 19 39 331 447

leftRotate 13 19 - - 19

recolour 5 13 29 127 204

setHeight 4 37 21 0 64

isRed 3 5 0 0 5

total Tree 112 302 140 713 1 324

R
B
T
r
e
e model methods etc. - 26 - - 26

RBTree methods 19 29 1 0 30

total RBTree 19 55 1 0 56
Client 9 4 2 0 6
total 140 361 143 713 1 386
estimated total 140 361 143 1 291 2 171

Table 4.2: Lines of code and speci�cation, number of assertions, lines of script, and total lines of

JML for every method

4.6 Proof Statistics

As mentioned earlier, we successfully proved all contracts needed for the veri�cation of the

contains and add methods of RBTree – with an exception of the addLeft and leftRotate

methods, because they are completely symmetric to their “right” counterparts and would

have required a lot of additional, repetitive work. This section presents statistics for all

proven methods. First, we look at the lines of code and speci�cation, and then at the

number of rule applications.

Lines of Code and Specification Figure 4.2 shows the number of lines of each kind for

every method, grouped by their class. The �rst column code counts the lines of normal

Java code – the actual implementation of red-black trees. The second column spec gives

the lines of speci�cation, including method contracts etc., but no assertions or scripts.

Those are given in the next two columns, #asserts counting the assertions, and script the

lines of JML Scripts. Lastly, total JML summarises all lines for speci�cation purposes.

The rows “model methods etc.” include all lines of JML that do not belong to one speci�c

Java method, like the de�nitions of model methods and instance invariants. We can see

that these (together 175 lines) make up about half of the speci�cation, which consists of

361 lines. This, in turn, is more than twice as much as the 148 lines of Java code, which is

not uncommon for formal speci�cation. In addition to that, there are 143 assertions, and

713 lines of JML Scripts attached to them for prover guidance, resulting in a total of 1386

41

4 Veri�cation

lines of JML – nearly ten times the amount of Java code. Most of them were written for the

addRight, rightRotate and recolour methods, which were the most di�cult and time-

consuming to prove. All other methods were either a lot simpler, or the e�ort necessary

to create scripts would have exceeded the expected bene�ts.

As we did not prove addLeft and leftRotate, there are no assertions and scripts there,

but we estimate the necessary e�ort to be equal to that of the “right” versions. Consequently,

for proving these methods as well, the estimated total of JML lines increases to about 15

times the lines of Java code.

Number of Rule Applications Figure 4.3 contains the statistics for all completed proofs,

again grouped by class. The column rule apps lists the number of rule applications and

manual how many of them were applied manually. Next, the column sliced shows the

number of rule applications after proof slicing, a feature of KeY that allows to reduce proofs

to their necessary steps. The percentage of those useful steps in the initial number of

steps is given in the last column.

The rows “model method accs” summarise all indented rows below them, which contain

the statistics for the accessible clauses of model methods. Also, both contains methods

and isRed have an additional accessible to prove, all other methods only have proofs for

their normal_behaviour. By far the largest and also most time-consuming proof is that of

addRight with over 80,000 rule applications, 361 of them manually executed. Following

are the proofs for rightRotate, setHeight and recolour, and, not to be underestimated,

that of the accessible clauses of the Tree instance invariant and treeSet. All accessible

clauses together make up about one fourth of the overall number of applied rules.

The manually applied rules amount to a total of 880 rules. As the majority of scripts

were developed from previously manually executed steps, and one line of script can be

considered the equivalent of one manual rule application, we reach a total of nearly 1600

“guided steps” by adding the number of script lines from Figure 4.2 to the manual steps

from 4.3. We estimate that about 100 additional manual steps were “lost” through the

application of Proof Caching, which does not preserve this information. The top rules

applied manually include: expansion of the footprint de�nition, of other model methods,

and of the instance invariant; applyEq – mostly in preparation for Use Dependency Contract;
and di�erent branching rules, like cut_direct, eqTermCut or i�henelsesplit, for example to

make case distinction like self.left = null.

In contrast to the automatically applied rules, these manual interactions are almost all

considered “useful” by the proof slicing. For most of the larger proofs, the application

thereof results in proofs decreased to about a third of their original size. Unfortunately,

for the addRight method and also the client, proof slicing cannot be applied due to some

bugs (marked with ? in the table). However, we can still run a dependency analysis that

lets us estimate the percentage of useful applications in addRight to be about 25%. The

top “useless” rules of all proofs include: One Step Simplification; the polySimp_mulComm0
rule, which commutes the factors of a multiplication (one of which is always −1 in our

case, originating from previous normalisations); applyEq, replaceKnownSelect, replaceKnow-
nAuxiliaryConstant and replace_known_le�/_right; andLe�; true_le�; and for some of the

accessible proofs elementOfSetMinus, elementOfUnion and elementOfSingleton.

42

4.6 Proof Statistics

proof rule apps manual sliced useful

T
r
e
e

model method accs 52 021 311 15 542 30%

– blackBalanced 2 734 44 912 33%

– blackHeight 1 453 28 614 42%

– doubleRedLeft 2 960 34 581 20%

– doubleRedRight 2 291 34 603 26%

– doubleRedTop 142 3 108 76%

– footprint 4 775 28 1 228 26%

– inv 20 686 74 5 036 24%

– noDoubleRed 5 390 35 2 076 39%

– treeSet 10 824 27 3 912 36%

– validRBSubtree 218 2 169 78%

– validRBSubtreeERT 548 2 303 55%

invLemmaGreater 152 3 147 97%

invLemmaLess 147 3 142 97%

Tree constructor 1 354 4 1 181 87%

contains 9 636 4 2 952 31%

– normal_behaviour 8 599 0 2 388 28%

– accessible 1 037 4 564 54%

add 3 570 0 2 722 76%

addRight 83 506 361 ? ?

rightRotate 33 819 57 12 671 37%

recolour 12 149 31 4 612 38%

setHeight 23 540 13 5 855 25%

isRed 486 0 452 93%

– normal_behaviour 180 0 173 96%

– accessible 306 0 279 91%

total Tree 199 232 787

R
B
T
r
e
e

model methods accs 2 675 20 1 180 44%

– footprint 357 4 201 56%

– treeSet 280 4 153 55%

– validRBTree 2 038 12 826 41%

RBTree constructor 222 0 222 100%

add 8 121 15 2 609 32%

contains 1 130 7 767 68%

– normal_behaviour 422 0 300 71%

– accessible 708 7 467 66%

fixRootColour 3 035 45 1 024 34%

total RBTree 15 183 87 5 802 38%
Client 2 101 6 ? ?

total 216 516 880

Table 4.3: Number of rule applications, before and after proof slicing, with the percentage of

“useful” rule applications, and the number of manually applied rules

43

5 Insights

This chapter presents the insights that we gained throughout the course of this work. This

includes our experience with dynamic frames for tree structures, some �ndings about

KeY’s automated proof search strategy, a few bugs we detected and, lastly, several features

of KeY that were or would have been of great value for this work.

5.1 Framing

Regarding KeY’s approach to framing, we conclude that successful reasoning over tree

structures with dynamic frames is possible, yet very work-intensive. During the course

of this work, a signi�cant amount of time and e�ort went into determining at what time

we should assert or ensure that which model methods’ results are unchanged – to make

sure that no information is missing later on, but at the same time avoid unnecessary e�ort

proving super�uous assertions.

With setHeight, there even is a method contract that exists almost exclusively for

framing purposes. This re�ects our realisation that it can be bene�cial to capture as many

non-changing model methods as possible in a contract, instead of asserting them one by

one after calling the method. This way, the preconditions for using the model method’s

dependency contract have to be shown only once, which often requires some manual

steps despite matching assignable and accessible clauses. However, these additional

ensures clauses (as e.g. in RBTree::fixRootColour, see Section 3.4.2) are not a panacea

either. They clutter the method contracts and, more importantly, are not always possible

as would be needed. For example, there is no way for the add method to ensure that the

sibling of the node it was called on is una�ected – that is, right.add does not a�ect left

– as siblings do not hold references to each other.

To illustrate the amount of work going into framing, we gathered the statistics in

Figure 5.1. There, we compare the lines of assertions and scripts (for setHeight the

number of assertions) by their purpose, which is either framing related or for the actual

reasoning about red-black- or binary-search-tree properties. To allow for a fair comparison,

we only consider methods where all parts of the proof are equally automised. For addRight,

framing red-black trees
rightRotate() 248 188

recolour() 137 54

setHeight(): #asserts 20 1

Table 5.1: Lines of assertions and scripts by purpose: framing clearly dominates the actual reason-

ing about red-black trees

45

5 Insights

for example, this is not the case, as we found that writing scripts for framing assertions

was easier due to their similarity, compared to the always di�erent reasoning about keys

and colours.

Still, the numbers in Figure 5.1 match the gut feeling that has emerged over the course

of this thesis: Our estimate is that about three quarters of the total work was spent on

framing issues, compared to one quarter for the reasoning over actual red-black properties.

Writing scripts for framing assertions might be easier and parts of them can be reused for

similar ones – however, problems with framing were also the primary reason for revisions

of the JML annotations being necessary and proofs needing to be redone.

5.2 KeY’s Proof Search Strategy

As described in Section 4.2, the success of the automated proof search can be notably

in�uenced by the chosen strategy settings. We �rst had to learn that turning Dependency
Contracts and Expand Local Queries o� was the key to success for long Auto Pilot runs,

and that playing around with settings like Proof Splitting could lead to branches closing

automatically. Furthermore, KeY’s not-so-useful automatic expansion of model methods

caused us to set Class Axiom Rule to o�, which had the e�ect that the manual expansion

of needed model methods represented a signi�cant part of the e�ort that went into the

veri�cation. Besides this, there were two more notable �ndings about the proof search

strategy.

Reasoning about Sets In several situations where reasoning about location sets (type

LocSet) was necessary to close a branch, KeY’s proof search didn’t work as well as we

would have expected or liked it to. For such branches it is especially true that turning o�

Proof Splitting can help to close them automatically, but there also are some that, while

being obviously provable for a human, are not closed with any chosen strategy settings in

a reasonable amount of time.

One such situation is a goal that can be reduced to

¬self.right = null =⇒ ¬self.right.footprint() = ∅

or even further to

=⇒ ¬self.right.* = ∅

for which no proof is found – only after applying the taclet equalityToElementOf manually,

13 steps su�ce to close the goal automatically. The sequents above contain many additional

formulas both in the antecedent in succedent in the original proof situation. This potentially

contributes to KeY not �nding a proof due to too many “distractions” – but at least for

the examples above, we went through the trouble of hiding all other formulas and found

that equalityToElementOf, part of the semantics_blasting heuristic, is actually never applied

by the automatic and the branch never closed, even if no other rules are available for

application.

46

5.3 Bugs in KeY

That the heuristics for applying LocSet-related taclets could probably be improved

also shows in the proofs for the accessible clauses of treeSet and footprint.
1

While

footprint works with the LocSet type, treeSet uses the custom integer set de�nition

from Section A.2. The methods’ de�nitions are very similar, and both their proofs were

prepared with the same three manual steps before running the automated proof search

strategy. However, while the proof for treeSet closes with less than 6,000 rule applications,

the one for footprint needs about 36,000. With proof slicing, the treeSet proof can be

decreased to 900 rule applications, and the footprint proof to about 1,800.

Invisible Internal State Another peculiarity of working with KeY is its invisible internal

state, determining which rules should have which priority for the next proof step. De-

pending on how a speci�c sequent originated, this internal state leads to di�erent rules

being applied by the automated search. Generally, this is important and guarantees a

“fair” application of rules, but in practice this can have frustrating results. For example,

there were several occasions where “Validity” branches of assertions that formerly closed

automatically wouldn’t do that any more, just because a few additional assertions were

inserted before them. Even after hiding all new formulas to obtain the exact same sequents,

KeY’s internal state of rule priorities lead to one of them closing after a few hundred steps

and the other one not even after several thousands.

Moreover, we noticed a situation in which some internal state apparently di�ers when

this should actually not be the case: For some goals, running the automated proof search

would result in a very branched proof tree, with no success after several thousand steps.

However, pruning this part of the proof and simply running the automated search again

with the exact same settings could close the goal in a few hundred steps without any

branching.

5.3 Bugs in KeY

This section describes some bugs that we found in KeY during the course of this thesis, at

times hindering productive work or complicating things.

Ignored Updates to Heap Variables a�er Pruning This bug lead to branches suddenly not

closing automatically any more and was quite challenging to identify: If a “Validity”

branch for an assertion is generated by symbolic execution, and afterwards it is pruned

and generated a second time, taclets like simplifyUpdate1 ignore updates to heap variables.

Something like

{ ... || heapBefore_foo:=heap || ... }heapBefore_foo

is incorrectly simpli�ed to heapBefore_foo instead of heap in this case. We created issue

#3206 in KeY’s GitHub repository
2
, that describes this bug in more detail.

1
These proofs were done for previous versions of the accessible clauses, where the complete footprint

was speci�ed to be accessible. The new versions additionally exclude some �elds (see Section 3.4.1), and

because of that need more manual interaction overall, making a comparison less meanigful.

2https://github.com/KeYProject/key/issues

47

https://github.com/KeYProject/key/issues/3206
https://github.com/KeYProject/key/issues

5 Insights

Ignored nullable annotation for Model Method Parameters Due to this bug, we refrained

from making all model methods static with nullable arguments like we did with

blackHeight (see Section 3.3.6): When de�ning a model method with a nullable argument

like

helper model int foo(nullable Object o) { ... }

KeY completely ignores the nullable annotation. For example, this can be observed

when loading the contract for the model method itself, an accessible clause thereof or

when applying the rule Use Dependency Contract on it – they all look the same as if

nullable is omitted and contain (¬o = null)«impl» somewhere. Because of this, even

though setHeight avoids case distinctions for null in its de�nition, it probably resulted in

increased e�ort overall, due to the case distinctions needed before applying UseDependency
Contract. For more information on this bug, see our issue #3186 on GitHub.

Other Bugs There were or are several further bugs that did not interfere with our work as

much as the two described above and therefore are only shortly mentioned here. One that

is already �xed (issue #3149) consisted of nested ternary operators with integers – legal

from Java’s perspective – not loading due to mismatched types of int and KeY’s internal

\bigint. Another �xed issue (#3192) manifested in proof slicing or reloading of proofs

sometimes failing when they used a dependency contract. Very frustrating, but occurring

only twice, was a bug that was supposedly �xed several years ago (see #806): Due to

some internal ClassCastException, proofs could not be saved and therefore all manual

interactions since the last saving had to be redone. And lastly, in discussion with Mattias,

a soundness issue was detected by him, regarding the well-foundedness of invariants and

model methods, see #3155.

5.4 Desirable Features

This section presents a collection of KeY features that either already exist and were of great

value during the course of this work, some with the potential for further improvements,

or that we missed and in our eyes could be valuable additions.

Model Methods As indicated by the number of model methods described in Section 3.3,

they are an indispensable part of this work – for abstracting from concrete object structures,

modelling properties and even as a way to formulate lemmas. We suspect that without

them, a successful veri�cation of red-black trees would not have been feasible. Due to

their relevance for more complex veri�cation e�orts, we consider it important to �x

existing issues regarding model methods, for example the ignored nullable annotations

or problems with well-foundedness mentioned above.

Assertions, Labels and JML Scripts The possibility to guide a proof with assertions was

crucial for the veri�cation process. Assertion labels and JML Scripts (see Section 4.4) are

additions that have great potential to further automise and persist proofs.

48

https://github.com/KeYProject/key/issues/3186
https://github.com/KeYProject/key/issues/3149
https://github.com/KeYProject/key/pull/3192
https://github.com/KeYProject/key/issues/806
https://github.com/KeYProject/key/issues/3155

5.4 Desirable Features

However, as of now, creating these scripts is very work-intensive and error-prone,

because they have to be manually put together, e.g. by copying taclet names and formulas,

determining the occ parameter, and extracting the used strategy setting for auto – all of

which was already performed interactively and KeY “knows about”. In our eyes, it would

therefore be both feasible and of great value to provide a script generator that automatically

extracts a script from a manually closed branch.

Proof Caching For the instances where Proof Caching was applicable, it was very useful

and worked well. Further testing has the potential to �nd and resolve little quirks to

improve the usability – for instance, we noticed that di�ering term labels prevent the

detection of a cached goal. The applicability of Proof Caching would pro�t from the

relaxation of some of the current restrictions, for example allowing queries on the sequent
3
,

or enabling the user to manually mark sequents that should be added to the cache.

Proof Search Strategy Settings The proof search strategy settings (see Section 4.2 and

5.2) would pro�t from more transparency. This could be in the form of better (available)

explanations for the settings and what their e�ects are, and some hints about which

settings might help in which practical situation. Also, it could be convenient to have a

macro that tries to close a goal with several setting combinations one after the other – for

this work, we could have tried combinations of Class Axiom Rule and Proof Splitting set to

O� and Delayed without having to change the settings manually each time.

Reasoning about Sets As described in Section 5.2, there were situations in which we were

not satis�ed with the automatic reasoning about sets, even more so because the custom

de�ned integer sets sometimes seemed to work better than the built-in location sets. It is

already planned to address this in a future work.

Branching for Assumes A signi�cant amount of manually applied rules only “prepared”

formulas, or generally the sequent, for the application of a rule we actually wanted to

use. Expanding de�nitions of terms like self.right.footprint(), for example, is only

possible if the right side of the sequent contains ¬self.right = null, which is speci�ed

by an assumes clause for the corresponding taclet. To expand the de�nition in formulas

like

self.right = null ∨ self.right.footprint() = ... ,

a common situation for us, we consequently have to make a cut for ¬self.right = null

�rst. To avoid these tiresome preparations being necessary in situations like this, we

propose to provide a way to apply rules despite missing assumes clauses. Their correct

usage can be ensured by generating a new branch at this point, which has the proof

obligation to show the missing requirements necessary for the rule application.

3
motivated by the insights of this work, this is actually in progress at the time

49

5 Insights

Focus on Formulas On several occasions, we knew that (or wanted to know if) a small

subset of the formulas present on the sequent is su�cient to close the goal. In situations

like this, it can be useful to hide all other “distracting” formulas, which is a valid operation

on a sequent, but only possible by cumbersomely selecting and hiding each of those

formulas individually. A way to select formulas that KeY should focus on during the proof

search, or some “batch-hiding” functionality, would greatly improve the usability.

Unchangeable Formulas Similarly, we sometimes knew that speci�c formulas on the

sequent should not be modi�ed or even simpli�ed away by the automated proof search

strategy, so that they are available later on when we need them. For this, a way to mark

formulas as unchangeable would be useful.

Interactive Proof Loader If something in the speci�cation changes, many proofs cannot

be (completely) loaded into KeY any more and large parts of them have to be redone.

Sometimes, though, the corresponding .proof �le would only need changes in, or the

addition of, a few lines. Some kind of interactive proof loader could help to reuse the old

proofs in such cases: This could mean to stop loading the proof if a non-applicable rule

is detected and give the user di�erent options on how to resolve this issue, interactively

adapting the old proof to the new situation. Based on the chosen resolvement option,

KeY could then try to automatically adapt the rest of the proof, stopping again if an issue

occurs.

EnhancedApproach toFraming As discussed in detail in Section 5.1, KeY’s dynamic frames

are suboptimal for reasoning about tree structures. Looking at the work of Armborst and

Huisman (2021), separation logic, in contrast, seems to be an ideal �t for the representation

of and reasoning about trees. For future works considering tree structures, an enhanced

approach to framing could reduce the necessary e�ort signi�cantly. Possible options could

be a combination of dynamic frames and separation logic, like the dynamic separation logic
proposed by Hans-Dieter Hiep at the 19th KeY Symposium 2023

4
, or the introduction of

an ownership concept into KeY, as already explored by Pfeifer (2018) and Scheurer (2020).

4https://www.key-project.org/wp-content/uploads/2023/08/dsl.pdf

50

https://www.key-project.org/wp-content/uploads/2023/08/dsl.pdf

6 Conclusion and Future Work

The result of this thesis is a successfully speci�ed and veri�ed Java implementation of red-

black trees.
1

We provide an example for future case studies regarding the pro�table usage

of model methods for the speci�cation, and of assertions for the veri�cation, as well as some

�ndings about what e�ects the chosen proof strategy settings can have. The JML Scripts

and Proof Caching tested in this work are promising features for automising and persisting

proofs in KeY. As one of the �rst case studies in KeY about tree structures, and the �rst

using dynamic frames for the veri�cation of red-black-trees, we gained valuable insights

about this combination: Successful reasoning over tree structures with dynamic frames

is possible, yet very work-intensive, and KeY could pro�t from an enhanced approach to

framing for future e�orts in this area. By �nding some bugs and usability issues of KeY, and

giving suggestions for further enhancements, we contribute to the constant improvement

of KeY as a powerful and useable tool.

Future work could use the results of this thesis and that of other red-black-tree veri�ca-

tions to draw a comparison between the used veri�cation tools, possibly based on metrics

suggested for VACID-0 by Leino and Moskal (2010).

Apart from that, one could look at the usage of ownership concepts to reprove the

contains and add methods, comparing the necessary e�ort to that of the dynamic frames

approach in this work. In this context, the additional veri�cation of a delete method

would also be interesting. To further push the limits of KeY, one could approach the JCL

implementation again with its iterative add method and the use of parent pointers.

Finally, as this work only proves that the red-black properties hold true, assuming

that this automatically leads to a balanced tree and e�cient operations, it would also be

interesting to actually verify the logarithmic complexity of, for example, the add method.

1
available at https://github.com/gewitternacht/rbtree-verification

51

https://github.com/gewitternacht/rbtree-verification

Bibliography

Georgii Maksimovich Adel’son-Velskii and Evgenii Mikhailovich Landis (1962). “An algo-

rithm for organization of information”. In: Doklady Akademii Nauk. Vol. 146. 2. Russian

Academy of Sciences, pp. 263–266.

Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and

Mattias Ulbrich, eds. (2016). Deductive Software Veri�cation - The KeY Book: From Theory
to Practice. Vol. 10001. Lecture Notes in Computer Science. Springer. doi: 10.1007/978-

3-319-49812-6.

Andrew W. Appel (2011). “E�cient veri�ed red-black trees”. In: url: https://www.cs.

princeton.edu/~appel/papers/redblack.pdf.

Lukas Armborst and Marieke Huisman (2021). “Permission-Based Veri�cation of Red-Black

Trees and Their Merging”. In: 9th IEEE/ACM International Conference on Formal Methods
in Software Engineering, FormaliSE@ICSE 2021, Madrid, Spain, May 17-21, 2021. Ed. by

Simon Bliudze, Stefania Gnesi, Nico Plat, and Laura Semini. IEEE, pp. 111–123. doi:

10.1109/FormaliSE52586.2021.00017.

Yves Bertot and Pierre Castéran (2004). Interactive Theorem Proving and Program Develop-
ment - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer

Science. An EATCS Series. Springer. isbn: 978-3-642-05880-6. doi: 10.1007/978-3-662-

07964-5.

Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn (2017). “The VerCors

Tool Set: Veri�cation of Parallel and Concurrent Software”. In: Integrated Formal Methods
- 13th International Conference, IFM 2017, Turin, Italy, September 20-22, 2017, Proceedings.
Ed. by Nadia Polikarpova and Steve A. Schneider. Vol. 10510. Lecture Notes in Computer

Science. Springer, pp. 102–110. doi: 10.1007/978-3-319-66845-1_7.

Daniel Bruns (2011). “Speci�cation of red-black trees: Showcasing dynamic frames, model

�elds and sequences”. In: 10th KeY Symposium, Nijmegen, the Netherlands, p. 296.

Daniel Bruns, Wojciech Mostowski, and Mattias Ulbrich (2015). “Implementation-level ver-

i�cation of algorithms with KeY”. In: International journal on software tools for technology
transfer 17.6, pp. 729–744. doi: 10.1007/s10009-013-0293-y.

Martin de Boer, Stijn de Gouw, Jonas Klamroth, Christian Jung, Mattias Ulbrich, and

Alexander Weigl (June 1, 2022). “Formal Speci�cation and Veri�cation of JDK’s Identity

Hash Map Implementation”. In: 17th International Conference on integrated Formal
Methods (iFM 2022). Ed. by Maurice H. Beek and Rosemary Monahan. Vol. 13274. Lecture

Notes in Computer Science. Springer, pp. 45–62. isbn: 978-3-031-07727-2. doi: 10.1007/

978-3-031-07727-2_4. published.

Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel, and Reiner Hähnle (2015).

“OpenJDK’s Java.utils.Collection.sort() Is Broken: The Good, the Bad and the Worst

Case”. In: Computer Aided Veri�cation - 27th International Conference, CAV 2015, San
Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. Ed. by Daniel Kroening and

53

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://doi.org/10.1109/FormaliSE52586.2021.00017
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/s10009-013-0293-y
https://doi.org/10.1007/978-3-031-07727-2_4
https://doi.org/10.1007/978-3-031-07727-2_4

Bibliography

Corina S. Pasareanu. Vol. 9206. Lecture Notes in Computer Science. Springer, pp. 273–

289. doi: 10.1007/978-3-319-21690-4_16.

Jean-Christophe Filliâtre and Pierre Letouzey (2004). “Functors for Proofs and Programs”.

In: Programming Languages and Systems, 13th European Symposium on Programming,
ESOP 2004, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings. Ed. by

David A. Schmidt. Vol. 2986. Lecture Notes in Computer Science. Springer, pp. 370–384.

doi: 10.1007/978-3-540-24725-8_26.

Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer, and Stijn de Gouw

(2022). “Verifying OpenJDK’s LinkedList using KeY (extended paper)”. In: Int. J. Softw.
Tools Technol. Transf. 24.5, pp. 783–802. doi: 10.1007/s10009-022-00679-7.

Stefan Kahrs (2001). “Red-black trees with types”. In: Journal of Functional Programming
11.4, pp. 425–432. doi: 10.1017/S0956796801004026.

K. Rustan M. Leino (2010). “Dafny: An Automatic Program Veri�er for Functional Correct-

ness”. In: Logic for Programming, Arti�cial Intelligence, and Reasoning - 16th International
Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised Selected Papers. Ed. by

Edmund M. Clarke and Andrei Voronkov. Vol. 6355. Lecture Notes in Computer Science.

Springer, pp. 348–370. doi: 10.1007/978-3-642-17511-4_20.

K. Rustan M. Leino and Michał Moskal (2010). “VACID-0: Veri�cation of Ample Correctness

of Invariants of Data-structures, Edition 0”. In: Proceedings of Tools and Experiments
Workshop at VSTTE.

Charles Eric Leiserson, Ronald L. Rivest, Thomas H. Cormen, and Cli�ord Stein (1994).

Introduction to algorithms. Vol. 3. MIT press Cambridge, MA, USA.

Zohar Manna, Henny B. Sipma, and Ting Zhang (2007). “Verifying Balanced Trees”. In:

Logical Foundations of Computer Science, International Symposium, LFCS 2007, New York,
NY, USA, June 4-7, 2007, Proceedings. Ed. by Sergei N. Artëmov and Anil Nerode. Vol. 4514.

Lecture Notes in Computer Science. Springer, pp. 363–378. doi: 10.1007/978-3-540-

72734-7_26.

Huu-Minh Nguyen (2019). “Formal veri�cation of a red-black tree data structure”. MA

thesis. University of Twente.

Tobias Nipkow (2016). “Automatic Functional Correctness Proofs for Functional Search

Trees”. In: Interactive Theorem Proving - 7th International Conference, ITP 2016, Nancy,
France, August 22-25, 2016, Proceedings. Ed. by Jasmin Christian Blanchette and Stephan

Merz. Vol. 9807. Lecture Notes in Computer Science. Springer, pp. 307–322. doi: 10.

1007/978-3-319-43144-4_19.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel (2002). Isabelle/HOL - A Proof
Assistant for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer Science. Springer.

isbn: 3-540-43376-7. doi: 10.1007/3-540-45949-9.

Ricardo Peña (2020). “An Assertional Proof of Red-Black Trees Using Dafny”. In: J. Autom.
Reason. 64.4, pp. 767–791. doi: 10.1007/s10817-019-09534-y.

Wolfram Pfeifer (2018). A New Verifcation Methodology Based on Dynamic Frames and
Universe Types. Project Report. KIT.

Gerhard Schellhorn, Stefan Bodenmüller, Martin Bitterlich, and Wolfgang Reif (2022a).

“Separating Separation Logic - Modular Veri�cation of Red-Black Trees”. In: Veri�ed
Software. Theories, Tools and Experiments - 14th International Conference, VSTTE 2022,

54

https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-3-540-24725-8_26
https://doi.org/10.1007/s10009-022-00679-7
https://doi.org/10.1017/S0956796801004026
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-540-72734-7_26
https://doi.org/10.1007/978-3-540-72734-7_26
https://doi.org/10.1007/978-3-319-43144-4_19
https://doi.org/10.1007/978-3-319-43144-4_19
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/s10817-019-09534-y

Trento, Italy, October 17-18, 2022, Revised Selected Papers. Ed. by Akash Lal and Stefano

Tonetta. Vol. 13800. Lecture Notes in Computer Science. Springer, pp. 129–147. doi:

10.1007/978-3-031-25803-9_8.

Gerhard Schellhorn, Stefan Bodenmüller, Martin Bitterlich, and Wolfgang Reif (2022b).

“Software & System Veri�cation with KIV”. In: The Logic of Software. A Tasting Menu
of Formal Methods - Essays Dedicated to Reiner Hähnle on the Occasion of His 60th
Birthday. Ed. by Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, and Einar Broch

Johnsen. Vol. 13360. Lecture Notes in Computer Science. Springer, pp. 408–436. doi:

10.1007/978-3-031-08166-8_20.

Tim Scheurer (2020). Modelling and Exploiting Ownership-Annotations Using Dynamic
Frames in KeY. Bachelor Thesis. KIT.

55

https://doi.org/10.1007/978-3-031-25803-9_8
https://doi.org/10.1007/978-3-031-08166-8_20

A Appendix

A.1 Java Source Code

This section contains the complete Java source code of our implementation of red-black

trees, without any speci�cation. For the complete speci�cation, refer to the GitHub

repository.
1

A.1.1 Client.java

1 public class Client {

2

3 public static void main(String[] args) {

4 RBTree t = new RBTree();

5

6 /* -3 -3 5 5

7 \ / \ / \

8 ~> 5 ~> -3 9 ~> -3 9

9 /

10 7 */

11 t.add(-3);

12 t.add(5);

13 t.add(9); // rotation

14 t.add(7); // recolouring

15 }

16

17 // method printing a tree to help understand the behaviour of red-black trees

18 public static void printTree(RBTree t) {

19 System.out.println(treeString(t.root));

20 }

21

22 public static String treeString(Tree t) {

23 return (t.left == null ? "" : ("(" + treeString(t.left) + ")-"))

24 + t.key + (t.isRed ? "r" : "b")

25 + (t.right == null ? "" : ("-(" + treeString(t.right) + ")"));

26 }

27 }

1https://github.com/gewitternacht/rbtree-verification

57

https://github.com/gewitternacht/rbtree-verification

A Appendix

A.1.2 RBTree.java

1 final public class RBTree {

2

3 public RBTree() {

4 // default constructor only made explicit for specification purposes

5 }

6

7 public boolean contains(int key) {

8 return root != null && root.contains(key);

9 }

10

11 public void add(int key) {

12 if (root == null) {

13 root = new Tree(key);

14 } else {

15 root.add(key);

16 }

17 fixRootColour();

18 }

19

20 private void fixRootColour() {

21 root.isRed = false;

22 }

23 }

A.1.3 Tree.java

1 final public class Tree {

2 Tree left;

3 Tree right;

4 int key;

5 boolean isRed;

6

7 public Tree(int key) {

8 this.key = key;

9 isRed = true;

10 }

11

12 public boolean contains(int key) {

13 Tree node = this;

14 while (node != null && node.key != key) {

15 if (key < node.key) {

16 node = node.left;

17 } else {

18 node = node.right;

58

A.1 Java Source Code

19 }

20 }

21 return node != null;

22 }

23

24 public void add(int key) {

25 if (key == this.key) {

26 return;

27 } else if (key < this.key) {

28 addLeft(key);

29 } else {

30 addRight(key);

31 }

32 }

33

34 private void addLeft(int key) {

35 if (this.left == null) {

36 this.left = new Tree(key);

37 } else {

38 this.left.add(key);

39 setHeight();

40

41 if (!isRed && left.isRed) {

42 if (isRed(right) & (isRed(left.left) | isRed(left.right))) {

43 recolour();

44 return;

45 }

46 if (isRed(left.right)) {

47 left.leftRotate();

48 setHeight();

49 }

50 if (isRed(left.left)) {

51 rightRotate();

52 }

53 }

54 }

55 }

56

57 private void addRight(int key) {

58 if (this.right == null) {

59 Tree newRight = new Tree(key);

60 this.right = newRight;

61 } else {

62 this.right.add(key);

63 setHeight();

64

65 if (!isRed & right.isRed) {

59

A Appendix

66 if (isRed(left) & (isRed(right.left) | isRed(right.right))) {

67 recolour();

68 return;

69 }

70 if (isRed(right.left)) {

71 right.rightRotate();

72 setHeight();

73 }

74 if (isRed(right.right)) {

75 leftRotate();

76 return;

77 }

78 }

79 }

80 }

81

82 private void leftRotate() {

83 Tree r = right;

84 Tree rr = right.right;

85 Tree rl = right.left;

86 Tree l = left;

87

88 right = rr;

89 left = r;

90 left.right = rl;

91 left.left = l;

92

93 int t = key;

94 key = left.key;

95 left.key = t;

96 }

97

98 private void rightRotate() {

99 Tree l = left;

100 Tree ll = left.left;

101 Tree lr = left.right;

102 Tree r = right;

103

104 left = ll;

105 right = l;

106 right.left = lr;

107 right.right = r;

108

109 int t = key;

110 key = right.key;

111 right.key = t;

112 }

60

A.2 iSet.key – Custom Integer Set

113

114 private static boolean isRed(Tree t) {

115 return t != null && t.isRed;

116 }

117

118 private void setHeight() { /* method for specification purposes only */ }

119

120 private void recolour() {

121 isRed = true;

122 left.isRed = false;

123 right.isRed = false;

124 }

125 }

A.2 iSet.key – Custom Integer Set

This de�nition of an integer set type and rules thereon was provided by the KeY developers.

We extended it with one additional rule for the equality of sets.

1 \sorts {

2 Free; // 'Free' is used for technical reasons and represents an integer set here

3 }

4

5 \functions {

6 Free iSet_empty;

7 Free iSet_singleton(int);

8 Free iSet_minus(Free, Free);

9 Free iSet_union(Free, Free);

10 Free iSet_intersect(Free, Free);

11 }

12

13 \predicates {

14 in(int, Free);

15 subseteq(Free, Free);

16 }

17

18 \schemaVariables {

19 \term int x, y;

20 \term Free setA, setB;

21 \variable int iv;

22 }

23

24 \rules {

25 inEmpty {

26 \find(in(x, iSet_empty))

27 \replacewith(false)

61

A Appendix

28 \heuristics(concrete)

29 };

30

31 inSingleton {

32 \find(in(x, iSet_singleton(y)))

33 \replacewith(x = y)

34 \heuristics(concrete)

35 };

36

37 inSetMinus {

38 \find(in(x, iSet_minus(setA, setB)))

39 \replacewith(in(x, setA) & !in(x,setB))

40 \heuristics(simplify)

41 };

42

43 inSetUnion {

44 \find(in(x, iSet_union(setA, setB)))

45 \replacewith(in(x, setA) | in(x,setB))

46 \heuristics(simplify)

47 };

48

49 inSetIntersect {

50 \find(in(x, iSet_intersect(setA, setB)))

51 \replacewith(in(x, setA) & in(x, setB))

52 \heuristics(simplify)

53 };

54

55 // newly added for this work

56 setEq {

57 \find(setA = setB)

58 \varcond(\notFreeIn(iv, setA, setB))

59 \replacewith(\forall iv; (in(iv, setA) <-> in(iv, setB)))

60 };

61 }

62

A.3 Veri�cation Examples

A.3 Verification Examples

A.3.1 Assertions in rightRotate

1 private void rightRotate() {

2 Tree l = left;

3 ...

4

5 //@ assert right == \old(left) // for a prettier heap

6

7 //@ assert height_variant: heightVariant <= \old(heightVariant) + 1;

8 //@ assert is_red: isRed == \old(isRed);

9 //@ assert right_not_null: right != null && right.isRed ==

\old(left.isRed);

10

11 //@ assert left_eq: left == \old(left.left);

12 //@ assert right_eq: right == \old(left);

13 //@ assert right_left_eq: right.left == \old(left.right);

14 //@ assert right_right_eq: right.right == \old(right);

15

16 // ---------- footprint ------------

17 //@ assert left_footprint: left == null || left.footprint() ==

\old(left.left.footprint());

18 //@ assert right_left_footprint: right.left == null ||

right.left.footprint() == \old(left.right.footprint());

19 //@ assert right_right_footprint: right.right == null ||

right.right.footprint() == \old(right.footprint());

20 //@ assert right_footprint: right.footprint();

21 //@ assert footprint: footprint() == \old(footprint());

22

23 // ----------- treeSet -------------

24 //@ assert left_tree_set: left == null || left.treeSet() ==

\old(left.left.treeSet());

25 //@ assert right_left_tree_set: right.left == null || right.left.treeSet()

== \old(left.right.treeSet());

26 //@ assert right_right_tree_set: right.right == null ||

right.right.treeSet() == \old(right.treeSet());

27 //@ assert right_tree_set: right.treeSet();

28 //@ assert tree_set: treeSet() == \old(treeSet());

29

30 // ------------ inv ----------------

31 //@ assert right_inv: \invariant_for(right);

32 //@ assert inv: \invariant_for(this);

33

34 // ---------- double red -----------

35 //@ assert left_double_red: left == null || left.noDoubleRed() ==

\old(left.left.noDoubleRed());

63

A Appendix

36 //@ assert right_left_double_red: right.left == null ||

right.left.noDoubleRed() == \old(left.right.noDoubleRed());

37 //@ assert right_right_double_red: right.right== null ||

right.right.noDoubleRed() == \old(right.noDoubleRed());

38 //@ assert right_double_red: right.noDoubleRed();

39 //@ assert no_double_red: \old(!isRed && left.doubleRedLeft() &&

(right == null || !right.isRed && right.noDoubleRed()));

40 //@ assert double_red: \old(doubleRedLeft()) ==> doubleRedRight();

41

42 // --------- black height ----------

43 //@ assert right_is_red: right.isRed && \old(left.isRed);

44 //@ assert old_black_heights_same: \old(blackHeight(left.left) ==

blackHeight(left.right) && blackHeight(left.right) == blackHeight(right));

45 //@ assert left_black_height: blackHeight(left) ==

\old(blackHeight(left.left));

46 //@ assert right_left_black_height: blackHeight(right.left) ==

\old(blackHeight(left.right));

47 //@ assert right_right_black_height: blackHeight(right.right) ==

\old(blackHeight(right));

48 //@ assert new_black_heights_same: blackHeight(left) ==

blackHeight(right.left) && blackHeight(right.left) ==

blackHeight(right.right);

49 //@ assert black_height: \old(blackHeight(this)) ==

blackHeight(this);

50

51 //@ assert left_balanced: left == null || left.blackBalanced() ==

\old(left.left.blackBalanced());

52 //@ assert right_left_balanced: right.left == null ||

right.left.blackBalanced() == \old(left.right.blackBalanced());

53 //@ assert right_right_balanced: right.right== null ||

right.right.blackBalanced() == \old(right.blackBalanced()) ;

54 //@ assert right_balanced: right.blackBalanced();

55 //@ assert black_balanced: blackBalanced();

56

57 // ---------------------------------

58 //@ assert \dl_assignable(\old(\dl_heap()), \old(footprint()));

59 }

64

A.3 Veri�cation Examples

A.3.2 Script for Proving \invariant_for(right) in rightRotate

This script helps to prove that the instance invariant of right holds after a right rotation,

and belongs to the assertion in line 31 of A.3.1. It makes use of nested assertions inside the

JML Script, which allow for a clearer structure. The heap in the poststate of rightRotate

is abbreviated with h here for better readability, but in reality looks like this:

1 heap[self.left := self.left.left]

2 [self.right := self.left]

3 [self.left.left := self.left.right]

4 [self.left.right := self.right]

5 [self.key := self.left.key]

6 [self.left.key := self.key]

7 [self.left.heightVariant := self.heightVariant]

8 [self.heightVariant := 1 + self.heightVariant]

1 /*@ assert right_inv: \invariant_for(right) \by {

2 expand on="self.<inv>" occ=0;

3 expand on="self.left.footprint()" occ=0;

4 expand on="self.left.footprint()" occ=0;

5 rule unlimit_java_lang_Object__inv_ on="java.lang.Object::<inv>$lmtd(heap,

Tree::select(heap, self, Tree::$left))";

6 rule unlimit_java_lang_Object__inv_ on="java.lang.Object::<inv>$lmtd(heap,

Tree::select(heap, self, Tree::$right))";

7 expand on="self.left.<inv>";

8 oss;

9 assert "(self.left.right != self.right | self.left.right = null) |

self.right = null" \by {

10 assert "self.right.footprint() != empty" \by {

11 assert "self.right != null" \by auto;

12 rule notLeft on="self.right != null";

13 expand on="self.right.footprint()" occ=0;

14 rule equalityToElementOf on="...expanded footprint... = empty";

15 auto classAxioms=false steps=1000;

16 }

17 auto classAxioms=false steps=1000;

18 }

19 assert "self.left.right = null | self.right.left.<inv>@h" \by {

20 rule recall_right_left_eq;

21 oss;

22 rule applyEq on="self.right.left@h" occ=1;

23 rule unlimit_java_lang_Object__inv_

on="java.lang.Object::<inv>$lmtd(heap, Tree::select(heap,

Tree::select(heap, self, Tree::$left), Tree::$right))";

24 dependency on="(self.left.right@heap).<inv>@h";

25 auto classAxioms=false steps=1000;

26 }

65

A Appendix

27 assert "self.right = null | self.right.right.<inv>@h" \by {

28 rule recall_right_right_eq;

29 oss;

30 rule applyEq on="self.right.right@h" occ=1;

31 dependency on="(self.right@heap).<inv>@h";

32 auto classAxioms=false steps=1000;

33 }

34 assert "self.left.right = null | self.right.left.heightVariant@h

35 < self.heightVariant" \by {

36 assert "self.left != self.left.right" \by auto classAxioms=false;

37 assert "self != self.left.right" \by auto classAxioms=false;

38 assert "self.left.right.heightVariant =

self.right.left.heightVariant@h" \by auto classAxioms=false;

39 auto classAxioms=false;

40 }

41 assert "\forall int k_0; self.right.invLessNotInRight(k_0)@h = TRUE" \by {

42 leave; // JML Scripts are not powerful enough yet to comfortably

document manual steps done here

43 }

44 assert "\forall int k; self.right.invGreaterNotInLeft(k)@h = TRUE" \by {

45 leave;

46 }

47 assert "self.right@h != null" \by auto;

48 auto steps=1;

49 expand on="self.right.<inv>@h";

50 auto classAxioms=false steps=5000;

51 }

52 @*/

66

	List of Figures and Tables
	List of Listings
	Introduction
	Motivation
	Contributions
	Outline

	Background
	Red-Black Trees
	Binary Search Trees
	Red-Black Properties
	Inserting an Element

	JML
	KeY
	The Frame Problem
	Related Work

	Implementation and Specification
	Design Decisions
	General Simplifications
	Iterative vs. Recursive Add Method
	Preservation of the Root Node by Rotations

	Classes
	Client
	RBTree
	Tree

	Modelling the Tree Structure and Properties
	Recursion Measure heightVariant
	Framing Specification footprint
	Abstract Tree Representation treeSet
	Binary-Search-Tree Property
	Instance Invariant
	Red-Black Properties
	RBTree Model Methods

	Methods and their Contracts
	Contracts for Model Methods
	RBTree Method Contracts
	Tree::contains
	Tree::add
	isRed
	recolour
	setHeight
	Rotations

	Verification
	General Approach
	Proof Search Strategy Settings
	Assertions
	JML Scripts
	Proof Caching
	Proof Statistics

	Insights
	Framing
	KeY's Proof Search Strategy
	Bugs in KeY
	Desirable Features

	Conclusion and Future Work
	Bibliography
	Appendix
	Java Source Code
	Client.java
	RBTree.java
	Tree.java

	iSet.key – Custom Integer Set
	Verification Examples
	Assertions in rightRotate
	Script for Proving \invariant_for(right) in rightRotate

