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Abstract
Increasing demand for individualised products has led to the concept of mass customisation, combining high product variety 
with production efficiency coming along with mass production. Companies are moving to matrix production systems with 
complex product flows for mass customisation. One challenge in such systems is the determination of optimal system con-
figurations to fulfil future demands while minimising production costs. An approach to determine the ideal configuration is 
to use metaheuristics like genetic algorithms or simulated annealing to optimise simulation models. However, it is unclear 
which methods are ideally suited to finding the best solutions. This contribution compares the performance of genetic algo-
rithms and simulated annealing when optimising the configuration of a company-specific matrix production system using 
discrete event simulation. The methods are evaluated using different objective functions. For the genetic algorithm, different 
observation strategies are also tested. Overall, the simulated annealing approach delivers better results with shorter solution 
times. The contributing factors leading to the different results are discussed, and areas for future research are pointed out.

Keywords Matrix production system · Combinatorial optimisation problem · Genetic algorithm · Simulated annealing

1 Introduction

Global competition and technological progress have led 
to ever shorter product cycles in many industries in recent 
decades. Combined with the rising relevance of the indi-
vidualisation of products, this results in higher levels of 
variance in manufacturing. New concepts were developed 
to increase part flexibility levels in production systems [1]. 
These concepts need to find an optimal tradeoff between 
cost efficiency and flexibility. One such concept is the so-
called matrix production system, consisting of cycle-time-
independent production cells with product-neutral equip-
ment and flexible transportation that can be scheduled ad 
hoc [2, 3]. Although this system leads to a combined use of 
resources, shorter transport routes compared to workshop 
production, and short, intermediate storage, it requires a high 

capital investment, a large spatial footprint, and increased 
coordination and control requirements [4]. One of the chal-
lenges in matrix production systems is investment planning 
[5]. Due to interdependencies between machines, conven-
tional methods to optimise the production system, like mixed 
integer linear programming, are only possible with severe 
disadvantages. Alternatively, the production system can be 
modelled using discrete event simulation (DES) and agent-
based simulation (ABS). Simulation can be used to predict 
the behaviour of system configurations given specific pro-
duction programs. Metaheuristics can be used with simula-
tion to create systems that predict behaviour and prescribe 
desirable configurations [6]. Metaheuristics like genetic 
algorithms (GA), simulated annealing (SA) and tabu search 
can optimise a broad range of models. However, the effi-
ciency of different heuristics varies significantly depending 
on their specific application [7]. Furthermore, as heuristics 
cannot determine global optima, the quality of the solution 
may depend on the chosen method [7]. Thus, apt metaheuris-
tics are crucial for successful simulation-based optimisation 
in matrix production systems.

This paper contributes a case study on using 
metaheuristics and simulation for configuring a matrix 
production system to the body of knowledge. Two different 
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metaheuristics, GA and SA, are tested and compared. Fur-
thermore, the parametrisation of soft constraints and dif-
ferent observation strategies to cope with stochastic effects 
are examined. This work uses the simulation model of an 
industrial pc manufacturer implemented in Tecnomatix 
Plant Simulation to compare GA and SA regarding result 
quality and processing time.

The remainder of this contribution is structured as fol-
lows: Sect. 2 provides an overview of existing literature 
on the subject and its relationship with the present work. 
Section 3 presents the underlying use case, the simulation 
model and the metaheuristic algorithms used. The experi-
mental results are described in Sect. 4 and discussed in 
Sect. 5. Finally, the work is summarised in Sect. 6.

2  Related work

2.1  Matrix production

The term matrix production or matrix manufacturing 
has only recently seen more attention. Matrix production 
systems address the challenges of high volume, high cus-
tomisation production, which typical sequence-based or 
function-based production systems cannot meet [8]. In 
ideal matrix production systems, each station can pro-
cess each product variant with minimal set-up times. The 
strict alignment of cycle times can be foregone in matrix 
production systems [2]. Orders are allocated to stations 
based on availability, optimising the capacity utilisation 
throughout the production system. Because of the required 
flexibility, matrix production systems have only become 
possible with the advent of Industry 4.0 and the accom-
panying computational capability to track and control the 
flow of products precisely. Hofmann et al. [8] investigate 
under which circumstances matrix production outperforms 
conventional production lines. Within matrix production 
systems, intelligent automatic scheduling has been a focus 
of research. Stricker et al. [9] propose a Monte Carlo tree 
search-based multi-objective optimisation of scheduling. 
May et al. [10] use an automated generation of orders that 
ideally utilise the ad-hoc available production capacities. 
Configuring or planning matrix production systems has 
also received considerable research interest. Filz et al. [11] 
use a data analysis framework and discrete event simula-
tion to evaluate different configuration options for matrix 
production systems, specifically focusing on intra-logistics 
with automated ground vehicles (AGV). Trierweiler and 
Bauernhansl [5] propose an approach for the dynamic 
reconfiguration of production systems based on constant 
requirements monitoring. They propose the use of optimi-
sation techniques for the reconfiguration.

2.2  Discrete event simulation

DES is commonly used to replicate the behaviour of 
production systems as they are characterised by discrete 
state changes and stochastic nature [12]. A large body of 
research examines the use of simulation for configuration 
and operation or control, though more recently, the focus 
has shifted towards the latter [13]. Mourtzis [14] exam-
ines the state of the art of simulation in the design and 
operation of manufacturing systems. He points out that 
DES has become increasingly sophisticated and can accu-
rately depict real production systems. Schönemann et al. 
[15] create a multiscale framework for the simulation of 
production systems and use it for different challenges con-
cerning production systems like configuration and control.

2.3  Metaheuristics

Concerning decision-making processes, simulation mod-
els are classified as predictive models, able to project the 
behaviour of a system under given circumstances [16]. 
However, in many decision situations, prescriptive deci-
sion support is required, which identifies suitable solu-
tions for problems. For this purpose, either specifically 
developed exact solution methods can be used, or gener-
alistic, usually heuristic methods that cannot guarantee 
to find optimal solutions but are more tolerant towards 
the complexity of the modelled system [17, 18]. Many 
metaheuristics are inspired by biology and nature, cop-
ing strategies used to find suitable solutions for a long 
time [19]. Metaheuristics can be classified as population-
based or single-point-based [20]. GA is likely the most 
often used population-based method, while SA and tabu 
search are among the most common single-point-based 
methods [20]. GA is a direct, stochastic search method 
that effectively evaluates large search areas. The search 
begins with a population of random solutions and devel-
ops this population over several generations by applying 
probability techniques and reproduction operators to each 
member of the population [19]. SA imitates the gradual 
cooling of metals called annealing, leading to low-energy 
crystal structure formation [20]. In SA, the initially high 
temperature allows for a broad-ranging search of the solu-
tion space, whereas the low temperature promotes a tar-
geted search for optimal solutions [20]. Several works have 
compared different metaheuristics in different combinato-
rial problems [6]. Mohan et al. [21] investigate the perfor-
mance of hill-climbing, guided local search, tabu search, 
and SA for a vehicle routing problem, finding that SA was 
prone to get stuck in local optima. Halim and Ismail [7] 
compare six different metaheuristics to solve the travelling 
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salesman problem, finding that especially for large prob-
lems, GA, tree physiology optimisation (TPO), and SA are 
suited. Zolfaghari and Liang [22] compares GA, SA, and 
Tabu Search (TS) in machine grouping problems. Also, 
several existing works have combined metaheuristics with 
DES. Hatami-Marbini et al. [23] develop a simulation-
optimisation framework using DES and SA to find optimal 
control policies for producing perishable goods. de Sousa 
Junior et al. [24] propose the use of machine learning to 
improve metaheuristics used for the optimisation of shop 
floor simulations.

2.4  Metaheuristics for the configuration 
of production systems

As described above, the configuration of production sys-
tems is one application area for prescriptive models. The 
use of DES and metaheuristics has been examined in several 
previous works. Petroodi et al. [25] combine DES and SA 
to optimise the configuration of an automotive production 
system. Rabe et al. [26] propose a simheuristic framework 
that dynamically adapts the granularity and number of simu-
lation experiments to examine the results of heuristically 
determined solutions. They validate the framework using 
a configuration problem in a job-shop manufacturing sys-
tem using DES and GA. In addition, an SA procedure is 
also proposed for the dynamic layout problem by [27] and 
a GA [28]. Optimising the spatial arrangement of system 
resources is a subset of the configuration problem. Kia et al. 
[29] and Zhang et al. [30] deal with multiple-level ware-
house layout problems. Kia et al. [29] minimise the total 
transport, machining and other costs, whereas [30] focus 
solely on transportation costs. Both use GA to generate sat-
isfactory solutions. Arostegui et al. [31] compare GA, SA, 
and TS methods in different facility layout problems (FLP): 
the capacitive FLP, the periodical FLP, and the multi-com-
modity FLP. Zupan et al. [32] combine a GA with a digital 
twin to optimise the layout of a production cell. Further-
more, Tubaileh [33] propose an SA method to optimise the 
machine layout in a flexible manufacturing system. Only a 
few applications of metaheuristics are directly concerned 
with matrix production systems. For example, Völker and 
Verbeet [34] discuss a simulation-based model of a matrix 
production system. The model is optimised using an SA 
method. Bányai et al. [35] model a matrix production system 
and optimise the logistics using a sequential black hole-floral 
pollination algorithm.

The existing work on simulation-based heuristics indi-
cates the interest in this topic. However, most existing 
works focus on developing specific new methods for con-
figurational problems, and only a few examine different 
metaheuristics in a specific context. Furthermore, many 
works that compare different algorithms use synthetic use 

cases. Thus, the contribution of this paper is to compare two 
of the most commonly used metaheuristics, GA and SA, in 
a real-world configuration problem. Thereby, insights into 
the particular challenges the application of these methods 
faces are provided.

3  Experimental setting and methodology

3.1  Use case

The considered use case is located in the electrical testing 
of circuit boards. The production of boards includes 100% 
testing using a product-specific protocol with tactile resist-
ance measurements. The testing time of each board varies 
depending on the protocol, the testing machine generation, 
and the necessity to repeat tests. If a test is repeatedly unsuc-
cessful, the board is checked by an operator and placed on a 
“defect” magazine sent to a repair station when all products 
of an order have been tested, or the magazine is full. The 
production system consists of two rows of testing machines 
with twelve available spaces. In the system, a wide variety 
of boards is processed. Each board can be processed at any 
of the testing stations, given that it fits the testing machine 
loaders, of which there are two sizes. Based on the flexibil-
ity of testing machines regarding work assignments and the 
transportation system, this system can be characterised as 
a matrix production system. Since many boards need to be 
tested from both sides, two machines are sometimes linked 
together so that the first can test side A and the second can 
test side B. Such a linking of two machines consists of an 
entry and an exit loader, which allow magazines of products 
to be entered and taken out, a turning station, and the testing 
machines themselves. As some products only need testing 
from one side, machines can also be operated as standalone 
with two loaders. The boards are transported in magazines 
which can be adjusted to fit the specific board size. The prod-
ucts are assembled on eight assembly lines, which produce 
order-specific batches. The assembly lines are only included 
in the simulation model as sources. One batch can consist of 
one or multiple magazines, each of which can hold about 20 
boards, depending on the board height. Some boards require 
specific, larger loader sizes to be tested and can thus only 
be allocated to machines equipped with those loaders. The 
orders are assigned to testing machines based on a first-in-
first-out principle, though products can be delayed due to 
loader incompatibility and prioritised if a machine is already 
set up for the board type. The system is operated by four 
employees, three of which are assigned to four machines 
each, while one “jumper” can freely support.

The configuration of the simulated system can be changed 
in terms of the number of machines, their generation and 
linkage configuration, the loader configuration, and the 
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number and occupation of workers. The number of machines 
is limited to twelve but can be reduced if necessary. For 
the machines, four generations are available. Generation 1 
needs a manual set-up process and is generally slower than 
Generation 2. Generation 3 machines do not require relevant 
set-up times to switch between variants, and Generation 4 
machines can even test both sides of the board while elimi-
nating the need for linkages and turning machines. Machines 
can be linked to reducing necessary operator interactions. 
However, this decreases the efficiency of the linked pair, 
as the testing time of sides A and B typically deviates and 
subsequently, one of the two needs to wait for the other. This 
problem can be mitigated by combining slower machines of 
generations 1 and 2 with generation 3. Machines can also 
be operated in an alternating linkage, where each machine 
alternates between testing sides A and B and testing times 
are harmonised. This linkage, however, also requires two 
additional turning machines. For each machine or each link-
age, different loaders can be chosen. The larger loaders are 
slightly more expensive. Finally, the number and occupation 
of employees can be changed to include between three and 
five employees and different numbers of jumpers. The avail-
able parameters and a graphical representation are shown 
in Fig. 1.

3.2  DES modeling and fitness function

The simulation model used for the experimental compari-
son between GA and SA represents the matrix production 
system of an industrial PC manufacturer as discussed in 
the previous section. The model has been implemented in 
Tecnomatix Plant Simulation (TPS). The model contains 
several processing stations, multiple employees with spe-
cific assigned tasks, transport units, and product instances. 
The modelling used an agile development process adapted 
from VDI3633 [12] described in [36]. Information regard-
ing the order and machine-specific processing times were 
defined based on actual processing times enhanced with 
master data whenever no recordings were available. Layout 
information and working times were based on master data. 

The number of transport units was assumed to be infinite, 
though transport units were only allowed to spawn and 
despawn at specific source and sink points, ensuring realis-
tic logistic processes within the modelled production seg-
ment. The dynamic failure rates and machine downtimes 
thereby required specific model adaptions. The machines 
are used to test finished products using a product-specific 
testing protocol electrically. The operator needs to confirm 
the result should any test be unsuccessful. As operators 
are assigned to multiple machines at a time, this can lead 
to waiting times if no operator is available. Additionally, 
the failure rate at a machine dynamically changed as an 
order was processed due to necessary protocol adaptions 
by the operator to avoid parts falsely flagged as defec-
tive. This mechanism was represented in the model using 
a stochastic learning process, decreasing the likelihood of 
these type II errors after each occurrence using the fol-
lowing formula,

where psiII,j is the likelihood of a type II error at the jth 
tested board, p(s) is a triangular density function with a 
maximum at s = 0 , and �teach reflects the teaching param-
eter that was fitted to the distribution of errors found in the 
use case. The function parameters were fitted using half a 
year of process recordings. The time to rectify a problem 
at a machine by adapting the protocol or manual product 
inspection was not distinguished from waiting times in the 
recordings. Thus, these times needed to be calibrated in an 
iterative procedure using the model to determine the wait-
ing times with the real production system. The model was 
then validated using extensive testing and comparing it to 
multiple production periods.

The fitness of a particular configuration was determined 
as a combination of the achieved production capacity and 
the required investments and costs for employees. The 
capacity was evaluated using the simulation model, cap-
turing the time necessary to fulfil the production orders of 
a week. As users of such optimisation models are typically 
only concerned with fulfilling the required capacity, the 
capacity fitness function fitcap,i,o,s of a particular configura-
tion i ∈ I , for a given observation o ∈ O and chosen capac-
ity increase scenario s ∈ S was defined as

where Ti,o denotes the time elapsed for the production in the 
model and Tref ,s refers to the reference time set for a specific 
capacity expansion scenario. The capacity expansion refer-
ence time is calculated as the reference time Tref ,0 divided 
by the desired capacity increase. The yearly cost Ci was 

(1)�II,j+1 = �teachp(s)�II,j

(2)fitcap,i,o,s =

{

0, Ti,o ≤ Tref ,s
Ti,o−Tref ,s

Tref ,s
, Ti,o > Tref ,s

Fig. 1  Configuration parameters of the matrix production system and 
graphical representation of the current configuration (linked machines 
can only have the same loader type; thus, only one is shown)
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calculated based on the necessary investment for machines 
and loaders as the average yearly depreciation as well as the 
employee costs:

where u ∈ Ui denote the necessary changes to the starting 
configuration, Cinv,u the overall investment for each new 
asset, Tuse the useful life of the asset, and ir the interest rate. 
nemp, i describes the number of employees in configuration 
i and Cemp the average yearly cost of an employee. The cost 
fitness function fitcost, i is then defined as

where Cmax are the maximum possible investment costs. The 
overall fitness function fit i,o,w,s of a configuration i for an 
observation o, with temporal weight w and capacity thresh-
old scenario s is defined as

where gw is the weight factor. Using different weights, the 
algorithm can be influenced in the tradeoff between higher 
capacities and lower costs.

3.3  Metaheuristics

For both investigated metaheuristics, the system’s configu-
ration was parametrised using 31 parameters resulting in a 
total of 3.02E+11 possible configurations. TPS provides a 
built-in tool for optimisation using GA, the GAAssistant. 
This tool allows the selection of parameters to be optimised 
and their permissable value ranges. Furthermore, some 
hyperparameters of the GA can also be changed, such as 
the population size and the number of observations per 
generation. A proprietary SA algorithm was developed 
and implemented because TPS does not provide alterna-
tive metaheuristics. The algorithm uses an exponentially 
decreasing temperature which is defined as the temperature 
Θn at step n ∈ [1,N]

where Θ0 denotes the initial temperature and ΘN the final 
temperature. The temperature Θn defines the likelihood �n 
to accept an inferior configuration i instead of the current 
configuration î for the succeeding proximity search at step n.

(3)Ci =
∑

u∈Ui

(

Cinv,u

(

1

Tuse
+

ir

2

))

+ nemp,iCemp

(4)fitcost,i =
Ci

Cmax

(5)fiti,o,w,s = fitcost,i + gwfitcap,i,o,s

(6)Θn = Θ0

(

ΘN

Θ0

)
n

N

(7)𝜙n = e
fiti−fitî

Θn

The creation of neighbour configurations in SA was facili-
tated by the operations “flip”, “insert”, and “change”. More-
over, these operations were optimised for the given param-
eter space. Figure 2 shows the GA and SA algorithms as a 
flowchart.

3.4  Experimental design

To compare SA and GA, several experiments were con-
ducted. Since the number of required simulation runs is 
the major determinant of the required computing time, GA 
and SA were compared for three sets of allowed numbers of 
simulation runs N, 1500, 2950, and 4500. Two aspects of the 
fitness function fiti,o,w,s were also varied, namely the refer-
ence time Tref ,s , simulating different requirements towards 
the production system, and the weight factor for the capac-
ity fitness function gw to distinguish the severity with which 
too low capacity is punished. The variation of the reference 
Time is equivalent to enforcing a higher throughput of the 
system, as the same number of orders needs to be processes 
in less time. The goal of the meta heuristic optimisation is 
thus the increase of throughput at minimal investment and 
operative costs. An overview of the experiments is given in 
Table 1. To limit the number of experiments, the number 
of simulation runs was only varied for gw = 4 , for 3 and 5 
N = 2950 was fixed.

Fig. 2  Flow chart of optimisation routines for GA & SA

Table 1  Examined experimental values

Variables Values

N 1500 2950 4500
Tref ,s[s] 389,520 339,840 297,360
gw 3 4 5
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The starting configuration for all experiments was the 
current configuration, which required an average production 
time of T̄0 = 0.9895 Tref ,0 . It results in an average capacity 
fitness of fītcap,0,s=1 = 0.0994 . The fitness of the starting con-
figuration for each value of Tref ,s and gw is shown in Table 2.

One important factor to consider in simulation-based 
optimisation is the stochastic nature of the simulation and, 
thus, the necessity to perform multiple simulation runs 
to evaluate a given configuration i [26]. The simulation 
model shows an average relative standard deviation of the 
production time Ti,o of 1.67% , estimated using ten different 
configurations and 100 observations each. This deviation 
is considerable, as the desired improvements of the capac-
ity are only one order of magnitude bigger. In the above-
described experiments, each configuration is tested with a 
random seed. This method poses the danger of reducing the 
algorithm’s relevance for the stochastic solution space due to 
seed-optimised configurations. Thus, the effect of this seed 
value dependence was tested by comparing GA runs based 
on only one fixed seed value for all runs, with GA runs with 
ten observations with different seeds per configuration and 
runs with alternating seeds between each configuration. This 
test showed only a slight improvement in the fitness value for 
ten observations compared to alternating and fixed seeds, as 
shown in Fig. 3, even though only a tenth of the computa-
tion time was necessary for the latter. Furthermore, the fixed 
seeds’ results seemed to slightly outperform the alternating 
seeds, even when comparing the final results for multiple 
different seeds. This may be due to decreased selection effi-
ciency when the simulation seed changes. Therefore, fixed 
seeds were chosen for the following experiments.

4  Results

Figure  4 shows the best configuration found by the 
metaheuristics for different values of s. The metaheuris-
tics improved the fitness value of the original configuration 
in every case at least by a factor of 2. In practice, each of 
the final results was able to process the specified number 
of orders in reduced time as specified by Tref ,s in Table 1. 
Thereby, the potential throughput of the system was 
increased by 11.11% , 27.35% , and 45.54% respectively. For 

the best SA configurations investment costs of 196, 944, 
and 1710 currency units would be necessary. The best solu-
tions consistently used the same number of employees, 
but made all of them jumpers. Figure  5 shows the fitness 
achieved by the final chosen configuration of GA framed in 
black and SA framed in grey using ten observations in the 
simulation model. On average, the chosen SA configura-
tion shows a relative improvement of 0.0967 compared to 
the GA result, using a paired t-test on all observations; this 
difference is significant with p = 0.00035 [6]. As expected, 
the experiments also show a fitness improvement with 
increasing N, though this improvement is not as substantial 
as expected. GA showed an average relative improvement 
of 0.1582 from N = 1500 → 2950 and a decline of 0.0519 
for N = 2950 → 4500 . SA improved by 0.1216 and 0.0383, 
respectively.

As shown in Fig. 6, the final configurations are a trade-
off between minimising the capacity fitness function and 
the cost fitness function. This figure shows an overview of 
all tested configurations for N = 2950 and of the final best 

Table 2  Average fitness value of current configuration for different 
values of Tref ,s and gw

Tref,s [s]

389, 520 339, 840 297, 360

3 0.2982 0.7104 1.2405

gw 4 0.3976 0.9473 1.6540

5 0.4970 1.1841 2.0675

Fig. 3  Resulting distributions of observation strategies with fixed 
seeds, ten observations per individual and alternating seeds using 
GA)

Fig. 4  Resulting best configurations for GA and SA using 
N = 2950, gw = 4 for different s 
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configurations the SA algorithm was able to find with dif-
ferent values of gw and s. All chosen configurations show a 
value of fitcap of or close to zero.

Interestingly, the best configurations in all three s were 
found for gw = 3 , indicating that a less strict capacity thresh-
old could be beneficial for finding a solution. This becomes 
apparent in Fig. 7, which shows a broad view of the perfor-
mances of different configurations as well as isovalue lines, 
i.e. lines with equal values of fiti,o,w,s , for different values of 
gw . The figure indicates that the slope of the Pareto optimal 
set of configurations, effectively the line limiting the space 
of found solutions from the bottom, is significantly shallower 
than all isovalue lines, and the algorithm is forced towards 
values of fitcap,i,o,s close to 0.

Another interesting aspect of these experiments is each 
heuristic’s progress throughout the run. Figure 8 shows 
the fitness of the average best configuration at each point 
of the algorithm. The progress of the GA algorithm shows 
a continuous approximation towards the optimum, where 
the average rate of progress slows down with each genera-
tion. SA, on the other hand, shows an interesting behaviour. 
The algorithm underperforms compared to GA until the last 
third of the experiment. Then, when Θ is low enough, SA 
seems to be much more efficient at refining the solution and 
dominates GA in every case. For both SA and GA, N = 2950 

Fig. 5  Fitness of best configurations for GA and SA using gw = 4 for 
ten different observations each, lower is better

Fig. 6  SA configuration performance for s = 3 (left), 2 (center), and 
1 (right) and chosen best solution for gw = (3, 4, 5) using N = 2950

Fig. 7  Distribution of SA results for s = 3 with isovalue lines for dif-
ferent gw

Fig. 8  Average best fitness throughout different runs of SA and GA. 
(Note: For N = 2950 , 9 runs are aggregated for SA and GA, respec-
tively, for N = 1500 , 4500 only 3 runs were performed)
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seems to be the saturation point, as no significant average 
improvement is found for N = 4500.

5  Discussion

The results show that the combination of metaheuristics and 
simulation is valuable in complex decision-making in pro-
duction system planning. However, the chosen metaheuris-
tic and its parametrisation have a considered impact on the 
quality of the generated results. The results above clearly 
indicate that the SA algorithm used is superior to the GA 
algorithm provided by TPS, as SA dominates GA in every 
experiment. This is likely due to SA being more efficient 
in selecting configurations to be tested. It is particularly 
noteworthy that the GA cannot reduce the gap to SA even 
in the case of larger numbers of simulation runs, where an 
efficiency gap would be expected to diminish. Other studies 
have also observed similar comparative behaviour between 
GA and SA [7].

Interestingly, the most significant increases in result qual-
ity were found by SA in the last third of the process, where 
Θ was already relatively low. For the problem presented, it 
might have been more efficient to start at a lower value of Θ 
to limit the amount of inefficient searching. Thus, the selec-
tion of an apt cooling schedule should be considered crucial. 
In addition, numerous different cooling behaviour functions 
are applied in the literature. It would be interesting to inves-
tigate the influence of different functions on the configura-
tion solution in this specific problem. Since these functions 
are the compromise between exploration and exploitation, 
the convergence of the method would also be affected.

To further enhance the present evaluation of the meth-
ods for such optimisation problems, it would be desirable 
to carry out even more different experiments with further 
implementation of the methods in the simulation model. 
This way, the degrees of freedom of discontinuation of the 
SA procedure and the GA could be further investigated. In 
this work, the GA is set with the standard parameters of TPS. 
It would also be interesting to observe the results of this pro-
cedure in other settings. One degree of freedom of the GA is, 
for example, the population size that influences the conver-
gence of the GA [37]. In addition, crossover operators other 
than those used for this optimisation could be introduced 
and their impact investigated. Some crossover operators are 
better suited for certain problems [38]. The same applies to 
mutation operators and rates; other crossover operators can 
also be used for the SA method.

The parametrisation of the fitness function also seems 
to considerably influence the quality of the solutions. In 
the presented case, the capacity part of the fitness function 
was implemented as an increasing linear term for values 

exceeding a threshold time. The resulting isovalue lines of 
capacity and cost fitness were significantly steeper than the 
local gradient of the optimal Pareto set of solutions. There-
fore, the resulting best solutions were always located on the 
fitcap,i,os = 0 line. Thus, the evaluation of the final solution 
was not directly dependent on the weighting of the capac-
ity fitness. However, lower weightings of the capacity fit-
ness and, thus, shallower isovalue lines seemed to allow the 
algorithms to explore solutions close to the threshold more 
efficiently and thus improve the solution quality. To optimise 
the algorithms, it may be prudent to choose weightings for 
such soft constraints that result in isovalue lines close to the 
expected gradient of the Pareto optimal set. This idea should 
be investigated further in subsequent research.

The experiments also show that, at least for the experi-
mentation, the stochastic nature of simulations can be 
ignored to drastically improve the computational effort 
required. However, this may not necessarily be the case for 
different problems. For example, fixed seed observation 
methods will likely perform worse in systems with higher 
levels of stochastic variation. Thus, finding thresholds for 
using different observation methods would be interesting, 
though very laborious. Also, dynamically adjusted observa-
tion methods, as proposed by [26], could be used.

6  Conclusion

This contribution investigated genetic algorithms and simu-
lated annealing to optimise a material flow simulation in 
a matrix production system. The discrete event simulation 
model was developed and validated to resemble the produc-
tion system closely. Subsequently, both GA and SA algo-
rithms were tested using different parametrisations. The 
results show that SA is superior to GA in the tested use case 
and meta-heuristic configuration, likely due to the increased 
efficiency in the final phase of the optimisation. In conclu-
sion, it can thus be said that using such approaches is a valu-
able addition to the planning of matrix production systems.

Acknowledgements Funded by the Deutsche Forschungsgemeinschaft 
(DFG, German Research Foundation) – project number 454608456.

Funding Open Access funding enabled and organized by Projekt 
DEAL.

Data availibility The datasets generated during the study are available 
from the corresponding author on reasonable request.

Declarations 

Conflict of interest The authors declare that they have no confict of 
interest



Production Engineering 

1 3

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Blecker T, Kaluza B (2004) Heterarchische Hierarchie: Ein Organ-
isationsprinzip flexibler Produktionssysteme, Diskussionsbeiträge 
/ Universität Klagenfurt, Institut für Wirtschaftswissenschaften, 
vol 2004/01. Inst. für Wirtschaftswiss, Klagenfurt

 2. Greschke P, Schönemann M, Thiede S et al (2014) Matrix struc-
tures for high volumes and flexibility in production systems. Pro-
cedia CIRP 17:160–165. https:// doi. org/ 10. 1016/j. procir. 2014. 02. 
040

 3. Schönemann M, Herrmann C, Greschke P et al (2015) Simula-
tion of matrix-structured manufacturing systems. J Manuf Syst 
37:104–112. https:// doi. org/ 10. 1016/j. jmsy. 2015. 09. 002

 4. Schmidtke N, Rettmann A, Behrendt F (2021) Hawaii interna-
tional conference on system sciences 2021. University of Hawai’i 
at Manoa Hamilton Library, Honolulu, HI. https:// schol arspa ce. 
manoa. hawaii. edu/ handle/ 10125/ 72112

 5. Trierweiler M, Bauernhansl T (2021) Reconfiguration of produc-
tion equipment of matrix manufacturing systems. In: Weißgraeber 
P, Heieck F, Ackermann C (eds) Advances in automotive produc-
tion technology—theory and application. ARENA2036. Springer, 
Berlin, pp 20–27. https:// doi. org/ 10. 1007/ 978-3- 662- 62962-8_3

 6. Halim AH, Ismail I, Das S (2021) Performance assessment of 
the metaheuristic optimization algorithms: an exhaustive review. 
Artif Intell Rev 54(3):2323–2409. https:// doi. org/ 10. 1007/ 
s10462- 020- 09906-6

 7. Halim AH, Ismail I (2019) Combinatorial optimization: compari-
son of heuristic algorithms in travelling salesman problem. Arch 
Comput Methods Eng 26(2):367–380. https:// doi. org/ 10. 1007/ 
s11831- 017- 9247-y

 8. Hofmann C, Brakemeier N, Krahe C et al (2019) The impact of 
routing and operation flexibility on the performance of matrix 
production compared to a production line. In: Schmitt R, Schuh 
G (eds) Advances in production research. Springer, Cham, pp 
155–165. https:// doi. org/ 10. 1007/ 978-3- 030- 03451-1_ 16

 9. Stricker N, Kuhnle A, Hofmann C et al (2021) Self-adjusting 
multi-objective scheduling based on Monte Carlo tree search for 
matrix production assembly systems. CIRP Ann 70(1):381–384. 
https:// doi. org/ 10. 1016/j. cirp. 2021. 04. 036

 10. May MC, Schmidt S, Kuhnle A et al (2021) Product generation 
module: automated production planning for optimized workload 
and increased efficiency in matrix production systems. Procedia 
CIRP 96:45–50. https:// doi. org/ 10. 1016/j. procir. 2021. 01. 050

 11. Filz MA, Herrmann C, Thiede S (2020) Simulation-based data 
analysis to support the planning of flexible manufacturing sys-
tems. SNE Simul Notes Europe 30(4):131–137. https:// doi. org/ 
10. 11128/ sne. 30. tn. 10531

 12. Gutenschwager K, Rabe M, Spieckermann S et al (2017) Simula-
tion in Produktion und Logistik. Springer, Berlin. https:// doi. org/ 
10. 1007/ 978-3- 662- 55745-7

 13. Negahban A, Smith JS (2014) Simulation for manufacturing sys-
tem design and operation: literature review and analysis. J Manuf 
Syst 33(2):241–261. https:// doi. org/ 10. 1016/j. jmsy. 2013. 12. 007

 14. Mourtzis D (2020) Simulation in the design and operation of 
manufacturing systems: state of the art and new trends. Int J Prod 
Res 58(7):1927–1949. https:// doi. org/ 10. 1080/ 00207 543. 2019. 
16363 21

 15. Schönemann M, Bockholt H, Thiede S et al (2019) Multiscale sim-
ulation approach for production systems. Int J Adv Manuf Technol 
102(5–8):1373–1390. https:// doi. org/ 10. 1007/ s00170- 018- 3054-y

 16. Medina FG, Umpierrez AW, Martinez V et al (2021) A matu-
rity model for digital twin implementations in the commercial 
aerospace oem industry. In: 2021 10th international conference 
on industrial technology and management (ICITM). IEEE, pp 
149–156. https:// doi. org/ 10. 1109/ ICITM 52822. 2021. 00034

 17. Fu MC (2002) Feature article: optimization for simulation: the-
ory vs. practice. INFORMS J Comput 14(3):192–215. https:// 
doi. org/ 10. 1287/ ijoc. 14.3. 192. 113

 18. Meinecke (2017) Ein lösungsverfahren für die integrierte pla-
nung der produktion in der werkstattfertigung und den überbe-
trieblichen transport. Doctoral dissertation, Universität Bremen

 19. Sattarvand J, Niemann-Delius C (2013) Past, present and future 
of metaheuristic optimization methods in long-term production 
planning of open pits. BHM Berg-und Huettenmaenn Monatsh 
158(4):146–154. https:// doi. org/ 10. 1007/ s00501- 013- 0127-y

 20. Gogna A, Tayal A (2013) Metaheuristics: review and applica-
tion. J Exp Theor Artif Intell 25(4):503–526. https:// doi. org/ 10. 
1080/ 09528 13X. 2013. 782347

 21. Mohan A, Dileep A, Ajayan S et  al (2020) Comparison of 
metaheuristics for a vehicle routing problem in a farming 
community. In: Thampi SM, Trajkovic L, Li KC et al (eds) 
Machine learning and metaheuristics algorithms, and applica-
tions, communications in computer and information science, vol 
1203. Springer, Singapore, pp 49–63. https:// doi. org/ 10. 1007/ 
978- 981- 15- 4301-2_5

 22. Zolfaghari S, Liang M (2002) Comparative study of simulated 
annealing, genetic algorithms and tabu search for solving binary 
and comprehensive machine-grouping problems. Int J Prod Res 
40(9):2141–2158. https:// doi. org/ 10. 1080/ 00207 54021 01318 51

 23. Hatami-Marbini A, Sajadi SM, Malekpour H (2020) Optimal 
control and simulation for production planning of network 
failure-prone manufacturing systems with perishable goods. 
Comput Ind Eng 146(106):614. https:// doi. org/ 10. 1016/j. cie. 
2020. 106614

 24. de Sousa Junior WT, Montevechi JAB, Miranda RC et al (2020) 
Shop floor simulation optimization using machine learning to 
improve parallel metaheuristics. Expert Syst Appl 150(113):272. 
https:// doi. org/ 10. 1016/j. eswa. 2020. 113272

 25. Petroodi SEH, Eynaud ABD, Klement N et al (2019) Simula-
tion-based optimization approach with scenario-based product 
sequence in a reconfigurable manufacturing system (rms): a case 
study. IFAC-PapersOnLine 52(13):2638–2643. https:// doi. org/ 10. 
1016/j. ifacol. 2019. 11. 605

 26. Rabe M, Deininger M, Juan AA (2020) Speeding up compu-
tational times in simheuristics combining genetic algorithms 
with discrete-event simulation. Simul Model Pract Theory 
103(102):089. https:// doi. org/ 10. 1016/j. simpat. 2020. 102089

 27. Baykasoğlu A, Gindy NN (2001) A simulated annealing algorithm 
for dynamic layout problem. Comput Oper Res 28(14):1403–
1426. https:// doi. org/ 10. 1016/ S0305- 0548(00) 00049-6

 28. Balakrishnan J, Cheng CH (2000) Genetic search and the dynamic 
layout problem. Comput Oper Res 27(6):587–593. https:// doi. org/ 
10. 1016/ S0305- 0548(99) 00052-0

 29. Kia R, Khaksar-Haghani F, Javadian N et  al (2014) Solv-
ing a multi-floor layout design model of a dynamic cellular 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.procir.2014.02.040
https://doi.org/10.1016/j.procir.2014.02.040
https://doi.org/10.1016/j.jmsy.2015.09.002
https://scholarspace.manoa.hawaii.edu/handle/10125/72112
https://scholarspace.manoa.hawaii.edu/handle/10125/72112
https://doi.org/10.1007/978-3-662-62962-8_3
https://doi.org/10.1007/s10462-020-09906-6
https://doi.org/10.1007/s10462-020-09906-6
https://doi.org/10.1007/s11831-017-9247-y
https://doi.org/10.1007/s11831-017-9247-y
https://doi.org/10.1007/978-3-030-03451-1_16
https://doi.org/10.1016/j.cirp.2021.04.036
https://doi.org/10.1016/j.procir.2021.01.050
https://doi.org/10.11128/sne.30.tn.10531
https://doi.org/10.11128/sne.30.tn.10531
https://doi.org/10.1007/978-3-662-55745-7
https://doi.org/10.1007/978-3-662-55745-7
https://doi.org/10.1016/j.jmsy.2013.12.007
https://doi.org/10.1080/00207543.2019.1636321
https://doi.org/10.1080/00207543.2019.1636321
https://doi.org/10.1007/s00170-018-3054-y
https://doi.org/10.1109/ICITM52822.2021.00034
https://doi.org/10.1287/ijoc.14.3.192.113
https://doi.org/10.1287/ijoc.14.3.192.113
https://doi.org/10.1007/s00501-013-0127-y
https://doi.org/10.1080/0952813X.2013.782347
https://doi.org/10.1080/0952813X.2013.782347
https://doi.org/10.1007/978-981-15-4301-2_5
https://doi.org/10.1007/978-981-15-4301-2_5
https://doi.org/10.1080/00207540210131851
https://doi.org/10.1016/j.cie.2020.106614
https://doi.org/10.1016/j.cie.2020.106614
https://doi.org/10.1016/j.eswa.2020.113272
https://doi.org/10.1016/j.ifacol.2019.11.605
https://doi.org/10.1016/j.ifacol.2019.11.605
https://doi.org/10.1016/j.simpat.2020.102089
https://doi.org/10.1016/S0305-0548(00)00049-6
https://doi.org/10.1016/S0305-0548(99)00052-0
https://doi.org/10.1016/S0305-0548(99)00052-0


 Production Engineering

1 3

manufacturing system by an efficient genetic algorithm. J Manuf 
Syst 33(1):218–232. https:// doi. org/ 10. 1016/j. jmsy. 2013. 12. 005

 30. Zhang GQ, Xue J, Lai KK (2002) A class of genetic algorithms 
for multiple-level warehouse layout problems. Int J Prod Res 
40(3):731–744. https:// doi. org/ 10. 1080/ 00207 54011 00939 09

 31. Arostegui MA, Kadipasaoglu SN, Khumawala BM (2006) An 
empirical comparison of tabu search, simulated annealing, and 
genetic algorithms for facilities location problems. Int J Prod Econ 
103(2):742–754. https:// doi. org/ 10. 1016/j. ijpe. 2005. 08. 010

 32. Zupan H, Herakovic N, Zerovnik J et al (2016) Layout optimi-
zation of a production cell. Int J Simul Model 16(4):603–616. 
https:// doi. org/ 10. 2507/ IJSIM M16(4)4. 396

 33. Tubaileh AS (2014) Layout of flexible manufacturing systems 
based on kinematic constraints of the autonomous material han-
dling system. Int J Adv Manuf Technol 74(9–12):1521–1537. 
https:// doi. org/ 10. 1007/ s00170- 014- 6063-5

 34. Völker S, Verbeet R (2021) Simulationsbasierte konfiguration der 
stationen von matrix-produktionssystemen. In: Jörg Franke PS 
(ed) Simulation in Produktion und Logistik 2021, pp 285–294

 35. Bányai Á, Illés B, Glistau E et al (2019) Smart cyber-physical 
manufacturing: extended and real-time optimization of logistics 

resources in matrix production. Appl Sci 9(7):1287. https:// doi. 
org/ 10. 3390/ app90 71287

 36. Benfer M, Autenrieth M, Brützel O et al (2022) Agile erstel-
lung von materialflusssimulationen. Zeitschrift für wirtschaftli-
chen Fabrikbetrieb 117(12):867–871. https:// doi. org/ 10. 1515/ 
zwf- 2022- 1158

 37. Buttelmann M, Lohmann B (2004) Optimierung mit genetischen 
algorithmen und eine anwendung zur modellreduktion (optimiza-
tion with genetic algorithms and an application for model reduc-
tion). at-Automatisierungstechnik 52(4):151–163. https:// doi. org/ 
10. 1524/ auto. 52.4. 151. 29416

 38. Kora P, Yadlapalli P (2017) Crossover operators in genetic algo-
rithms: a review. Int J Comput Appl 162(10):34–36. https:// doi. 
org/ 10. 5120/ ijca2 01791 3370

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jmsy.2013.12.005
https://doi.org/10.1080/00207540110093909
https://doi.org/10.1016/j.ijpe.2005.08.010
https://doi.org/10.2507/IJSIMM16(4)4.396
https://doi.org/10.1007/s00170-014-6063-5
https://doi.org/10.3390/app9071287
https://doi.org/10.3390/app9071287
https://doi.org/10.1515/zwf-2022-1158
https://doi.org/10.1515/zwf-2022-1158
https://doi.org/10.1524/auto.52.4.151.29416
https://doi.org/10.1524/auto.52.4.151.29416
https://doi.org/10.5120/ijca2017913370
https://doi.org/10.5120/ijca2017913370

	Analysis of metaheuristic optimisation techniques for simulated matrix production systems
	Abstract
	1 Introduction
	2 Related work
	2.1 Matrix production
	2.2 Discrete event simulation
	2.3 Metaheuristics
	2.4 Metaheuristics for the configuration of production systems

	3 Experimental setting and methodology
	3.1 Use case
	3.2 DES modeling and fitness function
	3.3 Metaheuristics
	3.4 Experimental design

	4 Results
	5 Discussion
	6 Conclusion
	Acknowledgements 
	References


